ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
47# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
49# endif 53# endif
50# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
52# endif 64# endif
53# endif 65# endif
54 66
55# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 102# else
91# define EV_USE_PORT 0 103# define EV_USE_PORT 0
92# endif 104# endif
93# endif 105# endif
94 106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
113# endif
114
95#endif 115#endif
96 116
97#include <math.h> 117#include <math.h>
98#include <stdlib.h> 118#include <stdlib.h>
99#include <fcntl.h> 119#include <fcntl.h>
106#include <sys/types.h> 126#include <sys/types.h>
107#include <time.h> 127#include <time.h>
108 128
109#include <signal.h> 129#include <signal.h>
110 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
111#ifndef _WIN32 137#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 138# include <sys/time.h>
114# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
115#else 141#else
116# define WIN32_LEAN_AND_MEAN 142# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 143# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 144# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 145# define EV_SELECT_IS_WINSOCKET 1
128 154
129#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
131#endif 157#endif
132 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
133#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
135#endif 165#endif
136 166
137#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
152 182
153#ifndef EV_USE_PORT 183#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 184# define EV_USE_PORT 0
155#endif 185#endif
156 186
187#ifndef EV_USE_INOTIFY
188# define EV_USE_INOTIFY 0
189#endif
190
191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
194# else
195# define EV_PID_HASHSIZE 16
196# endif
197#endif
198
199#ifndef EV_INOTIFY_HASHSIZE
200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
205#endif
206
157/**/ 207/**/
158 208
159#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 210# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 211# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
167#endif 217#endif
168 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
169#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 235# include <winsock.h>
171#endif 236#endif
172 237
173/**/ 238/**/
174 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 253
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 254#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 256# define noinline __attribute__ ((noinline))
189#else 257#else
190# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
191# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
192#endif 263#endif
193 264
194#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
196 274
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 277
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
202 280
203typedef struct ev_watcher *W; 281typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
206 284
285#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif
208 290
209#ifdef _WIN32 291#ifdef _WIN32
210# include "ev_win32.c" 292# include "ev_win32.c"
211#endif 293#endif
212 294
213/*****************************************************************************/ 295/*****************************************************************************/
214 296
215static void (*syserr_cb)(const char *msg); 297static void (*syserr_cb)(const char *msg);
216 298
299void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 300ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 301{
219 syserr_cb = cb; 302 syserr_cb = cb;
220} 303}
221 304
222static void 305static void noinline
223syserr (const char *msg) 306syserr (const char *msg)
224{ 307{
225 if (!msg) 308 if (!msg)
226 msg = "(libev) system error"; 309 msg = "(libev) system error";
227 310
234 } 317 }
235} 318}
236 319
237static void *(*alloc)(void *ptr, long size); 320static void *(*alloc)(void *ptr, long size);
238 321
322void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 323ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 324{
241 alloc = cb; 325 alloc = cb;
242} 326}
243 327
244static void * 328inline_speed void *
245ev_realloc (void *ptr, long size) 329ev_realloc (void *ptr, long size)
246{ 330{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 332
249 if (!ptr && size) 333 if (!ptr && size)
273typedef struct 357typedef struct
274{ 358{
275 W w; 359 W w;
276 int events; 360 int events;
277} ANPENDING; 361} ANPENDING;
362
363#if EV_USE_INOTIFY
364typedef struct
365{
366 WL head;
367} ANFS;
368#endif
278 369
279#if EV_MULTIPLICITY 370#if EV_MULTIPLICITY
280 371
281 struct ev_loop 372 struct ev_loop
282 { 373 {
316 gettimeofday (&tv, 0); 407 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 408 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 409#endif
319} 410}
320 411
321inline ev_tstamp 412ev_tstamp inline_size
322get_clock (void) 413get_clock (void)
323{ 414{
324#if EV_USE_MONOTONIC 415#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 416 if (expect_true (have_monotonic))
326 { 417 {
339{ 430{
340 return ev_rt_now; 431 return ev_rt_now;
341} 432}
342#endif 433#endif
343 434
344#define array_roundsize(type,n) (((n) | 4) & ~3) 435void
436ev_sleep (ev_tstamp delay)
437{
438 if (delay > 0.)
439 {
440#if EV_USE_NANOSLEEP
441 struct timespec ts;
442
443 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445
446 nanosleep (&ts, 0);
447#elif defined(_WIN32)
448 Sleep (delay * 1e3);
449#else
450 struct timeval tv;
451
452 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454
455 select (0, 0, 0, 0, &tv);
456#endif
457 }
458}
459
460/*****************************************************************************/
461
462int inline_size
463array_nextsize (int elem, int cur, int cnt)
464{
465 int ncur = cur + 1;
466
467 do
468 ncur <<= 1;
469 while (cnt > ncur);
470
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096)
473 {
474 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
476 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem;
478 }
479
480 return ncur;
481}
482
483static noinline void *
484array_realloc (int elem, void *base, int *cur, int cnt)
485{
486 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur);
488}
345 489
346#define array_needsize(type,base,cur,cnt,init) \ 490#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 491 if (expect_false ((cnt) > (cur))) \
348 { \ 492 { \
349 int newcnt = cur; \ 493 int ocur_ = (cur); \
350 do \ 494 (base) = (type *)array_realloc \
351 { \ 495 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 496 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 497 }
360 498
499#if 0
361#define array_slim(type,stem) \ 500#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 501 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 502 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 503 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 504 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 506 }
507#endif
368 508
369#define array_free(stem, idx) \ 509#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 511
372/*****************************************************************************/ 512/*****************************************************************************/
373 513
374static void 514void noinline
515ev_feed_event (EV_P_ void *w, int revents)
516{
517 W w_ = (W)w;
518 int pri = ABSPRI (w_);
519
520 if (expect_false (w_->pending))
521 pendings [pri][w_->pending - 1].events |= revents;
522 else
523 {
524 w_->pending = ++pendingcnt [pri];
525 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
526 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents;
528 }
529}
530
531void inline_speed
532queue_events (EV_P_ W *events, int eventcnt, int type)
533{
534 int i;
535
536 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type);
538}
539
540/*****************************************************************************/
541
542void inline_size
375anfds_init (ANFD *base, int count) 543anfds_init (ANFD *base, int count)
376{ 544{
377 while (count--) 545 while (count--)
378 { 546 {
379 base->head = 0; 547 base->head = 0;
382 550
383 ++base; 551 ++base;
384 } 552 }
385} 553}
386 554
387void 555void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 556fd_event (EV_P_ int fd, int revents)
415{ 557{
416 ANFD *anfd = anfds + fd; 558 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 559 ev_io *w;
418 560
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 562 {
421 int ev = w->events & revents; 563 int ev = w->events & revents;
422 564
423 if (ev) 565 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 566 ev_feed_event (EV_A_ (W)w, ev);
426} 568}
427 569
428void 570void
429ev_feed_fd_event (EV_P_ int fd, int revents) 571ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 572{
573 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 574 fd_event (EV_A_ fd, revents);
432} 575}
433 576
434/*****************************************************************************/ 577void inline_size
435
436inline void
437fd_reify (EV_P) 578fd_reify (EV_P)
438{ 579{
439 int i; 580 int i;
440 581
441 for (i = 0; i < fdchangecnt; ++i) 582 for (i = 0; i < fdchangecnt; ++i)
442 { 583 {
443 int fd = fdchanges [i]; 584 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 585 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 586 ev_io *w;
446 587
447 int events = 0; 588 unsigned char events = 0;
448 589
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 590 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 591 events |= (unsigned char)w->events;
451 592
452#if EV_SELECT_IS_WINSOCKET 593#if EV_SELECT_IS_WINSOCKET
453 if (events) 594 if (events)
454 { 595 {
455 unsigned long argp; 596 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 597 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 599 }
459#endif 600#endif
460 601
602 {
603 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify;
605
461 anfd->reify = 0; 606 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 607 anfd->events = events;
608
609 if (o_events != events || o_reify & EV_IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events);
611 }
465 } 612 }
466 613
467 fdchangecnt = 0; 614 fdchangecnt = 0;
468} 615}
469 616
470static void 617void inline_size
471fd_change (EV_P_ int fd) 618fd_change (EV_P_ int fd, int flags)
472{ 619{
473 if (expect_false (anfds [fd].reify)) 620 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 621 anfds [fd].reify |= flags;
477 622
623 if (expect_true (!reify))
624 {
478 ++fdchangecnt; 625 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 627 fdchanges [fdchangecnt - 1] = fd;
628 }
481} 629}
482 630
483static void 631void inline_speed
484fd_kill (EV_P_ int fd) 632fd_kill (EV_P_ int fd)
485{ 633{
486 struct ev_io *w; 634 ev_io *w;
487 635
488 while ((w = (struct ev_io *)anfds [fd].head)) 636 while ((w = (ev_io *)anfds [fd].head))
489 { 637 {
490 ev_io_stop (EV_A_ w); 638 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 640 }
493} 641}
494 642
495inline int 643int inline_size
496fd_valid (int fd) 644fd_valid (int fd)
497{ 645{
498#ifdef _WIN32 646#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 647 return _get_osfhandle (fd) != -1;
500#else 648#else
501 return fcntl (fd, F_GETFD) != -1; 649 return fcntl (fd, F_GETFD) != -1;
502#endif 650#endif
503} 651}
504 652
505/* called on EBADF to verify fds */ 653/* called on EBADF to verify fds */
506static void 654static void noinline
507fd_ebadf (EV_P) 655fd_ebadf (EV_P)
508{ 656{
509 int fd; 657 int fd;
510 658
511 for (fd = 0; fd < anfdmax; ++fd) 659 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 661 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 662 fd_kill (EV_A_ fd);
515} 663}
516 664
517/* called on ENOMEM in select/poll to kill some fds and retry */ 665/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 666static void noinline
519fd_enomem (EV_P) 667fd_enomem (EV_P)
520{ 668{
521 int fd; 669 int fd;
522 670
523 for (fd = anfdmax; fd--; ) 671 for (fd = anfdmax; fd--; )
527 return; 675 return;
528 } 676 }
529} 677}
530 678
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 679/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 680static void noinline
533fd_rearm_all (EV_P) 681fd_rearm_all (EV_P)
534{ 682{
535 int fd; 683 int fd;
536 684
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 685 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 686 if (anfds [fd].events)
540 { 687 {
541 anfds [fd].events = 0; 688 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 689 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 690 }
544} 691}
545 692
546/*****************************************************************************/ 693/*****************************************************************************/
547 694
548static void 695void inline_speed
549upheap (WT *heap, int k) 696upheap (WT *heap, int k)
550{ 697{
551 WT w = heap [k]; 698 WT w = heap [k];
552 699
553 while (k && heap [k >> 1]->at > w->at) 700 while (k)
554 { 701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
555 heap [k] = heap [k >> 1]; 707 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 708 ((W)heap [k])->active = k + 1;
557 k >>= 1; 709 k = p;
558 } 710 }
559 711
560 heap [k] = w; 712 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 713 ((W)heap [k])->active = k + 1;
562
563} 714}
564 715
565static void 716void inline_speed
566downheap (WT *heap, int N, int k) 717downheap (WT *heap, int N, int k)
567{ 718{
568 WT w = heap [k]; 719 WT w = heap [k];
569 720
570 while (k < (N >> 1)) 721 for (;;)
571 { 722 {
572 int j = k << 1; 723 int c = (k << 1) + 1;
573 724
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 725 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 726 break;
579 727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
580 heap [k] = heap [j]; 734 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 735 ((W)heap [k])->active = k + 1;
736
582 k = j; 737 k = c;
583 } 738 }
584 739
585 heap [k] = w; 740 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 741 ((W)heap [k])->active = k + 1;
587} 742}
588 743
589inline void 744void inline_size
590adjustheap (WT *heap, int N, int k) 745adjustheap (WT *heap, int N, int k)
591{ 746{
592 upheap (heap, k); 747 upheap (heap, k);
593 downheap (heap, N, k); 748 downheap (heap, N, k);
594} 749}
604static ANSIG *signals; 759static ANSIG *signals;
605static int signalmax; 760static int signalmax;
606 761
607static int sigpipe [2]; 762static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 763static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 764static ev_io sigev;
610 765
611static void 766void inline_size
612signals_init (ANSIG *base, int count) 767signals_init (ANSIG *base, int count)
613{ 768{
614 while (count--) 769 while (count--)
615 { 770 {
616 base->head = 0; 771 base->head = 0;
636 write (sigpipe [1], &signum, 1); 791 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 792 errno = old_errno;
638 } 793 }
639} 794}
640 795
641void 796void noinline
642ev_feed_signal_event (EV_P_ int signum) 797ev_feed_signal_event (EV_P_ int signum)
643{ 798{
644 WL w; 799 WL w;
645 800
646#if EV_MULTIPLICITY 801#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 812 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 814}
660 815
661static void 816static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 817sigcb (EV_P_ ev_io *iow, int revents)
663{ 818{
664 int signum; 819 int signum;
665 820
666 read (sigpipe [0], &revents, 1); 821 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 822 gotsig = 0;
669 for (signum = signalmax; signum--; ) 824 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 825 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 826 ev_feed_signal_event (EV_A_ signum + 1);
672} 827}
673 828
674static void 829void inline_speed
675fd_intern (int fd) 830fd_intern (int fd)
676{ 831{
677#ifdef _WIN32 832#ifdef _WIN32
678 int arg = 1; 833 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 836 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 837 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 838#endif
684} 839}
685 840
686static void 841static void noinline
687siginit (EV_P) 842siginit (EV_P)
688{ 843{
689 fd_intern (sigpipe [0]); 844 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 845 fd_intern (sigpipe [1]);
691 846
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 849 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 850}
696 851
697/*****************************************************************************/ 852/*****************************************************************************/
698 853
699static struct ev_child *childs [PID_HASHSIZE]; 854static WL childs [EV_PID_HASHSIZE];
700 855
701#ifndef _WIN32 856#ifndef _WIN32
702 857
703static struct ev_signal childev; 858static ev_signal childev;
859
860void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
862{
863 ev_child *w;
864
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
866 if (w->pid == pid || !w->pid)
867 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
869 w->rpid = pid;
870 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 }
873}
704 874
705#ifndef WCONTINUED 875#ifndef WCONTINUED
706# define WCONTINUED 0 876# define WCONTINUED 0
707#endif 877#endif
708 878
709static void 879static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 880childcb (EV_P_ ev_signal *sw, int revents)
726{ 881{
727 int pid, status; 882 int pid, status;
728 883
884 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 885 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 886 if (!WCONTINUED
887 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return;
890
731 /* make sure we are called again until all childs have been reaped */ 891 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 892 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 894
735 child_reap (EV_A_ sw, pid, pid, status); 895 child_reap (EV_A_ sw, pid, pid, status);
896 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 898}
739 899
740#endif 900#endif
741 901
742/*****************************************************************************/ 902/*****************************************************************************/
768{ 928{
769 return EV_VERSION_MINOR; 929 return EV_VERSION_MINOR;
770} 930}
771 931
772/* return true if we are running with elevated privileges and should ignore env variables */ 932/* return true if we are running with elevated privileges and should ignore env variables */
773static int 933int inline_size
774enable_secure (void) 934enable_secure (void)
775{ 935{
776#ifdef _WIN32 936#ifdef _WIN32
777 return 0; 937 return 0;
778#else 938#else
812 972
813 return flags; 973 return flags;
814} 974}
815 975
816unsigned int 976unsigned int
977ev_embeddable_backends (void)
978{
979 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
980
981 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
982 /* please fix it and tell me how to detect the fix */
983 flags &= ~EVBACKEND_EPOLL;
984
985 return flags;
986}
987
988unsigned int
817ev_backend (EV_P) 989ev_backend (EV_P)
818{ 990{
819 return backend; 991 return backend;
820} 992}
821 993
822static void 994unsigned int
995ev_loop_count (EV_P)
996{
997 return loop_count;
998}
999
1000void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 io_blocktime = interval;
1004}
1005
1006void
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{
1009 timeout_blocktime = interval;
1010}
1011
1012static void noinline
823loop_init (EV_P_ unsigned int flags) 1013loop_init (EV_P_ unsigned int flags)
824{ 1014{
825 if (!backend) 1015 if (!backend)
826 { 1016 {
827#if EV_USE_MONOTONIC 1017#if EV_USE_MONOTONIC
835 ev_rt_now = ev_time (); 1025 ev_rt_now = ev_time ();
836 mn_now = get_clock (); 1026 mn_now = get_clock ();
837 now_floor = mn_now; 1027 now_floor = mn_now;
838 rtmn_diff = ev_rt_now - mn_now; 1028 rtmn_diff = ev_rt_now - mn_now;
839 1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032
1033 /* pid check not overridable via env */
1034#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid ();
1037#endif
1038
840 if (!(flags & EVFLAG_NOENV) 1039 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 1040 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 1041 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 1042 flags = atoi (getenv ("LIBEV_FLAGS"));
844 1043
845 if (!(flags & 0x0000ffffUL)) 1044 if (!(flags & 0x0000ffffUL))
846 flags |= ev_recommended_backends (); 1045 flags |= ev_recommended_backends ();
847 1046
848 backend = 0; 1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052
849#if EV_USE_PORT 1053#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 1055#endif
852#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1057 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
865 ev_init (&sigev, sigcb); 1069 ev_init (&sigev, sigcb);
866 ev_set_priority (&sigev, EV_MAXPRI); 1070 ev_set_priority (&sigev, EV_MAXPRI);
867 } 1071 }
868} 1072}
869 1073
870static void 1074static void noinline
871loop_destroy (EV_P) 1075loop_destroy (EV_P)
872{ 1076{
873 int i; 1077 int i;
1078
1079#if EV_USE_INOTIFY
1080 if (fs_fd >= 0)
1081 close (fs_fd);
1082#endif
1083
1084 if (backend_fd >= 0)
1085 close (backend_fd);
874 1086
875#if EV_USE_PORT 1087#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1088 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1089#endif
878#if EV_USE_KQUEUE 1090#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1099#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1100 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1101#endif
890 1102
891 for (i = NUMPRI; i--; ) 1103 for (i = NUMPRI; i--; )
1104 {
892 array_free (pending, [i]); 1105 array_free (pending, [i]);
1106#if EV_IDLE_ENABLE
1107 array_free (idle, [i]);
1108#endif
1109 }
1110
1111 ev_free (anfds); anfdmax = 0;
893 1112
894 /* have to use the microsoft-never-gets-it-right macro */ 1113 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 1114 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1115 array_free (timer, EMPTY);
897#if EV_PERIODICS 1116#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1117 array_free (periodic, EMPTY);
899#endif 1118#endif
1119#if EV_FORK_ENABLE
900 array_free (idle, EMPTY0); 1120 array_free (fork, EMPTY);
1121#endif
901 array_free (prepare, EMPTY0); 1122 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1123 array_free (check, EMPTY);
903 1124
904 backend = 0; 1125 backend = 0;
905} 1126}
906 1127
907static void 1128void inline_size infy_fork (EV_P);
1129
1130void inline_size
908loop_fork (EV_P) 1131loop_fork (EV_P)
909{ 1132{
910#if EV_USE_PORT 1133#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1135#endif
913#if EV_USE_KQUEUE 1136#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1137 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1138#endif
916#if EV_USE_EPOLL 1139#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1140 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1141#endif
1142#if EV_USE_INOTIFY
1143 infy_fork (EV_A);
918#endif 1144#endif
919 1145
920 if (ev_is_active (&sigev)) 1146 if (ev_is_active (&sigev))
921 { 1147 {
922 /* default loop */ 1148 /* default loop */
1038 postfork = 1; 1264 postfork = 1;
1039} 1265}
1040 1266
1041/*****************************************************************************/ 1267/*****************************************************************************/
1042 1268
1043static int 1269void
1044any_pending (EV_P) 1270ev_invoke (EV_P_ void *w, int revents)
1045{ 1271{
1046 int pri; 1272 EV_CB_INVOKE ((W)w, revents);
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053} 1273}
1054 1274
1055inline void 1275void inline_speed
1056call_pending (EV_P) 1276call_pending (EV_P)
1057{ 1277{
1058 int pri; 1278 int pri;
1059 1279
1060 for (pri = NUMPRI; pri--; ) 1280 for (pri = NUMPRI; pri--; )
1062 { 1282 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1284
1065 if (expect_true (p->w)) 1285 if (expect_true (p->w))
1066 { 1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288
1067 p->w->pending = 0; 1289 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1290 EV_CB_INVOKE (p->w, p->events);
1069 } 1291 }
1070 } 1292 }
1071} 1293}
1072 1294
1073inline void 1295void inline_size
1074timers_reify (EV_P) 1296timers_reify (EV_P)
1075{ 1297{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1077 { 1299 {
1078 struct ev_timer *w = timers [0]; 1300 ev_timer *w = (ev_timer *)timers [0];
1079 1301
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1081 1303
1082 /* first reschedule or stop timer */ 1304 /* first reschedule or stop timer */
1083 if (w->repeat) 1305 if (w->repeat)
1084 { 1306 {
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 1308
1087 ((WT)w)->at += w->repeat; 1309 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now) 1310 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now; 1311 ((WT)w)->at = mn_now;
1090 1312
1091 downheap ((WT *)timers, timercnt, 0); 1313 downheap (timers, timercnt, 0);
1092 } 1314 }
1093 else 1315 else
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 1317
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1319 }
1098} 1320}
1099 1321
1100#if EV_PERIODICS 1322#if EV_PERIODIC_ENABLE
1101inline void 1323void inline_size
1102periodics_reify (EV_P) 1324periodics_reify (EV_P)
1103{ 1325{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1105 { 1327 {
1106 struct ev_periodic *w = periodics [0]; 1328 ev_periodic *w = (ev_periodic *)periodics [0];
1107 1329
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 1331
1110 /* first reschedule or stop timer */ 1332 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1333 if (w->reschedule_cb)
1112 { 1334 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0); 1337 downheap (periodics, periodiccnt, 0);
1116 } 1338 }
1117 else if (w->interval) 1339 else if (w->interval)
1118 { 1340 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0); 1344 downheap (periodics, periodiccnt, 0);
1122 } 1345 }
1123 else 1346 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 1348
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1350 }
1128} 1351}
1129 1352
1130static void 1353static void noinline
1131periodics_reschedule (EV_P) 1354periodics_reschedule (EV_P)
1132{ 1355{
1133 int i; 1356 int i;
1134 1357
1135 /* adjust periodics after time jump */ 1358 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1359 for (i = 0; i < periodiccnt; ++i)
1137 { 1360 {
1138 struct ev_periodic *w = periodics [i]; 1361 ev_periodic *w = (ev_periodic *)periodics [i];
1139 1362
1140 if (w->reschedule_cb) 1363 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1365 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1144 } 1367 }
1145 1368
1146 /* now rebuild the heap */ 1369 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; ) 1370 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1371 downheap (periodics, periodiccnt, i);
1149} 1372}
1150#endif 1373#endif
1151 1374
1152inline int 1375#if EV_IDLE_ENABLE
1153time_update_monotonic (EV_P) 1376void inline_size
1377idle_reify (EV_P)
1154{ 1378{
1379 if (expect_false (idleall))
1380 {
1381 int pri;
1382
1383 for (pri = NUMPRI; pri--; )
1384 {
1385 if (pendingcnt [pri])
1386 break;
1387
1388 if (idlecnt [pri])
1389 {
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break;
1392 }
1393 }
1394 }
1395}
1396#endif
1397
1398void inline_speed
1399time_update (EV_P_ ev_tstamp max_block)
1400{
1401 int i;
1402
1403#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic))
1405 {
1406 ev_tstamp odiff = rtmn_diff;
1407
1155 mn_now = get_clock (); 1408 mn_now = get_clock ();
1156 1409
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1411 /* interpolate in the meantime */
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1412 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 { 1413 {
1159 ev_rt_now = rtmn_diff + mn_now; 1414 ev_rt_now = rtmn_diff + mn_now;
1160 return 0; 1415 return;
1161 } 1416 }
1162 else 1417
1163 {
1164 now_floor = mn_now; 1418 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 1419 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 1420
1170inline void 1421 /* loop a few times, before making important decisions.
1171time_update (EV_P) 1422 * on the choice of "4": one iteration isn't enough,
1172{ 1423 * in case we get preempted during the calls to
1173 int i; 1424 * ev_time and get_clock. a second call is almost guaranteed
1174 1425 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 1426 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 1427 * in the unlikely event of having been preempted here.
1177 { 1428 */
1178 if (time_update_monotonic (EV_A)) 1429 for (i = 4; --i; )
1179 { 1430 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 1431 rtmn_diff = ev_rt_now - mn_now;
1185 1432
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1187 return; /* all is well */ 1434 return; /* all is well */
1188 1435
1189 ev_rt_now = ev_time (); 1436 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1437 mn_now = get_clock ();
1191 now_floor = mn_now; 1438 now_floor = mn_now;
1192 } 1439 }
1193 1440
1194# if EV_PERIODICS 1441# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A);
1443# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 }
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 {
1454#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1455 periodics_reschedule (EV_A);
1196# endif 1456#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */ 1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 for (i = 0; i < timercnt; ++i) 1458 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now; 1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 } 1460 }
1216 1461
1217 mn_now = ev_rt_now; 1462 mn_now = ev_rt_now;
1233static int loop_done; 1478static int loop_done;
1234 1479
1235void 1480void
1236ev_loop (EV_P_ int flags) 1481ev_loop (EV_P_ int flags)
1237{ 1482{
1238 double block;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1240 1486
1241 while (activecnt) 1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1488
1489 do
1242 { 1490 {
1491#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid))
1494 {
1495 curpid = getpid ();
1496 postfork = 1;
1497 }
1498#endif
1499
1500#if EV_FORK_ENABLE
1501 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork))
1503 if (forkcnt)
1504 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A);
1507 }
1508#endif
1509
1243 /* queue check watchers (and execute them) */ 1510 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1511 if (expect_false (preparecnt))
1245 { 1512 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 1514 call_pending (EV_A);
1248 } 1515 }
1249 1516
1517 if (expect_false (!activecnt))
1518 break;
1519
1250 /* we might have forked, so reify kernel state if necessary */ 1520 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 1521 if (expect_false (postfork))
1252 loop_fork (EV_A); 1522 loop_fork (EV_A);
1253 1523
1254 /* update fd-related kernel structures */ 1524 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1525 fd_reify (EV_A);
1256 1526
1257 /* calculate blocking time */ 1527 /* calculate blocking time */
1528 {
1529 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.;
1258 1531
1259 /* we only need this for !monotonic clock or timers, but as we basically 1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1260 always have timers, we just calculate it always */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else
1265#endif
1266 { 1533 {
1267 ev_rt_now = ev_time (); 1534 /* update time to cancel out callback processing overhead */
1268 mn_now = ev_rt_now; 1535 time_update (EV_A_ 1e100);
1269 }
1270 1536
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1537 waittime = MAX_BLOCKTIME;
1276 1538
1277 if (timercnt) 1539 if (timercnt)
1278 { 1540 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1280 if (block > to) block = to; 1542 if (waittime > to) waittime = to;
1281 } 1543 }
1282 1544
1283#if EV_PERIODICS 1545#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1546 if (periodiccnt)
1285 { 1547 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1549 if (waittime > to) waittime = to;
1288 } 1550 }
1289#endif 1551#endif
1290 1552
1291 if (expect_false (block < 0.)) block = 0.; 1553 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime;
1555
1556 sleeptime = waittime - backend_fudge;
1557
1558 if (expect_true (sleeptime > io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 {
1563 ev_sleep (sleeptime);
1564 waittime -= sleeptime;
1565 }
1292 } 1566 }
1293 1567
1568 ++loop_count;
1294 backend_poll (EV_A_ block); 1569 backend_poll (EV_A_ waittime);
1295 1570
1296 /* update ev_rt_now, do magic */ 1571 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1572 time_update (EV_A_ waittime + sleeptime);
1573 }
1298 1574
1299 /* queue pending timers and reschedule them */ 1575 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1576 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1577#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1578 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1579#endif
1304 1580
1581#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 1582 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1583 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1584#endif
1308 1585
1309 /* queue check watchers, to be executed first */ 1586 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1587 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 1589
1313 call_pending (EV_A); 1590 call_pending (EV_A);
1314 1591
1315 if (expect_false (loop_done))
1316 break;
1317 } 1592 }
1593 while (expect_true (activecnt && !loop_done));
1318 1594
1319 if (loop_done != 2) 1595 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1596 loop_done = EVUNLOOP_CANCEL;
1321} 1597}
1322 1598
1323void 1599void
1324ev_unloop (EV_P_ int how) 1600ev_unloop (EV_P_ int how)
1325{ 1601{
1326 loop_done = how; 1602 loop_done = how;
1327} 1603}
1328 1604
1329/*****************************************************************************/ 1605/*****************************************************************************/
1330 1606
1331inline void 1607void inline_size
1332wlist_add (WL *head, WL elem) 1608wlist_add (WL *head, WL elem)
1333{ 1609{
1334 elem->next = *head; 1610 elem->next = *head;
1335 *head = elem; 1611 *head = elem;
1336} 1612}
1337 1613
1338inline void 1614void inline_size
1339wlist_del (WL *head, WL elem) 1615wlist_del (WL *head, WL elem)
1340{ 1616{
1341 while (*head) 1617 while (*head)
1342 { 1618 {
1343 if (*head == elem) 1619 if (*head == elem)
1348 1624
1349 head = &(*head)->next; 1625 head = &(*head)->next;
1350 } 1626 }
1351} 1627}
1352 1628
1353inline void 1629void inline_speed
1354ev_clear_pending (EV_P_ W w) 1630clear_pending (EV_P_ W w)
1355{ 1631{
1356 if (w->pending) 1632 if (w->pending)
1357 { 1633 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1634 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1635 w->pending = 0;
1360 } 1636 }
1361} 1637}
1362 1638
1363inline void 1639int
1640ev_clear_pending (EV_P_ void *w)
1641{
1642 W w_ = (W)w;
1643 int pending = w_->pending;
1644
1645 if (expect_true (pending))
1646 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1648 w_->pending = 0;
1649 p->w = 0;
1650 return p->events;
1651 }
1652 else
1653 return 0;
1654}
1655
1656void inline_size
1657pri_adjust (EV_P_ W w)
1658{
1659 int pri = w->priority;
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri;
1663}
1664
1665void inline_speed
1364ev_start (EV_P_ W w, int active) 1666ev_start (EV_P_ W w, int active)
1365{ 1667{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1668 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 1669 w->active = active;
1370 ev_ref (EV_A); 1670 ev_ref (EV_A);
1371} 1671}
1372 1672
1373inline void 1673void inline_size
1374ev_stop (EV_P_ W w) 1674ev_stop (EV_P_ W w)
1375{ 1675{
1376 ev_unref (EV_A); 1676 ev_unref (EV_A);
1377 w->active = 0; 1677 w->active = 0;
1378} 1678}
1379 1679
1380/*****************************************************************************/ 1680/*****************************************************************************/
1381 1681
1382void 1682void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 1683ev_io_start (EV_P_ ev_io *w)
1384{ 1684{
1385 int fd = w->fd; 1685 int fd = w->fd;
1386 1686
1387 if (expect_false (ev_is_active (w))) 1687 if (expect_false (ev_is_active (w)))
1388 return; 1688 return;
1389 1689
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 1690 assert (("ev_io_start called with negative fd", fd >= 0));
1391 1691
1392 ev_start (EV_A_ (W)w, 1); 1692 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1694 wlist_add (&anfds[fd].head, (WL)w);
1395 1695
1396 fd_change (EV_A_ fd); 1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET;
1397} 1698}
1398 1699
1399void 1700void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 1701ev_io_stop (EV_P_ ev_io *w)
1401{ 1702{
1402 ev_clear_pending (EV_A_ (W)w); 1703 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1704 if (expect_false (!ev_is_active (w)))
1404 return; 1705 return;
1405 1706
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 1708
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1709 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 1710 ev_stop (EV_A_ (W)w);
1410 1711
1411 fd_change (EV_A_ w->fd); 1712 fd_change (EV_A_ w->fd, 1);
1412} 1713}
1413 1714
1414void 1715void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 1716ev_timer_start (EV_P_ ev_timer *w)
1416{ 1717{
1417 if (expect_false (ev_is_active (w))) 1718 if (expect_false (ev_is_active (w)))
1418 return; 1719 return;
1419 1720
1420 ((WT)w)->at += mn_now; 1721 ((WT)w)->at += mn_now;
1421 1722
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1724
1424 ev_start (EV_A_ (W)w, ++timercnt); 1725 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1426 timers [timercnt - 1] = w; 1727 timers [timercnt - 1] = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 1728 upheap (timers, timercnt - 1);
1428 1729
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1430} 1731}
1431 1732
1432void 1733void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1734ev_timer_stop (EV_P_ ev_timer *w)
1434{ 1735{
1435 ev_clear_pending (EV_A_ (W)w); 1736 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 1737 if (expect_false (!ev_is_active (w)))
1437 return; 1738 return;
1438 1739
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1440 1741
1742 {
1743 int active = ((W)w)->active;
1744
1441 if (expect_true (((W)w)->active < timercnt--)) 1745 if (expect_true (--active < --timercnt))
1442 { 1746 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 1747 timers [active] = timers [timercnt];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1748 adjustheap (timers, timercnt, active);
1445 } 1749 }
1750 }
1446 1751
1447 ((WT)w)->at -= mn_now; 1752 ((WT)w)->at -= mn_now;
1448 1753
1449 ev_stop (EV_A_ (W)w); 1754 ev_stop (EV_A_ (W)w);
1450} 1755}
1451 1756
1452void 1757void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 1758ev_timer_again (EV_P_ ev_timer *w)
1454{ 1759{
1455 if (ev_is_active (w)) 1760 if (ev_is_active (w))
1456 { 1761 {
1457 if (w->repeat) 1762 if (w->repeat)
1458 { 1763 {
1459 ((WT)w)->at = mn_now + w->repeat; 1764 ((WT)w)->at = mn_now + w->repeat;
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1765 adjustheap (timers, timercnt, ((W)w)->active - 1);
1461 } 1766 }
1462 else 1767 else
1463 ev_timer_stop (EV_A_ w); 1768 ev_timer_stop (EV_A_ w);
1464 } 1769 }
1465 else if (w->repeat) 1770 else if (w->repeat)
1467 w->at = w->repeat; 1772 w->at = w->repeat;
1468 ev_timer_start (EV_A_ w); 1773 ev_timer_start (EV_A_ w);
1469 } 1774 }
1470} 1775}
1471 1776
1472#if EV_PERIODICS 1777#if EV_PERIODIC_ENABLE
1473void 1778void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1779ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1780{
1476 if (expect_false (ev_is_active (w))) 1781 if (expect_false (ev_is_active (w)))
1477 return; 1782 return;
1478 1783
1479 if (w->reschedule_cb) 1784 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 1786 else if (w->interval)
1482 { 1787 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1789 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 1791 }
1792 else
1793 ((WT)w)->at = w->offset;
1487 1794
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1795 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1797 periodics [periodiccnt - 1] = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1798 upheap (periodics, periodiccnt - 1);
1492 1799
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1494} 1801}
1495 1802
1496void 1803void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1804ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 1805{
1499 ev_clear_pending (EV_A_ (W)w); 1806 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 1807 if (expect_false (!ev_is_active (w)))
1501 return; 1808 return;
1502 1809
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1504 1811
1812 {
1813 int active = ((W)w)->active;
1814
1505 if (expect_true (((W)w)->active < periodiccnt--)) 1815 if (expect_true (--active < --periodiccnt))
1506 { 1816 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1817 periodics [active] = periodics [periodiccnt];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1818 adjustheap (periodics, periodiccnt, active);
1509 } 1819 }
1820 }
1510 1821
1511 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1512} 1823}
1513 1824
1514void 1825void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 1826ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 1827{
1517 /* TODO: use adjustheap and recalculation */ 1828 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 1829 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 1830 ev_periodic_start (EV_A_ w);
1520} 1831}
1521#endif 1832#endif
1522 1833
1523void
1524ev_idle_start (EV_P_ struct ev_idle *w)
1525{
1526 if (expect_false (ev_is_active (w)))
1527 return;
1528
1529 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w;
1532}
1533
1534void
1535ev_idle_stop (EV_P_ struct ev_idle *w)
1536{
1537 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w)))
1539 return;
1540
1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1542 ev_stop (EV_A_ (W)w);
1543}
1544
1545void
1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1547{
1548 if (expect_false (ev_is_active (w)))
1549 return;
1550
1551 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w;
1554}
1555
1556void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1558{
1559 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w)))
1561 return;
1562
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1564 ev_stop (EV_A_ (W)w);
1565}
1566
1567void
1568ev_check_start (EV_P_ struct ev_check *w)
1569{
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577
1578void
1579ev_check_stop (EV_P_ struct ev_check *w)
1580{
1581 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w)))
1583 return;
1584
1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1586 ev_stop (EV_A_ (W)w);
1587}
1588
1589#ifndef SA_RESTART 1834#ifndef SA_RESTART
1590# define SA_RESTART 0 1835# define SA_RESTART 0
1591#endif 1836#endif
1592 1837
1593void 1838void noinline
1594ev_signal_start (EV_P_ struct ev_signal *w) 1839ev_signal_start (EV_P_ ev_signal *w)
1595{ 1840{
1596#if EV_MULTIPLICITY 1841#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1843#endif
1599 if (expect_false (ev_is_active (w))) 1844 if (expect_false (ev_is_active (w)))
1600 return; 1845 return;
1601 1846
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 1848
1849 {
1850#ifndef _WIN32
1851 sigset_t full, prev;
1852 sigfillset (&full);
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1857
1858#ifndef _WIN32
1859 sigprocmask (SIG_SETMASK, &prev, 0);
1860#endif
1861 }
1862
1604 ev_start (EV_A_ (W)w, 1); 1863 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1864 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 1865
1608 if (!((WL)w)->next) 1866 if (!((WL)w)->next)
1609 { 1867 {
1610#if _WIN32 1868#if _WIN32
1611 signal (w->signum, sighandler); 1869 signal (w->signum, sighandler);
1617 sigaction (w->signum, &sa, 0); 1875 sigaction (w->signum, &sa, 0);
1618#endif 1876#endif
1619 } 1877 }
1620} 1878}
1621 1879
1622void 1880void noinline
1623ev_signal_stop (EV_P_ struct ev_signal *w) 1881ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1882{
1625 ev_clear_pending (EV_A_ (W)w); 1883 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1884 if (expect_false (!ev_is_active (w)))
1627 return; 1885 return;
1628 1886
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1887 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 1888 ev_stop (EV_A_ (W)w);
1631 1889
1632 if (!signals [w->signum - 1].head) 1890 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1891 signal (w->signum, SIG_DFL);
1634} 1892}
1635 1893
1636void 1894void
1637ev_child_start (EV_P_ struct ev_child *w) 1895ev_child_start (EV_P_ ev_child *w)
1638{ 1896{
1639#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 1899#endif
1642 if (expect_false (ev_is_active (w))) 1900 if (expect_false (ev_is_active (w)))
1643 return; 1901 return;
1644 1902
1645 ev_start (EV_A_ (W)w, 1); 1903 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 1905}
1648 1906
1649void 1907void
1650ev_child_stop (EV_P_ struct ev_child *w) 1908ev_child_stop (EV_P_ ev_child *w)
1651{ 1909{
1652 ev_clear_pending (EV_A_ (W)w); 1910 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1911 if (expect_false (!ev_is_active (w)))
1654 return; 1912 return;
1655 1913
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1915 ev_stop (EV_A_ (W)w);
1658} 1916}
1659 1917
1918#if EV_STAT_ENABLE
1919
1920# ifdef _WIN32
1921# undef lstat
1922# define lstat(a,b) _stati64 (a,b)
1923# endif
1924
1925#define DEF_STAT_INTERVAL 5.0074891
1926#define MIN_STAT_INTERVAL 0.1074891
1927
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929
1930#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192
1932
1933static void noinline
1934infy_add (EV_P_ ev_stat *w)
1935{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937
1938 if (w->wd < 0)
1939 {
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941
1942 /* monitor some parent directory for speedup hints */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 {
1945 char path [4096];
1946 strcpy (path, w->path);
1947
1948 do
1949 {
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952
1953 char *pend = strrchr (path, '/');
1954
1955 if (!pend)
1956 break; /* whoops, no '/', complain to your admin */
1957
1958 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 }
1963 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966
1967 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1969}
1970
1971static void noinline
1972infy_del (EV_P_ ev_stat *w)
1973{
1974 int slot;
1975 int wd = w->wd;
1976
1977 if (wd < 0)
1978 return;
1979
1980 w->wd = -2;
1981 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1982 wlist_del (&fs_hash [slot].head, (WL)w);
1983
1984 /* remove this watcher, if others are watching it, they will rearm */
1985 inotify_rm_watch (fs_fd, wd);
1986}
1987
1988static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{
1991 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev);
1995 else
1996 {
1997 WL w_;
1998
1999 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2000 {
2001 ev_stat *w = (ev_stat *)w_;
2002 w_ = w_->next; /* lets us remove this watcher and all before it */
2003
2004 if (w->wd == wd || wd == -1)
2005 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 {
2008 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */
2010 }
2011
2012 stat_timer_cb (EV_A_ &w->timer, 0);
2013 }
2014 }
2015 }
2016}
2017
2018static void
2019infy_cb (EV_P_ ev_io *w, int revents)
2020{
2021 char buf [EV_INOTIFY_BUFSIZE];
2022 struct inotify_event *ev = (struct inotify_event *)buf;
2023 int ofs;
2024 int len = read (fs_fd, buf, sizeof (buf));
2025
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2028}
2029
2030void inline_size
2031infy_init (EV_P)
2032{
2033 if (fs_fd != -2)
2034 return;
2035
2036 fs_fd = inotify_init ();
2037
2038 if (fs_fd >= 0)
2039 {
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w);
2043 }
2044}
2045
2046void inline_size
2047infy_fork (EV_P)
2048{
2049 int slot;
2050
2051 if (fs_fd < 0)
2052 return;
2053
2054 close (fs_fd);
2055 fs_fd = inotify_init ();
2056
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 {
2059 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0;
2061
2062 while (w_)
2063 {
2064 ev_stat *w = (ev_stat *)w_;
2065 w_ = w_->next; /* lets us add this watcher */
2066
2067 w->wd = -1;
2068
2069 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else
2072 ev_timer_start (EV_A_ &w->timer);
2073 }
2074
2075 }
2076}
2077
2078#endif
2079
2080void
2081ev_stat_stat (EV_P_ ev_stat *w)
2082{
2083 if (lstat (w->path, &w->attr) < 0)
2084 w->attr.st_nlink = 0;
2085 else if (!w->attr.st_nlink)
2086 w->attr.st_nlink = 1;
2087}
2088
2089static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093
2094 /* we copy this here each the time so that */
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w);
2098
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if (
2101 w->prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime
2112 ) {
2113 #if EV_USE_INOTIFY
2114 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */
2117 #endif
2118
2119 ev_feed_event (EV_A_ w, EV_STAT);
2120 }
2121}
2122
2123void
2124ev_stat_start (EV_P_ ev_stat *w)
2125{
2126 if (expect_false (ev_is_active (w)))
2127 return;
2128
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w);
2134
2135 if (w->interval < MIN_STAT_INTERVAL)
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2139 ev_set_priority (&w->timer, ev_priority (w));
2140
2141#if EV_USE_INOTIFY
2142 infy_init (EV_A);
2143
2144 if (fs_fd >= 0)
2145 infy_add (EV_A_ w);
2146 else
2147#endif
2148 ev_timer_start (EV_A_ &w->timer);
2149
2150 ev_start (EV_A_ (W)w, 1);
2151}
2152
2153void
2154ev_stat_stop (EV_P_ ev_stat *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w);
2162#endif
2163 ev_timer_stop (EV_A_ &w->timer);
2164
2165 ev_stop (EV_A_ (W)w);
2166}
2167#endif
2168
2169#if EV_IDLE_ENABLE
2170void
2171ev_idle_start (EV_P_ ev_idle *w)
2172{
2173 if (expect_false (ev_is_active (w)))
2174 return;
2175
2176 pri_adjust (EV_A_ (W)w);
2177
2178 {
2179 int active = ++idlecnt [ABSPRI (w)];
2180
2181 ++idleall;
2182 ev_start (EV_A_ (W)w, active);
2183
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w;
2186 }
2187}
2188
2189void
2190ev_idle_stop (EV_P_ ev_idle *w)
2191{
2192 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w)))
2194 return;
2195
2196 {
2197 int active = ((W)w)->active;
2198
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2201
2202 ev_stop (EV_A_ (W)w);
2203 --idleall;
2204 }
2205}
2206#endif
2207
2208void
2209ev_prepare_start (EV_P_ ev_prepare *w)
2210{
2211 if (expect_false (ev_is_active (w)))
2212 return;
2213
2214 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w;
2217}
2218
2219void
2220ev_prepare_stop (EV_P_ ev_prepare *w)
2221{
2222 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w)))
2224 return;
2225
2226 {
2227 int active = ((W)w)->active;
2228 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active;
2230 }
2231
2232 ev_stop (EV_A_ (W)w);
2233}
2234
2235void
2236ev_check_start (EV_P_ ev_check *w)
2237{
2238 if (expect_false (ev_is_active (w)))
2239 return;
2240
2241 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w;
2244}
2245
2246void
2247ev_check_stop (EV_P_ ev_check *w)
2248{
2249 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w)))
2251 return;
2252
2253 {
2254 int active = ((W)w)->active;
2255 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active;
2257 }
2258
2259 ev_stop (EV_A_ (W)w);
2260}
2261
2262#if EV_EMBED_ENABLE
2263void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w)
2265{
2266 ev_loop (w->other, EVLOOP_NONBLOCK);
2267}
2268
2269static void
2270embed_io_cb (EV_P_ ev_io *io, int revents)
2271{
2272 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2273
2274 if (ev_cb (w))
2275 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2276 else
2277 ev_loop (w->other, EVLOOP_NONBLOCK);
2278}
2279
2280static void
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284
2285 {
2286 struct ev_loop *loop = w->other;
2287
2288 while (fdchangecnt)
2289 {
2290 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 }
2293 }
2294}
2295
2296#if 0
2297static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{
2300 ev_idle_stop (EV_A_ idle);
2301}
2302#endif
2303
2304void
2305ev_embed_start (EV_P_ ev_embed *w)
2306{
2307 if (expect_false (ev_is_active (w)))
2308 return;
2309
2310 {
2311 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 }
2315
2316 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io);
2318
2319 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare);
2322
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_embed_stop (EV_P_ ev_embed *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare);
2337
2338 ev_stop (EV_A_ (W)w);
2339}
2340#endif
2341
2342#if EV_FORK_ENABLE
2343void
2344ev_fork_start (EV_P_ ev_fork *w)
2345{
2346 if (expect_false (ev_is_active (w)))
2347 return;
2348
2349 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w;
2352}
2353
2354void
2355ev_fork_stop (EV_P_ ev_fork *w)
2356{
2357 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w)))
2359 return;
2360
2361 {
2362 int active = ((W)w)->active;
2363 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active;
2365 }
2366
2367 ev_stop (EV_A_ (W)w);
2368}
2369#endif
2370
1660/*****************************************************************************/ 2371/*****************************************************************************/
1661 2372
1662struct ev_once 2373struct ev_once
1663{ 2374{
1664 struct ev_io io; 2375 ev_io io;
1665 struct ev_timer to; 2376 ev_timer to;
1666 void (*cb)(int revents, void *arg); 2377 void (*cb)(int revents, void *arg);
1667 void *arg; 2378 void *arg;
1668}; 2379};
1669 2380
1670static void 2381static void
1679 2390
1680 cb (revents, arg); 2391 cb (revents, arg);
1681} 2392}
1682 2393
1683static void 2394static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 2395once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 2396{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 2398}
1688 2399
1689static void 2400static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 2401once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 2402{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 2404}
1694 2405
1695void 2406void
1719 ev_timer_set (&once->to, timeout, 0.); 2430 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 2431 ev_timer_start (EV_A_ &once->to);
1721 } 2432 }
1722} 2433}
1723 2434
2435#if EV_MULTIPLICITY
2436 #include "ev_wrap.h"
2437#endif
2438
1724#ifdef __cplusplus 2439#ifdef __cplusplus
1725} 2440}
1726#endif 2441#endif
1727 2442

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines