ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
144# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
146# endif 163# endif
147#endif 164#endif
148 165
149/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
150 167
151#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
152# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
153#endif 174#endif
154 175
155#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
157#endif 178#endif
158 179
159#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
160# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
161#endif 186#endif
162 187
163#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
165#endif 190#endif
171# define EV_USE_POLL 1 196# define EV_USE_POLL 1
172# endif 197# endif
173#endif 198#endif
174 199
175#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
176# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
177#endif 206#endif
178 207
179#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
181#endif 210#endif
183#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 213# define EV_USE_PORT 0
185#endif 214#endif
186 215
187#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
188# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
189#endif 222#endif
190 223
191#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 225# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
202# else 235# else
203# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
204# endif 237# endif
205#endif 238#endif
206 239
207/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 267
209#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
212#endif 271#endif
233 292
234#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 294# include <winsock.h>
236#endif 295#endif
237 296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
238/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
239 316
240/* 317/*
241 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
257#else 334#else
258# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
259# define noinline 336# define noinline
260# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 338# define inline
262# endif 339# endif
263#endif 340#endif
264 341
265#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
280 357
281typedef ev_watcher *W; 358typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
284 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
285#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif 369#endif
290 370
291#ifdef _WIN32 371#ifdef _WIN32
292# include "ev_win32.c" 372# include "ev_win32.c"
293#endif 373#endif
315 perror (msg); 395 perror (msg);
316 abort (); 396 abort ();
317 } 397 }
318} 398}
319 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
320static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 416
322void 417void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 419{
325 alloc = cb; 420 alloc = cb;
326} 421}
327 422
328inline_speed void * 423inline_speed void *
329ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
330{ 425{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
332 427
333 if (!ptr && size) 428 if (!ptr && size)
334 { 429 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 431 abort ();
359 W w; 454 W w;
360 int events; 455 int events;
361} ANPENDING; 456} ANPENDING;
362 457
363#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
364typedef struct 460typedef struct
365{ 461{
366 WL head; 462 WL head;
367} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
368#endif 482#endif
369 483
370#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
371 485
372 struct ev_loop 486 struct ev_loop
443 ts.tv_sec = (time_t)delay; 557 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 559
446 nanosleep (&ts, 0); 560 nanosleep (&ts, 0);
447#elif defined(_WIN32) 561#elif defined(_WIN32)
448 Sleep (delay * 1e3); 562 Sleep ((unsigned long)(delay * 1e3));
449#else 563#else
450 struct timeval tv; 564 struct timeval tv;
451 565
452 tv.tv_sec = (time_t)delay; 566 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
456#endif 570#endif
457 } 571 }
458} 572}
459 573
460/*****************************************************************************/ 574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
461 577
462int inline_size 578int inline_size
463array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
464{ 580{
465 int ncur = cur + 1; 581 int ncur = cur + 1;
466 582
467 do 583 do
468 ncur <<= 1; 584 ncur <<= 1;
469 while (cnt > ncur); 585 while (cnt > ncur);
470 586
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 589 {
474 ncur *= elem; 590 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 593 ncur /= elem;
478 } 594 }
479 595
480 return ncur; 596 return ncur;
591 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
592 708
593#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
594 if (events) 710 if (events)
595 { 711 {
596 unsigned long argp; 712 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
597 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 719 }
600#endif 720#endif
601 721
602 { 722 {
603 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
656{ 776{
657 int fd; 777 int fd;
658 778
659 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 780 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
663} 783}
664 784
665/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 786static void noinline
690 } 810 }
691} 811}
692 812
693/*****************************************************************************/ 813/*****************************************************************************/
694 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
695void inline_speed 835void inline_speed
696upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
697{ 837{
698 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
699 840
700 while (k) 841 for (;;)
701 { 842 {
702 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
703 846
704 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
705 break; 863 break;
706 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
707 heap [k] = heap [p]; 927 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 929 k = p;
710 } 930 }
711 931
712 heap [k] = w; 932 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742} 934}
743 935
744void inline_size 936void inline_size
745adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
746{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
747 upheap (heap, k); 940 upheap (heap, k);
941 else
748 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
749} 955}
750 956
751/*****************************************************************************/ 957/*****************************************************************************/
752 958
753typedef struct 959typedef struct
754{ 960{
755 WL head; 961 WL head;
756 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
757} ANSIG; 963} ANSIG;
758 964
759static ANSIG *signals; 965static ANSIG *signals;
760static int signalmax; 966static int signalmax;
761 967
762static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 969
766void inline_size 970void inline_size
767signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
768{ 972{
769 while (count--) 973 while (count--)
773 977
774 ++base; 978 ++base;
775 } 979 }
776} 980}
777 981
778static void 982/*****************************************************************************/
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828 983
829void inline_speed 984void inline_speed
830fd_intern (int fd) 985fd_intern (int fd)
831{ 986{
832#ifdef _WIN32 987#ifdef _WIN32
833 int arg = 1; 988 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
835#else 990#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 993#endif
839} 994}
840 995
841static void noinline 996static void noinline
842siginit (EV_P) 997evpipe_init (EV_P)
843{ 998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
844 fd_intern (sigpipe [0]); 1014 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
846 1018
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1019 ev_io_start (EV_A_ &pipeev);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
850} 1087}
851 1088
852/*****************************************************************************/ 1089/*****************************************************************************/
853 1090
1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
854static WL childs [EV_PID_HASHSIZE]; 1128static WL childs [EV_PID_HASHSIZE];
855 1129
856#ifndef _WIN32 1130#ifndef _WIN32
857 1131
858static ev_signal childev; 1132static ev_signal childev;
859 1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
860void inline_speed 1138void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1139child_reap (EV_P_ int chain, int pid, int status)
862{ 1140{
863 ev_child *w; 1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1143
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
866 if (w->pid == pid || !w->pid) 1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
867 { 1148 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1150 w->rpid = pid;
870 w->rstatus = status; 1151 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1153 }
1154 }
873} 1155}
874 1156
875#ifndef WCONTINUED 1157#ifndef WCONTINUED
876# define WCONTINUED 0 1158# define WCONTINUED 0
877#endif 1159#endif
886 if (!WCONTINUED 1168 if (!WCONTINUED
887 || errno != EINVAL 1169 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1171 return;
890 1172
891 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1174 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1176
895 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1178 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1180}
899 1181
900#endif 1182#endif
901 1183
902/*****************************************************************************/ 1184/*****************************************************************************/
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1303 have_monotonic = 1;
1022 } 1304 }
1023#endif 1305#endif
1024 1306
1025 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
1026 mn_now = get_clock (); 1308 mn_now = get_clock ();
1027 now_floor = mn_now; 1309 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
1029 1311
1030 io_blocktime = 0.; 1312 io_blocktime = 0.;
1031 timeout_blocktime = 0.; 1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1032 1320
1033 /* pid check not overridable via env */ 1321 /* pid check not overridable via env */
1034#ifndef _WIN32 1322#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1323 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1324 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1328 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1331
1044 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1334
1053#if EV_USE_PORT 1335#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1337#endif
1056#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
1064#endif 1346#endif
1065#if EV_USE_SELECT 1347#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1349#endif
1068 1350
1069 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
1071 } 1353 }
1072} 1354}
1073 1355
1074static void noinline 1356static void noinline
1075loop_destroy (EV_P) 1357loop_destroy (EV_P)
1076{ 1358{
1077 int i; 1359 int i;
1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1078 1377
1079#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
1081 close (fs_fd); 1380 close (fs_fd);
1082#endif 1381#endif
1119#if EV_FORK_ENABLE 1418#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1419 array_free (fork, EMPTY);
1121#endif 1420#endif
1122 array_free (prepare, EMPTY); 1421 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
1124 1426
1125 backend = 0; 1427 backend = 0;
1126} 1428}
1127 1429
1430#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1129 1433
1130void inline_size 1434void inline_size
1131loop_fork (EV_P) 1435loop_fork (EV_P)
1132{ 1436{
1133#if EV_USE_PORT 1437#if EV_USE_PORT
1141#endif 1445#endif
1142#if EV_USE_INOTIFY 1446#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1447 infy_fork (EV_A);
1144#endif 1448#endif
1145 1449
1146 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
1147 { 1451 {
1148 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1149 1458
1150 ev_ref (EV_A); 1459 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1152 close (sigpipe [0]); 1469 close (evpipe [0]);
1153 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
1154 1472
1155 while (pipe (sigpipe))
1156 syserr ("(libev) error creating pipe");
1157
1158 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
1159 } 1476 }
1160 1477
1161 postfork = 0; 1478 postfork = 0;
1162} 1479}
1163 1480
1164#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1165struct ev_loop * 1483struct ev_loop *
1166ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1167{ 1485{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1487
1185} 1503}
1186 1504
1187void 1505void
1188ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1189{ 1507{
1190 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1191} 1509}
1192 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1193#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1194 1611
1195#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1196struct ev_loop * 1613struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1198#else 1615#else
1199int 1616int
1200ev_default_loop (unsigned int flags) 1617ev_default_loop (unsigned int flags)
1201#endif 1618#endif
1202{ 1619{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1620 if (!ev_default_loop_ptr)
1208 { 1621 {
1209#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1211#else 1624#else
1214 1627
1215 loop_init (EV_A_ flags); 1628 loop_init (EV_A_ flags);
1216 1629
1217 if (ev_backend (EV_A)) 1630 if (ev_backend (EV_A))
1218 { 1631 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1632#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
1242#ifndef _WIN32 1653#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
1245#endif 1656#endif
1246 1657
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
1254} 1659}
1255 1660
1256void 1661void
1257ev_default_fork (void) 1662ev_default_fork (void)
1259#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1665 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif 1666#endif
1262 1667
1263 if (backend) 1668 if (backend)
1264 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
1265} 1670}
1266 1671
1267/*****************************************************************************/ 1672/*****************************************************************************/
1268 1673
1269void 1674void
1286 { 1691 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288 1693
1289 p->w->pending = 0; 1694 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1291 } 1697 }
1292 } 1698 }
1293} 1699}
1294
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374 1700
1375#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1376void inline_size 1702void inline_size
1377idle_reify (EV_P) 1703idle_reify (EV_P)
1378{ 1704{
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break; 1717 break;
1392 } 1718 }
1393 } 1719 }
1394 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1395} 1823}
1396#endif 1824#endif
1397 1825
1398void inline_speed 1826void inline_speed
1399time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1428 */ 1856 */
1429 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1430 { 1858 {
1431 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1432 1860
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 1862 return; /* all is well */
1435 1863
1436 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 1865 mn_now = get_clock ();
1438 now_floor = mn_now; 1866 now_floor = mn_now;
1454#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1456#endif 1884#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1459 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1460 } 1892 }
1461 1893
1462 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1463 } 1895 }
1464} 1896}
1478static int loop_done; 1910static int loop_done;
1479 1911
1480void 1912void
1481ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1482{ 1914{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1486 1916
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1488 1918
1489 do 1919 do
1490 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1491#ifndef _WIN32 1925#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1494 { 1928 {
1495 curpid = getpid (); 1929 curpid = getpid ();
1536 1970
1537 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1538 1972
1539 if (timercnt) 1973 if (timercnt)
1540 { 1974 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1543 } 1977 }
1544 1978
1545#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 1980 if (periodiccnt)
1547 { 1981 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1550 } 1984 }
1551#endif 1985#endif
1552 1986
1553 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1586 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2023
1590 call_pending (EV_A); 2024 call_pending (EV_A);
1591
1592 } 2025 }
1593 while (expect_true (activecnt && !loop_done)); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1594 2031
1595 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1597} 2034}
1598 2035
1687 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1688 return; 2125 return;
1689 2126
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1691 2128
2129 EV_FREQUENT_CHECK;
2130
1692 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1694 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1695 2134
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1698} 2139}
1699 2140
1700void noinline 2141void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1702{ 2143{
1703 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1705 return; 2146 return;
1706 2147
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1708 2151
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1711 2154
1712 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1713} 2158}
1714 2159
1715void noinline 2160void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1717{ 2162{
1718 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1719 return; 2164 return;
1720 2165
1721 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1722 2167
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1729 2178
2179 EV_FREQUENT_CHECK;
2180
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2182}
1732 2183
1733void noinline 2184void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2186{
1736 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1738 return; 2189 return;
1739 2190
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1741 2192
1742 { 2193 {
1743 int active = ((W)w)->active; 2194 int active = ev_active (w);
1744 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1745 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1746 { 2201 {
1747 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1749 } 2204 }
1750 } 2205 }
1751 2206
1752 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1753 2210
1754 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1755} 2212}
1756 2213
1757void noinline 2214void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1759{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1760 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1761 { 2220 {
1762 if (w->repeat) 2221 if (w->repeat)
1763 { 2222 {
1764 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1766 } 2226 }
1767 else 2227 else
1768 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1769 } 2229 }
1770 else if (w->repeat) 2230 else if (w->repeat)
1771 { 2231 {
1772 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1774 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1775} 2237}
1776 2238
1777#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1778void noinline 2240void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2242{
1781 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1782 return; 2244 return;
1783 2245
1784 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2248 else if (w->interval)
1787 { 2249 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2253 }
1792 else 2254 else
1793 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1794 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1799 2265
2266 EV_FREQUENT_CHECK;
2267
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2269}
1802 2270
1803void noinline 2271void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2273{
1806 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1808 return; 2276 return;
1809 2277
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1811 2279
1812 { 2280 {
1813 int active = ((W)w)->active; 2281 int active = ev_active (w);
1814 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1815 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2288 {
1817 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1819 } 2291 }
1820 } 2292 }
1821 2293
2294 EV_FREQUENT_CHECK;
2295
1822 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1823} 2297}
1824 2298
1825void noinline 2299void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1843#endif 2317#endif
1844 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1845 return; 2319 return;
1846 2320
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1848 2326
1849 { 2327 {
1850#ifndef _WIN32 2328#ifndef _WIN32
1851 sigset_t full, prev; 2329 sigset_t full, prev;
1852 sigfillset (&full); 2330 sigfillset (&full);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2343
1866 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1867 { 2345 {
1868#if _WIN32 2346#if _WIN32
1869 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1870#else 2348#else
1871 struct sigaction sa; 2349 struct sigaction sa;
1872 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1876#endif 2354#endif
1877 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1878} 2358}
1879 2359
1880void noinline 2360void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2362{
1883 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1885 return; 2365 return;
1886 2366
2367 EV_FREQUENT_CHECK;
2368
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1889 2371
1890 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1891 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1892} 2376}
1893 2377
1894void 2378void
1895ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1896{ 2380{
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2383#endif
1900 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1901 return; 2385 return;
1902 2386
2387 EV_FREQUENT_CHECK;
2388
1903 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1905} 2393}
1906 2394
1907void 2395void
1908ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1909{ 2397{
1910 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1912 return; 2400 return;
1913 2401
2402 EV_FREQUENT_CHECK;
2403
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1916} 2408}
1917 2409
1918#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1919 2411
1920# ifdef _WIN32 2412# ifdef _WIN32
1938 if (w->wd < 0) 2430 if (w->wd < 0)
1939 { 2431 {
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941 2433
1942 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2438 {
1945 char path [4096]; 2439 char path [4096];
1946 strcpy (path, w->path); 2440 strcpy (path, w->path);
1947 2441
2146 else 2640 else
2147#endif 2641#endif
2148 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2149 2643
2150 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2151} 2647}
2152 2648
2153void 2649void
2154ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2155{ 2651{
2156 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2158 return; 2654 return;
2159 2655
2656 EV_FREQUENT_CHECK;
2657
2160#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2162#endif 2660#endif
2163 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2164 2662
2165 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2166} 2666}
2167#endif 2667#endif
2168 2668
2169#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2170void 2670void
2172{ 2672{
2173 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2174 return; 2674 return;
2175 2675
2176 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2177 2679
2178 { 2680 {
2179 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2180 2682
2181 ++idleall; 2683 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2183 2685
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2186 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2187} 2691}
2188 2692
2189void 2693void
2190ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2191{ 2695{
2192 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2194 return; 2698 return;
2195 2699
2700 EV_FREQUENT_CHECK;
2701
2196 { 2702 {
2197 int active = ((W)w)->active; 2703 int active = ev_active (w);
2198 2704
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 2707
2202 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2203 --idleall; 2709 --idleall;
2204 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2205} 2713}
2206#endif 2714#endif
2207 2715
2208void 2716void
2209ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 2718{
2211 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2212 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2213 2723
2214 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2217} 2729}
2218 2730
2219void 2731void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 2733{
2222 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2224 return; 2736 return;
2225 2737
2738 EV_FREQUENT_CHECK;
2739
2226 { 2740 {
2227 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
2228 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2230 } 2745 }
2231 2746
2232 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2233} 2750}
2234 2751
2235void 2752void
2236ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2237{ 2754{
2238 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2239 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2240 2759
2241 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2244} 2765}
2245 2766
2246void 2767void
2247ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2248{ 2769{
2249 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2251 return; 2772 return;
2252 2773
2774 EV_FREQUENT_CHECK;
2775
2253 { 2776 {
2254 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2255 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2257 } 2781 }
2258 2782
2259 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2260} 2786}
2261 2787
2262#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2263void noinline 2789void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2311 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 2840 }
2315 2841
2842 EV_FREQUENT_CHECK;
2843
2316 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2318 2846
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2322 2850
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 2852
2325 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2326} 2856}
2327 2857
2328void 2858void
2329ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2330{ 2860{
2331 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2333 return; 2863 return;
2334 2864
2865 EV_FREQUENT_CHECK;
2866
2335 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2337 2869
2338 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2339} 2873}
2340#endif 2874#endif
2341 2875
2342#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2343void 2877void
2344ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2345{ 2879{
2346 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2347 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2348 2884
2349 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2352} 2890}
2353 2891
2354void 2892void
2355ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2356{ 2894{
2357 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2359 return; 2897 return;
2360 2898
2899 EV_FREQUENT_CHECK;
2900
2361 { 2901 {
2362 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2363 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2365 } 2906 }
2366 2907
2367 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2911}
2912#endif
2913
2914#if EV_ASYNC_ENABLE
2915void
2916ev_async_start (EV_P_ ev_async *w)
2917{
2918 if (expect_false (ev_is_active (w)))
2919 return;
2920
2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++asynccnt);
2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_async_stop (EV_P_ ev_async *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 asyncs [active - 1] = asyncs [--asynccnt];
2945 ev_active (asyncs [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_async_send (EV_P_ ev_async *w)
2955{
2956 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync);
2368} 2958}
2369#endif 2959#endif
2370 2960
2371/*****************************************************************************/ 2961/*****************************************************************************/
2372 2962

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines