ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.79 by root, Fri Nov 9 15:15:20 2007 UTC vs.
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
41# endif 65# endif
42 66
43# if HAVE_POLL && HAVE_POLL_H 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
45# endif 73# endif
46 74
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
53# endif 113# endif
54 114
55#endif 115#endif
56 116
57#include <math.h> 117#include <math.h>
66#include <sys/types.h> 126#include <sys/types.h>
67#include <time.h> 127#include <time.h>
68 128
69#include <signal.h> 129#include <signal.h>
70 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
71#ifndef WIN32 137#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 138# include <sys/time.h>
74# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
141#else
142# define WIN32_LEAN_AND_MEAN
143# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1
75#endif 146# endif
147#endif
148
76/**/ 149/**/
77 150
78#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
80#endif 161#endif
81 162
82#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
84#endif 165#endif
85 166
86#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 168# ifdef _WIN32
169# define EV_USE_POLL 0
170# else
171# define EV_USE_POLL 1
172# endif
88#endif 173#endif
89 174
90#ifndef EV_USE_EPOLL 175#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 176# define EV_USE_EPOLL 0
92#endif 177#endif
93 178
94#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
96#endif 181#endif
97 182
183#ifndef EV_USE_PORT
184# define EV_USE_PORT 0
185#endif
186
98#ifndef EV_USE_WIN32 187#ifndef EV_USE_INOTIFY
99# ifdef WIN32 188# define EV_USE_INOTIFY 0
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 189#endif
101# undef EV_USE_SELECT 190
102# define EV_USE_SELECT 1 191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
103# else 194# else
104# define EV_USE_WIN32 0 195# define EV_PID_HASHSIZE 16
105# endif 196# endif
106#endif 197#endif
107 198
108#ifndef EV_USE_REALTIME 199#ifndef EV_INOTIFY_HASHSIZE
109# define EV_USE_REALTIME 1 200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
110#endif 205#endif
111 206
112/**/ 207/**/
113 208
114#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
122#endif 217#endif
123 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
234#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h>
236#endif
237
124/**/ 238/**/
125 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 253
131#include "ev.h"
132
133#if __GNUC__ >= 3 254#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 256# define noinline __attribute__ ((noinline))
136#else 257#else
137# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
138# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
139#endif 263#endif
140 264
141#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
143 274
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 277
278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
280
147typedef struct ev_watcher *W; 281typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
150 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 288
289#ifdef _WIN32
153#include "ev_win32.c" 290# include "ev_win32.c"
291#endif
154 292
155/*****************************************************************************/ 293/*****************************************************************************/
156 294
157static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
158 296
297void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 299{
161 syserr_cb = cb; 300 syserr_cb = cb;
162} 301}
163 302
164static void 303static void noinline
165syserr (const char *msg) 304syserr (const char *msg)
166{ 305{
167 if (!msg) 306 if (!msg)
168 msg = "(libev) system error"; 307 msg = "(libev) system error";
169 308
176 } 315 }
177} 316}
178 317
179static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
180 319
320void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 322{
183 alloc = cb; 323 alloc = cb;
184} 324}
185 325
186static void * 326inline_speed void *
187ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
188{ 328{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190 330
191 if (!ptr && size) 331 if (!ptr && size)
205typedef struct 345typedef struct
206{ 346{
207 WL head; 347 WL head;
208 unsigned char events; 348 unsigned char events;
209 unsigned char reify; 349 unsigned char reify;
350#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle;
352#endif
210} ANFD; 353} ANFD;
211 354
212typedef struct 355typedef struct
213{ 356{
214 W w; 357 W w;
215 int events; 358 int events;
216} ANPENDING; 359} ANPENDING;
217 360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
367
218#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
219 369
220struct ev_loop 370 struct ev_loop
221{ 371 {
372 ev_tstamp ev_rt_now;
373 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 374 #define VAR(name,decl) decl;
223# include "ev_vars.h" 375 #include "ev_vars.h"
224};
225# undef VAR 376 #undef VAR
377 };
226# include "ev_wrap.h" 378 #include "ev_wrap.h"
379
380 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr;
227 382
228#else 383#else
229 384
385 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 386 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 387 #include "ev_vars.h"
232# undef VAR 388 #undef VAR
389
390 static int ev_default_loop_ptr;
233 391
234#endif 392#endif
235 393
236/*****************************************************************************/ 394/*****************************************************************************/
237 395
238inline ev_tstamp 396ev_tstamp
239ev_time (void) 397ev_time (void)
240{ 398{
241#if EV_USE_REALTIME 399#if EV_USE_REALTIME
242 struct timespec ts; 400 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 401 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 407#endif
250} 408}
251 409
252inline ev_tstamp 410ev_tstamp inline_size
253get_clock (void) 411get_clock (void)
254{ 412{
255#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
257 { 415 {
262#endif 420#endif
263 421
264 return ev_time (); 422 return ev_time ();
265} 423}
266 424
425#if EV_MULTIPLICITY
267ev_tstamp 426ev_tstamp
268ev_now (EV_P) 427ev_now (EV_P)
269{ 428{
270 return rt_now; 429 return ev_rt_now;
271} 430}
431#endif
272 432
273#define array_roundsize(type,n) ((n) | 4 & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
274 487
275#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
277 { \ 490 { \
278 int newcnt = cur; \ 491 int ocur_ = (cur); \
279 do \ 492 (base) = (type *)array_realloc \
280 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 495 }
289 496
497#if 0
290#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 500 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 504 }
297 505#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 506
303#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 509
306/*****************************************************************************/ 510/*****************************************************************************/
307 511
308static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
309anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
310{ 542{
311 while (count--) 543 while (count--)
312 { 544 {
313 base->head = 0; 545 base->head = 0;
316 548
317 ++base; 549 ++base;
318 } 550 }
319} 551}
320 552
321void 553void inline_speed
322ev_feed_event (EV_P_ void *w, int revents)
323{
324 W w_ = (W)w;
325
326 if (w_->pending)
327 {
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 return;
330 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336}
337
338static void
339queue_events (EV_P_ W *events, int eventcnt, int type)
340{
341 int i;
342
343 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type);
345}
346
347inline void
348fd_event (EV_P_ int fd, int revents) 554fd_event (EV_P_ int fd, int revents)
349{ 555{
350 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
351 struct ev_io *w; 557 ev_io *w;
352 558
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
354 { 560 {
355 int ev = w->events & revents; 561 int ev = w->events & revents;
356 562
357 if (ev) 563 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
360} 566}
361 567
362void 568void
363ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
364{ 570{
571 if (fd >= 0 && fd < anfdmax)
365 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
366} 573}
367 574
368/*****************************************************************************/ 575void inline_size
369
370static void
371fd_reify (EV_P) 576fd_reify (EV_P)
372{ 577{
373 int i; 578 int i;
374 579
375 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
376 { 581 {
377 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
378 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
379 struct ev_io *w; 584 ev_io *w;
380 585
381 int events = 0; 586 unsigned char events = 0;
382 587
383 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
384 events |= w->events; 589 events |= (unsigned char)w->events;
385 590
591#if EV_SELECT_IS_WINSOCKET
592 if (events)
593 {
594 unsigned long argp;
595 anfd->handle = _get_osfhandle (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 }
598#endif
599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
386 anfd->reify = 0; 604 anfd->reify = 0;
387
388 method_modify (EV_A_ fd, anfd->events, events);
389 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
390 } 610 }
391 611
392 fdchangecnt = 0; 612 fdchangecnt = 0;
393} 613}
394 614
395static void 615void inline_size
396fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
397{ 617{
398 if (anfds [fd].reify) 618 unsigned char reify = anfds [fd].reify;
399 return;
400
401 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
402 620
621 if (expect_true (!reify))
622 {
403 ++fdchangecnt; 623 ++fdchangecnt;
404 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
405 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
406} 627}
407 628
408static void 629void inline_speed
409fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
410{ 631{
411 struct ev_io *w; 632 ev_io *w;
412 633
413 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
414 { 635 {
415 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
416 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
417 } 638 }
418} 639}
419 640
420static int 641int inline_size
421fd_valid (int fd) 642fd_valid (int fd)
422{ 643{
423#ifdef WIN32 644#ifdef _WIN32
424 return !!win32_get_osfhandle (fd); 645 return _get_osfhandle (fd) != -1;
425#else 646#else
426 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
427#endif 648#endif
428} 649}
429 650
430/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
431static void 652static void noinline
432fd_ebadf (EV_P) 653fd_ebadf (EV_P)
433{ 654{
434 int fd; 655 int fd;
435 656
436 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
438 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
439 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
440} 661}
441 662
442/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
443static void 664static void noinline
444fd_enomem (EV_P) 665fd_enomem (EV_P)
445{ 666{
446 int fd; 667 int fd;
447 668
448 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
451 fd_kill (EV_A_ fd); 672 fd_kill (EV_A_ fd);
452 return; 673 return;
453 } 674 }
454} 675}
455 676
456/* usually called after fork if method needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
457static void 678static void noinline
458fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
459{ 680{
460 int fd; 681 int fd;
461 682
462 /* this should be highly optimised to not do anything but set a flag */
463 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
464 if (anfds [fd].events) 684 if (anfds [fd].events)
465 { 685 {
466 anfds [fd].events = 0; 686 anfds [fd].events = 0;
467 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
468 } 688 }
469} 689}
470 690
471/*****************************************************************************/ 691/*****************************************************************************/
472 692
473static void 693void inline_speed
474upheap (WT *heap, int k) 694upheap (WT *heap, int k)
475{ 695{
476 WT w = heap [k]; 696 WT w = heap [k];
477 697
478 while (k && heap [k >> 1]->at > w->at) 698 while (k)
479 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
480 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
481 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
482 k >>= 1; 707 k = p;
483 } 708 }
484 709
485 heap [k] = w; 710 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
487
488} 712}
489 713
490static void 714void inline_speed
491downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
492{ 716{
493 WT w = heap [k]; 717 WT w = heap [k];
494 718
495 while (k < (N >> 1)) 719 for (;;)
496 { 720 {
497 int j = k << 1; 721 int c = (k << 1) + 1;
498 722
499 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
500 ++j;
501
502 if (w->at <= heap [j]->at)
503 break; 724 break;
504 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
505 heap [k] = heap [j]; 732 heap [k] = heap [c];
506 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
507 k = j; 735 k = c;
508 } 736 }
509 737
510 heap [k] = w; 738 heap [k] = w;
511 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
512} 747}
513 748
514/*****************************************************************************/ 749/*****************************************************************************/
515 750
516typedef struct 751typedef struct
522static ANSIG *signals; 757static ANSIG *signals;
523static int signalmax; 758static int signalmax;
524 759
525static int sigpipe [2]; 760static int sigpipe [2];
526static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
527static struct ev_io sigev; 762static ev_io sigev;
528 763
529static void 764void inline_size
530signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
531{ 766{
532 while (count--) 767 while (count--)
533 { 768 {
534 base->head = 0; 769 base->head = 0;
539} 774}
540 775
541static void 776static void
542sighandler (int signum) 777sighandler (int signum)
543{ 778{
544#if WIN32 779#if _WIN32
545 signal (signum, sighandler); 780 signal (signum, sighandler);
546#endif 781#endif
547 782
548 signals [signum - 1].gotsig = 1; 783 signals [signum - 1].gotsig = 1;
549 784
550 if (!gotsig) 785 if (!gotsig)
551 { 786 {
552 int old_errno = errno; 787 int old_errno = errno;
553 gotsig = 1; 788 gotsig = 1;
554#ifdef WIN32
555 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
556#else
557 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
558#endif
559 errno = old_errno; 790 errno = old_errno;
560 } 791 }
561} 792}
562 793
563void 794void noinline
564ev_feed_signal_event (EV_P_ int signum) 795ev_feed_signal_event (EV_P_ int signum)
565{ 796{
797 WL w;
798
566#if EV_MULTIPLICITY 799#if EV_MULTIPLICITY
567 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
568#endif 801#endif
569 802
570 --signum; 803 --signum;
571 804
572 if (signum < 0 || signum >= signalmax) 805 if (signum < 0 || signum >= signalmax)
577 for (w = signals [signum].head; w; w = w->next) 810 for (w = signals [signum].head; w; w = w->next)
578 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
579} 812}
580 813
581static void 814static void
582sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
583{ 816{
584 WL w;
585 int signum; 817 int signum;
586 818
587#ifdef WIN32
588 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589#else
590 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
591#endif
592 gotsig = 0; 820 gotsig = 0;
593 821
594 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
595 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
596 sigevent (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
597} 825}
598 826
599static void 827void inline_speed
828fd_intern (int fd)
829{
830#ifdef _WIN32
831 int arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif
837}
838
839static void noinline
600siginit (EV_P) 840siginit (EV_P)
601{ 841{
602#ifndef WIN32 842 fd_intern (sigpipe [0]);
603 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 843 fd_intern (sigpipe [1]);
604 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
605
606 /* rather than sort out wether we really need nb, set it */
607 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
608 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
609#endif
610 844
611 ev_io_set (&sigev, sigpipe [0], EV_READ); 845 ev_io_set (&sigev, sigpipe [0], EV_READ);
612 ev_io_start (EV_A_ &sigev); 846 ev_io_start (EV_A_ &sigev);
613 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
614} 848}
615 849
616/*****************************************************************************/ 850/*****************************************************************************/
617 851
618static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
619 853
620#ifndef WIN32 854#ifndef _WIN32
621 855
622static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
623 872
624#ifndef WCONTINUED 873#ifndef WCONTINUED
625# define WCONTINUED 0 874# define WCONTINUED 0
626#endif 875#endif
627 876
628static void 877static void
629child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
630{
631 struct ev_child *w;
632
633 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
634 if (w->pid == pid || !w->pid)
635 {
636 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
637 w->rpid = pid;
638 w->rstatus = status;
639 ev_feed_event (EV_A_ (W)w, EV_CHILD);
640 }
641}
642
643static void
644childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
645{ 879{
646 int pid, status; 880 int pid, status;
647 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
648 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
649 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
650 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
651 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
652 892
653 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
654 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
655 }
656} 896}
657 897
658#endif 898#endif
659 899
660/*****************************************************************************/ 900/*****************************************************************************/
661 901
902#if EV_USE_PORT
903# include "ev_port.c"
904#endif
662#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
663# include "ev_kqueue.c" 906# include "ev_kqueue.c"
664#endif 907#endif
665#if EV_USE_EPOLL 908#if EV_USE_EPOLL
666# include "ev_epoll.c" 909# include "ev_epoll.c"
683{ 926{
684 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
685} 928}
686 929
687/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
688static int 931int inline_size
689enable_secure (void) 932enable_secure (void)
690{ 933{
691#ifdef WIN32 934#ifdef _WIN32
692 return 0; 935 return 0;
693#else 936#else
694 return getuid () != geteuid () 937 return getuid () != geteuid ()
695 || getgid () != getegid (); 938 || getgid () != getegid ();
696#endif 939#endif
697} 940}
698 941
699int 942unsigned int
700ev_method (EV_P) 943ev_supported_backends (void)
701{ 944{
702 return method; 945 unsigned int flags = 0;
703}
704 946
705static void 947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
706loop_init (EV_P_ int methods) 948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
950 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952
953 return flags;
954}
955
956unsigned int
957ev_recommended_backends (void)
707{ 958{
708 if (!method) 959 unsigned int flags = ev_supported_backends ();
960
961#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE;
965#endif
966#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation
968 flags &= ~EVBACKEND_POLL;
969#endif
970
971 return flags;
972}
973
974unsigned int
975ev_embeddable_backends (void)
976{
977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
978
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983 return flags;
984}
985
986unsigned int
987ev_backend (EV_P)
988{
989 return backend;
990}
991
992unsigned int
993ev_loop_count (EV_P)
994{
995 return loop_count;
996}
997
998void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 io_blocktime = interval;
1002}
1003
1004void
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{
1007 timeout_blocktime = interval;
1008}
1009
1010static void noinline
1011loop_init (EV_P_ unsigned int flags)
1012{
1013 if (!backend)
709 { 1014 {
710#if EV_USE_MONOTONIC 1015#if EV_USE_MONOTONIC
711 { 1016 {
712 struct timespec ts; 1017 struct timespec ts;
713 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
714 have_monotonic = 1; 1019 have_monotonic = 1;
715 } 1020 }
716#endif 1021#endif
717 1022
718 rt_now = ev_time (); 1023 ev_rt_now = ev_time ();
719 mn_now = get_clock (); 1024 mn_now = get_clock ();
720 now_floor = mn_now; 1025 now_floor = mn_now;
721 rtmn_diff = rt_now - mn_now; 1026 rtmn_diff = ev_rt_now - mn_now;
722 1027
723 if (methods == EVMETHOD_AUTO) 1028 io_blocktime = 0.;
724 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1029 timeout_blocktime = 0.;
1030
1031 /* pid check not overridable via env */
1032#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid ();
1035#endif
1036
1037 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS"))
725 methods = atoi (getenv ("LIBEV_METHODS")); 1040 flags = atoi (getenv ("LIBEV_FLAGS"));
726 else
727 methods = EVMETHOD_ANY;
728 1041
729 method = 0; 1042 if (!(flags & 0x0000ffffUL))
1043 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
730#if EV_USE_WIN32 1047#if EV_USE_INOTIFY
731 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1048 fs_fd = -2;
1049#endif
1050
1051#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
732#endif 1053#endif
733#if EV_USE_KQUEUE 1054#if EV_USE_KQUEUE
734 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1055 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
735#endif 1056#endif
736#if EV_USE_EPOLL 1057#if EV_USE_EPOLL
737 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1058 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
738#endif 1059#endif
739#if EV_USE_POLL 1060#if EV_USE_POLL
740 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1061 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
741#endif 1062#endif
742#if EV_USE_SELECT 1063#if EV_USE_SELECT
743 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
744#endif 1065#endif
745 1066
746 ev_watcher_init (&sigev, sigcb); 1067 ev_init (&sigev, sigcb);
747 ev_set_priority (&sigev, EV_MAXPRI); 1068 ev_set_priority (&sigev, EV_MAXPRI);
748 } 1069 }
749} 1070}
750 1071
751void 1072static void noinline
752loop_destroy (EV_P) 1073loop_destroy (EV_P)
753{ 1074{
754 int i; 1075 int i;
755 1076
756#if EV_USE_WIN32 1077#if EV_USE_INOTIFY
757 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1078 if (fs_fd >= 0)
1079 close (fs_fd);
1080#endif
1081
1082 if (backend_fd >= 0)
1083 close (backend_fd);
1084
1085#if EV_USE_PORT
1086 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
758#endif 1087#endif
759#if EV_USE_KQUEUE 1088#if EV_USE_KQUEUE
760 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1089 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
761#endif 1090#endif
762#if EV_USE_EPOLL 1091#if EV_USE_EPOLL
763 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1092 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
764#endif 1093#endif
765#if EV_USE_POLL 1094#if EV_USE_POLL
766 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1095 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
767#endif 1096#endif
768#if EV_USE_SELECT 1097#if EV_USE_SELECT
769 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1098 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
770#endif 1099#endif
771 1100
772 for (i = NUMPRI; i--; ) 1101 for (i = NUMPRI; i--; )
1102 {
773 array_free (pending, [i]); 1103 array_free (pending, [i]);
1104#if EV_IDLE_ENABLE
1105 array_free (idle, [i]);
1106#endif
1107 }
1108
1109 ev_free (anfds); anfdmax = 0;
774 1110
775 /* have to use the microsoft-never-gets-it-right macro */ 1111 /* have to use the microsoft-never-gets-it-right macro */
776 array_free_microshit (fdchange); 1112 array_free (fdchange, EMPTY);
777 array_free_microshit (timer); 1113 array_free (timer, EMPTY);
778 array_free_microshit (periodic); 1114#if EV_PERIODIC_ENABLE
779 array_free_microshit (idle); 1115 array_free (periodic, EMPTY);
780 array_free_microshit (prepare); 1116#endif
781 array_free_microshit (check); 1117#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY);
1119#endif
1120 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY);
782 1122
783 method = 0; 1123 backend = 0;
784} 1124}
785 1125
786static void 1126void inline_size infy_fork (EV_P);
1127
1128void inline_size
787loop_fork (EV_P) 1129loop_fork (EV_P)
788{ 1130{
1131#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif
1134#if EV_USE_KQUEUE
1135 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1136#endif
789#if EV_USE_EPOLL 1137#if EV_USE_EPOLL
790 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1138 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
791#endif 1139#endif
792#if EV_USE_KQUEUE 1140#if EV_USE_INOTIFY
793 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1141 infy_fork (EV_A);
794#endif 1142#endif
795 1143
796 if (ev_is_active (&sigev)) 1144 if (ev_is_active (&sigev))
797 { 1145 {
798 /* default loop */ 1146 /* default loop */
811 postfork = 0; 1159 postfork = 0;
812} 1160}
813 1161
814#if EV_MULTIPLICITY 1162#if EV_MULTIPLICITY
815struct ev_loop * 1163struct ev_loop *
816ev_loop_new (int methods) 1164ev_loop_new (unsigned int flags)
817{ 1165{
818 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
819 1167
820 memset (loop, 0, sizeof (struct ev_loop)); 1168 memset (loop, 0, sizeof (struct ev_loop));
821 1169
822 loop_init (EV_A_ methods); 1170 loop_init (EV_A_ flags);
823 1171
824 if (ev_method (EV_A)) 1172 if (ev_backend (EV_A))
825 return loop; 1173 return loop;
826 1174
827 return 0; 1175 return 0;
828} 1176}
829 1177
841} 1189}
842 1190
843#endif 1191#endif
844 1192
845#if EV_MULTIPLICITY 1193#if EV_MULTIPLICITY
846struct ev_loop default_loop_struct;
847static struct ev_loop *default_loop;
848
849struct ev_loop * 1194struct ev_loop *
1195ev_default_loop_init (unsigned int flags)
850#else 1196#else
851static int default_loop;
852
853int 1197int
1198ev_default_loop (unsigned int flags)
854#endif 1199#endif
855ev_default_loop (int methods)
856{ 1200{
857 if (sigpipe [0] == sigpipe [1]) 1201 if (sigpipe [0] == sigpipe [1])
858 if (pipe (sigpipe)) 1202 if (pipe (sigpipe))
859 return 0; 1203 return 0;
860 1204
861 if (!default_loop) 1205 if (!ev_default_loop_ptr)
862 { 1206 {
863#if EV_MULTIPLICITY 1207#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop = &default_loop_struct; 1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
865#else 1209#else
866 default_loop = 1; 1210 ev_default_loop_ptr = 1;
867#endif 1211#endif
868 1212
869 loop_init (EV_A_ methods); 1213 loop_init (EV_A_ flags);
870 1214
871 if (ev_method (EV_A)) 1215 if (ev_backend (EV_A))
872 { 1216 {
873 siginit (EV_A); 1217 siginit (EV_A);
874 1218
875#ifndef WIN32 1219#ifndef _WIN32
876 ev_signal_init (&childev, childcb, SIGCHLD); 1220 ev_signal_init (&childev, childcb, SIGCHLD);
877 ev_set_priority (&childev, EV_MAXPRI); 1221 ev_set_priority (&childev, EV_MAXPRI);
878 ev_signal_start (EV_A_ &childev); 1222 ev_signal_start (EV_A_ &childev);
879 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1223 ev_unref (EV_A); /* child watcher should not keep loop alive */
880#endif 1224#endif
881 } 1225 }
882 else 1226 else
883 default_loop = 0; 1227 ev_default_loop_ptr = 0;
884 } 1228 }
885 1229
886 return default_loop; 1230 return ev_default_loop_ptr;
887} 1231}
888 1232
889void 1233void
890ev_default_destroy (void) 1234ev_default_destroy (void)
891{ 1235{
892#if EV_MULTIPLICITY 1236#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1237 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1238#endif
895 1239
896#ifndef WIN32 1240#ifndef _WIN32
897 ev_ref (EV_A); /* child watcher */ 1241 ev_ref (EV_A); /* child watcher */
898 ev_signal_stop (EV_A_ &childev); 1242 ev_signal_stop (EV_A_ &childev);
899#endif 1243#endif
900 1244
901 ev_ref (EV_A); /* signal watcher */ 1245 ev_ref (EV_A); /* signal watcher */
909 1253
910void 1254void
911ev_default_fork (void) 1255ev_default_fork (void)
912{ 1256{
913#if EV_MULTIPLICITY 1257#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop; 1258 struct ev_loop *loop = ev_default_loop_ptr;
915#endif 1259#endif
916 1260
917 if (method) 1261 if (backend)
918 postfork = 1; 1262 postfork = 1;
919} 1263}
920 1264
921/*****************************************************************************/ 1265/*****************************************************************************/
922 1266
923static int 1267void
924any_pending (EV_P) 1268ev_invoke (EV_P_ void *w, int revents)
925{ 1269{
926 int pri; 1270 EV_CB_INVOKE ((W)w, revents);
927
928 for (pri = NUMPRI; pri--; )
929 if (pendingcnt [pri])
930 return 1;
931
932 return 0;
933} 1271}
934 1272
935static void 1273void inline_speed
936call_pending (EV_P) 1274call_pending (EV_P)
937{ 1275{
938 int pri; 1276 int pri;
939 1277
940 for (pri = NUMPRI; pri--; ) 1278 for (pri = NUMPRI; pri--; )
941 while (pendingcnt [pri]) 1279 while (pendingcnt [pri])
942 { 1280 {
943 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
944 1282
945 if (p->w) 1283 if (expect_true (p->w))
946 { 1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1286
947 p->w->pending = 0; 1287 p->w->pending = 0;
948 p->w->cb (EV_A_ p->w, p->events); 1288 EV_CB_INVOKE (p->w, p->events);
949 } 1289 }
950 } 1290 }
951} 1291}
952 1292
953static void 1293void inline_size
954timers_reify (EV_P) 1294timers_reify (EV_P)
955{ 1295{
956 while (timercnt && ((WT)timers [0])->at <= mn_now) 1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
957 { 1297 {
958 struct ev_timer *w = timers [0]; 1298 ev_timer *w = (ev_timer *)timers [0];
959 1299
960 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
961 1301
962 /* first reschedule or stop timer */ 1302 /* first reschedule or stop timer */
963 if (w->repeat) 1303 if (w->repeat)
964 { 1304 {
965 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
966 ((WT)w)->at = mn_now + w->repeat; 1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
967 downheap ((WT *)timers, timercnt, 0); 1311 downheap (timers, timercnt, 0);
968 } 1312 }
969 else 1313 else
970 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
971 1315
972 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
973 } 1317 }
974} 1318}
975 1319
976static void 1320#if EV_PERIODIC_ENABLE
1321void inline_size
977periodics_reify (EV_P) 1322periodics_reify (EV_P)
978{ 1323{
979 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
980 { 1325 {
981 struct ev_periodic *w = periodics [0]; 1326 ev_periodic *w = (ev_periodic *)periodics [0];
982 1327
983 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
984 1329
985 /* first reschedule or stop timer */ 1330 /* first reschedule or stop timer */
986 if (w->reschedule_cb) 1331 if (w->reschedule_cb)
987 { 1332 {
988 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
989
990 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
991 downheap ((WT *)periodics, periodiccnt, 0); 1335 downheap (periodics, periodiccnt, 0);
992 } 1336 }
993 else if (w->interval) 1337 else if (w->interval)
994 { 1338 {
995 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
996 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
997 downheap ((WT *)periodics, periodiccnt, 0); 1342 downheap (periodics, periodiccnt, 0);
998 } 1343 }
999 else 1344 else
1000 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 1346
1002 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1003 } 1348 }
1004} 1349}
1005 1350
1006static void 1351static void noinline
1007periodics_reschedule (EV_P) 1352periodics_reschedule (EV_P)
1008{ 1353{
1009 int i; 1354 int i;
1010 1355
1011 /* adjust periodics after time jump */ 1356 /* adjust periodics after time jump */
1012 for (i = 0; i < periodiccnt; ++i) 1357 for (i = 0; i < periodiccnt; ++i)
1013 { 1358 {
1014 struct ev_periodic *w = periodics [i]; 1359 ev_periodic *w = (ev_periodic *)periodics [i];
1015 1360
1016 if (w->reschedule_cb) 1361 if (w->reschedule_cb)
1017 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1018 else if (w->interval) 1363 else if (w->interval)
1019 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1020 } 1365 }
1021 1366
1022 /* now rebuild the heap */ 1367 /* now rebuild the heap */
1023 for (i = periodiccnt >> 1; i--; ) 1368 for (i = periodiccnt >> 1; i--; )
1024 downheap ((WT *)periodics, periodiccnt, i); 1369 downheap (periodics, periodiccnt, i);
1025} 1370}
1371#endif
1026 1372
1027inline int 1373#if EV_IDLE_ENABLE
1028time_update_monotonic (EV_P) 1374void inline_size
1375idle_reify (EV_P)
1029{ 1376{
1030 mn_now = get_clock (); 1377 if (expect_false (idleall))
1031
1032 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 {
1034 rt_now = rtmn_diff + mn_now;
1035 return 0;
1036 } 1378 {
1037 else 1379 int pri;
1380
1381 for (pri = NUMPRI; pri--; )
1382 {
1383 if (pendingcnt [pri])
1384 break;
1385
1386 if (idlecnt [pri])
1387 {
1388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1389 break;
1390 }
1391 }
1038 { 1392 }
1039 now_floor = mn_now;
1040 rt_now = ev_time ();
1041 return 1;
1042 }
1043} 1393}
1394#endif
1044 1395
1045static void 1396void inline_speed
1046time_update (EV_P) 1397time_update (EV_P_ ev_tstamp max_block)
1047{ 1398{
1048 int i; 1399 int i;
1049 1400
1050#if EV_USE_MONOTONIC 1401#if EV_USE_MONOTONIC
1051 if (expect_true (have_monotonic)) 1402 if (expect_true (have_monotonic))
1052 { 1403 {
1053 if (time_update_monotonic (EV_A)) 1404 ev_tstamp odiff = rtmn_diff;
1405
1406 mn_now = get_clock ();
1407
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1409 /* interpolate in the meantime */
1410 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1054 { 1411 {
1055 ev_tstamp odiff = rtmn_diff; 1412 ev_rt_now = rtmn_diff + mn_now;
1413 return;
1414 }
1056 1415
1416 now_floor = mn_now;
1417 ev_rt_now = ev_time ();
1418
1057 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1419 /* loop a few times, before making important decisions.
1420 * on the choice of "4": one iteration isn't enough,
1421 * in case we get preempted during the calls to
1422 * ev_time and get_clock. a second call is almost guaranteed
1423 * to succeed in that case, though. and looping a few more times
1424 * doesn't hurt either as we only do this on time-jumps or
1425 * in the unlikely event of having been preempted here.
1426 */
1427 for (i = 4; --i; )
1058 { 1428 {
1059 rtmn_diff = rt_now - mn_now; 1429 rtmn_diff = ev_rt_now - mn_now;
1060 1430
1061 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1062 return; /* all is well */ 1432 return; /* all is well */
1063 1433
1064 rt_now = ev_time (); 1434 ev_rt_now = ev_time ();
1065 mn_now = get_clock (); 1435 mn_now = get_clock ();
1066 now_floor = mn_now; 1436 now_floor = mn_now;
1067 } 1437 }
1068 1438
1439# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A);
1441# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 }
1445 else
1446#endif
1447 {
1448 ev_rt_now = ev_time ();
1449
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 {
1452#if EV_PERIODIC_ENABLE
1069 periodics_reschedule (EV_A); 1453 periodics_reschedule (EV_A);
1070 /* no timer adjustment, as the monotonic clock doesn't jump */ 1454#endif
1071 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1072 } 1458 }
1073 }
1074 else
1075#endif
1076 {
1077 rt_now = ev_time ();
1078 1459
1079 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1080 {
1081 periodics_reschedule (EV_A);
1082
1083 /* adjust timers. this is easy, as the offset is the same for all */
1084 for (i = 0; i < timercnt; ++i)
1085 ((WT)timers [i])->at += rt_now - mn_now;
1086 }
1087
1088 mn_now = rt_now; 1460 mn_now = ev_rt_now;
1089 } 1461 }
1090} 1462}
1091 1463
1092void 1464void
1093ev_ref (EV_P) 1465ev_ref (EV_P)
1104static int loop_done; 1476static int loop_done;
1105 1477
1106void 1478void
1107ev_loop (EV_P_ int flags) 1479ev_loop (EV_P_ int flags)
1108{ 1480{
1109 double block;
1110 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1482 ? EVUNLOOP_ONE
1483 : EVUNLOOP_CANCEL;
1484
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1111 1486
1112 do 1487 do
1113 { 1488 {
1489#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid))
1492 {
1493 curpid = getpid ();
1494 postfork = 1;
1495 }
1496#endif
1497
1498#if EV_FORK_ENABLE
1499 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork))
1501 if (forkcnt)
1502 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A);
1505 }
1506#endif
1507
1114 /* queue check watchers (and execute them) */ 1508 /* queue prepare watchers (and execute them) */
1115 if (expect_false (preparecnt)) 1509 if (expect_false (preparecnt))
1116 { 1510 {
1117 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1118 call_pending (EV_A); 1512 call_pending (EV_A);
1119 } 1513 }
1120 1514
1515 if (expect_false (!activecnt))
1516 break;
1517
1121 /* we might have forked, so reify kernel state if necessary */ 1518 /* we might have forked, so reify kernel state if necessary */
1122 if (expect_false (postfork)) 1519 if (expect_false (postfork))
1123 loop_fork (EV_A); 1520 loop_fork (EV_A);
1124 1521
1125 /* update fd-related kernel structures */ 1522 /* update fd-related kernel structures */
1126 fd_reify (EV_A); 1523 fd_reify (EV_A);
1127 1524
1128 /* calculate blocking time */ 1525 /* calculate blocking time */
1526 {
1527 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.;
1129 1529
1130 /* we only need this for !monotonic clock or timers, but as we basically 1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1131 always have timers, we just calculate it always */
1132#if EV_USE_MONOTONIC
1133 if (expect_true (have_monotonic))
1134 time_update_monotonic (EV_A);
1135 else
1136#endif
1137 { 1531 {
1138 rt_now = ev_time (); 1532 /* update time to cancel out callback processing overhead */
1139 mn_now = rt_now; 1533 time_update (EV_A_ 1e100);
1140 }
1141 1534
1142 if (flags & EVLOOP_NONBLOCK || idlecnt)
1143 block = 0.;
1144 else
1145 {
1146 block = MAX_BLOCKTIME; 1535 waittime = MAX_BLOCKTIME;
1147 1536
1148 if (timercnt) 1537 if (timercnt)
1149 { 1538 {
1150 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1151 if (block > to) block = to; 1540 if (waittime > to) waittime = to;
1152 } 1541 }
1153 1542
1543#if EV_PERIODIC_ENABLE
1154 if (periodiccnt) 1544 if (periodiccnt)
1155 { 1545 {
1156 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1157 if (block > to) block = to; 1547 if (waittime > to) waittime = to;
1158 } 1548 }
1549#endif
1159 1550
1160 if (block < 0.) block = 0.; 1551 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime;
1553
1554 sleeptime = waittime - backend_fudge;
1555
1556 if (expect_true (sleeptime > io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 {
1561 ev_sleep (sleeptime);
1562 waittime -= sleeptime;
1563 }
1161 } 1564 }
1162 1565
1163 method_poll (EV_A_ block); 1566 ++loop_count;
1567 backend_poll (EV_A_ waittime);
1164 1568
1165 /* update rt_now, do magic */ 1569 /* update ev_rt_now, do magic */
1166 time_update (EV_A); 1570 time_update (EV_A_ waittime + sleeptime);
1571 }
1167 1572
1168 /* queue pending timers and reschedule them */ 1573 /* queue pending timers and reschedule them */
1169 timers_reify (EV_A); /* relative timers called last */ 1574 timers_reify (EV_A); /* relative timers called last */
1575#if EV_PERIODIC_ENABLE
1170 periodics_reify (EV_A); /* absolute timers called first */ 1576 periodics_reify (EV_A); /* absolute timers called first */
1577#endif
1171 1578
1579#if EV_IDLE_ENABLE
1172 /* queue idle watchers unless io or timers are pending */ 1580 /* queue idle watchers unless other events are pending */
1173 if (idlecnt && !any_pending (EV_A)) 1581 idle_reify (EV_A);
1174 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1582#endif
1175 1583
1176 /* queue check watchers, to be executed first */ 1584 /* queue check watchers, to be executed first */
1177 if (checkcnt) 1585 if (expect_false (checkcnt))
1178 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1179 1587
1180 call_pending (EV_A); 1588 call_pending (EV_A);
1589
1181 } 1590 }
1182 while (activecnt && !loop_done); 1591 while (expect_true (activecnt && !loop_done));
1183 1592
1184 if (loop_done != 2) 1593 if (loop_done == EVUNLOOP_ONE)
1185 loop_done = 0; 1594 loop_done = EVUNLOOP_CANCEL;
1186} 1595}
1187 1596
1188void 1597void
1189ev_unloop (EV_P_ int how) 1598ev_unloop (EV_P_ int how)
1190{ 1599{
1191 loop_done = how; 1600 loop_done = how;
1192} 1601}
1193 1602
1194/*****************************************************************************/ 1603/*****************************************************************************/
1195 1604
1196inline void 1605void inline_size
1197wlist_add (WL *head, WL elem) 1606wlist_add (WL *head, WL elem)
1198{ 1607{
1199 elem->next = *head; 1608 elem->next = *head;
1200 *head = elem; 1609 *head = elem;
1201} 1610}
1202 1611
1203inline void 1612void inline_size
1204wlist_del (WL *head, WL elem) 1613wlist_del (WL *head, WL elem)
1205{ 1614{
1206 while (*head) 1615 while (*head)
1207 { 1616 {
1208 if (*head == elem) 1617 if (*head == elem)
1213 1622
1214 head = &(*head)->next; 1623 head = &(*head)->next;
1215 } 1624 }
1216} 1625}
1217 1626
1218inline void 1627void inline_speed
1219ev_clear_pending (EV_P_ W w) 1628clear_pending (EV_P_ W w)
1220{ 1629{
1221 if (w->pending) 1630 if (w->pending)
1222 { 1631 {
1223 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1632 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1224 w->pending = 0; 1633 w->pending = 0;
1225 } 1634 }
1226} 1635}
1227 1636
1228inline void 1637int
1638ev_clear_pending (EV_P_ void *w)
1639{
1640 W w_ = (W)w;
1641 int pending = w_->pending;
1642
1643 if (expect_true (pending))
1644 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1646 w_->pending = 0;
1647 p->w = 0;
1648 return p->events;
1649 }
1650 else
1651 return 0;
1652}
1653
1654void inline_size
1655pri_adjust (EV_P_ W w)
1656{
1657 int pri = w->priority;
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri;
1661}
1662
1663void inline_speed
1229ev_start (EV_P_ W w, int active) 1664ev_start (EV_P_ W w, int active)
1230{ 1665{
1231 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1666 pri_adjust (EV_A_ w);
1232 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1233
1234 w->active = active; 1667 w->active = active;
1235 ev_ref (EV_A); 1668 ev_ref (EV_A);
1236} 1669}
1237 1670
1238inline void 1671void inline_size
1239ev_stop (EV_P_ W w) 1672ev_stop (EV_P_ W w)
1240{ 1673{
1241 ev_unref (EV_A); 1674 ev_unref (EV_A);
1242 w->active = 0; 1675 w->active = 0;
1243} 1676}
1244 1677
1245/*****************************************************************************/ 1678/*****************************************************************************/
1246 1679
1247void 1680void noinline
1248ev_io_start (EV_P_ struct ev_io *w) 1681ev_io_start (EV_P_ ev_io *w)
1249{ 1682{
1250 int fd = w->fd; 1683 int fd = w->fd;
1251 1684
1252 if (ev_is_active (w)) 1685 if (expect_false (ev_is_active (w)))
1253 return; 1686 return;
1254 1687
1255 assert (("ev_io_start called with negative fd", fd >= 0)); 1688 assert (("ev_io_start called with negative fd", fd >= 0));
1256 1689
1257 ev_start (EV_A_ (W)w, 1); 1690 ev_start (EV_A_ (W)w, 1);
1258 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1259 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1692 wlist_add (&anfds[fd].head, (WL)w);
1260 1693
1261 fd_change (EV_A_ fd); 1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1695 w->events &= ~EV_IOFDSET;
1262} 1696}
1263 1697
1264void 1698void noinline
1265ev_io_stop (EV_P_ struct ev_io *w) 1699ev_io_stop (EV_P_ ev_io *w)
1266{ 1700{
1267 ev_clear_pending (EV_A_ (W)w); 1701 clear_pending (EV_A_ (W)w);
1268 if (!ev_is_active (w)) 1702 if (expect_false (!ev_is_active (w)))
1269 return; 1703 return;
1270 1704
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1706
1271 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1707 wlist_del (&anfds[w->fd].head, (WL)w);
1272 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1273 1709
1274 fd_change (EV_A_ w->fd); 1710 fd_change (EV_A_ w->fd, 1);
1275} 1711}
1276 1712
1277void 1713void noinline
1278ev_timer_start (EV_P_ struct ev_timer *w) 1714ev_timer_start (EV_P_ ev_timer *w)
1279{ 1715{
1280 if (ev_is_active (w)) 1716 if (expect_false (ev_is_active (w)))
1281 return; 1717 return;
1282 1718
1283 ((WT)w)->at += mn_now; 1719 ((WT)w)->at += mn_now;
1284 1720
1285 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1286 1722
1287 ev_start (EV_A_ (W)w, ++timercnt); 1723 ev_start (EV_A_ (W)w, ++timercnt);
1288 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1289 timers [timercnt - 1] = w; 1725 timers [timercnt - 1] = (WT)w;
1290 upheap ((WT *)timers, timercnt - 1); 1726 upheap (timers, timercnt - 1);
1291 1727
1292 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1293} 1729}
1294 1730
1295void 1731void noinline
1296ev_timer_stop (EV_P_ struct ev_timer *w) 1732ev_timer_stop (EV_P_ ev_timer *w)
1297{ 1733{
1298 ev_clear_pending (EV_A_ (W)w); 1734 clear_pending (EV_A_ (W)w);
1299 if (!ev_is_active (w)) 1735 if (expect_false (!ev_is_active (w)))
1300 return; 1736 return;
1301 1737
1302 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1303 1739
1304 if (((W)w)->active < timercnt--) 1740 {
1741 int active = ((W)w)->active;
1742
1743 if (expect_true (--active < --timercnt))
1305 { 1744 {
1306 timers [((W)w)->active - 1] = timers [timercnt]; 1745 timers [active] = timers [timercnt];
1307 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1746 adjustheap (timers, timercnt, active);
1308 } 1747 }
1748 }
1309 1749
1310 ((WT)w)->at = w->repeat; 1750 ((WT)w)->at -= mn_now;
1311 1751
1312 ev_stop (EV_A_ (W)w); 1752 ev_stop (EV_A_ (W)w);
1313} 1753}
1314 1754
1315void 1755void noinline
1316ev_timer_again (EV_P_ struct ev_timer *w) 1756ev_timer_again (EV_P_ ev_timer *w)
1317{ 1757{
1318 if (ev_is_active (w)) 1758 if (ev_is_active (w))
1319 { 1759 {
1320 if (w->repeat) 1760 if (w->repeat)
1321 { 1761 {
1322 ((WT)w)->at = mn_now + w->repeat; 1762 ((WT)w)->at = mn_now + w->repeat;
1323 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1763 adjustheap (timers, timercnt, ((W)w)->active - 1);
1324 } 1764 }
1325 else 1765 else
1326 ev_timer_stop (EV_A_ w); 1766 ev_timer_stop (EV_A_ w);
1327 } 1767 }
1328 else if (w->repeat) 1768 else if (w->repeat)
1769 {
1770 w->at = w->repeat;
1329 ev_timer_start (EV_A_ w); 1771 ev_timer_start (EV_A_ w);
1772 }
1330} 1773}
1331 1774
1332void 1775#if EV_PERIODIC_ENABLE
1776void noinline
1333ev_periodic_start (EV_P_ struct ev_periodic *w) 1777ev_periodic_start (EV_P_ ev_periodic *w)
1334{ 1778{
1335 if (ev_is_active (w)) 1779 if (expect_false (ev_is_active (w)))
1336 return; 1780 return;
1337 1781
1338 if (w->reschedule_cb) 1782 if (w->reschedule_cb)
1339 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1340 else if (w->interval) 1784 else if (w->interval)
1341 { 1785 {
1342 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1343 /* this formula differs from the one in periodic_reify because we do not always round up */ 1787 /* this formula differs from the one in periodic_reify because we do not always round up */
1344 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 } 1789 }
1790 else
1791 ((WT)w)->at = w->offset;
1346 1792
1347 ev_start (EV_A_ (W)w, ++periodiccnt); 1793 ev_start (EV_A_ (W)w, ++periodiccnt);
1348 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1349 periodics [periodiccnt - 1] = w; 1795 periodics [periodiccnt - 1] = (WT)w;
1350 upheap ((WT *)periodics, periodiccnt - 1); 1796 upheap (periodics, periodiccnt - 1);
1351 1797
1352 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1353} 1799}
1354 1800
1355void 1801void noinline
1356ev_periodic_stop (EV_P_ struct ev_periodic *w) 1802ev_periodic_stop (EV_P_ ev_periodic *w)
1357{ 1803{
1358 ev_clear_pending (EV_A_ (W)w); 1804 clear_pending (EV_A_ (W)w);
1359 if (!ev_is_active (w)) 1805 if (expect_false (!ev_is_active (w)))
1360 return; 1806 return;
1361 1807
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1363 1809
1364 if (((W)w)->active < periodiccnt--) 1810 {
1811 int active = ((W)w)->active;
1812
1813 if (expect_true (--active < --periodiccnt))
1365 { 1814 {
1366 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1815 periodics [active] = periodics [periodiccnt];
1367 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1816 adjustheap (periodics, periodiccnt, active);
1368 } 1817 }
1818 }
1369 1819
1370 ev_stop (EV_A_ (W)w); 1820 ev_stop (EV_A_ (W)w);
1371} 1821}
1372 1822
1373void 1823void noinline
1374ev_periodic_again (EV_P_ struct ev_periodic *w) 1824ev_periodic_again (EV_P_ ev_periodic *w)
1375{ 1825{
1826 /* TODO: use adjustheap and recalculation */
1376 ev_periodic_stop (EV_A_ w); 1827 ev_periodic_stop (EV_A_ w);
1377 ev_periodic_start (EV_A_ w); 1828 ev_periodic_start (EV_A_ w);
1378} 1829}
1379 1830#endif
1380void
1381ev_idle_start (EV_P_ struct ev_idle *w)
1382{
1383 if (ev_is_active (w))
1384 return;
1385
1386 ev_start (EV_A_ (W)w, ++idlecnt);
1387 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1388 idles [idlecnt - 1] = w;
1389}
1390
1391void
1392ev_idle_stop (EV_P_ struct ev_idle *w)
1393{
1394 ev_clear_pending (EV_A_ (W)w);
1395 if (ev_is_active (w))
1396 return;
1397
1398 idles [((W)w)->active - 1] = idles [--idlecnt];
1399 ev_stop (EV_A_ (W)w);
1400}
1401
1402void
1403ev_prepare_start (EV_P_ struct ev_prepare *w)
1404{
1405 if (ev_is_active (w))
1406 return;
1407
1408 ev_start (EV_A_ (W)w, ++preparecnt);
1409 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1410 prepares [preparecnt - 1] = w;
1411}
1412
1413void
1414ev_prepare_stop (EV_P_ struct ev_prepare *w)
1415{
1416 ev_clear_pending (EV_A_ (W)w);
1417 if (ev_is_active (w))
1418 return;
1419
1420 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1421 ev_stop (EV_A_ (W)w);
1422}
1423
1424void
1425ev_check_start (EV_P_ struct ev_check *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++checkcnt);
1431 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1432 checks [checkcnt - 1] = w;
1433}
1434
1435void
1436ev_check_stop (EV_P_ struct ev_check *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445 1831
1446#ifndef SA_RESTART 1832#ifndef SA_RESTART
1447# define SA_RESTART 0 1833# define SA_RESTART 0
1448#endif 1834#endif
1449 1835
1450void 1836void noinline
1451ev_signal_start (EV_P_ struct ev_signal *w) 1837ev_signal_start (EV_P_ ev_signal *w)
1452{ 1838{
1453#if EV_MULTIPLICITY 1839#if EV_MULTIPLICITY
1454 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1455#endif 1841#endif
1456 if (ev_is_active (w)) 1842 if (expect_false (ev_is_active (w)))
1457 return; 1843 return;
1458 1844
1459 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1460 1846
1847 {
1848#ifndef _WIN32
1849 sigset_t full, prev;
1850 sigfillset (&full);
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1855
1856#ifndef _WIN32
1857 sigprocmask (SIG_SETMASK, &prev, 0);
1858#endif
1859 }
1860
1461 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1462 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1463 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1862 wlist_add (&signals [w->signum - 1].head, (WL)w);
1464 1863
1465 if (!((WL)w)->next) 1864 if (!((WL)w)->next)
1466 { 1865 {
1467#if WIN32 1866#if _WIN32
1468 signal (w->signum, sighandler); 1867 signal (w->signum, sighandler);
1469#else 1868#else
1470 struct sigaction sa; 1869 struct sigaction sa;
1471 sa.sa_handler = sighandler; 1870 sa.sa_handler = sighandler;
1472 sigfillset (&sa.sa_mask); 1871 sigfillset (&sa.sa_mask);
1474 sigaction (w->signum, &sa, 0); 1873 sigaction (w->signum, &sa, 0);
1475#endif 1874#endif
1476 } 1875 }
1477} 1876}
1478 1877
1479void 1878void noinline
1480ev_signal_stop (EV_P_ struct ev_signal *w) 1879ev_signal_stop (EV_P_ ev_signal *w)
1481{ 1880{
1482 ev_clear_pending (EV_A_ (W)w); 1881 clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w)) 1882 if (expect_false (!ev_is_active (w)))
1484 return; 1883 return;
1485 1884
1486 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_del (&signals [w->signum - 1].head, (WL)w);
1487 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1488 1887
1489 if (!signals [w->signum - 1].head) 1888 if (!signals [w->signum - 1].head)
1490 signal (w->signum, SIG_DFL); 1889 signal (w->signum, SIG_DFL);
1491} 1890}
1492 1891
1493void 1892void
1494ev_child_start (EV_P_ struct ev_child *w) 1893ev_child_start (EV_P_ ev_child *w)
1495{ 1894{
1496#if EV_MULTIPLICITY 1895#if EV_MULTIPLICITY
1497 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1498#endif 1897#endif
1499 if (ev_is_active (w)) 1898 if (expect_false (ev_is_active (w)))
1500 return; 1899 return;
1501 1900
1502 ev_start (EV_A_ (W)w, 1); 1901 ev_start (EV_A_ (W)w, 1);
1503 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1504} 1903}
1505 1904
1506void 1905void
1507ev_child_stop (EV_P_ struct ev_child *w) 1906ev_child_stop (EV_P_ ev_child *w)
1508{ 1907{
1509 ev_clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1510 if (ev_is_active (w)) 1909 if (expect_false (!ev_is_active (w)))
1511 return; 1910 return;
1512 1911
1513 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1514 ev_stop (EV_A_ (W)w); 1913 ev_stop (EV_A_ (W)w);
1515} 1914}
1516 1915
1916#if EV_STAT_ENABLE
1917
1918# ifdef _WIN32
1919# undef lstat
1920# define lstat(a,b) _stati64 (a,b)
1921# endif
1922
1923#define DEF_STAT_INTERVAL 5.0074891
1924#define MIN_STAT_INTERVAL 0.1074891
1925
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927
1928#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192
1930
1931static void noinline
1932infy_add (EV_P_ ev_stat *w)
1933{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935
1936 if (w->wd < 0)
1937 {
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939
1940 /* monitor some parent directory for speedup hints */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 {
1943 char path [4096];
1944 strcpy (path, w->path);
1945
1946 do
1947 {
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950
1951 char *pend = strrchr (path, '/');
1952
1953 if (!pend)
1954 break; /* whoops, no '/', complain to your admin */
1955
1956 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 }
1961 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964
1965 if (w->wd >= 0)
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1967}
1968
1969static void noinline
1970infy_del (EV_P_ ev_stat *w)
1971{
1972 int slot;
1973 int wd = w->wd;
1974
1975 if (wd < 0)
1976 return;
1977
1978 w->wd = -2;
1979 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1980 wlist_del (&fs_hash [slot].head, (WL)w);
1981
1982 /* remove this watcher, if others are watching it, they will rearm */
1983 inotify_rm_watch (fs_fd, wd);
1984}
1985
1986static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{
1989 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1992 infy_wd (EV_A_ slot, wd, ev);
1993 else
1994 {
1995 WL w_;
1996
1997 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1998 {
1999 ev_stat *w = (ev_stat *)w_;
2000 w_ = w_->next; /* lets us remove this watcher and all before it */
2001
2002 if (w->wd == wd || wd == -1)
2003 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 {
2006 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */
2008 }
2009
2010 stat_timer_cb (EV_A_ &w->timer, 0);
2011 }
2012 }
2013 }
2014}
2015
2016static void
2017infy_cb (EV_P_ ev_io *w, int revents)
2018{
2019 char buf [EV_INOTIFY_BUFSIZE];
2020 struct inotify_event *ev = (struct inotify_event *)buf;
2021 int ofs;
2022 int len = read (fs_fd, buf, sizeof (buf));
2023
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2026}
2027
2028void inline_size
2029infy_init (EV_P)
2030{
2031 if (fs_fd != -2)
2032 return;
2033
2034 fs_fd = inotify_init ();
2035
2036 if (fs_fd >= 0)
2037 {
2038 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2039 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w);
2041 }
2042}
2043
2044void inline_size
2045infy_fork (EV_P)
2046{
2047 int slot;
2048
2049 if (fs_fd < 0)
2050 return;
2051
2052 close (fs_fd);
2053 fs_fd = inotify_init ();
2054
2055 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2056 {
2057 WL w_ = fs_hash [slot].head;
2058 fs_hash [slot].head = 0;
2059
2060 while (w_)
2061 {
2062 ev_stat *w = (ev_stat *)w_;
2063 w_ = w_->next; /* lets us add this watcher */
2064
2065 w->wd = -1;
2066
2067 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else
2070 ev_timer_start (EV_A_ &w->timer);
2071 }
2072
2073 }
2074}
2075
2076#endif
2077
2078void
2079ev_stat_stat (EV_P_ ev_stat *w)
2080{
2081 if (lstat (w->path, &w->attr) < 0)
2082 w->attr.st_nlink = 0;
2083 else if (!w->attr.st_nlink)
2084 w->attr.st_nlink = 1;
2085}
2086
2087static void noinline
2088stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2089{
2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2091
2092 /* we copy this here each the time so that */
2093 /* prev has the old value when the callback gets invoked */
2094 w->prev = w->attr;
2095 ev_stat_stat (EV_A_ w);
2096
2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if (
2099 w->prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime
2110 ) {
2111 #if EV_USE_INOTIFY
2112 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */
2115 #endif
2116
2117 ev_feed_event (EV_A_ w, EV_STAT);
2118 }
2119}
2120
2121void
2122ev_stat_start (EV_P_ ev_stat *w)
2123{
2124 if (expect_false (ev_is_active (w)))
2125 return;
2126
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w);
2132
2133 if (w->interval < MIN_STAT_INTERVAL)
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2137 ev_set_priority (&w->timer, ev_priority (w));
2138
2139#if EV_USE_INOTIFY
2140 infy_init (EV_A);
2141
2142 if (fs_fd >= 0)
2143 infy_add (EV_A_ w);
2144 else
2145#endif
2146 ev_timer_start (EV_A_ &w->timer);
2147
2148 ev_start (EV_A_ (W)w, 1);
2149}
2150
2151void
2152ev_stat_stop (EV_P_ ev_stat *w)
2153{
2154 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w)))
2156 return;
2157
2158#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w);
2160#endif
2161 ev_timer_stop (EV_A_ &w->timer);
2162
2163 ev_stop (EV_A_ (W)w);
2164}
2165#endif
2166
2167#if EV_IDLE_ENABLE
2168void
2169ev_idle_start (EV_P_ ev_idle *w)
2170{
2171 if (expect_false (ev_is_active (w)))
2172 return;
2173
2174 pri_adjust (EV_A_ (W)w);
2175
2176 {
2177 int active = ++idlecnt [ABSPRI (w)];
2178
2179 ++idleall;
2180 ev_start (EV_A_ (W)w, active);
2181
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w;
2184 }
2185}
2186
2187void
2188ev_idle_stop (EV_P_ ev_idle *w)
2189{
2190 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w)))
2192 return;
2193
2194 {
2195 int active = ((W)w)->active;
2196
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2199
2200 ev_stop (EV_A_ (W)w);
2201 --idleall;
2202 }
2203}
2204#endif
2205
2206void
2207ev_prepare_start (EV_P_ ev_prepare *w)
2208{
2209 if (expect_false (ev_is_active (w)))
2210 return;
2211
2212 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w;
2215}
2216
2217void
2218ev_prepare_stop (EV_P_ ev_prepare *w)
2219{
2220 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w)))
2222 return;
2223
2224 {
2225 int active = ((W)w)->active;
2226 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active;
2228 }
2229
2230 ev_stop (EV_A_ (W)w);
2231}
2232
2233void
2234ev_check_start (EV_P_ ev_check *w)
2235{
2236 if (expect_false (ev_is_active (w)))
2237 return;
2238
2239 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w;
2242}
2243
2244void
2245ev_check_stop (EV_P_ ev_check *w)
2246{
2247 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w)))
2249 return;
2250
2251 {
2252 int active = ((W)w)->active;
2253 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active;
2255 }
2256
2257 ev_stop (EV_A_ (W)w);
2258}
2259
2260#if EV_EMBED_ENABLE
2261void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w)
2263{
2264 ev_loop (w->other, EVLOOP_NONBLOCK);
2265}
2266
2267static void
2268embed_io_cb (EV_P_ ev_io *io, int revents)
2269{
2270 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2271
2272 if (ev_cb (w))
2273 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2274 else
2275 ev_loop (w->other, EVLOOP_NONBLOCK);
2276}
2277
2278static void
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282
2283 {
2284 struct ev_loop *loop = w->other;
2285
2286 while (fdchangecnt)
2287 {
2288 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 }
2291 }
2292}
2293
2294#if 0
2295static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{
2298 ev_idle_stop (EV_A_ idle);
2299}
2300#endif
2301
2302void
2303ev_embed_start (EV_P_ ev_embed *w)
2304{
2305 if (expect_false (ev_is_active (w)))
2306 return;
2307
2308 {
2309 struct ev_loop *loop = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 }
2313
2314 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io);
2316
2317 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare);
2320
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322
2323 ev_start (EV_A_ (W)w, 1);
2324}
2325
2326void
2327ev_embed_stop (EV_P_ ev_embed *w)
2328{
2329 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w)))
2331 return;
2332
2333 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare);
2335
2336 ev_stop (EV_A_ (W)w);
2337}
2338#endif
2339
2340#if EV_FORK_ENABLE
2341void
2342ev_fork_start (EV_P_ ev_fork *w)
2343{
2344 if (expect_false (ev_is_active (w)))
2345 return;
2346
2347 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w;
2350}
2351
2352void
2353ev_fork_stop (EV_P_ ev_fork *w)
2354{
2355 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w)))
2357 return;
2358
2359 {
2360 int active = ((W)w)->active;
2361 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active;
2363 }
2364
2365 ev_stop (EV_A_ (W)w);
2366}
2367#endif
2368
1517/*****************************************************************************/ 2369/*****************************************************************************/
1518 2370
1519struct ev_once 2371struct ev_once
1520{ 2372{
1521 struct ev_io io; 2373 ev_io io;
1522 struct ev_timer to; 2374 ev_timer to;
1523 void (*cb)(int revents, void *arg); 2375 void (*cb)(int revents, void *arg);
1524 void *arg; 2376 void *arg;
1525}; 2377};
1526 2378
1527static void 2379static void
1536 2388
1537 cb (revents, arg); 2389 cb (revents, arg);
1538} 2390}
1539 2391
1540static void 2392static void
1541once_cb_io (EV_P_ struct ev_io *w, int revents) 2393once_cb_io (EV_P_ ev_io *w, int revents)
1542{ 2394{
1543 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1544} 2396}
1545 2397
1546static void 2398static void
1547once_cb_to (EV_P_ struct ev_timer *w, int revents) 2399once_cb_to (EV_P_ ev_timer *w, int revents)
1548{ 2400{
1549 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1550} 2402}
1551 2403
1552void 2404void
1553ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1554{ 2406{
1555 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2407 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1556 2408
1557 if (!once) 2409 if (expect_false (!once))
2410 {
1558 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2411 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1559 else 2412 return;
1560 { 2413 }
2414
1561 once->cb = cb; 2415 once->cb = cb;
1562 once->arg = arg; 2416 once->arg = arg;
1563 2417
1564 ev_watcher_init (&once->io, once_cb_io); 2418 ev_init (&once->io, once_cb_io);
1565 if (fd >= 0) 2419 if (fd >= 0)
1566 { 2420 {
1567 ev_io_set (&once->io, fd, events); 2421 ev_io_set (&once->io, fd, events);
1568 ev_io_start (EV_A_ &once->io); 2422 ev_io_start (EV_A_ &once->io);
1569 } 2423 }
1570 2424
1571 ev_watcher_init (&once->to, once_cb_to); 2425 ev_init (&once->to, once_cb_to);
1572 if (timeout >= 0.) 2426 if (timeout >= 0.)
1573 { 2427 {
1574 ev_timer_set (&once->to, timeout, 0.); 2428 ev_timer_set (&once->to, timeout, 0.);
1575 ev_timer_start (EV_A_ &once->to); 2429 ev_timer_start (EV_A_ &once->to);
1576 }
1577 } 2430 }
1578} 2431}
1579 2432
2433#if EV_MULTIPLICITY
2434 #include "ev_wrap.h"
2435#endif
2436
2437#ifdef __cplusplus
2438}
2439#endif
2440

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines