ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 257#else
236# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
240#endif 263#endif
241 264
242#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
244 274
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 277
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
250 280
251typedef ev_watcher *W; 281typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
254 284
285#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif
256 290
257#ifdef _WIN32 291#ifdef _WIN32
258# include "ev_win32.c" 292# include "ev_win32.c"
259#endif 293#endif
260 294
396{ 430{
397 return ev_rt_now; 431 return ev_rt_now;
398} 432}
399#endif 433#endif
400 434
401#define array_roundsize(type,n) (((n) | 4) & ~3) 435void
436ev_sleep (ev_tstamp delay)
437{
438 if (delay > 0.)
439 {
440#if EV_USE_NANOSLEEP
441 struct timespec ts;
442
443 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445
446 nanosleep (&ts, 0);
447#elif defined(_WIN32)
448 Sleep (delay * 1e3);
449#else
450 struct timeval tv;
451
452 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454
455 select (0, 0, 0, 0, &tv);
456#endif
457 }
458}
459
460/*****************************************************************************/
461
462int inline_size
463array_nextsize (int elem, int cur, int cnt)
464{
465 int ncur = cur + 1;
466
467 do
468 ncur <<= 1;
469 while (cnt > ncur);
470
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096)
473 {
474 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
476 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem;
478 }
479
480 return ncur;
481}
482
483static noinline void *
484array_realloc (int elem, void *base, int *cur, int cnt)
485{
486 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur);
488}
402 489
403#define array_needsize(type,base,cur,cnt,init) \ 490#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 491 if (expect_false ((cnt) > (cur))) \
405 { \ 492 { \
406 int newcnt = cur; \ 493 int ocur_ = (cur); \
407 do \ 494 (base) = (type *)array_realloc \
408 { \ 495 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 496 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 497 }
417 498
499#if 0
418#define array_slim(type,stem) \ 500#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 501 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 502 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 503 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 504 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 506 }
507#endif
425 508
426#define array_free(stem, idx) \ 509#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 511
429/*****************************************************************************/ 512/*****************************************************************************/
430 513
431void noinline 514void noinline
432ev_feed_event (EV_P_ void *w, int revents) 515ev_feed_event (EV_P_ void *w, int revents)
433{ 516{
434 W w_ = (W)w; 517 W w_ = (W)w;
518 int pri = ABSPRI (w_);
435 519
436 if (expect_false (w_->pending)) 520 if (expect_false (w_->pending))
521 pendings [pri][w_->pending - 1].events |= revents;
522 else
437 { 523 {
524 w_->pending = ++pendingcnt [pri];
525 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
526 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 527 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 528 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 529}
447 530
448void inline_size 531void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 532queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 533{
451 int i; 534 int i;
452 535
453 for (i = 0; i < eventcnt; ++i) 536 for (i = 0; i < eventcnt; ++i)
485} 568}
486 569
487void 570void
488ev_feed_fd_event (EV_P_ int fd, int revents) 571ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 572{
573 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 574 fd_event (EV_A_ fd, revents);
491} 575}
492 576
493void inline_size 577void inline_size
494fd_reify (EV_P) 578fd_reify (EV_P)
495{ 579{
499 { 583 {
500 int fd = fdchanges [i]; 584 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 585 ANFD *anfd = anfds + fd;
502 ev_io *w; 586 ev_io *w;
503 587
504 int events = 0; 588 unsigned char events = 0;
505 589
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 590 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 591 events |= (unsigned char)w->events;
508 592
509#if EV_SELECT_IS_WINSOCKET 593#if EV_SELECT_IS_WINSOCKET
510 if (events) 594 if (events)
511 { 595 {
512 unsigned long argp; 596 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 597 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 599 }
516#endif 600#endif
517 601
602 {
603 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify;
605
518 anfd->reify = 0; 606 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 607 anfd->events = events;
608
609 if (o_events != events || o_reify & EV_IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events);
611 }
522 } 612 }
523 613
524 fdchangecnt = 0; 614 fdchangecnt = 0;
525} 615}
526 616
527void inline_size 617void inline_size
528fd_change (EV_P_ int fd) 618fd_change (EV_P_ int fd, int flags)
529{ 619{
530 if (expect_false (anfds [fd].reify)) 620 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 621 anfds [fd].reify |= flags;
534 622
623 if (expect_true (!reify))
624 {
535 ++fdchangecnt; 625 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 627 fdchanges [fdchangecnt - 1] = fd;
628 }
538} 629}
539 630
540void inline_speed 631void inline_speed
541fd_kill (EV_P_ int fd) 632fd_kill (EV_P_ int fd)
542{ 633{
593 684
594 for (fd = 0; fd < anfdmax; ++fd) 685 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 686 if (anfds [fd].events)
596 { 687 {
597 anfds [fd].events = 0; 688 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 689 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 690 }
600} 691}
601 692
602/*****************************************************************************/ 693/*****************************************************************************/
603 694
604void inline_speed 695void inline_speed
605upheap (WT *heap, int k) 696upheap (WT *heap, int k)
606{ 697{
607 WT w = heap [k]; 698 WT w = heap [k];
608 699
609 while (k && heap [k >> 1]->at > w->at) 700 while (k)
610 { 701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
611 heap [k] = heap [k >> 1]; 707 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 708 ((W)heap [k])->active = k + 1;
613 k >>= 1; 709 k = p;
614 } 710 }
615 711
616 heap [k] = w; 712 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 713 ((W)heap [k])->active = k + 1;
618
619} 714}
620 715
621void inline_speed 716void inline_speed
622downheap (WT *heap, int N, int k) 717downheap (WT *heap, int N, int k)
623{ 718{
624 WT w = heap [k]; 719 WT w = heap [k];
625 720
626 while (k < (N >> 1)) 721 for (;;)
627 { 722 {
628 int j = k << 1; 723 int c = (k << 1) + 1;
629 724
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 725 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 726 break;
635 727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
636 heap [k] = heap [j]; 734 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 735 ((W)heap [k])->active = k + 1;
736
638 k = j; 737 k = c;
639 } 738 }
640 739
641 heap [k] = w; 740 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 741 ((W)heap [k])->active = k + 1;
643} 742}
725 for (signum = signalmax; signum--; ) 824 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 825 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 826 ev_feed_signal_event (EV_A_ signum + 1);
728} 827}
729 828
730void inline_size 829void inline_speed
731fd_intern (int fd) 830fd_intern (int fd)
732{ 831{
733#ifdef _WIN32 832#ifdef _WIN32
734 int arg = 1; 833 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 849 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 850}
752 851
753/*****************************************************************************/ 852/*****************************************************************************/
754 853
755static ev_child *childs [EV_PID_HASHSIZE]; 854static WL childs [EV_PID_HASHSIZE];
756 855
757#ifndef _WIN32 856#ifndef _WIN32
758 857
759static ev_signal childev; 858static ev_signal childev;
760 859
764 ev_child *w; 863 ev_child *w;
765 864
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 866 if (w->pid == pid || !w->pid)
768 { 867 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 869 w->rpid = pid;
771 w->rstatus = status; 870 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 871 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 872 }
774} 873}
775 874
776#ifndef WCONTINUED 875#ifndef WCONTINUED
875} 974}
876 975
877unsigned int 976unsigned int
878ev_embeddable_backends (void) 977ev_embeddable_backends (void)
879{ 978{
880 return EVBACKEND_EPOLL 979 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 980
882 | EVBACKEND_PORT; 981 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
982 /* please fix it and tell me how to detect the fix */
983 flags &= ~EVBACKEND_EPOLL;
984
985 return flags;
883} 986}
884 987
885unsigned int 988unsigned int
886ev_backend (EV_P) 989ev_backend (EV_P)
887{ 990{
888 return backend; 991 return backend;
992}
993
994unsigned int
995ev_loop_count (EV_P)
996{
997 return loop_count;
998}
999
1000void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 io_blocktime = interval;
1004}
1005
1006void
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{
1009 timeout_blocktime = interval;
889} 1010}
890 1011
891static void noinline 1012static void noinline
892loop_init (EV_P_ unsigned int flags) 1013loop_init (EV_P_ unsigned int flags)
893{ 1014{
904 ev_rt_now = ev_time (); 1025 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1026 mn_now = get_clock ();
906 now_floor = mn_now; 1027 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1028 rtmn_diff = ev_rt_now - mn_now;
908 1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032
909 /* pid check not overridable via env */ 1033 /* pid check not overridable via env */
910#ifndef _WIN32 1034#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1035 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1036 curpid = getpid ();
913#endif 1037#endif
975#if EV_USE_SELECT 1099#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1100 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1101#endif
978 1102
979 for (i = NUMPRI; i--; ) 1103 for (i = NUMPRI; i--; )
1104 {
980 array_free (pending, [i]); 1105 array_free (pending, [i]);
1106#if EV_IDLE_ENABLE
1107 array_free (idle, [i]);
1108#endif
1109 }
1110
1111 ev_free (anfds); anfdmax = 0;
981 1112
982 /* have to use the microsoft-never-gets-it-right macro */ 1113 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1114 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1115 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1116#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1117 array_free (periodic, EMPTY);
987#endif 1118#endif
1119#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1120 array_free (fork, EMPTY);
1121#endif
989 array_free (prepare, EMPTY0); 1122 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1123 array_free (check, EMPTY);
991 1124
992 backend = 0; 1125 backend = 0;
993} 1126}
994 1127
995void inline_size infy_fork (EV_P); 1128void inline_size infy_fork (EV_P);
1131 postfork = 1; 1264 postfork = 1;
1132} 1265}
1133 1266
1134/*****************************************************************************/ 1267/*****************************************************************************/
1135 1268
1136int inline_size 1269void
1137any_pending (EV_P) 1270ev_invoke (EV_P_ void *w, int revents)
1138{ 1271{
1139 int pri; 1272 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1273}
1147 1274
1148void inline_speed 1275void inline_speed
1149call_pending (EV_P) 1276call_pending (EV_P)
1150{ 1277{
1168void inline_size 1295void inline_size
1169timers_reify (EV_P) 1296timers_reify (EV_P)
1170{ 1297{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1299 {
1173 ev_timer *w = timers [0]; 1300 ev_timer *w = (ev_timer *)timers [0];
1174 1301
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1303
1177 /* first reschedule or stop timer */ 1304 /* first reschedule or stop timer */
1178 if (w->repeat) 1305 if (w->repeat)
1181 1308
1182 ((WT)w)->at += w->repeat; 1309 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1310 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1311 ((WT)w)->at = mn_now;
1185 1312
1186 downheap ((WT *)timers, timercnt, 0); 1313 downheap (timers, timercnt, 0);
1187 } 1314 }
1188 else 1315 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1317
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1323void inline_size
1197periodics_reify (EV_P) 1324periodics_reify (EV_P)
1198{ 1325{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1327 {
1201 ev_periodic *w = periodics [0]; 1328 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1329
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1331
1205 /* first reschedule or stop timer */ 1332 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1333 if (w->reschedule_cb)
1207 { 1334 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1337 downheap (periodics, periodiccnt, 0);
1211 } 1338 }
1212 else if (w->interval) 1339 else if (w->interval)
1213 { 1340 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1344 downheap (periodics, periodiccnt, 0);
1217 } 1345 }
1218 else 1346 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1348
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1356 int i;
1229 1357
1230 /* adjust periodics after time jump */ 1358 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1359 for (i = 0; i < periodiccnt; ++i)
1232 { 1360 {
1233 ev_periodic *w = periodics [i]; 1361 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1362
1235 if (w->reschedule_cb) 1363 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1365 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1367 }
1240 1368
1241 /* now rebuild the heap */ 1369 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1370 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1371 downheap (periodics, periodiccnt, i);
1244} 1372}
1245#endif 1373#endif
1246 1374
1375#if EV_IDLE_ENABLE
1247int inline_size 1376void inline_size
1248time_update_monotonic (EV_P) 1377idle_reify (EV_P)
1249{ 1378{
1379 if (expect_false (idleall))
1380 {
1381 int pri;
1382
1383 for (pri = NUMPRI; pri--; )
1384 {
1385 if (pendingcnt [pri])
1386 break;
1387
1388 if (idlecnt [pri])
1389 {
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break;
1392 }
1393 }
1394 }
1395}
1396#endif
1397
1398void inline_speed
1399time_update (EV_P_ ev_tstamp max_block)
1400{
1401 int i;
1402
1403#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic))
1405 {
1406 ev_tstamp odiff = rtmn_diff;
1407
1250 mn_now = get_clock (); 1408 mn_now = get_clock ();
1251 1409
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1411 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1412 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1413 {
1254 ev_rt_now = rtmn_diff + mn_now; 1414 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1415 return;
1256 } 1416 }
1257 else 1417
1258 {
1259 now_floor = mn_now; 1418 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1419 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1420
1265void inline_size 1421 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1422 * on the choice of "4": one iteration isn't enough,
1267{ 1423 * in case we get preempted during the calls to
1268 int i; 1424 * ev_time and get_clock. a second call is almost guaranteed
1269 1425 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1426 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1427 * in the unlikely event of having been preempted here.
1272 { 1428 */
1273 if (time_update_monotonic (EV_A)) 1429 for (i = 4; --i; )
1274 { 1430 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1431 rtmn_diff = ev_rt_now - mn_now;
1288 1432
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1434 return; /* all is well */
1291 1435
1292 ev_rt_now = ev_time (); 1436 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1437 mn_now = get_clock ();
1294 now_floor = mn_now; 1438 now_floor = mn_now;
1295 } 1439 }
1296 1440
1297# if EV_PERIODIC_ENABLE 1441# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1442 periodics_reschedule (EV_A);
1299# endif 1443# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1446 }
1304 else 1447 else
1305#endif 1448#endif
1306 { 1449 {
1307 ev_rt_now = ev_time (); 1450 ev_rt_now = ev_time ();
1308 1451
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1453 {
1311#if EV_PERIODIC_ENABLE 1454#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1455 periodics_reschedule (EV_A);
1313#endif 1456#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1458 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1460 }
1319 1461
1342 ? EVUNLOOP_ONE 1484 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1485 : EVUNLOOP_CANCEL;
1344 1486
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1488
1347 while (activecnt) 1489 do
1348 { 1490 {
1349#ifndef _WIN32 1491#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1492 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1493 if (expect_false (getpid () != curpid))
1352 { 1494 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1506 call_pending (EV_A);
1365 } 1507 }
1366#endif 1508#endif
1367 1509
1368 /* queue check watchers (and execute them) */ 1510 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1511 if (expect_false (preparecnt))
1370 { 1512 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1514 call_pending (EV_A);
1373 } 1515 }
1374 1516
1517 if (expect_false (!activecnt))
1518 break;
1519
1375 /* we might have forked, so reify kernel state if necessary */ 1520 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1521 if (expect_false (postfork))
1377 loop_fork (EV_A); 1522 loop_fork (EV_A);
1378 1523
1379 /* update fd-related kernel structures */ 1524 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1525 fd_reify (EV_A);
1381 1526
1382 /* calculate blocking time */ 1527 /* calculate blocking time */
1383 { 1528 {
1384 ev_tstamp block; 1529 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.;
1385 1531
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1533 {
1390 /* update time to cancel out callback processing overhead */ 1534 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1535 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1536
1401 block = MAX_BLOCKTIME; 1537 waittime = MAX_BLOCKTIME;
1402 1538
1403 if (timercnt) 1539 if (timercnt)
1404 { 1540 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1406 if (block > to) block = to; 1542 if (waittime > to) waittime = to;
1407 } 1543 }
1408 1544
1409#if EV_PERIODIC_ENABLE 1545#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1546 if (periodiccnt)
1411 { 1547 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1549 if (waittime > to) waittime = to;
1414 } 1550 }
1415#endif 1551#endif
1416 1552
1417 if (expect_false (block < 0.)) block = 0.; 1553 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime;
1555
1556 sleeptime = waittime - backend_fudge;
1557
1558 if (expect_true (sleeptime > io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 {
1563 ev_sleep (sleeptime);
1564 waittime -= sleeptime;
1565 }
1418 } 1566 }
1419 1567
1568 ++loop_count;
1420 backend_poll (EV_A_ block); 1569 backend_poll (EV_A_ waittime);
1570
1571 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime);
1421 } 1573 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1574
1426 /* queue pending timers and reschedule them */ 1575 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1576 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1577#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1578 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1579#endif
1431 1580
1581#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1582 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1583 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1584#endif
1435 1585
1436 /* queue check watchers, to be executed first */ 1586 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1587 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1589
1440 call_pending (EV_A); 1590 call_pending (EV_A);
1441 1591
1442 if (expect_false (loop_done))
1443 break;
1444 } 1592 }
1593 while (expect_true (activecnt && !loop_done));
1445 1594
1446 if (loop_done == EVUNLOOP_ONE) 1595 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1596 loop_done = EVUNLOOP_CANCEL;
1448} 1597}
1449 1598
1476 head = &(*head)->next; 1625 head = &(*head)->next;
1477 } 1626 }
1478} 1627}
1479 1628
1480void inline_speed 1629void inline_speed
1481ev_clear_pending (EV_P_ W w) 1630clear_pending (EV_P_ W w)
1482{ 1631{
1483 if (w->pending) 1632 if (w->pending)
1484 { 1633 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1634 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1635 w->pending = 0;
1487 } 1636 }
1488} 1637}
1489 1638
1639int
1640ev_clear_pending (EV_P_ void *w)
1641{
1642 W w_ = (W)w;
1643 int pending = w_->pending;
1644
1645 if (expect_true (pending))
1646 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1648 w_->pending = 0;
1649 p->w = 0;
1650 return p->events;
1651 }
1652 else
1653 return 0;
1654}
1655
1656void inline_size
1657pri_adjust (EV_P_ W w)
1658{
1659 int pri = w->priority;
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri;
1663}
1664
1490void inline_speed 1665void inline_speed
1491ev_start (EV_P_ W w, int active) 1666ev_start (EV_P_ W w, int active)
1492{ 1667{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1668 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1669 w->active = active;
1497 ev_ref (EV_A); 1670 ev_ref (EV_A);
1498} 1671}
1499 1672
1500void inline_size 1673void inline_size
1504 w->active = 0; 1677 w->active = 0;
1505} 1678}
1506 1679
1507/*****************************************************************************/ 1680/*****************************************************************************/
1508 1681
1509void 1682void noinline
1510ev_io_start (EV_P_ ev_io *w) 1683ev_io_start (EV_P_ ev_io *w)
1511{ 1684{
1512 int fd = w->fd; 1685 int fd = w->fd;
1513 1686
1514 if (expect_false (ev_is_active (w))) 1687 if (expect_false (ev_is_active (w)))
1516 1689
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1690 assert (("ev_io_start called with negative fd", fd >= 0));
1518 1691
1519 ev_start (EV_A_ (W)w, 1); 1692 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1694 wlist_add (&anfds[fd].head, (WL)w);
1522 1695
1523 fd_change (EV_A_ fd); 1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET;
1524} 1698}
1525 1699
1526void 1700void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1701ev_io_stop (EV_P_ ev_io *w)
1528{ 1702{
1529 ev_clear_pending (EV_A_ (W)w); 1703 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1704 if (expect_false (!ev_is_active (w)))
1531 return; 1705 return;
1532 1706
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1708
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1709 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 1710 ev_stop (EV_A_ (W)w);
1537 1711
1538 fd_change (EV_A_ w->fd); 1712 fd_change (EV_A_ w->fd, 1);
1539} 1713}
1540 1714
1541void 1715void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 1716ev_timer_start (EV_P_ ev_timer *w)
1543{ 1717{
1544 if (expect_false (ev_is_active (w))) 1718 if (expect_false (ev_is_active (w)))
1545 return; 1719 return;
1546 1720
1547 ((WT)w)->at += mn_now; 1721 ((WT)w)->at += mn_now;
1548 1722
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 1724
1551 ev_start (EV_A_ (W)w, ++timercnt); 1725 ev_start (EV_A_ (W)w, ++timercnt);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1553 timers [timercnt - 1] = w; 1727 timers [timercnt - 1] = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 1728 upheap (timers, timercnt - 1);
1555 1729
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1557} 1731}
1558 1732
1559void 1733void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 1734ev_timer_stop (EV_P_ ev_timer *w)
1561{ 1735{
1562 ev_clear_pending (EV_A_ (W)w); 1736 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 1737 if (expect_false (!ev_is_active (w)))
1564 return; 1738 return;
1565 1739
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1567 1741
1568 { 1742 {
1569 int active = ((W)w)->active; 1743 int active = ((W)w)->active;
1570 1744
1571 if (expect_true (--active < --timercnt)) 1745 if (expect_true (--active < --timercnt))
1572 { 1746 {
1573 timers [active] = timers [timercnt]; 1747 timers [active] = timers [timercnt];
1574 adjustheap ((WT *)timers, timercnt, active); 1748 adjustheap (timers, timercnt, active);
1575 } 1749 }
1576 } 1750 }
1577 1751
1578 ((WT)w)->at -= mn_now; 1752 ((WT)w)->at -= mn_now;
1579 1753
1580 ev_stop (EV_A_ (W)w); 1754 ev_stop (EV_A_ (W)w);
1581} 1755}
1582 1756
1583void 1757void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 1758ev_timer_again (EV_P_ ev_timer *w)
1585{ 1759{
1586 if (ev_is_active (w)) 1760 if (ev_is_active (w))
1587 { 1761 {
1588 if (w->repeat) 1762 if (w->repeat)
1589 { 1763 {
1590 ((WT)w)->at = mn_now + w->repeat; 1764 ((WT)w)->at = mn_now + w->repeat;
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1765 adjustheap (timers, timercnt, ((W)w)->active - 1);
1592 } 1766 }
1593 else 1767 else
1594 ev_timer_stop (EV_A_ w); 1768 ev_timer_stop (EV_A_ w);
1595 } 1769 }
1596 else if (w->repeat) 1770 else if (w->repeat)
1599 ev_timer_start (EV_A_ w); 1773 ev_timer_start (EV_A_ w);
1600 } 1774 }
1601} 1775}
1602 1776
1603#if EV_PERIODIC_ENABLE 1777#if EV_PERIODIC_ENABLE
1604void 1778void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 1779ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 1780{
1607 if (expect_false (ev_is_active (w))) 1781 if (expect_false (ev_is_active (w)))
1608 return; 1782 return;
1609 1783
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 1786 else if (w->interval)
1613 { 1787 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 1789 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 1791 }
1792 else
1793 ((WT)w)->at = w->offset;
1618 1794
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 1795 ev_start (EV_A_ (W)w, ++periodiccnt);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 1797 periodics [periodiccnt - 1] = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 1798 upheap (periodics, periodiccnt - 1);
1623 1799
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1625} 1801}
1626 1802
1627void 1803void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 1804ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 1805{
1630 ev_clear_pending (EV_A_ (W)w); 1806 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 1807 if (expect_false (!ev_is_active (w)))
1632 return; 1808 return;
1633 1809
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1635 1811
1636 { 1812 {
1637 int active = ((W)w)->active; 1813 int active = ((W)w)->active;
1638 1814
1639 if (expect_true (--active < --periodiccnt)) 1815 if (expect_true (--active < --periodiccnt))
1640 { 1816 {
1641 periodics [active] = periodics [periodiccnt]; 1817 periodics [active] = periodics [periodiccnt];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 1818 adjustheap (periodics, periodiccnt, active);
1643 } 1819 }
1644 } 1820 }
1645 1821
1646 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1647} 1823}
1648 1824
1649void 1825void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 1826ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 1827{
1652 /* TODO: use adjustheap and recalculation */ 1828 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 1829 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 1830 ev_periodic_start (EV_A_ w);
1657 1833
1658#ifndef SA_RESTART 1834#ifndef SA_RESTART
1659# define SA_RESTART 0 1835# define SA_RESTART 0
1660#endif 1836#endif
1661 1837
1662void 1838void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 1839ev_signal_start (EV_P_ ev_signal *w)
1664{ 1840{
1665#if EV_MULTIPLICITY 1841#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 1843#endif
1668 if (expect_false (ev_is_active (w))) 1844 if (expect_false (ev_is_active (w)))
1669 return; 1845 return;
1670 1846
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 1848
1849 {
1850#ifndef _WIN32
1851 sigset_t full, prev;
1852 sigfillset (&full);
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1857
1858#ifndef _WIN32
1859 sigprocmask (SIG_SETMASK, &prev, 0);
1860#endif
1861 }
1862
1673 ev_start (EV_A_ (W)w, 1); 1863 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1864 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 1865
1677 if (!((WL)w)->next) 1866 if (!((WL)w)->next)
1678 { 1867 {
1679#if _WIN32 1868#if _WIN32
1680 signal (w->signum, sighandler); 1869 signal (w->signum, sighandler);
1686 sigaction (w->signum, &sa, 0); 1875 sigaction (w->signum, &sa, 0);
1687#endif 1876#endif
1688 } 1877 }
1689} 1878}
1690 1879
1691void 1880void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 1881ev_signal_stop (EV_P_ ev_signal *w)
1693{ 1882{
1694 ev_clear_pending (EV_A_ (W)w); 1883 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 1884 if (expect_false (!ev_is_active (w)))
1696 return; 1885 return;
1697 1886
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1887 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 1888 ev_stop (EV_A_ (W)w);
1700 1889
1701 if (!signals [w->signum - 1].head) 1890 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 1891 signal (w->signum, SIG_DFL);
1703} 1892}
1710#endif 1899#endif
1711 if (expect_false (ev_is_active (w))) 1900 if (expect_false (ev_is_active (w)))
1712 return; 1901 return;
1713 1902
1714 ev_start (EV_A_ (W)w, 1); 1903 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 1905}
1717 1906
1718void 1907void
1719ev_child_stop (EV_P_ ev_child *w) 1908ev_child_stop (EV_P_ ev_child *w)
1720{ 1909{
1721 ev_clear_pending (EV_A_ (W)w); 1910 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1911 if (expect_false (!ev_is_active (w)))
1723 return; 1912 return;
1724 1913
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 1915 ev_stop (EV_A_ (W)w);
1727} 1916}
1728 1917
1729#if EV_STAT_ENABLE 1918#if EV_STAT_ENABLE
1730 1919
1962} 2151}
1963 2152
1964void 2153void
1965ev_stat_stop (EV_P_ ev_stat *w) 2154ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2155{
1967 ev_clear_pending (EV_A_ (W)w); 2156 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2157 if (expect_false (!ev_is_active (w)))
1969 return; 2158 return;
1970 2159
1971#if EV_USE_INOTIFY 2160#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2161 infy_del (EV_A_ w);
1975 2164
1976 ev_stop (EV_A_ (W)w); 2165 ev_stop (EV_A_ (W)w);
1977} 2166}
1978#endif 2167#endif
1979 2168
2169#if EV_IDLE_ENABLE
1980void 2170void
1981ev_idle_start (EV_P_ ev_idle *w) 2171ev_idle_start (EV_P_ ev_idle *w)
1982{ 2172{
1983 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1984 return; 2174 return;
1985 2175
2176 pri_adjust (EV_A_ (W)w);
2177
2178 {
2179 int active = ++idlecnt [ABSPRI (w)];
2180
2181 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2182 ev_start (EV_A_ (W)w, active);
2183
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2185 idles [ABSPRI (w)][active - 1] = w;
2186 }
1989} 2187}
1990 2188
1991void 2189void
1992ev_idle_stop (EV_P_ ev_idle *w) 2190ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2191{
1994 ev_clear_pending (EV_A_ (W)w); 2192 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2193 if (expect_false (!ev_is_active (w)))
1996 return; 2194 return;
1997 2195
1998 { 2196 {
1999 int active = ((W)w)->active; 2197 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt]; 2198
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2001 ((W)idles [active - 1])->active = active; 2200 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2201
2202 ev_stop (EV_A_ (W)w);
2203 --idleall;
2002 } 2204 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2205}
2206#endif
2006 2207
2007void 2208void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2209ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2210{
2010 if (expect_false (ev_is_active (w))) 2211 if (expect_false (ev_is_active (w)))
2016} 2217}
2017 2218
2018void 2219void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2220ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2221{
2021 ev_clear_pending (EV_A_ (W)w); 2222 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2223 if (expect_false (!ev_is_active (w)))
2023 return; 2224 return;
2024 2225
2025 { 2226 {
2026 int active = ((W)w)->active; 2227 int active = ((W)w)->active;
2043} 2244}
2044 2245
2045void 2246void
2046ev_check_stop (EV_P_ ev_check *w) 2247ev_check_stop (EV_P_ ev_check *w)
2047{ 2248{
2048 ev_clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2250 if (expect_false (!ev_is_active (w)))
2050 return; 2251 return;
2051 2252
2052 { 2253 {
2053 int active = ((W)w)->active; 2254 int active = ((W)w)->active;
2060 2261
2061#if EV_EMBED_ENABLE 2262#if EV_EMBED_ENABLE
2062void noinline 2263void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2264ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2265{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2266 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2267}
2067 2268
2068static void 2269static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2270embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2271{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2272 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2273
2073 if (ev_cb (w)) 2274 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2275 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2276 else
2076 ev_embed_sweep (loop, w); 2277 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2278}
2279
2280static void
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284
2285 {
2286 struct ev_loop *loop = w->other;
2287
2288 while (fdchangecnt)
2289 {
2290 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 }
2293 }
2294}
2295
2296#if 0
2297static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{
2300 ev_idle_stop (EV_A_ idle);
2301}
2302#endif
2078 2303
2079void 2304void
2080ev_embed_start (EV_P_ ev_embed *w) 2305ev_embed_start (EV_P_ ev_embed *w)
2081{ 2306{
2082 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
2083 return; 2308 return;
2084 2309
2085 { 2310 {
2086 struct ev_loop *loop = w->loop; 2311 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2314 }
2090 2315
2091 ev_set_priority (&w->io, ev_priority (w)); 2316 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2317 ev_io_start (EV_A_ &w->io);
2093 2318
2319 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare);
2322
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324
2094 ev_start (EV_A_ (W)w, 1); 2325 ev_start (EV_A_ (W)w, 1);
2095} 2326}
2096 2327
2097void 2328void
2098ev_embed_stop (EV_P_ ev_embed *w) 2329ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2330{
2100 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2102 return; 2333 return;
2103 2334
2104 ev_io_stop (EV_A_ &w->io); 2335 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare);
2105 2337
2106 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2107} 2339}
2108#endif 2340#endif
2109 2341
2120} 2352}
2121 2353
2122void 2354void
2123ev_fork_stop (EV_P_ ev_fork *w) 2355ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2356{
2125 ev_clear_pending (EV_A_ (W)w); 2357 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2358 if (expect_false (!ev_is_active (w)))
2127 return; 2359 return;
2128 2360
2129 { 2361 {
2130 int active = ((W)w)->active; 2362 int active = ((W)w)->active;
2198 ev_timer_set (&once->to, timeout, 0.); 2430 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2431 ev_timer_start (EV_A_ &once->to);
2200 } 2432 }
2201} 2433}
2202 2434
2435#if EV_MULTIPLICITY
2436 #include "ev_wrap.h"
2437#endif
2438
2203#ifdef __cplusplus 2439#ifdef __cplusplus
2204} 2440}
2205#endif 2441#endif
2206 2442

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines