ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.341 by root, Tue Mar 16 20:48:29 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
56# endif 79# endif
57# endif 80# endif
58 81
59# ifndef EV_USE_NANOSLEEP 82# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP 83# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
62# else 85# else
63# define EV_USE_NANOSLEEP 0 86# define EV_USE_NANOSLEEP 0
64# endif 87# endif
65# endif 88# endif
66 89
67# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
69# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
70# else 93# else
71# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
72# endif 95# endif
73# endif 96# endif
74 97
75# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
78# else 101# else
79# define EV_USE_POLL 0 102# define EV_USE_POLL 0
80# endif 103# endif
81# endif 104# endif
82 105
83# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
86# else 109# else
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
98 121
99# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
102# else 125# else
103# define EV_USE_PORT 0 126# define EV_USE_PORT 0
104# endif 127# endif
105# endif 128# endif
106 129
107# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY EV_FEATURE_OS
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD EV_FEATURE_OS
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
124#include <assert.h> 164#include <assert.h>
125#include <errno.h> 165#include <errno.h>
126#include <sys/types.h> 166#include <sys/types.h>
127#include <time.h> 167#include <time.h>
168#include <limits.h>
128 169
129#include <signal.h> 170#include <signal.h>
130 171
131#ifdef EV_H 172#ifdef EV_H
132# include EV_H 173# include EV_H
137#ifndef _WIN32 178#ifndef _WIN32
138# include <sys/time.h> 179# include <sys/time.h>
139# include <sys/wait.h> 180# include <sys/wait.h>
140# include <unistd.h> 181# include <unistd.h>
141#else 182#else
183# include <io.h>
142# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 185# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
146# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
147#endif 227# endif
148 228#endif
149/**/
150 229
151#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
152# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
153#endif 236#endif
154 237
155#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 240#endif
158 241
159#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
160# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
161#endif 248#endif
162 249
163#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 252#endif
166 253
167#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
168# ifdef _WIN32 255# ifdef _WIN32
169# define EV_USE_POLL 0 256# define EV_USE_POLL 0
170# else 257# else
171# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 259# endif
173#endif 260#endif
174 261
175#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
176# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
177#endif 268#endif
178 269
179#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
181#endif 272#endif
183#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 275# define EV_USE_PORT 0
185#endif 276#endif
186 277
187#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
188# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
189#endif 284#endif
190 285
191#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 297# else
195# define EV_PID_HASHSIZE 16 298# define EV_USE_EVENTFD 0
196# endif
197#endif 299# endif
300#endif
198 301
199#ifndef EV_INOTIFY_HASHSIZE 302#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 304# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 305# else
203# define EV_INOTIFY_HASHSIZE 16 306# define EV_USE_SIGNALFD 0
204# endif
205#endif 307# endif
308#endif
206 309
207/**/ 310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
208 349
209#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
212#endif 353#endif
226# include <sys/select.h> 367# include <sys/select.h>
227# endif 368# endif
228#endif 369#endif
229 370
230#if EV_USE_INOTIFY 371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
231# include <sys/inotify.h> 374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
232#endif 380#endif
233 381
234#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 383# include <winsock.h>
236#endif 384#endif
237 385
386#if EV_USE_EVENTFD
387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
238/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
239 444
240/* 445/*
241 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
247 */ 452 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 454
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 457
254#if __GNUC__ >= 4 458#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
257#else 461#else
258# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
259# define noinline 463# define noinline
260# if __STDC_VERSION__ < 199901L 464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 465# define inline
262# endif 466# endif
263#endif 467#endif
264 468
265#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 471#define inline_size static inline
268 472
269#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
270# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
271#else 483#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
277 486
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
280 489
281typedef ev_watcher *W; 490typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
284 493
285#if EV_USE_MONOTONIC 494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
289#endif 515#endif
290 516
291#ifdef _WIN32 517#ifdef _WIN32
292# include "ev_win32.c" 518# include "ev_win32.c"
293#endif 519#endif
294 520
295/*****************************************************************************/ 521/*****************************************************************************/
296 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
297static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
298 532
299void 533void
300ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
301{ 535{
302 syserr_cb = cb; 536 syserr_cb = cb;
303} 537}
304 538
305static void noinline 539static void noinline
306syserr (const char *msg) 540ev_syserr (const char *msg)
307{ 541{
308 if (!msg) 542 if (!msg)
309 msg = "(libev) system error"; 543 msg = "(libev) system error";
310 544
311 if (syserr_cb) 545 if (syserr_cb)
312 syserr_cb (msg); 546 syserr_cb (msg);
313 else 547 else
314 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
315 perror (msg); 557 perror (msg);
558#endif
316 abort (); 559 abort ();
317 } 560 }
318} 561}
319 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
320static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 583
322void 584void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 586{
325 alloc = cb; 587 alloc = cb;
326} 588}
327 589
328inline_speed void * 590inline_speed void *
329ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
330{ 592{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
332 594
333 if (!ptr && size) 595 if (!ptr && size)
334 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
336 abort (); 602 abort ();
337 } 603 }
338 604
339 return ptr; 605 return ptr;
340} 606}
342#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
343#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
344 610
345/*****************************************************************************/ 611/*****************************************************************************/
346 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
347typedef struct 617typedef struct
348{ 618{
349 WL head; 619 WL head;
350 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
351 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
352#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
353 SOCKET handle; 628 SOCKET handle;
354#endif 629#endif
355} ANFD; 630} ANFD;
356 631
632/* stores the pending event set for a given watcher */
357typedef struct 633typedef struct
358{ 634{
359 W w; 635 W w;
360 int events; 636 int events; /* the pending event set for the given watcher */
361} ANPENDING; 637} ANPENDING;
362 638
363#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
364typedef struct 641typedef struct
365{ 642{
366 WL head; 643 WL head;
367} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
368#endif 665#endif
369 666
370#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
371 668
372 struct ev_loop 669 struct ev_loop
391 688
392 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
393 690
394#endif 691#endif
395 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
396/*****************************************************************************/ 705/*****************************************************************************/
397 706
707#ifndef EV_HAVE_EV_TIME
398ev_tstamp 708ev_tstamp
399ev_time (void) 709ev_time (void)
400{ 710{
401#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
402 struct timespec ts; 714 struct timespec ts;
403 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
404 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
405#else 717 }
718#endif
719
406 struct timeval tv; 720 struct timeval tv;
407 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
408 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
409#endif
410} 723}
724#endif
411 725
412ev_tstamp inline_size 726inline_size ev_tstamp
413get_clock (void) 727get_clock (void)
414{ 728{
415#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
416 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
417 { 731 {
443 ts.tv_sec = (time_t)delay; 757 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 759
446 nanosleep (&ts, 0); 760 nanosleep (&ts, 0);
447#elif defined(_WIN32) 761#elif defined(_WIN32)
448 Sleep (delay * 1e3); 762 Sleep ((unsigned long)(delay * 1e3));
449#else 763#else
450 struct timeval tv; 764 struct timeval tv;
451 765
452 tv.tv_sec = (time_t)delay; 766 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
455 select (0, 0, 0, 0, &tv); 772 select (0, 0, 0, 0, &tv);
456#endif 773#endif
457 } 774 }
458} 775}
459 776
460/*****************************************************************************/ 777/*****************************************************************************/
461 778
462int inline_size 779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
463array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
464{ 785{
465 int ncur = cur + 1; 786 int ncur = cur + 1;
466 787
467 do 788 do
468 ncur <<= 1; 789 ncur <<= 1;
469 while (cnt > ncur); 790 while (cnt > ncur);
470 791
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 794 {
474 ncur *= elem; 795 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 797 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 798 ncur /= elem;
478 } 799 }
479 800
480 return ncur; 801 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
485{ 806{
486 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
488} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 813
490#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
492 { \ 816 { \
493 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
506 } 830 }
507#endif 831#endif
508 832
509#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
511 835
512/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
513 843
514void noinline 844void noinline
515ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
516{ 846{
517 W w_ = (W)w; 847 W w_ = (W)w;
526 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
528 } 858 }
529} 859}
530 860
531void inline_speed 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
532queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
533{ 878{
534 int i; 879 int i;
535 880
536 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
538} 883}
539 884
540/*****************************************************************************/ 885/*****************************************************************************/
541 886
542void inline_size 887inline_speed void
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed
556fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
557{ 889{
558 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
559 ev_io *w; 891 ev_io *w;
560 892
561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
565 if (ev) 897 if (ev)
566 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
567 } 899 }
568} 900}
569 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
570void 913void
571ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
572{ 915{
573 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
574 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
575} 918}
576 919
577void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
578fd_reify (EV_P) 923fd_reify (EV_P)
579{ 924{
580 int i; 925 int i;
581 926
582 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
591 events |= (unsigned char)w->events; 936 events |= (unsigned char)w->events;
592 937
593#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
594 if (events) 939 if (events)
595 { 940 {
596 unsigned long argp; 941 unsigned long arg;
597 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 944 }
600#endif 945#endif
601 946
602 { 947 {
603 unsigned char o_events = anfd->events; 948 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify; 949 unsigned char o_reify = anfd->reify;
605 950
606 anfd->reify = 0; 951 anfd->reify = 0;
607 anfd->events = events; 952 anfd->events = events;
608 953
609 if (o_events != events || o_reify & EV_IOFDSET) 954 if (o_events != events || o_reify & EV__IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events); 955 backend_modify (EV_A_ fd, o_events, events);
611 } 956 }
612 } 957 }
613 958
614 fdchangecnt = 0; 959 fdchangecnt = 0;
615} 960}
616 961
617void inline_size 962/* something about the given fd changed */
963inline_size void
618fd_change (EV_P_ int fd, int flags) 964fd_change (EV_P_ int fd, int flags)
619{ 965{
620 unsigned char reify = anfds [fd].reify; 966 unsigned char reify = anfds [fd].reify;
621 anfds [fd].reify |= flags; 967 anfds [fd].reify |= flags;
622 968
626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
627 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
628 } 974 }
629} 975}
630 976
631void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
632fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
633{ 980{
634 ev_io *w; 981 ev_io *w;
635 982
636 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
638 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
640 } 987 }
641} 988}
642 989
643int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
644fd_valid (int fd) 992fd_valid (int fd)
645{ 993{
646#ifdef _WIN32 994#ifdef _WIN32
647 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
648#else 996#else
649 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
650#endif 998#endif
651} 999}
652 1000
656{ 1004{
657 int fd; 1005 int fd;
658 1006
659 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 1008 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
663} 1011}
664 1012
665/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 1014static void noinline
670 1018
671 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
672 if (anfds [fd].events) 1020 if (anfds [fd].events)
673 { 1021 {
674 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
675 return; 1023 break;
676 } 1024 }
677} 1025}
678 1026
679/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
680static void noinline 1028static void noinline
684 1032
685 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 1034 if (anfds [fd].events)
687 { 1035 {
688 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
1037 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
690 } 1039 }
691} 1040}
692 1041
693/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
694 1043/* this is not fork-safe */
695void inline_speed 1044inline_speed void
696upheap (WT *heap, int k)
697{
698 WT w = heap [k];
699
700 while (k)
701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
707 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1;
709 k = p;
710 }
711
712 heap [k] = w;
713 ((W)heap [k])->active = k + 1;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742}
743
744void inline_size
745adjustheap (WT *heap, int N, int k)
746{
747 upheap (heap, k);
748 downheap (heap, N, k);
749}
750
751/*****************************************************************************/
752
753typedef struct
754{
755 WL head;
756 sig_atomic_t volatile gotsig;
757} ANSIG;
758
759static ANSIG *signals;
760static int signalmax;
761
762static int sigpipe [2];
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765
766void inline_size
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828
829void inline_speed
830fd_intern (int fd) 1045fd_intern (int fd)
831{ 1046{
832#ifdef _WIN32 1047#ifdef _WIN32
833 int arg = 1; 1048 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
835#else 1050#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1053#endif
839} 1054}
840 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
841static void noinline 1219static void noinline
842siginit (EV_P) 1220evpipe_init (EV_P)
843{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
844 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
846 1245
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
850} 1317}
851 1318
852/*****************************************************************************/ 1319/*****************************************************************************/
853 1320
1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
1327
1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
854static WL childs [EV_PID_HASHSIZE]; 1385static WL childs [EV_PID_HASHSIZE];
855 1386
856#ifndef _WIN32
857
858static ev_signal childev; 1387static ev_signal childev;
859 1388
860void inline_speed 1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
862{ 1396{
863 ev_child *w; 1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1399
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
866 if (w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
867 { 1404 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1406 w->rpid = pid;
870 w->rstatus = status; 1407 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1409 }
1410 }
873} 1411}
874 1412
875#ifndef WCONTINUED 1413#ifndef WCONTINUED
876# define WCONTINUED 0 1414# define WCONTINUED 0
877#endif 1415#endif
878 1416
1417/* called on sigchld etc., calls waitpid */
879static void 1418static void
880childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
881{ 1420{
882 int pid, status; 1421 int pid, status;
883 1422
886 if (!WCONTINUED 1425 if (!WCONTINUED
887 || errno != EINVAL 1426 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1428 return;
890 1429
891 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1433
895 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1437}
899 1438
900#endif 1439#endif
901 1440
902/*****************************************************************************/ 1441/*****************************************************************************/
964 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
967#endif 1506#endif
968#ifdef __APPLE__ 1507#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
970 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
971#endif 1511#endif
972 1512
973 return flags; 1513 return flags;
974} 1514}
975 1515
989ev_backend (EV_P) 1529ev_backend (EV_P)
990{ 1530{
991 return backend; 1531 return backend;
992} 1532}
993 1533
1534#if EV_FEATURE_API
994unsigned int 1535unsigned int
995ev_loop_count (EV_P) 1536ev_iteration (EV_P)
996{ 1537{
997 return loop_count; 1538 return loop_count;
998} 1539}
999 1540
1541unsigned int
1542ev_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
1000void 1547void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1549{
1003 io_blocktime = interval; 1550 io_blocktime = interval;
1004} 1551}
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{ 1555{
1009 timeout_blocktime = interval; 1556 timeout_blocktime = interval;
1010} 1557}
1011 1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
1012static void noinline 1584static void noinline
1013loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
1014{ 1586{
1015 if (!backend) 1587 if (!backend)
1016 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
1017#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
1018 { 1601 {
1019 struct timespec ts; 1602 struct timespec ts;
1603
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1605 have_monotonic = 1;
1022 } 1606 }
1023#endif 1607#endif
1024
1025 ev_rt_now = ev_time ();
1026 mn_now = get_clock ();
1027 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now;
1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032 1608
1033 /* pid check not overridable via env */ 1609 /* pid check not overridable via env */
1034#ifndef _WIN32 1610#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1611 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1612 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1615 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1616 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1617 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1618 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1619
1620 ev_rt_now = ev_time ();
1621 mn_now = get_clock ();
1622 now_floor = mn_now;
1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1627
1628 io_blocktime = 0.;
1629 timeout_blocktime = 0.;
1630 backend = 0;
1631 backend_fd = -1;
1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1636#if EV_USE_INOTIFY
1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1638#endif
1639#if EV_USE_SIGNALFD
1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1641#endif
1642
1044 if (!(flags & 0x0000ffffUL)) 1643 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1645
1053#if EV_USE_PORT 1646#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1647 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1648#endif
1056#if EV_USE_KQUEUE 1649#if EV_USE_KQUEUE
1064#endif 1657#endif
1065#if EV_USE_SELECT 1658#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1660#endif
1068 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1069 ev_init (&sigev, sigcb); 1665 ev_init (&pipe_w, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
1071 } 1668 }
1072} 1669}
1073 1670
1671/* free up a loop structure */
1074static void noinline 1672static void noinline
1075loop_destroy (EV_P) 1673loop_destroy (EV_P)
1076{ 1674{
1077 int i; 1675 int i;
1676
1677 if (ev_is_active (&pipe_w))
1678 {
1679 /*ev_ref (EV_A);*/
1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1681
1682#if EV_USE_EVENTFD
1683 if (evfd >= 0)
1684 close (evfd);
1685#endif
1686
1687 if (evpipe [0] >= 0)
1688 {
1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1691 }
1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
1078 1698
1079#if EV_USE_INOTIFY 1699#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1700 if (fs_fd >= 0)
1081 close (fs_fd); 1701 close (fs_fd);
1082#endif 1702#endif
1106#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1107 array_free (idle, [i]); 1727 array_free (idle, [i]);
1108#endif 1728#endif
1109 } 1729 }
1110 1730
1111 ev_free (anfds); anfdmax = 0; 1731 ev_free (anfds); anfds = 0; anfdmax = 0;
1112 1732
1113 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
1114 array_free (fdchange, EMPTY); 1735 array_free (fdchange, EMPTY);
1115 array_free (timer, EMPTY); 1736 array_free (timer, EMPTY);
1116#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
1117 array_free (periodic, EMPTY); 1738 array_free (periodic, EMPTY);
1118#endif 1739#endif
1119#if EV_FORK_ENABLE 1740#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1741 array_free (fork, EMPTY);
1121#endif 1742#endif
1122 array_free (prepare, EMPTY); 1743 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1744 array_free (check, EMPTY);
1745#if EV_ASYNC_ENABLE
1746 array_free (async, EMPTY);
1747#endif
1124 1748
1125 backend = 0; 1749 backend = 0;
1126} 1750}
1127 1751
1752#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1753inline_size void infy_fork (EV_P);
1754#endif
1129 1755
1130void inline_size 1756inline_size void
1131loop_fork (EV_P) 1757loop_fork (EV_P)
1132{ 1758{
1133#if EV_USE_PORT 1759#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif 1761#endif
1141#endif 1767#endif
1142#if EV_USE_INOTIFY 1768#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1769 infy_fork (EV_A);
1144#endif 1770#endif
1145 1771
1146 if (ev_is_active (&sigev)) 1772 if (ev_is_active (&pipe_w))
1147 { 1773 {
1148 /* default loop */ 1774 /* this "locks" the handlers against writing to the pipe */
1775 /* while we modify the fd vars */
1776 sig_pending = 1;
1777#if EV_ASYNC_ENABLE
1778 async_pending = 1;
1779#endif
1149 1780
1150 ev_ref (EV_A); 1781 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1782 ev_io_stop (EV_A_ &pipe_w);
1152 close (sigpipe [0]);
1153 close (sigpipe [1]);
1154 1783
1155 while (pipe (sigpipe)) 1784#if EV_USE_EVENTFD
1156 syserr ("(libev) error creating pipe"); 1785 if (evfd >= 0)
1786 close (evfd);
1787#endif
1157 1788
1789 if (evpipe [0] >= 0)
1790 {
1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1793 }
1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1158 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
1159 } 1800 }
1160 1801
1161 postfork = 0; 1802 postfork = 0;
1162} 1803}
1163 1804
1164#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
1165struct ev_loop * 1807struct ev_loop *
1166ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
1167{ 1809{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1811
1170 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
1171
1172 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
1173 1814
1174 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
1175 return loop; 1816 return EV_A;
1176 1817
1177 return 0; 1818 return 0;
1178} 1819}
1179 1820
1180void 1821void
1185} 1826}
1186 1827
1187void 1828void
1188ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
1189{ 1830{
1190 postfork = 1; 1831 postfork = 1; /* must be in line with ev_default_fork */
1191} 1832}
1833#endif /* multiplicity */
1192 1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1939}
1193#endif 1940#endif
1194 1941
1195#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1196struct ev_loop * 1943struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1944ev_default_loop_init (unsigned int flags)
1198#else 1945#else
1199int 1946int
1200ev_default_loop (unsigned int flags) 1947ev_default_loop (unsigned int flags)
1201#endif 1948#endif
1202{ 1949{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1208 { 1951 {
1209#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1211#else 1954#else
1212 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1213#endif 1956#endif
1214 1957
1215 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1216 1959
1217 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1218 { 1961 {
1219 siginit (EV_A); 1962#if EV_CHILD_ENABLE
1220
1221#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1226#endif 1967#endif
1234 1975
1235void 1976void
1236ev_default_destroy (void) 1977ev_default_destroy (void)
1237{ 1978{
1238#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1239 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1240#endif 1981#endif
1241 1982
1242#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1243 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1245#endif 1988#endif
1246 1989
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1254} 1991}
1255 1992
1256void 1993void
1257ev_default_fork (void) 1994ev_default_fork (void)
1258{ 1995{
1259#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1261#endif 1998#endif
1262 1999
1263 if (backend) 2000 postfork = 1; /* must be in line with ev_loop_fork */
1264 postfork = 1;
1265} 2001}
1266 2002
1267/*****************************************************************************/ 2003/*****************************************************************************/
1268 2004
1269void 2005void
1270ev_invoke (EV_P_ void *w, int revents) 2006ev_invoke (EV_P_ void *w, int revents)
1271{ 2007{
1272 EV_CB_INVOKE ((W)w, revents); 2008 EV_CB_INVOKE ((W)w, revents);
1273} 2009}
1274 2010
1275void inline_speed 2011unsigned int
1276call_pending (EV_P) 2012ev_pending_count (EV_P)
2013{
2014 int pri;
2015 unsigned int count = 0;
2016
2017 for (pri = NUMPRI; pri--; )
2018 count += pendingcnt [pri];
2019
2020 return count;
2021}
2022
2023void noinline
2024ev_invoke_pending (EV_P)
1277{ 2025{
1278 int pri; 2026 int pri;
1279 2027
1280 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1281 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1282 { 2030 {
1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1284 2032
1285 if (expect_true (p->w))
1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1288 2035
1289 p->w->pending = 0; 2036 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1291 } 2038 EV_FREQUENT_CHECK;
1292 } 2039 }
1293} 2040}
1294 2041
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374
1375#if EV_IDLE_ENABLE 2042#if EV_IDLE_ENABLE
1376void inline_size 2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
1377idle_reify (EV_P) 2046idle_reify (EV_P)
1378{ 2047{
1379 if (expect_false (idleall)) 2048 if (expect_false (idleall))
1380 { 2049 {
1381 int pri; 2050 int pri;
1393 } 2062 }
1394 } 2063 }
1395} 2064}
1396#endif 2065#endif
1397 2066
1398void inline_speed 2067/* make timers pending */
2068inline_size void
2069timers_reify (EV_P)
2070{
2071 EV_FREQUENT_CHECK;
2072
2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2074 {
2075 do
2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2089
2090 ANHE_at_cache (timers [HEAP0]);
2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
2098 }
2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2100
2101 feed_reverse_done (EV_A_ EV_TIMER);
2102 }
2103}
2104
2105#if EV_PERIODIC_ENABLE
2106/* make periodics pending */
2107inline_size void
2108periodics_reify (EV_P)
2109{
2110 EV_FREQUENT_CHECK;
2111
2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2113 {
2114 int feed_count = 0;
2115
2116 do
2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
2156 }
2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2158
2159 feed_reverse_done (EV_A_ EV_PERIODIC);
2160 }
2161}
2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2165static void noinline
2166periodics_reschedule (EV_P)
2167{
2168 int i;
2169
2170 /* adjust periodics after time jump */
2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2172 {
2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2174
2175 if (w->reschedule_cb)
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177 else if (w->interval)
2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179
2180 ANHE_at_cache (periodics [i]);
2181 }
2182
2183 reheap (periodics, periodiccnt);
2184}
2185#endif
2186
2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
2194 {
2195 ANHE *he = timers + i + HEAP0;
2196 ANHE_w (*he)->at += adjust;
2197 ANHE_at_cache (*he);
2198 }
2199}
2200
2201/* fetch new monotonic and realtime times from the kernel */
2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
1399time_update (EV_P_ ev_tstamp max_block) 2204time_update (EV_P_ ev_tstamp max_block)
1400{ 2205{
1401 int i;
1402
1403#if EV_USE_MONOTONIC 2206#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic)) 2207 if (expect_true (have_monotonic))
1405 { 2208 {
2209 int i;
1406 ev_tstamp odiff = rtmn_diff; 2210 ev_tstamp odiff = rtmn_diff;
1407 2211
1408 mn_now = get_clock (); 2212 mn_now = get_clock ();
1409 2213
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1428 */ 2232 */
1429 for (i = 4; --i; ) 2233 for (i = 4; --i; )
1430 { 2234 {
1431 rtmn_diff = ev_rt_now - mn_now; 2235 rtmn_diff = ev_rt_now - mn_now;
1432 2236
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2237 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 2238 return; /* all is well */
1435 2239
1436 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 2241 mn_now = get_clock ();
1438 now_floor = mn_now; 2242 now_floor = mn_now;
1439 } 2243 }
1440 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1441# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1443# endif 2249# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 } 2250 }
1447 else 2251 else
1448#endif 2252#endif
1449 { 2253 {
1450 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1451 2255
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1454#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1456#endif 2262#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i)
1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1460 } 2263 }
1461 2264
1462 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1463 } 2266 }
1464} 2267}
1465 2268
1466void 2269void
1467ev_ref (EV_P)
1468{
1469 ++activecnt;
1470}
1471
1472void
1473ev_unref (EV_P)
1474{
1475 --activecnt;
1476}
1477
1478static int loop_done;
1479
1480void
1481ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1482{ 2271{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2272#if EV_FEATURE_API
1484 ? EVUNLOOP_ONE 2273 ++loop_depth;
1485 : EVUNLOOP_CANCEL; 2274#endif
1486 2275
2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
2278 loop_done = EVUNLOOP_CANCEL;
2279
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1488 2281
1489 do 2282 do
1490 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_verify (EV_A);
2286#endif
2287
1491#ifndef _WIN32 2288#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 2289 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 2290 if (expect_false (getpid () != curpid))
1494 { 2291 {
1495 curpid = getpid (); 2292 curpid = getpid ();
1501 /* we might have forked, so queue fork handlers */ 2298 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork)) 2299 if (expect_false (postfork))
1503 if (forkcnt) 2300 if (forkcnt)
1504 { 2301 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A); 2303 EV_INVOKE_PENDING;
1507 } 2304 }
1508#endif 2305#endif
1509 2306
2307#if EV_PREPARE_ENABLE
1510 /* queue prepare watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1511 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1512 { 2310 {
1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1514 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1515 } 2313 }
2314#endif
1516 2315
1517 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1518 break; 2317 break;
1519 2318
1520 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1521 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1522 loop_fork (EV_A); 2321 loop_fork (EV_A);
1529 ev_tstamp waittime = 0.; 2328 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.; 2329 ev_tstamp sleeptime = 0.;
1531 2330
1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1533 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1534 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1535 time_update (EV_A_ 1e100); 2337 time_update (EV_A_ 1e100);
1536 2338
1537 waittime = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1538 2340
1539 if (timercnt) 2341 if (timercnt)
1540 { 2342 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 2344 if (waittime > to) waittime = to;
1543 } 2345 }
1544 2346
1545#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2348 if (periodiccnt)
1547 { 2349 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 2351 if (waittime > to) waittime = to;
1550 } 2352 }
1551#endif 2353#endif
1552 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
1553 if (expect_false (waittime < timeout_blocktime)) 2356 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime; 2357 waittime = timeout_blocktime;
1555 2358
1556 sleeptime = waittime - backend_fudge; 2359 /* extra check because io_blocktime is commonly 0 */
1557
1558 if (expect_true (sleeptime > io_blocktime)) 2360 if (expect_false (io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 { 2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
1563 ev_sleep (sleeptime); 2369 ev_sleep (sleeptime);
1564 waittime -= sleeptime; 2370 waittime -= sleeptime;
2371 }
1565 } 2372 }
1566 } 2373 }
1567 2374
2375#if EV_FEATURE_API
1568 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1569 backend_poll (EV_A_ waittime); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1570 2381
1571 /* update ev_rt_now, do magic */ 2382 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime); 2383 time_update (EV_A_ waittime + sleeptime);
1573 } 2384 }
1574 2385
1581#if EV_IDLE_ENABLE 2392#if EV_IDLE_ENABLE
1582 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1583 idle_reify (EV_A); 2394 idle_reify (EV_A);
1584#endif 2395#endif
1585 2396
2397#if EV_CHECK_ENABLE
1586 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1589 2402
1590 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1591
1592 } 2404 }
1593 while (expect_true (activecnt && !loop_done)); 2405 while (expect_true (
2406 activecnt
2407 && !loop_done
2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2409 ));
1594 2410
1595 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1597} 2417}
1598 2418
1599void 2419void
1600ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1601{ 2421{
1602 loop_done = how; 2422 loop_done = how;
1603} 2423}
1604 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1605/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1606 2464
1607void inline_size 2465inline_size void
1608wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1609{ 2467{
1610 elem->next = *head; 2468 elem->next = *head;
1611 *head = elem; 2469 *head = elem;
1612} 2470}
1613 2471
1614void inline_size 2472inline_size void
1615wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1616{ 2474{
1617 while (*head) 2475 while (*head)
1618 { 2476 {
1619 if (*head == elem) 2477 if (expect_true (*head == elem))
1620 { 2478 {
1621 *head = elem->next; 2479 *head = elem->next;
1622 return; 2480 break;
1623 } 2481 }
1624 2482
1625 head = &(*head)->next; 2483 head = &(*head)->next;
1626 } 2484 }
1627} 2485}
1628 2486
1629void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1630clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1631{ 2490{
1632 if (w->pending) 2491 if (w->pending)
1633 { 2492 {
1634 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1635 w->pending = 0; 2494 w->pending = 0;
1636 } 2495 }
1637} 2496}
1638 2497
1639int 2498int
1643 int pending = w_->pending; 2502 int pending = w_->pending;
1644 2503
1645 if (expect_true (pending)) 2504 if (expect_true (pending))
1646 { 2505 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
1648 w_->pending = 0; 2508 w_->pending = 0;
1649 p->w = 0;
1650 return p->events; 2509 return p->events;
1651 } 2510 }
1652 else 2511 else
1653 return 0; 2512 return 0;
1654} 2513}
1655 2514
1656void inline_size 2515inline_size void
1657pri_adjust (EV_P_ W w) 2516pri_adjust (EV_P_ W w)
1658{ 2517{
1659 int pri = w->priority; 2518 int pri = ev_priority (w);
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri; 2521 ev_set_priority (w, pri);
1663} 2522}
1664 2523
1665void inline_speed 2524inline_speed void
1666ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1667{ 2526{
1668 pri_adjust (EV_A_ w); 2527 pri_adjust (EV_A_ w);
1669 w->active = active; 2528 w->active = active;
1670 ev_ref (EV_A); 2529 ev_ref (EV_A);
1671} 2530}
1672 2531
1673void inline_size 2532inline_size void
1674ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1675{ 2534{
1676 ev_unref (EV_A); 2535 ev_unref (EV_A);
1677 w->active = 0; 2536 w->active = 0;
1678} 2537}
1685 int fd = w->fd; 2544 int fd = w->fd;
1686 2545
1687 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1688 return; 2547 return;
1689 2548
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1691 2553
1692 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1695 2557
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1697 w->events &= ~EV_IOFDSET; 2559 w->events &= ~EV__IOFDSET;
2560
2561 EV_FREQUENT_CHECK;
1698} 2562}
1699 2563
1700void noinline 2564void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1702{ 2566{
1703 clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1705 return; 2569 return;
1706 2570
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2572
2573 EV_FREQUENT_CHECK;
1708 2574
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1711 2577
1712 fd_change (EV_A_ w->fd, 1); 2578 fd_change (EV_A_ w->fd, 1);
2579
2580 EV_FREQUENT_CHECK;
1713} 2581}
1714 2582
1715void noinline 2583void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1717{ 2585{
1718 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1719 return; 2587 return;
1720 2588
1721 ((WT)w)->at += mn_now; 2589 ev_at (w) += mn_now;
1722 2590
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2599 ANHE_at_cache (timers [ev_active (w)]);
2600 upheap (timers, ev_active (w));
1729 2601
2602 EV_FREQUENT_CHECK;
2603
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2605}
1732 2606
1733void noinline 2607void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2609{
1736 clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1738 return; 2612 return;
1739 2613
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2614 EV_FREQUENT_CHECK;
1741 2615
1742 { 2616 {
1743 int active = ((W)w)->active; 2617 int active = ev_active (w);
1744 2618
2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2620
2621 --timercnt;
2622
1745 if (expect_true (--active < --timercnt)) 2623 if (expect_true (active < timercnt + HEAP0))
1746 { 2624 {
1747 timers [active] = timers [timercnt]; 2625 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2626 adjustheap (timers, timercnt, active);
1749 } 2627 }
1750 } 2628 }
1751 2629
1752 ((WT)w)->at -= mn_now; 2630 ev_at (w) -= mn_now;
1753 2631
1754 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
2633
2634 EV_FREQUENT_CHECK;
1755} 2635}
1756 2636
1757void noinline 2637void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
1759{ 2639{
2640 EV_FREQUENT_CHECK;
2641
1760 if (ev_is_active (w)) 2642 if (ev_is_active (w))
1761 { 2643 {
1762 if (w->repeat) 2644 if (w->repeat)
1763 { 2645 {
1764 ((WT)w)->at = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2648 adjustheap (timers, timercnt, ev_active (w));
1766 } 2649 }
1767 else 2650 else
1768 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
1769 } 2652 }
1770 else if (w->repeat) 2653 else if (w->repeat)
1771 { 2654 {
1772 w->at = w->repeat; 2655 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
1774 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1775} 2666}
1776 2667
1777#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
1778void noinline 2669void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2671{
1781 if (expect_false (ev_is_active (w))) 2672 if (expect_false (ev_is_active (w)))
1782 return; 2673 return;
1783 2674
1784 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2677 else if (w->interval)
1787 { 2678 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2682 }
1792 else 2683 else
1793 ((WT)w)->at = w->offset; 2684 ev_at (w) = w->offset;
1794 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2692 ANHE_at_cache (periodics [ev_active (w)]);
2693 upheap (periodics, ev_active (w));
1799 2694
2695 EV_FREQUENT_CHECK;
2696
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2698}
1802 2699
1803void noinline 2700void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2702{
1806 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1808 return; 2705 return;
1809 2706
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2707 EV_FREQUENT_CHECK;
1811 2708
1812 { 2709 {
1813 int active = ((W)w)->active; 2710 int active = ev_active (w);
1814 2711
2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2713
2714 --periodiccnt;
2715
1815 if (expect_true (--active < --periodiccnt)) 2716 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2717 {
1817 periodics [active] = periodics [periodiccnt]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2719 adjustheap (periodics, periodiccnt, active);
1819 } 2720 }
1820 } 2721 }
1821 2722
1822 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
2724
2725 EV_FREQUENT_CHECK;
1823} 2726}
1824 2727
1825void noinline 2728void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
1827{ 2730{
1833 2736
1834#ifndef SA_RESTART 2737#ifndef SA_RESTART
1835# define SA_RESTART 0 2738# define SA_RESTART 0
1836#endif 2739#endif
1837 2740
2741#if EV_SIGNAL_ENABLE
2742
1838void noinline 2743void noinline
1839ev_signal_start (EV_P_ ev_signal *w) 2744ev_signal_start (EV_P_ ev_signal *w)
1840{ 2745{
1841#if EV_MULTIPLICITY
1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1843#endif
1844 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1845 return; 2747 return;
1846 2748
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1848 2750
2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
1849 { 2762 {
1850#ifndef _WIN32 2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1851 sigset_t full, prev; 2764 if (sigfd < 0 && errno == EINVAL)
1852 sigfillset (&full); 2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855 2766
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
1857 2770
1858#ifndef _WIN32 2771 sigemptyset (&sigfd_set);
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2772
1860#endif 2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
1861 } 2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
1862 2789
1863 ev_start (EV_A_ (W)w, 1); 2790 ev_start (EV_A_ (W)w, 1);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2792
1866 if (!((WL)w)->next) 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
1867 { 2797 {
1868#if _WIN32 2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
1869 signal (w->signum, sighandler); 2801 signal (w->signum, ev_sighandler);
1870#else 2802# else
1871 struct sigaction sa; 2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
1872 sa.sa_handler = sighandler; 2807 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2808 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1876#endif 2815#endif
1877 } 2816 }
2817
2818 EV_FREQUENT_CHECK;
1878} 2819}
1879 2820
1880void noinline 2821void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2823{
1883 clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
1885 return; 2826 return;
1886 2827
2828 EV_FREQUENT_CHECK;
2829
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
1889 2832
1890 if (!signals [w->signum - 1].head) 2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
1891 signal (w->signum, SIG_DFL); 2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
1892} 2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
1893 2861
1894void 2862void
1895ev_child_start (EV_P_ ev_child *w) 2863ev_child_start (EV_P_ ev_child *w)
1896{ 2864{
1897#if EV_MULTIPLICITY 2865#if EV_MULTIPLICITY
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2867#endif
1900 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
1901 return; 2869 return;
1902 2870
2871 EV_FREQUENT_CHECK;
2872
1903 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875
2876 EV_FREQUENT_CHECK;
1905} 2877}
1906 2878
1907void 2879void
1908ev_child_stop (EV_P_ ev_child *w) 2880ev_child_stop (EV_P_ ev_child *w)
1909{ 2881{
1910 clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
1912 return; 2884 return;
1913 2885
2886 EV_FREQUENT_CHECK;
2887
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1916} 2892}
2893
2894#endif
1917 2895
1918#if EV_STAT_ENABLE 2896#if EV_STAT_ENABLE
1919 2897
1920# ifdef _WIN32 2898# ifdef _WIN32
1921# undef lstat 2899# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 2900# define lstat(a,b) _stati64 (a,b)
1923# endif 2901# endif
1924 2902
1925#define DEF_STAT_INTERVAL 5.0074891 2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 2905#define MIN_STAT_INTERVAL 0.1074891
1927 2906
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 2908
1930#if EV_USE_INOTIFY 2909#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1932 2913
1933static void noinline 2914static void noinline
1934infy_add (EV_P_ ev_stat *w) 2915infy_add (EV_P_ ev_stat *w)
1935{ 2916{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 2918
1938 if (w->wd < 0) 2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1939 { 2939 }
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1941 2944
1942 /* monitor some parent directory for speedup hints */ 2945 /* if path is not there, monitor some parent directory for speedup hints */
2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2947 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2949 {
1945 char path [4096]; 2950 char path [4096];
1946 strcpy (path, w->path); 2951 strcpy (path, w->path);
1947 2952
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952 2957
1953 char *pend = strrchr (path, '/'); 2958 char *pend = strrchr (path, '/');
1954 2959
1955 if (!pend) 2960 if (!pend || pend == path)
1956 break; /* whoops, no '/', complain to your admin */ 2961 break;
1957 2962
1958 *pend = 0; 2963 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask); 2964 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 } 2965 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 2967 }
1963 } 2968 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966 2969
1967 if (w->wd >= 0) 2970 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1969} 2977}
1970 2978
1971static void noinline 2979static void noinline
1972infy_del (EV_P_ ev_stat *w) 2980infy_del (EV_P_ ev_stat *w)
1973{ 2981{
1976 2984
1977 if (wd < 0) 2985 if (wd < 0)
1978 return; 2986 return;
1979 2987
1980 w->wd = -2; 2988 w->wd = -2;
1981 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1982 wlist_del (&fs_hash [slot].head, (WL)w); 2990 wlist_del (&fs_hash [slot].head, (WL)w);
1983 2991
1984 /* remove this watcher, if others are watching it, they will rearm */ 2992 /* remove this watcher, if others are watching it, they will rearm */
1985 inotify_rm_watch (fs_fd, wd); 2993 inotify_rm_watch (fs_fd, wd);
1986} 2994}
1987 2995
1988static void noinline 2996static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 2998{
1991 if (slot < 0) 2999 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 3000 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 3002 infy_wd (EV_A_ slot, wd, ev);
1995 else 3003 else
1996 { 3004 {
1997 WL w_; 3005 WL w_;
1998 3006
1999 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2000 { 3008 {
2001 ev_stat *w = (ev_stat *)w_; 3009 ev_stat *w = (ev_stat *)w_;
2002 w_ = w_->next; /* lets us remove this watcher and all before it */ 3010 w_ = w_->next; /* lets us remove this watcher and all before it */
2003 3011
2004 if (w->wd == wd || wd == -1) 3012 if (w->wd == wd || wd == -1)
2005 { 3013 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 { 3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2008 w->wd = -1; 3017 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */ 3018 infy_add (EV_A_ w); /* re-add, no matter what */
2010 } 3019 }
2011 3020
2012 stat_timer_cb (EV_A_ &w->timer, 0); 3021 stat_timer_cb (EV_A_ &w->timer, 0);
2017 3026
2018static void 3027static void
2019infy_cb (EV_P_ ev_io *w, int revents) 3028infy_cb (EV_P_ ev_io *w, int revents)
2020{ 3029{
2021 char buf [EV_INOTIFY_BUFSIZE]; 3030 char buf [EV_INOTIFY_BUFSIZE];
2022 struct inotify_event *ev = (struct inotify_event *)buf;
2023 int ofs; 3031 int ofs;
2024 int len = read (fs_fd, buf, sizeof (buf)); 3032 int len = read (fs_fd, buf, sizeof (buf));
2025 3033
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
2028} 3040}
2029 3041
2030void inline_size 3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
3081 return;
3082
3083 fs_2625 = 1;
3084}
3085
3086inline_size int
3087infy_newfd (void)
3088{
3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
3093#endif
3094 return inotify_init ();
3095}
3096
3097inline_size void
2031infy_init (EV_P) 3098infy_init (EV_P)
2032{ 3099{
2033 if (fs_fd != -2) 3100 if (fs_fd != -2)
2034 return; 3101 return;
2035 3102
3103 fs_fd = -1;
3104
3105 ev_check_2625 (EV_A);
3106
2036 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
2037 3108
2038 if (fs_fd >= 0) 3109 if (fs_fd >= 0)
2039 { 3110 {
3111 fd_intern (fs_fd);
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI); 3113 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w); 3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
2043 } 3116 }
2044} 3117}
2045 3118
2046void inline_size 3119inline_size void
2047infy_fork (EV_P) 3120infy_fork (EV_P)
2048{ 3121{
2049 int slot; 3122 int slot;
2050 3123
2051 if (fs_fd < 0) 3124 if (fs_fd < 0)
2052 return; 3125 return;
2053 3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
2054 close (fs_fd); 3129 close (fs_fd);
2055 fs_fd = inotify_init (); 3130 fs_fd = infy_newfd ();
2056 3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 { 3141 {
2059 WL w_ = fs_hash [slot].head; 3142 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0; 3143 fs_hash [slot].head = 0;
2061 3144
2062 while (w_) 3145 while (w_)
2067 w->wd = -1; 3150 w->wd = -1;
2068 3151
2069 if (fs_fd >= 0) 3152 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 3153 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2072 ev_timer_start (EV_A_ &w->timer); 3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
2073 } 3161 }
2074
2075 } 3162 }
2076} 3163}
2077 3164
3165#endif
3166
3167#ifdef _WIN32
3168# define EV_LSTAT(p,b) _stati64 (p, b)
3169#else
3170# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 3171#endif
2079 3172
2080void 3173void
2081ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
2082{ 3175{
2089static void noinline 3182static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{ 3184{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093 3186
2094 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
2098 3189
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if ( 3191 if (
2101 w->prev.st_dev != w->attr.st_dev 3192 prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino 3193 || prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode 3194 || prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink 3195 || prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid 3196 || prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid 3197 || prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev 3198 || prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size 3199 || prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime 3200 || prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 3201 || prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 3202 || prev.st_ctime != w->attr.st_ctime
2112 ) { 3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
2113 #if EV_USE_INOTIFY 3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
2114 infy_del (EV_A_ w); 3212 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 3213 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
2117 #endif 3216 #endif
2118 3217
2119 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 3219 }
2121} 3220}
2124ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
2125{ 3224{
2126 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
2127 return; 3226 return;
2128 3227
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
2134 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 3231 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 3232
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
2140 3235
2141#if EV_USE_INOTIFY 3236#if EV_USE_INOTIFY
2142 infy_init (EV_A); 3237 infy_init (EV_A);
2143 3238
2144 if (fs_fd >= 0) 3239 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2146 else 3241 else
2147#endif 3242#endif
3243 {
2148 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
2149 3247
2150 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
2151} 3251}
2152 3252
2153void 3253void
2154ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
2155{ 3255{
2156 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2158 return; 3258 return;
2159 3259
3260 EV_FREQUENT_CHECK;
3261
2160#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2162#endif 3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
2163 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
2164 3271
2165 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2166} 3275}
2167#endif 3276#endif
2168 3277
2169#if EV_IDLE_ENABLE 3278#if EV_IDLE_ENABLE
2170void 3279void
2172{ 3281{
2173 if (expect_false (ev_is_active (w))) 3282 if (expect_false (ev_is_active (w)))
2174 return; 3283 return;
2175 3284
2176 pri_adjust (EV_A_ (W)w); 3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
2177 3288
2178 { 3289 {
2179 int active = ++idlecnt [ABSPRI (w)]; 3290 int active = ++idlecnt [ABSPRI (w)];
2180 3291
2181 ++idleall; 3292 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 3293 ev_start (EV_A_ (W)w, active);
2183 3294
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 3296 idles [ABSPRI (w)][active - 1] = w;
2186 } 3297 }
3298
3299 EV_FREQUENT_CHECK;
2187} 3300}
2188 3301
2189void 3302void
2190ev_idle_stop (EV_P_ ev_idle *w) 3303ev_idle_stop (EV_P_ ev_idle *w)
2191{ 3304{
2192 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
2194 return; 3307 return;
2195 3308
3309 EV_FREQUENT_CHECK;
3310
2196 { 3311 {
2197 int active = ((W)w)->active; 3312 int active = ev_active (w);
2198 3313
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 3316
2202 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
2203 --idleall; 3318 --idleall;
2204 } 3319 }
2205}
2206#endif
2207 3320
3321 EV_FREQUENT_CHECK;
3322}
3323#endif
3324
3325#if EV_PREPARE_ENABLE
2208void 3326void
2209ev_prepare_start (EV_P_ ev_prepare *w) 3327ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 3328{
2211 if (expect_false (ev_is_active (w))) 3329 if (expect_false (ev_is_active (w)))
2212 return; 3330 return;
3331
3332 EV_FREQUENT_CHECK;
2213 3333
2214 ev_start (EV_A_ (W)w, ++preparecnt); 3334 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
2217} 3339}
2218 3340
2219void 3341void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 3342ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 3343{
2222 clear_pending (EV_A_ (W)w); 3344 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3345 if (expect_false (!ev_is_active (w)))
2224 return; 3346 return;
2225 3347
3348 EV_FREQUENT_CHECK;
3349
2226 { 3350 {
2227 int active = ((W)w)->active; 3351 int active = ev_active (w);
3352
2228 prepares [active - 1] = prepares [--preparecnt]; 3353 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 3354 ev_active (prepares [active - 1]) = active;
2230 } 3355 }
2231 3356
2232 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2233}
2234 3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
2235void 3364void
2236ev_check_start (EV_P_ ev_check *w) 3365ev_check_start (EV_P_ ev_check *w)
2237{ 3366{
2238 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2239 return; 3368 return;
3369
3370 EV_FREQUENT_CHECK;
2240 3371
2241 ev_start (EV_A_ (W)w, ++checkcnt); 3372 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
2244} 3377}
2245 3378
2246void 3379void
2247ev_check_stop (EV_P_ ev_check *w) 3380ev_check_stop (EV_P_ ev_check *w)
2248{ 3381{
2249 clear_pending (EV_A_ (W)w); 3382 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 3383 if (expect_false (!ev_is_active (w)))
2251 return; 3384 return;
2252 3385
3386 EV_FREQUENT_CHECK;
3387
2253 { 3388 {
2254 int active = ((W)w)->active; 3389 int active = ev_active (w);
3390
2255 checks [active - 1] = checks [--checkcnt]; 3391 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 3392 ev_active (checks [active - 1]) = active;
2257 } 3393 }
2258 3394
2259 ev_stop (EV_A_ (W)w); 3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
2260} 3398}
3399#endif
2261 3400
2262#if EV_EMBED_ENABLE 3401#if EV_EMBED_ENABLE
2263void noinline 3402void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 3403ev_embed_sweep (EV_P_ ev_embed *w)
2265{ 3404{
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{ 3421{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284 3423
2285 { 3424 {
2286 struct ev_loop *loop = w->other; 3425 EV_P = w->other;
2287 3426
2288 while (fdchangecnt) 3427 while (fdchangecnt)
2289 { 3428 {
2290 fd_reify (EV_A); 3429 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 3431 }
2293 } 3432 }
2294} 3433}
2295 3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
2296#if 0 3452#if 0
2297static void 3453static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 3455{
2300 ev_idle_stop (EV_A_ idle); 3456 ev_idle_stop (EV_A_ idle);
2306{ 3462{
2307 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2308 return; 3464 return;
2309 3465
2310 { 3466 {
2311 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 3470 }
3471
3472 EV_FREQUENT_CHECK;
2315 3473
2316 ev_set_priority (&w->io, ev_priority (w)); 3474 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 3475 ev_io_start (EV_A_ &w->io);
2318 3476
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 3478 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 3479 ev_prepare_start (EV_A_ &w->prepare);
2322 3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 3485
2325 ev_start (EV_A_ (W)w, 1); 3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
2326} 3489}
2327 3490
2328void 3491void
2329ev_embed_stop (EV_P_ ev_embed *w) 3492ev_embed_stop (EV_P_ ev_embed *w)
2330{ 3493{
2331 clear_pending (EV_A_ (W)w); 3494 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3495 if (expect_false (!ev_is_active (w)))
2333 return; 3496 return;
2334 3497
3498 EV_FREQUENT_CHECK;
3499
2335 ev_io_stop (EV_A_ &w->io); 3500 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
2337 3503
2338 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2339} 3507}
2340#endif 3508#endif
2341 3509
2342#if EV_FORK_ENABLE 3510#if EV_FORK_ENABLE
2343void 3511void
2344ev_fork_start (EV_P_ ev_fork *w) 3512ev_fork_start (EV_P_ ev_fork *w)
2345{ 3513{
2346 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2347 return; 3515 return;
3516
3517 EV_FREQUENT_CHECK;
2348 3518
2349 ev_start (EV_A_ (W)w, ++forkcnt); 3519 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
2352} 3524}
2353 3525
2354void 3526void
2355ev_fork_stop (EV_P_ ev_fork *w) 3527ev_fork_stop (EV_P_ ev_fork *w)
2356{ 3528{
2357 clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
2359 return; 3531 return;
2360 3532
3533 EV_FREQUENT_CHECK;
3534
2361 { 3535 {
2362 int active = ((W)w)->active; 3536 int active = ev_active (w);
3537
2363 forks [active - 1] = forks [--forkcnt]; 3538 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 3539 ev_active (forks [active - 1]) = active;
2365 } 3540 }
2366 3541
2367 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
3545}
3546#endif
3547
3548#if EV_ASYNC_ENABLE
3549void
3550ev_async_start (EV_P_ ev_async *w)
3551{
3552 if (expect_false (ev_is_active (w)))
3553 return;
3554
3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++asynccnt);
3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_async_stop (EV_P_ ev_async *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 asyncs [active - 1] = asyncs [--asynccnt];
3579 ev_active (asyncs [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_send (EV_P_ ev_async *w)
3589{
3590 w->sent = 1;
3591 evpipe_write (EV_A_ &async_pending);
2368} 3592}
2369#endif 3593#endif
2370 3594
2371/*****************************************************************************/ 3595/*****************************************************************************/
2372 3596
2382once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3607{
2384 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3609 void *arg = once->arg;
2386 3610
2387 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3613 ev_free (once);
2390 3614
2391 cb (revents, arg); 3615 cb (revents, arg);
2392} 3616}
2393 3617
2394static void 3618static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3620{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3624}
2399 3625
2400static void 3626static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3628{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3632}
2405 3633
2406void 3634void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3636{
2409 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3637 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2410 3638
2411 if (expect_false (!once)) 3639 if (expect_false (!once))
2412 { 3640 {
2413 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3641 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2414 return; 3642 return;
2415 } 3643 }
2416 3644
2417 once->cb = cb; 3645 once->cb = cb;
2418 once->arg = arg; 3646 once->arg = arg;
2430 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
2431 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
2432 } 3660 }
2433} 3661}
2434 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
2435#if EV_MULTIPLICITY 3779#if EV_MULTIPLICITY
2436 #include "ev_wrap.h" 3780 #include "ev_wrap.h"
2437#endif 3781#endif
2438 3782
2439#ifdef __cplusplus 3783#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines