ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.324 by root, Sat Jan 23 20:15:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
137#ifndef _WIN32 177#ifndef _WIN32
138# include <sys/time.h> 178# include <sys/time.h>
139# include <sys/wait.h> 179# include <sys/wait.h>
140# include <unistd.h> 180# include <unistd.h>
141#else 181#else
182# include <io.h>
142# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 184# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
146# endif 187# endif
147#endif 188#endif
148 189
149/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
150 226
151#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
152# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
153#endif 233#endif
154 234
155#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 237#endif
158 238
159#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
160# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
161#endif 245#endif
162 246
163#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
165#endif 249#endif
171# define EV_USE_POLL 1 255# define EV_USE_POLL 1
172# endif 256# endif
173#endif 257#endif
174 258
175#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
176# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
177#endif 265#endif
178 266
179#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
181#endif 269#endif
183#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 272# define EV_USE_PORT 0
185#endif 273#endif
186 274
187#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
188# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
189#endif 281#endif
190 282
191#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 284# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
202# else 294# else
203# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
204# endif 296# endif
205#endif 297#endif
206 298
207/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 348
209#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
212#endif 352#endif
226# include <sys/select.h> 366# include <sys/select.h>
227# endif 367# endif
228#endif 368#endif
229 369
230#if EV_USE_INOTIFY 370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
231# include <sys/inotify.h> 373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
232#endif 379#endif
233 380
234#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 382# include <winsock.h>
236#endif 383#endif
237 384
385#if EV_USE_EVENTFD
386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
435
238/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
239 443
240/* 444/*
241 * This is used to avoid floating point rounding problems. 445 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 446 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 447 * to ensure progress, time-wise, even when rounding
247 */ 451 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 453
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 456
254#if __GNUC__ >= 4 457#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
257#else 460#else
258# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
259# define noinline 462# define noinline
260# if __STDC_VERSION__ < 199901L 463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 464# define inline
262# endif 465# endif
263#endif 466#endif
264 467
265#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 473# define inline_speed static noinline
271#else 474#else
272# define inline_speed static inline 475# define inline_speed static inline
273#endif 476#endif
274 477
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
277 485
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
280 488
281typedef ev_watcher *W; 489typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
284 492
285#if EV_USE_MONOTONIC 493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
289#endif 514#endif
290 515
291#ifdef _WIN32 516#ifdef _WIN32
292# include "ev_win32.c" 517# include "ev_win32.c"
293#endif 518#endif
301{ 526{
302 syserr_cb = cb; 527 syserr_cb = cb;
303} 528}
304 529
305static void noinline 530static void noinline
306syserr (const char *msg) 531ev_syserr (const char *msg)
307{ 532{
308 if (!msg) 533 if (!msg)
309 msg = "(libev) system error"; 534 msg = "(libev) system error";
310 535
311 if (syserr_cb) 536 if (syserr_cb)
315 perror (msg); 540 perror (msg);
316 abort (); 541 abort ();
317 } 542 }
318} 543}
319 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
320static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 561
322void 562void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 564{
325 alloc = cb; 565 alloc = cb;
326} 566}
327 567
328inline_speed void * 568inline_speed void *
329ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
330{ 570{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
332 572
333 if (!ptr && size) 573 if (!ptr && size)
334 { 574 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 576 abort ();
342#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
343#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
344 584
345/*****************************************************************************/ 585/*****************************************************************************/
346 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
347typedef struct 591typedef struct
348{ 592{
349 WL head; 593 WL head;
350 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
351 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
352#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
353 SOCKET handle; 602 SOCKET handle;
354#endif 603#endif
355} ANFD; 604} ANFD;
356 605
606/* stores the pending event set for a given watcher */
357typedef struct 607typedef struct
358{ 608{
359 W w; 609 W w;
360 int events; 610 int events; /* the pending event set for the given watcher */
361} ANPENDING; 611} ANPENDING;
362 612
363#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
364typedef struct 615typedef struct
365{ 616{
366 WL head; 617 WL head;
367} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
368#endif 639#endif
369 640
370#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
371 642
372 struct ev_loop 643 struct ev_loop
391 662
392 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
393 664
394#endif 665#endif
395 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
396/*****************************************************************************/ 679/*****************************************************************************/
397 680
681#ifndef EV_HAVE_EV_TIME
398ev_tstamp 682ev_tstamp
399ev_time (void) 683ev_time (void)
400{ 684{
401#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
402 struct timespec ts; 688 struct timespec ts;
403 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
404 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
405#else 691 }
692#endif
693
406 struct timeval tv; 694 struct timeval tv;
407 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
408 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
409#endif
410} 697}
698#endif
411 699
412ev_tstamp inline_size 700inline_size ev_tstamp
413get_clock (void) 701get_clock (void)
414{ 702{
415#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
416 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
417 { 705 {
443 ts.tv_sec = (time_t)delay; 731 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 733
446 nanosleep (&ts, 0); 734 nanosleep (&ts, 0);
447#elif defined(_WIN32) 735#elif defined(_WIN32)
448 Sleep (delay * 1e3); 736 Sleep ((unsigned long)(delay * 1e3));
449#else 737#else
450 struct timeval tv; 738 struct timeval tv;
451 739
452 tv.tv_sec = (time_t)delay; 740 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
455 select (0, 0, 0, 0, &tv); 746 select (0, 0, 0, 0, &tv);
456#endif 747#endif
457 } 748 }
458} 749}
459 750
460/*****************************************************************************/ 751/*****************************************************************************/
461 752
462int inline_size 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
463array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
464{ 759{
465 int ncur = cur + 1; 760 int ncur = cur + 1;
466 761
467 do 762 do
468 ncur <<= 1; 763 ncur <<= 1;
469 while (cnt > ncur); 764 while (cnt > ncur);
470 765
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 768 {
474 ncur *= elem; 769 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 772 ncur /= elem;
478 } 773 }
479 774
480 return ncur; 775 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
485{ 780{
486 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
488} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 787
490#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
492 { \ 790 { \
493 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
506 } 804 }
507#endif 805#endif
508 806
509#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
511 809
512/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
513 817
514void noinline 818void noinline
515ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
516{ 820{
517 W w_ = (W)w; 821 W w_ = (W)w;
526 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
528 } 832 }
529} 833}
530 834
531void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
532queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
533{ 852{
534 int i; 853 int i;
535 854
536 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
538} 857}
539 858
540/*****************************************************************************/ 859/*****************************************************************************/
541 860
542void inline_size 861inline_speed void
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed
556fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
557{ 863{
558 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
559 ev_io *w; 865 ev_io *w;
560 866
561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
565 if (ev) 871 if (ev)
566 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
567 } 873 }
568} 874}
569 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
570void 887void
571ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
572{ 889{
573 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
574 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
575} 892}
576 893
577void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
578fd_reify (EV_P) 897fd_reify (EV_P)
579{ 898{
580 int i; 899 int i;
581 900
582 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
591 events |= (unsigned char)w->events; 910 events |= (unsigned char)w->events;
592 911
593#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
594 if (events) 913 if (events)
595 { 914 {
596 unsigned long argp; 915 unsigned long arg;
597 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 918 }
600#endif 919#endif
601 920
602 { 921 {
603 unsigned char o_events = anfd->events; 922 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify; 923 unsigned char o_reify = anfd->reify;
605 924
606 anfd->reify = 0; 925 anfd->reify = 0;
607 anfd->events = events; 926 anfd->events = events;
608 927
609 if (o_events != events || o_reify & EV_IOFDSET) 928 if (o_events != events || o_reify & EV__IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events); 929 backend_modify (EV_A_ fd, o_events, events);
611 } 930 }
612 } 931 }
613 932
614 fdchangecnt = 0; 933 fdchangecnt = 0;
615} 934}
616 935
617void inline_size 936/* something about the given fd changed */
937inline_size void
618fd_change (EV_P_ int fd, int flags) 938fd_change (EV_P_ int fd, int flags)
619{ 939{
620 unsigned char reify = anfds [fd].reify; 940 unsigned char reify = anfds [fd].reify;
621 anfds [fd].reify |= flags; 941 anfds [fd].reify |= flags;
622 942
626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
627 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
628 } 948 }
629} 949}
630 950
631void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
632fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
633{ 954{
634 ev_io *w; 955 ev_io *w;
635 956
636 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
638 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
640 } 961 }
641} 962}
642 963
643int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
644fd_valid (int fd) 966fd_valid (int fd)
645{ 967{
646#ifdef _WIN32 968#ifdef _WIN32
647 return _get_osfhandle (fd) != -1; 969 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
648#else 970#else
649 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
650#endif 972#endif
651} 973}
652 974
656{ 978{
657 int fd; 979 int fd;
658 980
659 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 982 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
663} 985}
664 986
665/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 988static void noinline
670 992
671 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
672 if (anfds [fd].events) 994 if (anfds [fd].events)
673 { 995 {
674 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
675 return; 997 break;
676 } 998 }
677} 999}
678 1000
679/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
680static void noinline 1002static void noinline
684 1006
685 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 1008 if (anfds [fd].events)
687 { 1009 {
688 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
690 } 1013 }
691} 1014}
692 1015
693/*****************************************************************************/ 1016/*****************************************************************************/
694 1017
695void inline_speed 1018/*
696upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
697{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
698 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
699 1023
700 while (k) 1024/*
701 { 1025 * at the moment we allow libev the luxury of two heaps,
702 int p = (k - 1) >> 1; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
703 1031
704 if (heap [p]->at <= w->at) 1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
705 break; 1066 break;
706 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
707 heap [k] = heap [p]; 1130 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 1131 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 1132 k = p;
710 } 1133 }
711 1134
712 heap [k] = w; 1135 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (he)) = k;
714} 1137}
715 1138
716void inline_speed 1139/* move an element suitably so it is in a correct place */
717downheap (WT *heap, int N, int k) 1140inline_size void
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742}
743
744void inline_size
745adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
746{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
747 upheap (heap, k); 1144 upheap (heap, k);
1145 else
748 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
749} 1159}
750 1160
751/*****************************************************************************/ 1161/*****************************************************************************/
752 1162
1163/* associate signal watchers to a signal signal */
753typedef struct 1164typedef struct
754{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
755 WL head; 1170 WL head;
756 sig_atomic_t volatile gotsig;
757} ANSIG; 1171} ANSIG;
758 1172
759static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
760static int signalmax;
761 1174
762static int sigpipe [2]; 1175/*****************************************************************************/
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 1176
766void inline_size 1177/* used to prepare libev internal fd's */
767signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
768{ 1179inline_speed void
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828
829void inline_speed
830fd_intern (int fd) 1180fd_intern (int fd)
831{ 1181{
832#ifdef _WIN32 1182#ifdef _WIN32
833 int arg = 1; 1183 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
835#else 1185#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1188#endif
839} 1189}
840 1190
841static void noinline 1191static void noinline
842siginit (EV_P) 1192evpipe_init (EV_P)
843{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
844 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
846 1217
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
850} 1288}
851 1289
852/*****************************************************************************/ 1290/*****************************************************************************/
853 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#ifdef _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
854static WL childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
855 1354
856#ifndef _WIN32 1355#ifndef _WIN32
857 1356
858static ev_signal childev; 1357static ev_signal childev;
859 1358
860void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
862{ 1366{
863 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1369
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
866 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
867 { 1374 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1376 w->rpid = pid;
870 w->rstatus = status; 1377 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1379 }
1380 }
873} 1381}
874 1382
875#ifndef WCONTINUED 1383#ifndef WCONTINUED
876# define WCONTINUED 0 1384# define WCONTINUED 0
877#endif 1385#endif
878 1386
1387/* called on sigchld etc., calls waitpid */
879static void 1388static void
880childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
881{ 1390{
882 int pid, status; 1391 int pid, status;
883 1392
886 if (!WCONTINUED 1395 if (!WCONTINUED
887 || errno != EINVAL 1396 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1398 return;
890 1399
891 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1403
895 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1407}
899 1408
900#endif 1409#endif
901 1410
902/*****************************************************************************/ 1411/*****************************************************************************/
964 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
967#endif 1476#endif
968#ifdef __APPLE__ 1477#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
970 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
971#endif 1481#endif
972 1482
973 return flags; 1483 return flags;
974} 1484}
975 1485
989ev_backend (EV_P) 1499ev_backend (EV_P)
990{ 1500{
991 return backend; 1501 return backend;
992} 1502}
993 1503
1504#if EV_MINIMAL < 2
994unsigned int 1505unsigned int
995ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
996{ 1507{
997 return loop_count; 1508 return loop_count;
998} 1509}
999 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1000void 1517void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1519{
1003 io_blocktime = interval; 1520 io_blocktime = interval;
1004} 1521}
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{ 1525{
1009 timeout_blocktime = interval; 1526 timeout_blocktime = interval;
1010} 1527}
1011 1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1012static void noinline 1554static void noinline
1013loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
1014{ 1556{
1015 if (!backend) 1557 if (!backend)
1016 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
1017#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1018 { 1571 {
1019 struct timespec ts; 1572 struct timespec ts;
1573
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1575 have_monotonic = 1;
1022 } 1576 }
1023#endif 1577#endif
1024
1025 ev_rt_now = ev_time ();
1026 mn_now = get_clock ();
1027 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now;
1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032 1578
1033 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
1034#ifndef _WIN32 1580#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1582 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1586 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611#endif
1612
1044 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1615
1053#if EV_USE_PORT 1616#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1618#endif
1056#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
1064#endif 1627#endif
1065#if EV_USE_SELECT 1628#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1630#endif
1068 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1069 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1071 } 1636 }
1072} 1637}
1073 1638
1639/* free up a loop structure */
1074static void noinline 1640static void noinline
1075loop_destroy (EV_P) 1641loop_destroy (EV_P)
1076{ 1642{
1077 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1078 1666
1079#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
1081 close (fs_fd); 1669 close (fs_fd);
1082#endif 1670#endif
1106#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1107 array_free (idle, [i]); 1695 array_free (idle, [i]);
1108#endif 1696#endif
1109 } 1697 }
1110 1698
1111 ev_free (anfds); anfdmax = 0; 1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1112 1700
1113 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1114 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1115 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1116#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1117 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1118#endif 1707#endif
1119#if EV_FORK_ENABLE 1708#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1709 array_free (fork, EMPTY);
1121#endif 1710#endif
1122 array_free (prepare, EMPTY); 1711 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
1124 1716
1125 backend = 0; 1717 backend = 0;
1126} 1718}
1127 1719
1720#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
1129 1723
1130void inline_size 1724inline_size void
1131loop_fork (EV_P) 1725loop_fork (EV_P)
1132{ 1726{
1133#if EV_USE_PORT 1727#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif 1729#endif
1141#endif 1735#endif
1142#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1737 infy_fork (EV_A);
1144#endif 1738#endif
1145 1739
1146 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
1147 { 1741 {
1148 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1149 1748
1150 ev_ref (EV_A); 1749 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
1152 close (sigpipe [0]);
1153 close (sigpipe [1]);
1154 1751
1155 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
1156 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1157 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1158 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1159 } 1766 }
1160 1767
1161 postfork = 0; 1768 postfork = 0;
1162} 1769}
1163 1770
1164#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1165struct ev_loop * 1773struct ev_loop *
1166ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1167{ 1775{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1777
1170 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1171
1172 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1173 1780
1174 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1175 return loop; 1782 return EV_A;
1176 1783
1177 return 0; 1784 return 0;
1178} 1785}
1179 1786
1180void 1787void
1185} 1792}
1186 1793
1187void 1794void
1188ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1189{ 1796{
1190 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
1191} 1798}
1799#endif /* multiplicity */
1192 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1193#endif 1900#endif
1194 1901
1195#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1196struct ev_loop * 1903struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1198#else 1905#else
1199int 1906int
1200ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
1201#endif 1908#endif
1202{ 1909{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1208 { 1911 {
1209#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1211#else 1914#else
1212 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1213#endif 1916#endif
1214 1917
1215 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1216 1919
1217 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
1218 { 1921 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1922#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1234 1935
1235void 1936void
1236ev_default_destroy (void) 1937ev_default_destroy (void)
1237{ 1938{
1238#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1239 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1240#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1241 1944
1242#ifndef _WIN32 1945#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1245#endif 1948#endif
1246 1949
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1254} 1951}
1255 1952
1256void 1953void
1257ev_default_fork (void) 1954ev_default_fork (void)
1258{ 1955{
1259#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1261#endif 1958#endif
1262 1959
1263 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1264 postfork = 1;
1265} 1961}
1266 1962
1267/*****************************************************************************/ 1963/*****************************************************************************/
1268 1964
1269void 1965void
1270ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1271{ 1967{
1272 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1273} 1969}
1274 1970
1275void inline_speed 1971unsigned int
1276call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1277{ 1985{
1278 int pri; 1986 int pri;
1279 1987
1280 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1281 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1282 { 1990 {
1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1284 1992
1285 if (expect_true (p->w))
1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1288 1995
1289 p->w->pending = 0; 1996 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1291 } 1998 EV_FREQUENT_CHECK;
1292 } 1999 }
1293} 2000}
1294 2001
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374
1375#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1376void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1377idle_reify (EV_P) 2006idle_reify (EV_P)
1378{ 2007{
1379 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1380 { 2009 {
1381 int pri; 2010 int pri;
1393 } 2022 }
1394 } 2023 }
1395} 2024}
1396#endif 2025#endif
1397 2026
1398void inline_speed 2027/* make timers pending */
2028inline_size void
2029timers_reify (EV_P)
2030{
2031 EV_FREQUENT_CHECK;
2032
2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2034 {
2035 do
2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2049
2050 ANHE_at_cache (timers [HEAP0]);
2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
2058 }
2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2060
2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
2062 }
2063}
2064
2065#if EV_PERIODIC_ENABLE
2066/* make periodics pending */
2067inline_size void
2068periodics_reify (EV_P)
2069{
2070 EV_FREQUENT_CHECK;
2071
2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2073 {
2074 int feed_count = 0;
2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detect if there was a timejump, and act accordingly */
2163inline_speed void
1399time_update (EV_P_ ev_tstamp max_block) 2164time_update (EV_P_ ev_tstamp max_block)
1400{ 2165{
1401 int i;
1402
1403#if EV_USE_MONOTONIC 2166#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic)) 2167 if (expect_true (have_monotonic))
1405 { 2168 {
2169 int i;
1406 ev_tstamp odiff = rtmn_diff; 2170 ev_tstamp odiff = rtmn_diff;
1407 2171
1408 mn_now = get_clock (); 2172 mn_now = get_clock ();
1409 2173
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1428 */ 2192 */
1429 for (i = 4; --i; ) 2193 for (i = 4; --i; )
1430 { 2194 {
1431 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1432 2196
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 2198 return; /* all is well */
1435 2199
1436 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 2201 mn_now = get_clock ();
1438 now_floor = mn_now; 2202 now_floor = mn_now;
1439 } 2203 }
1440 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1441# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1443# endif 2209# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 } 2210 }
1447 else 2211 else
1448#endif 2212#endif
1449 { 2213 {
1450 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1451 2215
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1454#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1456#endif 2222#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i)
1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1460 } 2223 }
1461 2224
1462 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1463 } 2226 }
1464} 2227}
1465 2228
1466void 2229void
1467ev_ref (EV_P)
1468{
1469 ++activecnt;
1470}
1471
1472void
1473ev_unref (EV_P)
1474{
1475 --activecnt;
1476}
1477
1478static int loop_done;
1479
1480void
1481ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1482{ 2231{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2232#if EV_MINIMAL < 2
1484 ? EVUNLOOP_ONE 2233 ++loop_depth;
1485 : EVUNLOOP_CANCEL; 2234#endif
1486 2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1488 2241
1489 do 2242 do
1490 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1491#ifndef _WIN32 2248#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1494 { 2251 {
1495 curpid = getpid (); 2252 curpid = getpid ();
1501 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1503 if (forkcnt) 2260 if (forkcnt)
1504 { 2261 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1507 } 2264 }
1508#endif 2265#endif
1509 2266
1510 /* queue prepare watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1511 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1512 { 2269 {
1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1514 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1515 } 2272 }
1516 2273
1517 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1518 break; 2275 break;
1519 2276
1520 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1521 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1522 loop_fork (EV_A); 2279 loop_fork (EV_A);
1529 ev_tstamp waittime = 0.; 2286 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.; 2287 ev_tstamp sleeptime = 0.;
1531 2288
1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1533 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1534 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1535 time_update (EV_A_ 1e100); 2295 time_update (EV_A_ 1e100);
1536 2296
1537 waittime = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1538 2298
1539 if (timercnt) 2299 if (timercnt)
1540 { 2300 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 2302 if (waittime > to) waittime = to;
1543 } 2303 }
1544 2304
1545#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2306 if (periodiccnt)
1547 { 2307 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1550 } 2310 }
1551#endif 2311#endif
1552 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
1553 if (expect_false (waittime < timeout_blocktime)) 2314 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime; 2315 waittime = timeout_blocktime;
1555 2316
1556 sleeptime = waittime - backend_fudge; 2317 /* extra check because io_blocktime is commonly 0 */
1557
1558 if (expect_true (sleeptime > io_blocktime)) 2318 if (expect_false (io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 { 2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
1563 ev_sleep (sleeptime); 2327 ev_sleep (sleeptime);
1564 waittime -= sleeptime; 2328 waittime -= sleeptime;
2329 }
1565 } 2330 }
1566 } 2331 }
1567 2332
2333#if EV_MINIMAL < 2
1568 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1569 backend_poll (EV_A_ waittime); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1570 2339
1571 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime); 2341 time_update (EV_A_ waittime + sleeptime);
1573 } 2342 }
1574 2343
1585 2354
1586 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2358
1590 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1591
1592 } 2360 }
1593 while (expect_true (activecnt && !loop_done)); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1594 2366
1595 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1597} 2373}
1598 2374
1599void 2375void
1600ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1601{ 2377{
1602 loop_done = how; 2378 loop_done = how;
1603} 2379}
1604 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1605/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1606 2420
1607void inline_size 2421inline_size void
1608wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1609{ 2423{
1610 elem->next = *head; 2424 elem->next = *head;
1611 *head = elem; 2425 *head = elem;
1612} 2426}
1613 2427
1614void inline_size 2428inline_size void
1615wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1616{ 2430{
1617 while (*head) 2431 while (*head)
1618 { 2432 {
1619 if (*head == elem) 2433 if (expect_true (*head == elem))
1620 { 2434 {
1621 *head = elem->next; 2435 *head = elem->next;
1622 return; 2436 break;
1623 } 2437 }
1624 2438
1625 head = &(*head)->next; 2439 head = &(*head)->next;
1626 } 2440 }
1627} 2441}
1628 2442
1629void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1630clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1631{ 2446{
1632 if (w->pending) 2447 if (w->pending)
1633 { 2448 {
1634 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1635 w->pending = 0; 2450 w->pending = 0;
1636 } 2451 }
1637} 2452}
1638 2453
1639int 2454int
1643 int pending = w_->pending; 2458 int pending = w_->pending;
1644 2459
1645 if (expect_true (pending)) 2460 if (expect_true (pending))
1646 { 2461 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
1648 w_->pending = 0; 2464 w_->pending = 0;
1649 p->w = 0;
1650 return p->events; 2465 return p->events;
1651 } 2466 }
1652 else 2467 else
1653 return 0; 2468 return 0;
1654} 2469}
1655 2470
1656void inline_size 2471inline_size void
1657pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
1658{ 2473{
1659 int pri = w->priority; 2474 int pri = ev_priority (w);
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri; 2477 ev_set_priority (w, pri);
1663} 2478}
1664 2479
1665void inline_speed 2480inline_speed void
1666ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1667{ 2482{
1668 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
1669 w->active = active; 2484 w->active = active;
1670 ev_ref (EV_A); 2485 ev_ref (EV_A);
1671} 2486}
1672 2487
1673void inline_size 2488inline_size void
1674ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1675{ 2490{
1676 ev_unref (EV_A); 2491 ev_unref (EV_A);
1677 w->active = 0; 2492 w->active = 0;
1678} 2493}
1685 int fd = w->fd; 2500 int fd = w->fd;
1686 2501
1687 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1688 return; 2503 return;
1689 2504
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1691 2509
1692 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1695 2513
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1697 w->events &= ~EV_IOFDSET; 2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
1698} 2518}
1699 2519
1700void noinline 2520void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1702{ 2522{
1703 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1705 return; 2525 return;
1706 2526
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
1708 2530
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1711 2533
1712 fd_change (EV_A_ w->fd, 1); 2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
1713} 2537}
1714 2538
1715void noinline 2539void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1717{ 2541{
1718 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1719 return; 2543 return;
1720 2544
1721 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1722 2546
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1729 2557
2558 EV_FREQUENT_CHECK;
2559
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2561}
1732 2562
1733void noinline 2563void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2565{
1736 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1738 return; 2568 return;
1739 2569
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2570 EV_FREQUENT_CHECK;
1741 2571
1742 { 2572 {
1743 int active = ((W)w)->active; 2573 int active = ev_active (w);
1744 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1745 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1746 { 2580 {
1747 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1749 } 2583 }
1750 } 2584 }
1751 2585
1752 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1753 2589
1754 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1755} 2591}
1756 2592
1757void noinline 2593void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1759{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1760 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1761 { 2599 {
1762 if (w->repeat) 2600 if (w->repeat)
1763 { 2601 {
1764 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1766 } 2605 }
1767 else 2606 else
1768 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1769 } 2608 }
1770 else if (w->repeat) 2609 else if (w->repeat)
1771 { 2610 {
1772 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1774 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1775} 2622}
1776 2623
1777#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1778void noinline 2625void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2627{
1781 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1782 return; 2629 return;
1783 2630
1784 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2633 else if (w->interval)
1787 { 2634 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2638 }
1792 else 2639 else
1793 ((WT)w)->at = w->offset; 2640 ev_at (w) = w->offset;
1794 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1799 2650
2651 EV_FREQUENT_CHECK;
2652
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2654}
1802 2655
1803void noinline 2656void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2658{
1806 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1808 return; 2661 return;
1809 2662
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2663 EV_FREQUENT_CHECK;
1811 2664
1812 { 2665 {
1813 int active = ((W)w)->active; 2666 int active = ev_active (w);
1814 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1815 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2673 {
1817 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1819 } 2676 }
1820 } 2677 }
1821 2678
2679 EV_FREQUENT_CHECK;
2680
1822 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1823} 2682}
1824 2683
1825void noinline 2684void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1836#endif 2695#endif
1837 2696
1838void noinline 2697void noinline
1839ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1840{ 2699{
1841#if EV_MULTIPLICITY
1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1843#endif
1844 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1845 return; 2701 return;
1846 2702
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1848 2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
1849 { 2716 {
1850#ifndef _WIN32 2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1851 sigset_t full, prev; 2718 if (sigfd < 0 && errno == EINVAL)
1852 sigfillset (&full); 2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855 2720
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
1857 2724
1858#ifndef _WIN32 2725 sigemptyset (&sigfd_set);
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2726
1860#endif 2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
1861 } 2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
1862 2743
1863 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2746
1866 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
1867 { 2751 {
1868#if _WIN32 2752# ifdef _WIN32
2753 evpipe_init (EV_A);
2754
1869 signal (w->signum, sighandler); 2755 signal (w->signum, ev_sighandler);
1870#else 2756# else
1871 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
1872 sa.sa_handler = sighandler; 2761 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1876#endif 2769#endif
1877 } 2770 }
2771
2772 EV_FREQUENT_CHECK;
1878} 2773}
1879 2774
1880void noinline 2775void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2777{
1883 clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1885 return; 2780 return;
1886 2781
2782 EV_FREQUENT_CHECK;
2783
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1889 2786
1890 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
1891 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1892} 2810}
1893 2811
1894void 2812void
1895ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1896{ 2814{
1897#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2817#endif
1900 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1901 return; 2819 return;
1902 2820
2821 EV_FREQUENT_CHECK;
2822
1903 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1905} 2827}
1906 2828
1907void 2829void
1908ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1909{ 2831{
1910 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1912 return; 2834 return;
1913 2835
2836 EV_FREQUENT_CHECK;
2837
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1916} 2842}
1917 2843
1918#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1919 2845
1920# ifdef _WIN32 2846# ifdef _WIN32
1921# undef lstat 2847# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1923# endif 2849# endif
1924 2850
1925#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1927 2854
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 2856
1930#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1933static void noinline 2860static void noinline
1934infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
1935{ 2862{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 2864
1938 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1939 { 2885 }
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1941 2890
1942 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2895 {
1945 char path [4096]; 2896 char path [4096];
1946 strcpy (path, w->path); 2897 strcpy (path, w->path);
1947 2898
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952 2903
1953 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
1954 2905
1955 if (!pend) 2906 if (!pend || pend == path)
1956 break; /* whoops, no '/', complain to your admin */ 2907 break;
1957 2908
1958 *pend = 0; 2909 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 } 2911 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 2913 }
1963 } 2914 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966 2915
1967 if (w->wd >= 0) 2916 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1969} 2923}
1970 2924
1971static void noinline 2925static void noinline
1972infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
1973{ 2927{
1987 2941
1988static void noinline 2942static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 2944{
1991 if (slot < 0) 2945 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 2946 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 2948 infy_wd (EV_A_ slot, wd, ev);
1995 else 2949 else
1996 { 2950 {
1997 WL w_; 2951 WL w_;
2003 2957
2004 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
2005 { 2959 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2008 w->wd = -1; 2963 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
2010 } 2965 }
2011 2966
2012 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
2025 2980
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2028} 2983}
2029 2984
2030void inline_size 2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
2031infy_init (EV_P) 3020infy_init (EV_P)
2032{ 3021{
2033 if (fs_fd != -2) 3022 if (fs_fd != -2)
2034 return; 3023 return;
2035 3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
2036 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
2037 3030
2038 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
2039 { 3032 {
3033 fd_intern (fs_fd);
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
2043 } 3038 }
2044} 3039}
2045 3040
2046void inline_size 3041inline_size void
2047infy_fork (EV_P) 3042infy_fork (EV_P)
2048{ 3043{
2049 int slot; 3044 int slot;
2050 3045
2051 if (fs_fd < 0) 3046 if (fs_fd < 0)
2052 return; 3047 return;
2053 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
2054 close (fs_fd); 3051 close (fs_fd);
2055 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
2056 3061
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 { 3063 {
2059 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
2067 w->wd = -1; 3072 w->wd = -1;
2068 3073
2069 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2072 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
2073 } 3083 }
2074
2075 } 3084 }
2076} 3085}
2077 3086
3087#endif
3088
3089#ifdef _WIN32
3090# define EV_LSTAT(p,b) _stati64 (p, b)
3091#else
3092# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 3093#endif
2079 3094
2080void 3095void
2081ev_stat_stat (EV_P_ ev_stat *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
2082{ 3097{
2089static void noinline 3104static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{ 3106{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093 3108
2094 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
2098 3111
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if ( 3113 if (
2101 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
2112 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
2113 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
2114 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
2117 #endif 3138 #endif
2118 3139
2119 ev_feed_event (EV_A_ w, EV_STAT); 3140 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 3141 }
2121} 3142}
2124ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
2125{ 3146{
2126 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
2127 return; 3148 return;
2128 3149
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
2134 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 3154
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
2140 3157
2141#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
2142 infy_init (EV_A); 3159 infy_init (EV_A);
2143 3160
2144 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
2146 else 3163 else
2147#endif 3164#endif
3165 {
2148 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
2149 3169
2150 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
2151} 3173}
2152 3174
2153void 3175void
2154ev_stat_stop (EV_P_ ev_stat *w) 3176ev_stat_stop (EV_P_ ev_stat *w)
2155{ 3177{
2156 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2158 return; 3180 return;
2159 3181
3182 EV_FREQUENT_CHECK;
3183
2160#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
2162#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
2163 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
2164 3193
2165 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
3195
3196 EV_FREQUENT_CHECK;
2166} 3197}
2167#endif 3198#endif
2168 3199
2169#if EV_IDLE_ENABLE 3200#if EV_IDLE_ENABLE
2170void 3201void
2172{ 3203{
2173 if (expect_false (ev_is_active (w))) 3204 if (expect_false (ev_is_active (w)))
2174 return; 3205 return;
2175 3206
2176 pri_adjust (EV_A_ (W)w); 3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
2177 3210
2178 { 3211 {
2179 int active = ++idlecnt [ABSPRI (w)]; 3212 int active = ++idlecnt [ABSPRI (w)];
2180 3213
2181 ++idleall; 3214 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 3215 ev_start (EV_A_ (W)w, active);
2183 3216
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 3218 idles [ABSPRI (w)][active - 1] = w;
2186 } 3219 }
3220
3221 EV_FREQUENT_CHECK;
2187} 3222}
2188 3223
2189void 3224void
2190ev_idle_stop (EV_P_ ev_idle *w) 3225ev_idle_stop (EV_P_ ev_idle *w)
2191{ 3226{
2192 clear_pending (EV_A_ (W)w); 3227 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3228 if (expect_false (!ev_is_active (w)))
2194 return; 3229 return;
2195 3230
3231 EV_FREQUENT_CHECK;
3232
2196 { 3233 {
2197 int active = ((W)w)->active; 3234 int active = ev_active (w);
2198 3235
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 3238
2202 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
2203 --idleall; 3240 --idleall;
2204 } 3241 }
3242
3243 EV_FREQUENT_CHECK;
2205} 3244}
2206#endif 3245#endif
2207 3246
2208void 3247void
2209ev_prepare_start (EV_P_ ev_prepare *w) 3248ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 3249{
2211 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2212 return; 3251 return;
3252
3253 EV_FREQUENT_CHECK;
2213 3254
2214 ev_start (EV_A_ (W)w, ++preparecnt); 3255 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
2217} 3260}
2218 3261
2219void 3262void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 3263ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 3264{
2222 clear_pending (EV_A_ (W)w); 3265 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3266 if (expect_false (!ev_is_active (w)))
2224 return; 3267 return;
2225 3268
3269 EV_FREQUENT_CHECK;
3270
2226 { 3271 {
2227 int active = ((W)w)->active; 3272 int active = ev_active (w);
3273
2228 prepares [active - 1] = prepares [--preparecnt]; 3274 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 3275 ev_active (prepares [active - 1]) = active;
2230 } 3276 }
2231 3277
2232 ev_stop (EV_A_ (W)w); 3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
2233} 3281}
2234 3282
2235void 3283void
2236ev_check_start (EV_P_ ev_check *w) 3284ev_check_start (EV_P_ ev_check *w)
2237{ 3285{
2238 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2239 return; 3287 return;
3288
3289 EV_FREQUENT_CHECK;
2240 3290
2241 ev_start (EV_A_ (W)w, ++checkcnt); 3291 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
2244} 3296}
2245 3297
2246void 3298void
2247ev_check_stop (EV_P_ ev_check *w) 3299ev_check_stop (EV_P_ ev_check *w)
2248{ 3300{
2249 clear_pending (EV_A_ (W)w); 3301 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 3302 if (expect_false (!ev_is_active (w)))
2251 return; 3303 return;
2252 3304
3305 EV_FREQUENT_CHECK;
3306
2253 { 3307 {
2254 int active = ((W)w)->active; 3308 int active = ev_active (w);
3309
2255 checks [active - 1] = checks [--checkcnt]; 3310 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 3311 ev_active (checks [active - 1]) = active;
2257 } 3312 }
2258 3313
2259 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2260} 3317}
2261 3318
2262#if EV_EMBED_ENABLE 3319#if EV_EMBED_ENABLE
2263void noinline 3320void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 3321ev_embed_sweep (EV_P_ ev_embed *w)
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{ 3339{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284 3341
2285 { 3342 {
2286 struct ev_loop *loop = w->other; 3343 EV_P = w->other;
2287 3344
2288 while (fdchangecnt) 3345 while (fdchangecnt)
2289 { 3346 {
2290 fd_reify (EV_A); 3347 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 3349 }
2293 } 3350 }
2294} 3351}
2295 3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
2296#if 0 3370#if 0
2297static void 3371static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 3373{
2300 ev_idle_stop (EV_A_ idle); 3374 ev_idle_stop (EV_A_ idle);
2306{ 3380{
2307 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2308 return; 3382 return;
2309 3383
2310 { 3384 {
2311 struct ev_loop *loop = w->other; 3385 EV_P = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 3388 }
3389
3390 EV_FREQUENT_CHECK;
2315 3391
2316 ev_set_priority (&w->io, ev_priority (w)); 3392 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 3393 ev_io_start (EV_A_ &w->io);
2318 3394
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 3396 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 3397 ev_prepare_start (EV_A_ &w->prepare);
2322 3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 3403
2325 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
2326} 3407}
2327 3408
2328void 3409void
2329ev_embed_stop (EV_P_ ev_embed *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
2330{ 3411{
2331 clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3413 if (expect_false (!ev_is_active (w)))
2333 return; 3414 return;
2334 3415
3416 EV_FREQUENT_CHECK;
3417
2335 ev_io_stop (EV_A_ &w->io); 3418 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
2337 3421
2338 ev_stop (EV_A_ (W)w); 3422 EV_FREQUENT_CHECK;
2339} 3423}
2340#endif 3424#endif
2341 3425
2342#if EV_FORK_ENABLE 3426#if EV_FORK_ENABLE
2343void 3427void
2344ev_fork_start (EV_P_ ev_fork *w) 3428ev_fork_start (EV_P_ ev_fork *w)
2345{ 3429{
2346 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2347 return; 3431 return;
3432
3433 EV_FREQUENT_CHECK;
2348 3434
2349 ev_start (EV_A_ (W)w, ++forkcnt); 3435 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
2352} 3440}
2353 3441
2354void 3442void
2355ev_fork_stop (EV_P_ ev_fork *w) 3443ev_fork_stop (EV_P_ ev_fork *w)
2356{ 3444{
2357 clear_pending (EV_A_ (W)w); 3445 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 3446 if (expect_false (!ev_is_active (w)))
2359 return; 3447 return;
2360 3448
3449 EV_FREQUENT_CHECK;
3450
2361 { 3451 {
2362 int active = ((W)w)->active; 3452 int active = ev_active (w);
3453
2363 forks [active - 1] = forks [--forkcnt]; 3454 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 3455 ev_active (forks [active - 1]) = active;
2365 } 3456 }
2366 3457
2367 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
3461}
3462#endif
3463
3464#if EV_ASYNC_ENABLE
3465void
3466ev_async_start (EV_P_ ev_async *w)
3467{
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480}
3481
3482void
3483ev_async_stop (EV_P_ ev_async *w)
3484{
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_async_send (EV_P_ ev_async *w)
3505{
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
2368} 3508}
2369#endif 3509#endif
2370 3510
2371/*****************************************************************************/ 3511/*****************************************************************************/
2372 3512
2382once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3523{
2384 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3525 void *arg = once->arg;
2386 3526
2387 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3529 ev_free (once);
2390 3530
2391 cb (revents, arg); 3531 cb (revents, arg);
2392} 3532}
2393 3533
2394static void 3534static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3536{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3540}
2399 3541
2400static void 3542static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3544{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3548}
2405 3549
2406void 3550void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3552{
2430 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
2431 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
2432 } 3576 }
2433} 3577}
2434 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
2435#if EV_MULTIPLICITY 3687#if EV_MULTIPLICITY
2436 #include "ev_wrap.h" 3688 #include "ev_wrap.h"
2437#endif 3689#endif
2438 3690
2439#ifdef __cplusplus 3691#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines