ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.344 by root, Fri Jul 9 20:55:14 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
62# else 86# else
87# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
65# endif 98# endif
66 99
100# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 103# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 104# else
105# undef EV_USE_POLL
79# define EV_USE_POLL 0 106# define EV_USE_POLL 0
80# endif
81# endif 107# endif
82 108
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
86# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
89# endif 116# endif
90 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
97# endif 125# endif
98 126
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
102# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
105# endif 134# endif
106 135
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
113# endif 143# endif
114 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
115#endif 163#endif
116 164
117#include <math.h> 165#include <math.h>
118#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
119#include <fcntl.h> 168#include <fcntl.h>
120#include <stddef.h> 169#include <stddef.h>
121 170
122#include <stdio.h> 171#include <stdio.h>
123 172
124#include <assert.h> 173#include <assert.h>
125#include <errno.h> 174#include <errno.h>
126#include <sys/types.h> 175#include <sys/types.h>
127#include <time.h> 176#include <time.h>
177#include <limits.h>
128 178
129#include <signal.h> 179#include <signal.h>
130 180
131#ifdef EV_H 181#ifdef EV_H
132# include EV_H 182# include EV_H
137#ifndef _WIN32 187#ifndef _WIN32
138# include <sys/time.h> 188# include <sys/time.h>
139# include <sys/wait.h> 189# include <sys/wait.h>
140# include <unistd.h> 190# include <unistd.h>
141#else 191#else
192# include <io.h>
142# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 194# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
146# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
147#endif 244# endif
148 245#endif
149/**/
150 246
151#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
152# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
153#endif 253#endif
154 254
155#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 257#endif
158 258
159#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
160# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
161#endif 265#endif
162 266
163#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 269#endif
166 270
167#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
168# ifdef _WIN32 272# ifdef _WIN32
169# define EV_USE_POLL 0 273# define EV_USE_POLL 0
170# else 274# else
171# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 276# endif
173#endif 277#endif
174 278
175#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
176# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
177#endif 285#endif
178 286
179#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
181#endif 289#endif
183#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 292# define EV_USE_PORT 0
185#endif 293#endif
186 294
187#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
188# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
189#endif 301#endif
190 302
191#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 314# else
195# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
196# endif 316# endif
197#endif 317#endif
198 318
199#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 322# else
203# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
204# endif 324# endif
205#endif 325#endif
206 326
207/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
208 366
209#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
212#endif 370#endif
226# include <sys/select.h> 384# include <sys/select.h>
227# endif 385# endif
228#endif 386#endif
229 387
230#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
231# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
232#endif 397#endif
233 398
234#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 400# include <winsock.h>
236#endif 401#endif
237 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
238/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
239 461
240/* 462/*
241 * This is used to avoid floating point rounding problems. 463 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 464 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 465 * to ensure progress, time-wise, even when rounding
247 */ 469 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 471
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 474
254#if __GNUC__ >= 4 475#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
257#else 478#else
258# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
259# define noinline 480# define noinline
260# if __STDC_VERSION__ < 199901L 481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 482# define inline
262# endif 483# endif
263#endif 484#endif
264 485
265#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 488#define inline_size static inline
268 489
269#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
270# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
271#else 500#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
277 503
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
280 506
281typedef ev_watcher *W; 507typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
284 510
285#if EV_USE_MONOTONIC 511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 516/* giving it a reasonably high chance of working on typical architetcures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
289#endif 532#endif
290 533
291#ifdef _WIN32 534#ifdef _WIN32
292# include "ev_win32.c" 535# include "ev_win32.c"
293#endif 536#endif
294 537
295/*****************************************************************************/ 538/*****************************************************************************/
296 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
297static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
298 549
299void 550void
300ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
301{ 552{
302 syserr_cb = cb; 553 syserr_cb = cb;
303} 554}
304 555
305static void noinline 556static void noinline
306syserr (const char *msg) 557ev_syserr (const char *msg)
307{ 558{
308 if (!msg) 559 if (!msg)
309 msg = "(libev) system error"; 560 msg = "(libev) system error";
310 561
311 if (syserr_cb) 562 if (syserr_cb)
312 syserr_cb (msg); 563 syserr_cb (msg);
313 else 564 else
314 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
315 perror (msg); 574 perror (msg);
575#endif
316 abort (); 576 abort ();
317 } 577 }
318} 578}
319 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
320static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 600
322void 601void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 603{
325 alloc = cb; 604 alloc = cb;
326} 605}
327 606
328inline_speed void * 607inline_speed void *
329ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
330{ 609{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
332 611
333 if (!ptr && size) 612 if (!ptr && size)
334 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
336 abort (); 619 abort ();
337 } 620 }
338 621
339 return ptr; 622 return ptr;
340} 623}
342#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
343#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
344 627
345/*****************************************************************************/ 628/*****************************************************************************/
346 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
347typedef struct 634typedef struct
348{ 635{
349 WL head; 636 WL head;
350 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
351 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
352#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
353 SOCKET handle; 645 SOCKET handle;
354#endif 646#endif
355} ANFD; 647} ANFD;
356 648
649/* stores the pending event set for a given watcher */
357typedef struct 650typedef struct
358{ 651{
359 W w; 652 W w;
360 int events; 653 int events; /* the pending event set for the given watcher */
361} ANPENDING; 654} ANPENDING;
362 655
363#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
364typedef struct 658typedef struct
365{ 659{
366 WL head; 660 WL head;
367} ANFS; 661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
368#endif 682#endif
369 683
370#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
371 685
372 struct ev_loop 686 struct ev_loop
391 705
392 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
393 707
394#endif 708#endif
395 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
396/*****************************************************************************/ 722/*****************************************************************************/
397 723
724#ifndef EV_HAVE_EV_TIME
398ev_tstamp 725ev_tstamp
399ev_time (void) 726ev_time (void)
400{ 727{
401#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
402 struct timespec ts; 731 struct timespec ts;
403 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
404 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
405#else 734 }
735#endif
736
406 struct timeval tv; 737 struct timeval tv;
407 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
408 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
409#endif
410} 740}
741#endif
411 742
412ev_tstamp inline_size 743inline_size ev_tstamp
413get_clock (void) 744get_clock (void)
414{ 745{
415#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
416 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
417 { 748 {
443 ts.tv_sec = (time_t)delay; 774 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 776
446 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
447#elif defined(_WIN32) 778#elif defined(_WIN32)
448 Sleep (delay * 1e3); 779 Sleep ((unsigned long)(delay * 1e3));
449#else 780#else
450 struct timeval tv; 781 struct timeval tv;
451 782
452 tv.tv_sec = (time_t)delay; 783 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
455 select (0, 0, 0, 0, &tv); 789 select (0, 0, 0, 0, &tv);
456#endif 790#endif
457 } 791 }
458} 792}
459 793
460/*****************************************************************************/ 794/*****************************************************************************/
461 795
462int inline_size 796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a ncie-to-malloc size */
800inline_size int
463array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
464{ 802{
465 int ncur = cur + 1; 803 int ncur = cur + 1;
466 804
467 do 805 do
468 ncur <<= 1; 806 ncur <<= 1;
469 while (cnt > ncur); 807 while (cnt > ncur);
470 808
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 811 {
474 ncur *= elem; 812 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 814 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 815 ncur /= elem;
478 } 816 }
479 817
480 return ncur; 818 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 822array_realloc (int elem, void *base, int *cur, int cnt)
485{ 823{
486 *cur = array_nextsize (elem, *cur, cnt); 824 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 825 return ev_realloc (base, elem * *cur);
488} 826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 830
490#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 832 if (expect_false ((cnt) > (cur))) \
492 { \ 833 { \
493 int ocur_ = (cur); \ 834 int ocur_ = (cur); \
505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
506 } 847 }
507#endif 848#endif
508 849
509#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
511 852
512/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
513 860
514void noinline 861void noinline
515ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
516{ 863{
517 W w_ = (W)w; 864 W w_ = (W)w;
526 pendings [pri][w_->pending - 1].w = w_; 873 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents; 874 pendings [pri][w_->pending - 1].events = revents;
528 } 875 }
529} 876}
530 877
531void inline_speed 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
532queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
533{ 895{
534 int i; 896 int i;
535 897
536 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
538} 900}
539 901
540/*****************************************************************************/ 902/*****************************************************************************/
541 903
542void inline_size 904inline_speed void
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed
556fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
557{ 906{
558 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
559 ev_io *w; 908 ev_io *w;
560 909
561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
565 if (ev) 914 if (ev)
566 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
567 } 916 }
568} 917}
569 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
570void 930void
571ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
572{ 932{
573 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
574 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
575} 935}
576 936
577void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
578fd_reify (EV_P) 940fd_reify (EV_P)
579{ 941{
580 int i; 942 int i;
581 943
582 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
591 events |= (unsigned char)w->events; 953 events |= (unsigned char)w->events;
592 954
593#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
594 if (events) 956 if (events)
595 { 957 {
596 unsigned long argp; 958 unsigned long arg;
597 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 961 }
600#endif 962#endif
601 963
602 { 964 {
603 unsigned char o_events = anfd->events; 965 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify; 966 unsigned char o_reify = anfd->reify;
605 967
606 anfd->reify = 0; 968 anfd->reify = 0;
607 anfd->events = events; 969 anfd->events = events;
608 970
609 if (o_events != events || o_reify & EV_IOFDSET) 971 if (o_events != events || o_reify & EV__IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events); 972 backend_modify (EV_A_ fd, o_events, events);
611 } 973 }
612 } 974 }
613 975
614 fdchangecnt = 0; 976 fdchangecnt = 0;
615} 977}
616 978
617void inline_size 979/* something about the given fd changed */
980inline_size void
618fd_change (EV_P_ int fd, int flags) 981fd_change (EV_P_ int fd, int flags)
619{ 982{
620 unsigned char reify = anfds [fd].reify; 983 unsigned char reify = anfds [fd].reify;
621 anfds [fd].reify |= flags; 984 anfds [fd].reify |= flags;
622 985
626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
627 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
628 } 991 }
629} 992}
630 993
631void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
632fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
633{ 997{
634 ev_io *w; 998 ev_io *w;
635 999
636 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
638 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
640 } 1004 }
641} 1005}
642 1006
643int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
644fd_valid (int fd) 1009fd_valid (int fd)
645{ 1010{
646#ifdef _WIN32 1011#ifdef _WIN32
647 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
648#else 1013#else
649 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
650#endif 1015#endif
651} 1016}
652 1017
656{ 1021{
657 int fd; 1022 int fd;
658 1023
659 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 1025 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
663} 1028}
664 1029
665/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 1031static void noinline
670 1035
671 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
672 if (anfds [fd].events) 1037 if (anfds [fd].events)
673 { 1038 {
674 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
675 return; 1040 break;
676 } 1041 }
677} 1042}
678 1043
679/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
680static void noinline 1045static void noinline
684 1049
685 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 1051 if (anfds [fd].events)
687 { 1052 {
688 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
1054 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
690 } 1056 }
691} 1057}
692 1058
693/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
694 1060/* this is not fork-safe */
695void inline_speed 1061inline_speed void
696upheap (WT *heap, int k)
697{
698 WT w = heap [k];
699
700 while (k)
701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
707 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1;
709 k = p;
710 }
711
712 heap [k] = w;
713 ((W)heap [k])->active = k + 1;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742}
743
744void inline_size
745adjustheap (WT *heap, int N, int k)
746{
747 upheap (heap, k);
748 downheap (heap, N, k);
749}
750
751/*****************************************************************************/
752
753typedef struct
754{
755 WL head;
756 sig_atomic_t volatile gotsig;
757} ANSIG;
758
759static ANSIG *signals;
760static int signalmax;
761
762static int sigpipe [2];
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765
766void inline_size
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828
829void inline_speed
830fd_intern (int fd) 1062fd_intern (int fd)
831{ 1063{
832#ifdef _WIN32 1064#ifdef _WIN32
833 int arg = 1; 1065 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
835#else 1067#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1070#endif
839} 1071}
840 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 uis guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
841static void noinline 1236static void noinline
842siginit (EV_P) 1237evpipe_init (EV_P)
843{ 1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
844 fd_intern (sigpipe [0]); 1258 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
846 1262
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1263 ev_io_start (EV_A_ &pipe_w);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 write (evpipe [1], &dummy, 1);
1287
1288 errno = old_errno;
1289 }
1290}
1291
1292/* called whenever the libev signal pipe */
1293/* got some events (signal, async) */
1294static void
1295pipecb (EV_P_ ev_io *iow, int revents)
1296{
1297 int i;
1298
1299#if EV_USE_EVENTFD
1300 if (evfd >= 0)
1301 {
1302 uint64_t counter;
1303 read (evfd, &counter, sizeof (uint64_t));
1304 }
1305 else
1306#endif
1307 {
1308 char dummy;
1309 read (evpipe [0], &dummy, 1);
1310 }
1311
1312 if (sig_pending)
1313 {
1314 sig_pending = 0;
1315
1316 for (i = EV_NSIG - 1; i--; )
1317 if (expect_false (signals [i].pending))
1318 ev_feed_signal_event (EV_A_ i + 1);
1319 }
1320
1321#if EV_ASYNC_ENABLE
1322 if (async_pending)
1323 {
1324 async_pending = 0;
1325
1326 for (i = asynccnt; i--; )
1327 if (asyncs [i]->sent)
1328 {
1329 asyncs [i]->sent = 0;
1330 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1331 }
1332 }
1333#endif
850} 1334}
851 1335
852/*****************************************************************************/ 1336/*****************************************************************************/
853 1337
1338static void
1339ev_sighandler (int signum)
1340{
1341#if EV_MULTIPLICITY
1342 EV_P = signals [signum - 1].loop;
1343#endif
1344
1345#ifdef _WIN32
1346 signal (signum, ev_sighandler);
1347#endif
1348
1349 signals [signum - 1].pending = 1;
1350 evpipe_write (EV_A_ &sig_pending);
1351}
1352
1353void noinline
1354ev_feed_signal_event (EV_P_ int signum)
1355{
1356 WL w;
1357
1358 if (expect_false (signum <= 0 || signum > EV_NSIG))
1359 return;
1360
1361 --signum;
1362
1363#if EV_MULTIPLICITY
1364 /* it is permissible to try to feed a signal to the wrong loop */
1365 /* or, likely more useful, feeding a signal nobody is waiting for */
1366
1367 if (expect_false (signals [signum].loop != EV_A))
1368 return;
1369#endif
1370
1371 signals [signum].pending = 0;
1372
1373 for (w = signals [signum].head; w; w = w->next)
1374 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1375}
1376
1377#if EV_USE_SIGNALFD
1378static void
1379sigfdcb (EV_P_ ev_io *iow, int revents)
1380{
1381 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1382
1383 for (;;)
1384 {
1385 ssize_t res = read (sigfd, si, sizeof (si));
1386
1387 /* not ISO-C, as res might be -1, but works with SuS */
1388 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1389 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1390
1391 if (res < (ssize_t)sizeof (si))
1392 break;
1393 }
1394}
1395#endif
1396
1397#endif
1398
1399/*****************************************************************************/
1400
1401#if EV_CHILD_ENABLE
854static WL childs [EV_PID_HASHSIZE]; 1402static WL childs [EV_PID_HASHSIZE];
855 1403
856#ifndef _WIN32
857
858static ev_signal childev; 1404static ev_signal childev;
859 1405
860void inline_speed 1406#ifndef WIFCONTINUED
1407# define WIFCONTINUED(status) 0
1408#endif
1409
1410/* handle a single child status event */
1411inline_speed void
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1412child_reap (EV_P_ int chain, int pid, int status)
862{ 1413{
863 ev_child *w; 1414 ev_child *w;
1415 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1416
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1418 {
866 if (w->pid == pid || !w->pid) 1419 if ((w->pid == pid || !w->pid)
1420 && (!traced || (w->flags & 1)))
867 { 1421 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1422 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1423 w->rpid = pid;
870 w->rstatus = status; 1424 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1425 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1426 }
1427 }
873} 1428}
874 1429
875#ifndef WCONTINUED 1430#ifndef WCONTINUED
876# define WCONTINUED 0 1431# define WCONTINUED 0
877#endif 1432#endif
878 1433
1434/* called on sigchld etc., calls waitpid */
879static void 1435static void
880childcb (EV_P_ ev_signal *sw, int revents) 1436childcb (EV_P_ ev_signal *sw, int revents)
881{ 1437{
882 int pid, status; 1438 int pid, status;
883 1439
886 if (!WCONTINUED 1442 if (!WCONTINUED
887 || errno != EINVAL 1443 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1444 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1445 return;
890 1446
891 /* make sure we are called again until all childs have been reaped */ 1447 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1448 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1449 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1450
895 child_reap (EV_A_ sw, pid, pid, status); 1451 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1452 if ((EV_PID_HASHSIZE) > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1453 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1454}
899 1455
900#endif 1456#endif
901 1457
902/*****************************************************************************/ 1458/*****************************************************************************/
964 /* kqueue is borked on everything but netbsd apparently */ 1520 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */ 1521 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE; 1522 flags &= ~EVBACKEND_KQUEUE;
967#endif 1523#endif
968#ifdef __APPLE__ 1524#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation 1525 /* only select works correctly on that "unix-certified" platform */
970 flags &= ~EVBACKEND_POLL; 1526 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1527 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1528#endif
1529#ifdef __FreeBSD__
1530 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
971#endif 1531#endif
972 1532
973 return flags; 1533 return flags;
974} 1534}
975 1535
989ev_backend (EV_P) 1549ev_backend (EV_P)
990{ 1550{
991 return backend; 1551 return backend;
992} 1552}
993 1553
1554#if EV_FEATURE_API
994unsigned int 1555unsigned int
995ev_loop_count (EV_P) 1556ev_iteration (EV_P)
996{ 1557{
997 return loop_count; 1558 return loop_count;
998} 1559}
999 1560
1561unsigned int
1562ev_depth (EV_P)
1563{
1564 return loop_depth;
1565}
1566
1000void 1567void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1568ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1569{
1003 io_blocktime = interval; 1570 io_blocktime = interval;
1004} 1571}
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1574ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{ 1575{
1009 timeout_blocktime = interval; 1576 timeout_blocktime = interval;
1010} 1577}
1011 1578
1579void
1580ev_set_userdata (EV_P_ void *data)
1581{
1582 userdata = data;
1583}
1584
1585void *
1586ev_userdata (EV_P)
1587{
1588 return userdata;
1589}
1590
1591void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1592{
1593 invoke_cb = invoke_pending_cb;
1594}
1595
1596void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1597{
1598 release_cb = release;
1599 acquire_cb = acquire;
1600}
1601#endif
1602
1603/* initialise a loop structure, must be zero-initialised */
1012static void noinline 1604static void noinline
1013loop_init (EV_P_ unsigned int flags) 1605loop_init (EV_P_ unsigned int flags)
1014{ 1606{
1015 if (!backend) 1607 if (!backend)
1016 { 1608 {
1609#if EV_USE_REALTIME
1610 if (!have_realtime)
1611 {
1612 struct timespec ts;
1613
1614 if (!clock_gettime (CLOCK_REALTIME, &ts))
1615 have_realtime = 1;
1616 }
1617#endif
1618
1017#if EV_USE_MONOTONIC 1619#if EV_USE_MONOTONIC
1620 if (!have_monotonic)
1018 { 1621 {
1019 struct timespec ts; 1622 struct timespec ts;
1623
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1624 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1625 have_monotonic = 1;
1022 } 1626 }
1023#endif 1627#endif
1024
1025 ev_rt_now = ev_time ();
1026 mn_now = get_clock ();
1027 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now;
1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032 1628
1033 /* pid check not overridable via env */ 1629 /* pid check not overridable via env */
1034#ifndef _WIN32 1630#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1631 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1632 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1635 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1636 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1637 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1638 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1639
1640 ev_rt_now = ev_time ();
1641 mn_now = get_clock ();
1642 now_floor = mn_now;
1643 rtmn_diff = ev_rt_now - mn_now;
1644#if EV_FEATURE_API
1645 invoke_cb = ev_invoke_pending;
1646#endif
1647
1648 io_blocktime = 0.;
1649 timeout_blocktime = 0.;
1650 backend = 0;
1651 backend_fd = -1;
1652 sig_pending = 0;
1653#if EV_ASYNC_ENABLE
1654 async_pending = 0;
1655#endif
1656#if EV_USE_INOTIFY
1657 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1658#endif
1659#if EV_USE_SIGNALFD
1660 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1661#endif
1662
1044 if (!(flags & 0x0000ffffUL)) 1663 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1664 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1665
1053#if EV_USE_PORT 1666#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1668#endif
1056#if EV_USE_KQUEUE 1669#if EV_USE_KQUEUE
1064#endif 1677#endif
1065#if EV_USE_SELECT 1678#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1679 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1680#endif
1068 1681
1682 ev_prepare_init (&pending_w, pendingcb);
1683
1684#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1069 ev_init (&sigev, sigcb); 1685 ev_init (&pipe_w, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1686 ev_set_priority (&pipe_w, EV_MAXPRI);
1687#endif
1071 } 1688 }
1072} 1689}
1073 1690
1691/* free up a loop structure */
1074static void noinline 1692static void noinline
1075loop_destroy (EV_P) 1693loop_destroy (EV_P)
1076{ 1694{
1077 int i; 1695 int i;
1696
1697 if (ev_is_active (&pipe_w))
1698 {
1699 /*ev_ref (EV_A);*/
1700 /*ev_io_stop (EV_A_ &pipe_w);*/
1701
1702#if EV_USE_EVENTFD
1703 if (evfd >= 0)
1704 close (evfd);
1705#endif
1706
1707 if (evpipe [0] >= 0)
1708 {
1709 EV_WIN32_CLOSE_FD (evpipe [0]);
1710 EV_WIN32_CLOSE_FD (evpipe [1]);
1711 }
1712 }
1713
1714#if EV_USE_SIGNALFD
1715 if (ev_is_active (&sigfd_w))
1716 close (sigfd);
1717#endif
1078 1718
1079#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1720 if (fs_fd >= 0)
1081 close (fs_fd); 1721 close (fs_fd);
1082#endif 1722#endif
1106#if EV_IDLE_ENABLE 1746#if EV_IDLE_ENABLE
1107 array_free (idle, [i]); 1747 array_free (idle, [i]);
1108#endif 1748#endif
1109 } 1749 }
1110 1750
1111 ev_free (anfds); anfdmax = 0; 1751 ev_free (anfds); anfds = 0; anfdmax = 0;
1112 1752
1113 /* have to use the microsoft-never-gets-it-right macro */ 1753 /* have to use the microsoft-never-gets-it-right macro */
1754 array_free (rfeed, EMPTY);
1114 array_free (fdchange, EMPTY); 1755 array_free (fdchange, EMPTY);
1115 array_free (timer, EMPTY); 1756 array_free (timer, EMPTY);
1116#if EV_PERIODIC_ENABLE 1757#if EV_PERIODIC_ENABLE
1117 array_free (periodic, EMPTY); 1758 array_free (periodic, EMPTY);
1118#endif 1759#endif
1119#if EV_FORK_ENABLE 1760#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1761 array_free (fork, EMPTY);
1121#endif 1762#endif
1122 array_free (prepare, EMPTY); 1763 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1764 array_free (check, EMPTY);
1765#if EV_ASYNC_ENABLE
1766 array_free (async, EMPTY);
1767#endif
1124 1768
1125 backend = 0; 1769 backend = 0;
1126} 1770}
1127 1771
1772#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1773inline_size void infy_fork (EV_P);
1774#endif
1129 1775
1130void inline_size 1776inline_size void
1131loop_fork (EV_P) 1777loop_fork (EV_P)
1132{ 1778{
1133#if EV_USE_PORT 1779#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1780 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif 1781#endif
1141#endif 1787#endif
1142#if EV_USE_INOTIFY 1788#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1789 infy_fork (EV_A);
1144#endif 1790#endif
1145 1791
1146 if (ev_is_active (&sigev)) 1792 if (ev_is_active (&pipe_w))
1147 { 1793 {
1148 /* default loop */ 1794 /* this "locks" the handlers against writing to the pipe */
1795 /* while we modify the fd vars */
1796 sig_pending = 1;
1797#if EV_ASYNC_ENABLE
1798 async_pending = 1;
1799#endif
1149 1800
1150 ev_ref (EV_A); 1801 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1802 ev_io_stop (EV_A_ &pipe_w);
1152 close (sigpipe [0]);
1153 close (sigpipe [1]);
1154 1803
1155 while (pipe (sigpipe)) 1804#if EV_USE_EVENTFD
1156 syserr ("(libev) error creating pipe"); 1805 if (evfd >= 0)
1806 close (evfd);
1807#endif
1157 1808
1809 if (evpipe [0] >= 0)
1810 {
1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1813 }
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1158 siginit (EV_A); 1816 evpipe_init (EV_A);
1817 /* now iterate over everything, in case we missed something */
1818 pipecb (EV_A_ &pipe_w, EV_READ);
1819#endif
1159 } 1820 }
1160 1821
1161 postfork = 0; 1822 postfork = 0;
1162} 1823}
1163 1824
1164#if EV_MULTIPLICITY 1825#if EV_MULTIPLICITY
1826
1165struct ev_loop * 1827struct ev_loop *
1166ev_loop_new (unsigned int flags) 1828ev_loop_new (unsigned int flags)
1167{ 1829{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1830 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1831
1170 memset (loop, 0, sizeof (struct ev_loop)); 1832 memset (EV_A, 0, sizeof (struct ev_loop));
1171
1172 loop_init (EV_A_ flags); 1833 loop_init (EV_A_ flags);
1173 1834
1174 if (ev_backend (EV_A)) 1835 if (ev_backend (EV_A))
1175 return loop; 1836 return EV_A;
1176 1837
1177 return 0; 1838 return 0;
1178} 1839}
1179 1840
1180void 1841void
1185} 1846}
1186 1847
1187void 1848void
1188ev_loop_fork (EV_P) 1849ev_loop_fork (EV_P)
1189{ 1850{
1190 postfork = 1; 1851 postfork = 1; /* must be in line with ev_default_fork */
1191} 1852}
1853#endif /* multiplicity */
1192 1854
1855#if EV_VERIFY
1856static void noinline
1857verify_watcher (EV_P_ W w)
1858{
1859 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1860
1861 if (w->pending)
1862 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1863}
1864
1865static void noinline
1866verify_heap (EV_P_ ANHE *heap, int N)
1867{
1868 int i;
1869
1870 for (i = HEAP0; i < N + HEAP0; ++i)
1871 {
1872 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1873 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1874 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1875
1876 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1877 }
1878}
1879
1880static void noinline
1881array_verify (EV_P_ W *ws, int cnt)
1882{
1883 while (cnt--)
1884 {
1885 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1886 verify_watcher (EV_A_ ws [cnt]);
1887 }
1888}
1889#endif
1890
1891#if EV_FEATURE_API
1892void
1893ev_verify (EV_P)
1894{
1895#if EV_VERIFY
1896 int i;
1897 WL w;
1898
1899 assert (activecnt >= -1);
1900
1901 assert (fdchangemax >= fdchangecnt);
1902 for (i = 0; i < fdchangecnt; ++i)
1903 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1904
1905 assert (anfdmax >= 0);
1906 for (i = 0; i < anfdmax; ++i)
1907 for (w = anfds [i].head; w; w = w->next)
1908 {
1909 verify_watcher (EV_A_ (W)w);
1910 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1911 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1912 }
1913
1914 assert (timermax >= timercnt);
1915 verify_heap (EV_A_ timers, timercnt);
1916
1917#if EV_PERIODIC_ENABLE
1918 assert (periodicmax >= periodiccnt);
1919 verify_heap (EV_A_ periodics, periodiccnt);
1920#endif
1921
1922 for (i = NUMPRI; i--; )
1923 {
1924 assert (pendingmax [i] >= pendingcnt [i]);
1925#if EV_IDLE_ENABLE
1926 assert (idleall >= 0);
1927 assert (idlemax [i] >= idlecnt [i]);
1928 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1929#endif
1930 }
1931
1932#if EV_FORK_ENABLE
1933 assert (forkmax >= forkcnt);
1934 array_verify (EV_A_ (W *)forks, forkcnt);
1935#endif
1936
1937#if EV_ASYNC_ENABLE
1938 assert (asyncmax >= asynccnt);
1939 array_verify (EV_A_ (W *)asyncs, asynccnt);
1940#endif
1941
1942#if EV_PREPARE_ENABLE
1943 assert (preparemax >= preparecnt);
1944 array_verify (EV_A_ (W *)prepares, preparecnt);
1945#endif
1946
1947#if EV_CHECK_ENABLE
1948 assert (checkmax >= checkcnt);
1949 array_verify (EV_A_ (W *)checks, checkcnt);
1950#endif
1951
1952# if 0
1953#if EV_CHILD_ENABLE
1954 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1955 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1956#endif
1957# endif
1958#endif
1959}
1193#endif 1960#endif
1194 1961
1195#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1196struct ev_loop * 1963struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1964ev_default_loop_init (unsigned int flags)
1198#else 1965#else
1199int 1966int
1200ev_default_loop (unsigned int flags) 1967ev_default_loop (unsigned int flags)
1201#endif 1968#endif
1202{ 1969{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1970 if (!ev_default_loop_ptr)
1208 { 1971 {
1209#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1973 EV_P = ev_default_loop_ptr = &default_loop_struct;
1211#else 1974#else
1212 ev_default_loop_ptr = 1; 1975 ev_default_loop_ptr = 1;
1213#endif 1976#endif
1214 1977
1215 loop_init (EV_A_ flags); 1978 loop_init (EV_A_ flags);
1216 1979
1217 if (ev_backend (EV_A)) 1980 if (ev_backend (EV_A))
1218 { 1981 {
1219 siginit (EV_A); 1982#if EV_CHILD_ENABLE
1220
1221#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1983 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1984 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1985 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1986 ev_unref (EV_A); /* child watcher should not keep loop alive */
1226#endif 1987#endif
1234 1995
1235void 1996void
1236ev_default_destroy (void) 1997ev_default_destroy (void)
1237{ 1998{
1238#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1239 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1240#endif 2001#endif
1241 2002
1242#ifndef _WIN32 2003 ev_default_loop_ptr = 0;
2004
2005#if EV_CHILD_ENABLE
1243 ev_ref (EV_A); /* child watcher */ 2006 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 2007 ev_signal_stop (EV_A_ &childev);
1245#endif 2008#endif
1246 2009
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 2010 loop_destroy (EV_A);
1254} 2011}
1255 2012
1256void 2013void
1257ev_default_fork (void) 2014ev_default_fork (void)
1258{ 2015{
1259#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 2017 EV_P = ev_default_loop_ptr;
1261#endif 2018#endif
1262 2019
1263 if (backend) 2020 postfork = 1; /* must be in line with ev_loop_fork */
1264 postfork = 1;
1265} 2021}
1266 2022
1267/*****************************************************************************/ 2023/*****************************************************************************/
1268 2024
1269void 2025void
1270ev_invoke (EV_P_ void *w, int revents) 2026ev_invoke (EV_P_ void *w, int revents)
1271{ 2027{
1272 EV_CB_INVOKE ((W)w, revents); 2028 EV_CB_INVOKE ((W)w, revents);
1273} 2029}
1274 2030
1275void inline_speed 2031unsigned int
1276call_pending (EV_P) 2032ev_pending_count (EV_P)
2033{
2034 int pri;
2035 unsigned int count = 0;
2036
2037 for (pri = NUMPRI; pri--; )
2038 count += pendingcnt [pri];
2039
2040 return count;
2041}
2042
2043void noinline
2044ev_invoke_pending (EV_P)
1277{ 2045{
1278 int pri; 2046 int pri;
1279 2047
1280 for (pri = NUMPRI; pri--; ) 2048 for (pri = NUMPRI; pri--; )
1281 while (pendingcnt [pri]) 2049 while (pendingcnt [pri])
1282 { 2050 {
1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2051 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1284 2052
1285 if (expect_true (p->w))
1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2053 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2054 /* ^ this is no longer true, as pending_w could be here */
1288 2055
1289 p->w->pending = 0; 2056 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 2057 EV_CB_INVOKE (p->w, p->events);
1291 } 2058 EV_FREQUENT_CHECK;
1292 } 2059 }
1293} 2060}
1294 2061
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374
1375#if EV_IDLE_ENABLE 2062#if EV_IDLE_ENABLE
1376void inline_size 2063/* make idle watchers pending. this handles the "call-idle */
2064/* only when higher priorities are idle" logic */
2065inline_size void
1377idle_reify (EV_P) 2066idle_reify (EV_P)
1378{ 2067{
1379 if (expect_false (idleall)) 2068 if (expect_false (idleall))
1380 { 2069 {
1381 int pri; 2070 int pri;
1393 } 2082 }
1394 } 2083 }
1395} 2084}
1396#endif 2085#endif
1397 2086
1398void inline_speed 2087/* make timers pending */
2088inline_size void
2089timers_reify (EV_P)
2090{
2091 EV_FREQUENT_CHECK;
2092
2093 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2094 {
2095 do
2096 {
2097 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2098
2099 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2100
2101 /* first reschedule or stop timer */
2102 if (w->repeat)
2103 {
2104 ev_at (w) += w->repeat;
2105 if (ev_at (w) < mn_now)
2106 ev_at (w) = mn_now;
2107
2108 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2109
2110 ANHE_at_cache (timers [HEAP0]);
2111 downheap (timers, timercnt, HEAP0);
2112 }
2113 else
2114 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2115
2116 EV_FREQUENT_CHECK;
2117 feed_reverse (EV_A_ (W)w);
2118 }
2119 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2120
2121 feed_reverse_done (EV_A_ EV_TIMER);
2122 }
2123}
2124
2125#if EV_PERIODIC_ENABLE
2126/* make periodics pending */
2127inline_size void
2128periodics_reify (EV_P)
2129{
2130 EV_FREQUENT_CHECK;
2131
2132 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2133 {
2134 int feed_count = 0;
2135
2136 do
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2139
2140 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2141
2142 /* first reschedule or stop timer */
2143 if (w->reschedule_cb)
2144 {
2145 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2146
2147 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2148
2149 ANHE_at_cache (periodics [HEAP0]);
2150 downheap (periodics, periodiccnt, HEAP0);
2151 }
2152 else if (w->interval)
2153 {
2154 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2155 /* if next trigger time is not sufficiently in the future, put it there */
2156 /* this might happen because of floating point inexactness */
2157 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2158 {
2159 ev_at (w) += w->interval;
2160
2161 /* if interval is unreasonably low we might still have a time in the past */
2162 /* so correct this. this will make the periodic very inexact, but the user */
2163 /* has effectively asked to get triggered more often than possible */
2164 if (ev_at (w) < ev_rt_now)
2165 ev_at (w) = ev_rt_now;
2166 }
2167
2168 ANHE_at_cache (periodics [HEAP0]);
2169 downheap (periodics, periodiccnt, HEAP0);
2170 }
2171 else
2172 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2173
2174 EV_FREQUENT_CHECK;
2175 feed_reverse (EV_A_ (W)w);
2176 }
2177 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2178
2179 feed_reverse_done (EV_A_ EV_PERIODIC);
2180 }
2181}
2182
2183/* simply recalculate all periodics */
2184/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2185static void noinline
2186periodics_reschedule (EV_P)
2187{
2188 int i;
2189
2190 /* adjust periodics after time jump */
2191 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2192 {
2193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2194
2195 if (w->reschedule_cb)
2196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2197 else if (w->interval)
2198 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2199
2200 ANHE_at_cache (periodics [i]);
2201 }
2202
2203 reheap (periodics, periodiccnt);
2204}
2205#endif
2206
2207/* adjust all timers by a given offset */
2208static void noinline
2209timers_reschedule (EV_P_ ev_tstamp adjust)
2210{
2211 int i;
2212
2213 for (i = 0; i < timercnt; ++i)
2214 {
2215 ANHE *he = timers + i + HEAP0;
2216 ANHE_w (*he)->at += adjust;
2217 ANHE_at_cache (*he);
2218 }
2219}
2220
2221/* fetch new monotonic and realtime times from the kernel */
2222/* also detect if there was a timejump, and act accordingly */
2223inline_speed void
1399time_update (EV_P_ ev_tstamp max_block) 2224time_update (EV_P_ ev_tstamp max_block)
1400{ 2225{
1401 int i;
1402
1403#if EV_USE_MONOTONIC 2226#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic)) 2227 if (expect_true (have_monotonic))
1405 { 2228 {
2229 int i;
1406 ev_tstamp odiff = rtmn_diff; 2230 ev_tstamp odiff = rtmn_diff;
1407 2231
1408 mn_now = get_clock (); 2232 mn_now = get_clock ();
1409 2233
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2234 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1428 */ 2252 */
1429 for (i = 4; --i; ) 2253 for (i = 4; --i; )
1430 { 2254 {
1431 rtmn_diff = ev_rt_now - mn_now; 2255 rtmn_diff = ev_rt_now - mn_now;
1432 2256
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2257 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 2258 return; /* all is well */
1435 2259
1436 ev_rt_now = ev_time (); 2260 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 2261 mn_now = get_clock ();
1438 now_floor = mn_now; 2262 now_floor = mn_now;
1439 } 2263 }
1440 2264
2265 /* no timer adjustment, as the monotonic clock doesn't jump */
2266 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1441# if EV_PERIODIC_ENABLE 2267# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A); 2268 periodics_reschedule (EV_A);
1443# endif 2269# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 } 2270 }
1447 else 2271 else
1448#endif 2272#endif
1449 { 2273 {
1450 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1451 2275
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2276 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 { 2277 {
2278 /* adjust timers. this is easy, as the offset is the same for all of them */
2279 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1454#if EV_PERIODIC_ENABLE 2280#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2281 periodics_reschedule (EV_A);
1456#endif 2282#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i)
1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1460 } 2283 }
1461 2284
1462 mn_now = ev_rt_now; 2285 mn_now = ev_rt_now;
1463 } 2286 }
1464} 2287}
1465 2288
1466void 2289void
1467ev_ref (EV_P)
1468{
1469 ++activecnt;
1470}
1471
1472void
1473ev_unref (EV_P)
1474{
1475 --activecnt;
1476}
1477
1478static int loop_done;
1479
1480void
1481ev_loop (EV_P_ int flags) 2290ev_loop (EV_P_ int flags)
1482{ 2291{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2292#if EV_FEATURE_API
1484 ? EVUNLOOP_ONE 2293 ++loop_depth;
1485 : EVUNLOOP_CANCEL; 2294#endif
1486 2295
2296 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2297
2298 loop_done = EVUNLOOP_CANCEL;
2299
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2300 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1488 2301
1489 do 2302 do
1490 { 2303 {
2304#if EV_VERIFY >= 2
2305 ev_verify (EV_A);
2306#endif
2307
1491#ifndef _WIN32 2308#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 2309 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 2310 if (expect_false (getpid () != curpid))
1494 { 2311 {
1495 curpid = getpid (); 2312 curpid = getpid ();
1501 /* we might have forked, so queue fork handlers */ 2318 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork)) 2319 if (expect_false (postfork))
1503 if (forkcnt) 2320 if (forkcnt)
1504 { 2321 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2322 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A); 2323 EV_INVOKE_PENDING;
1507 } 2324 }
1508#endif 2325#endif
1509 2326
2327#if EV_PREPARE_ENABLE
1510 /* queue prepare watchers (and execute them) */ 2328 /* queue prepare watchers (and execute them) */
1511 if (expect_false (preparecnt)) 2329 if (expect_false (preparecnt))
1512 { 2330 {
1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2331 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1514 call_pending (EV_A); 2332 EV_INVOKE_PENDING;
1515 } 2333 }
2334#endif
1516 2335
1517 if (expect_false (!activecnt)) 2336 if (expect_false (loop_done))
1518 break; 2337 break;
1519 2338
1520 /* we might have forked, so reify kernel state if necessary */ 2339 /* we might have forked, so reify kernel state if necessary */
1521 if (expect_false (postfork)) 2340 if (expect_false (postfork))
1522 loop_fork (EV_A); 2341 loop_fork (EV_A);
1529 ev_tstamp waittime = 0.; 2348 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.; 2349 ev_tstamp sleeptime = 0.;
1531 2350
1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2351 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1533 { 2352 {
2353 /* remember old timestamp for io_blocktime calculation */
2354 ev_tstamp prev_mn_now = mn_now;
2355
1534 /* update time to cancel out callback processing overhead */ 2356 /* update time to cancel out callback processing overhead */
1535 time_update (EV_A_ 1e100); 2357 time_update (EV_A_ 1e100);
1536 2358
1537 waittime = MAX_BLOCKTIME; 2359 waittime = MAX_BLOCKTIME;
1538 2360
1539 if (timercnt) 2361 if (timercnt)
1540 { 2362 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2363 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 2364 if (waittime > to) waittime = to;
1543 } 2365 }
1544 2366
1545#if EV_PERIODIC_ENABLE 2367#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2368 if (periodiccnt)
1547 { 2369 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 2371 if (waittime > to) waittime = to;
1550 } 2372 }
1551#endif 2373#endif
1552 2374
2375 /* don't let timeouts decrease the waittime below timeout_blocktime */
1553 if (expect_false (waittime < timeout_blocktime)) 2376 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime; 2377 waittime = timeout_blocktime;
1555 2378
1556 sleeptime = waittime - backend_fudge; 2379 /* extra check because io_blocktime is commonly 0 */
1557
1558 if (expect_true (sleeptime > io_blocktime)) 2380 if (expect_false (io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 { 2381 {
2382 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2383
2384 if (sleeptime > waittime - backend_fudge)
2385 sleeptime = waittime - backend_fudge;
2386
2387 if (expect_true (sleeptime > 0.))
2388 {
1563 ev_sleep (sleeptime); 2389 ev_sleep (sleeptime);
1564 waittime -= sleeptime; 2390 waittime -= sleeptime;
2391 }
1565 } 2392 }
1566 } 2393 }
1567 2394
2395#if EV_FEATURE_API
1568 ++loop_count; 2396 ++loop_count;
2397#endif
2398 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1569 backend_poll (EV_A_ waittime); 2399 backend_poll (EV_A_ waittime);
2400 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1570 2401
1571 /* update ev_rt_now, do magic */ 2402 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime); 2403 time_update (EV_A_ waittime + sleeptime);
1573 } 2404 }
1574 2405
1581#if EV_IDLE_ENABLE 2412#if EV_IDLE_ENABLE
1582 /* queue idle watchers unless other events are pending */ 2413 /* queue idle watchers unless other events are pending */
1583 idle_reify (EV_A); 2414 idle_reify (EV_A);
1584#endif 2415#endif
1585 2416
2417#if EV_CHECK_ENABLE
1586 /* queue check watchers, to be executed first */ 2418 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2419 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2420 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2421#endif
1589 2422
1590 call_pending (EV_A); 2423 EV_INVOKE_PENDING;
1591
1592 } 2424 }
1593 while (expect_true (activecnt && !loop_done)); 2425 while (expect_true (
2426 activecnt
2427 && !loop_done
2428 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2429 ));
1594 2430
1595 if (loop_done == EVUNLOOP_ONE) 2431 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2432 loop_done = EVUNLOOP_CANCEL;
2433
2434#if EV_FEATURE_API
2435 --loop_depth;
2436#endif
1597} 2437}
1598 2438
1599void 2439void
1600ev_unloop (EV_P_ int how) 2440ev_unloop (EV_P_ int how)
1601{ 2441{
1602 loop_done = how; 2442 loop_done = how;
1603} 2443}
1604 2444
2445void
2446ev_ref (EV_P)
2447{
2448 ++activecnt;
2449}
2450
2451void
2452ev_unref (EV_P)
2453{
2454 --activecnt;
2455}
2456
2457void
2458ev_now_update (EV_P)
2459{
2460 time_update (EV_A_ 1e100);
2461}
2462
2463void
2464ev_suspend (EV_P)
2465{
2466 ev_now_update (EV_A);
2467}
2468
2469void
2470ev_resume (EV_P)
2471{
2472 ev_tstamp mn_prev = mn_now;
2473
2474 ev_now_update (EV_A);
2475 timers_reschedule (EV_A_ mn_now - mn_prev);
2476#if EV_PERIODIC_ENABLE
2477 /* TODO: really do this? */
2478 periodics_reschedule (EV_A);
2479#endif
2480}
2481
1605/*****************************************************************************/ 2482/*****************************************************************************/
2483/* singly-linked list management, used when the expected list length is short */
1606 2484
1607void inline_size 2485inline_size void
1608wlist_add (WL *head, WL elem) 2486wlist_add (WL *head, WL elem)
1609{ 2487{
1610 elem->next = *head; 2488 elem->next = *head;
1611 *head = elem; 2489 *head = elem;
1612} 2490}
1613 2491
1614void inline_size 2492inline_size void
1615wlist_del (WL *head, WL elem) 2493wlist_del (WL *head, WL elem)
1616{ 2494{
1617 while (*head) 2495 while (*head)
1618 { 2496 {
1619 if (*head == elem) 2497 if (expect_true (*head == elem))
1620 { 2498 {
1621 *head = elem->next; 2499 *head = elem->next;
1622 return; 2500 break;
1623 } 2501 }
1624 2502
1625 head = &(*head)->next; 2503 head = &(*head)->next;
1626 } 2504 }
1627} 2505}
1628 2506
1629void inline_speed 2507/* internal, faster, version of ev_clear_pending */
2508inline_speed void
1630clear_pending (EV_P_ W w) 2509clear_pending (EV_P_ W w)
1631{ 2510{
1632 if (w->pending) 2511 if (w->pending)
1633 { 2512 {
1634 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2513 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1635 w->pending = 0; 2514 w->pending = 0;
1636 } 2515 }
1637} 2516}
1638 2517
1639int 2518int
1643 int pending = w_->pending; 2522 int pending = w_->pending;
1644 2523
1645 if (expect_true (pending)) 2524 if (expect_true (pending))
1646 { 2525 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2526 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2527 p->w = (W)&pending_w;
1648 w_->pending = 0; 2528 w_->pending = 0;
1649 p->w = 0;
1650 return p->events; 2529 return p->events;
1651 } 2530 }
1652 else 2531 else
1653 return 0; 2532 return 0;
1654} 2533}
1655 2534
1656void inline_size 2535inline_size void
1657pri_adjust (EV_P_ W w) 2536pri_adjust (EV_P_ W w)
1658{ 2537{
1659 int pri = w->priority; 2538 int pri = ev_priority (w);
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2539 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2540 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri; 2541 ev_set_priority (w, pri);
1663} 2542}
1664 2543
1665void inline_speed 2544inline_speed void
1666ev_start (EV_P_ W w, int active) 2545ev_start (EV_P_ W w, int active)
1667{ 2546{
1668 pri_adjust (EV_A_ w); 2547 pri_adjust (EV_A_ w);
1669 w->active = active; 2548 w->active = active;
1670 ev_ref (EV_A); 2549 ev_ref (EV_A);
1671} 2550}
1672 2551
1673void inline_size 2552inline_size void
1674ev_stop (EV_P_ W w) 2553ev_stop (EV_P_ W w)
1675{ 2554{
1676 ev_unref (EV_A); 2555 ev_unref (EV_A);
1677 w->active = 0; 2556 w->active = 0;
1678} 2557}
1685 int fd = w->fd; 2564 int fd = w->fd;
1686 2565
1687 if (expect_false (ev_is_active (w))) 2566 if (expect_false (ev_is_active (w)))
1688 return; 2567 return;
1689 2568
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2569 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2570 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2571
2572 EV_FREQUENT_CHECK;
1691 2573
1692 ev_start (EV_A_ (W)w, 1); 2574 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2575 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2576 wlist_add (&anfds[fd].head, (WL)w);
1695 2577
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2578 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1697 w->events &= ~EV_IOFDSET; 2579 w->events &= ~EV__IOFDSET;
2580
2581 EV_FREQUENT_CHECK;
1698} 2582}
1699 2583
1700void noinline 2584void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2585ev_io_stop (EV_P_ ev_io *w)
1702{ 2586{
1703 clear_pending (EV_A_ (W)w); 2587 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2588 if (expect_false (!ev_is_active (w)))
1705 return; 2589 return;
1706 2590
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2591 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2592
2593 EV_FREQUENT_CHECK;
1708 2594
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2595 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1711 2597
1712 fd_change (EV_A_ w->fd, 1); 2598 fd_change (EV_A_ w->fd, 1);
2599
2600 EV_FREQUENT_CHECK;
1713} 2601}
1714 2602
1715void noinline 2603void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2604ev_timer_start (EV_P_ ev_timer *w)
1717{ 2605{
1718 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
1719 return; 2607 return;
1720 2608
1721 ((WT)w)->at += mn_now; 2609 ev_at (w) += mn_now;
1722 2610
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2611 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2612
2613 EV_FREQUENT_CHECK;
2614
2615 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2616 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2617 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2618 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2619 ANHE_at_cache (timers [ev_active (w)]);
2620 upheap (timers, ev_active (w));
1729 2621
2622 EV_FREQUENT_CHECK;
2623
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2624 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2625}
1732 2626
1733void noinline 2627void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2628ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2629{
1736 clear_pending (EV_A_ (W)w); 2630 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2631 if (expect_false (!ev_is_active (w)))
1738 return; 2632 return;
1739 2633
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2634 EV_FREQUENT_CHECK;
1741 2635
1742 { 2636 {
1743 int active = ((W)w)->active; 2637 int active = ev_active (w);
1744 2638
2639 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2640
2641 --timercnt;
2642
1745 if (expect_true (--active < --timercnt)) 2643 if (expect_true (active < timercnt + HEAP0))
1746 { 2644 {
1747 timers [active] = timers [timercnt]; 2645 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2646 adjustheap (timers, timercnt, active);
1749 } 2647 }
1750 } 2648 }
1751 2649
1752 ((WT)w)->at -= mn_now; 2650 ev_at (w) -= mn_now;
1753 2651
1754 ev_stop (EV_A_ (W)w); 2652 ev_stop (EV_A_ (W)w);
2653
2654 EV_FREQUENT_CHECK;
1755} 2655}
1756 2656
1757void noinline 2657void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2658ev_timer_again (EV_P_ ev_timer *w)
1759{ 2659{
2660 EV_FREQUENT_CHECK;
2661
1760 if (ev_is_active (w)) 2662 if (ev_is_active (w))
1761 { 2663 {
1762 if (w->repeat) 2664 if (w->repeat)
1763 { 2665 {
1764 ((WT)w)->at = mn_now + w->repeat; 2666 ev_at (w) = mn_now + w->repeat;
2667 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2668 adjustheap (timers, timercnt, ev_active (w));
1766 } 2669 }
1767 else 2670 else
1768 ev_timer_stop (EV_A_ w); 2671 ev_timer_stop (EV_A_ w);
1769 } 2672 }
1770 else if (w->repeat) 2673 else if (w->repeat)
1771 { 2674 {
1772 w->at = w->repeat; 2675 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2676 ev_timer_start (EV_A_ w);
1774 } 2677 }
2678
2679 EV_FREQUENT_CHECK;
2680}
2681
2682ev_tstamp
2683ev_timer_remaining (EV_P_ ev_timer *w)
2684{
2685 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1775} 2686}
1776 2687
1777#if EV_PERIODIC_ENABLE 2688#if EV_PERIODIC_ENABLE
1778void noinline 2689void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2690ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2691{
1781 if (expect_false (ev_is_active (w))) 2692 if (expect_false (ev_is_active (w)))
1782 return; 2693 return;
1783 2694
1784 if (w->reschedule_cb) 2695 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2697 else if (w->interval)
1787 { 2698 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2699 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2700 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2701 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2702 }
1792 else 2703 else
1793 ((WT)w)->at = w->offset; 2704 ev_at (w) = w->offset;
1794 2705
2706 EV_FREQUENT_CHECK;
2707
2708 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2709 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2710 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2711 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2712 ANHE_at_cache (periodics [ev_active (w)]);
2713 upheap (periodics, ev_active (w));
1799 2714
2715 EV_FREQUENT_CHECK;
2716
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2717 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2718}
1802 2719
1803void noinline 2720void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2721ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2722{
1806 clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1808 return; 2725 return;
1809 2726
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2727 EV_FREQUENT_CHECK;
1811 2728
1812 { 2729 {
1813 int active = ((W)w)->active; 2730 int active = ev_active (w);
1814 2731
2732 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2733
2734 --periodiccnt;
2735
1815 if (expect_true (--active < --periodiccnt)) 2736 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2737 {
1817 periodics [active] = periodics [periodiccnt]; 2738 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2739 adjustheap (periodics, periodiccnt, active);
1819 } 2740 }
1820 } 2741 }
1821 2742
1822 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
2744
2745 EV_FREQUENT_CHECK;
1823} 2746}
1824 2747
1825void noinline 2748void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2749ev_periodic_again (EV_P_ ev_periodic *w)
1827{ 2750{
1833 2756
1834#ifndef SA_RESTART 2757#ifndef SA_RESTART
1835# define SA_RESTART 0 2758# define SA_RESTART 0
1836#endif 2759#endif
1837 2760
2761#if EV_SIGNAL_ENABLE
2762
1838void noinline 2763void noinline
1839ev_signal_start (EV_P_ ev_signal *w) 2764ev_signal_start (EV_P_ ev_signal *w)
1840{ 2765{
1841#if EV_MULTIPLICITY
1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1843#endif
1844 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
1845 return; 2767 return;
1846 2768
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2769 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1848 2770
2771#if EV_MULTIPLICITY
2772 assert (("libev: a signal must not be attached to two different loops",
2773 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2774
2775 signals [w->signum - 1].loop = EV_A;
2776#endif
2777
2778 EV_FREQUENT_CHECK;
2779
2780#if EV_USE_SIGNALFD
2781 if (sigfd == -2)
1849 { 2782 {
1850#ifndef _WIN32 2783 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1851 sigset_t full, prev; 2784 if (sigfd < 0 && errno == EINVAL)
1852 sigfillset (&full); 2785 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855 2786
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2787 if (sigfd >= 0)
2788 {
2789 fd_intern (sigfd); /* doing it twice will not hurt */
1857 2790
1858#ifndef _WIN32 2791 sigemptyset (&sigfd_set);
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2792
1860#endif 2793 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2794 ev_set_priority (&sigfd_w, EV_MAXPRI);
2795 ev_io_start (EV_A_ &sigfd_w);
2796 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2797 }
1861 } 2798 }
2799
2800 if (sigfd >= 0)
2801 {
2802 /* TODO: check .head */
2803 sigaddset (&sigfd_set, w->signum);
2804 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2805
2806 signalfd (sigfd, &sigfd_set, 0);
2807 }
2808#endif
1862 2809
1863 ev_start (EV_A_ (W)w, 1); 2810 ev_start (EV_A_ (W)w, 1);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2811 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2812
1866 if (!((WL)w)->next) 2813 if (!((WL)w)->next)
2814# if EV_USE_SIGNALFD
2815 if (sigfd < 0) /*TODO*/
2816# endif
1867 { 2817 {
1868#if _WIN32 2818# ifdef _WIN32
2819 evpipe_init (EV_A);
2820
1869 signal (w->signum, sighandler); 2821 signal (w->signum, ev_sighandler);
1870#else 2822# else
1871 struct sigaction sa; 2823 struct sigaction sa;
2824
2825 evpipe_init (EV_A);
2826
1872 sa.sa_handler = sighandler; 2827 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2828 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2829 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2830 sigaction (w->signum, &sa, 0);
2831
2832 sigemptyset (&sa.sa_mask);
2833 sigaddset (&sa.sa_mask, w->signum);
2834 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1876#endif 2835#endif
1877 } 2836 }
2837
2838 EV_FREQUENT_CHECK;
1878} 2839}
1879 2840
1880void noinline 2841void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2842ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2843{
1883 clear_pending (EV_A_ (W)w); 2844 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2845 if (expect_false (!ev_is_active (w)))
1885 return; 2846 return;
1886 2847
2848 EV_FREQUENT_CHECK;
2849
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2850 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2851 ev_stop (EV_A_ (W)w);
1889 2852
1890 if (!signals [w->signum - 1].head) 2853 if (!signals [w->signum - 1].head)
2854 {
2855#if EV_MULTIPLICITY
2856 signals [w->signum - 1].loop = 0; /* unattach from signal */
2857#endif
2858#if EV_USE_SIGNALFD
2859 if (sigfd >= 0)
2860 {
2861 sigset_t ss;
2862
2863 sigemptyset (&ss);
2864 sigaddset (&ss, w->signum);
2865 sigdelset (&sigfd_set, w->signum);
2866
2867 signalfd (sigfd, &sigfd_set, 0);
2868 sigprocmask (SIG_UNBLOCK, &ss, 0);
2869 }
2870 else
2871#endif
1891 signal (w->signum, SIG_DFL); 2872 signal (w->signum, SIG_DFL);
2873 }
2874
2875 EV_FREQUENT_CHECK;
1892} 2876}
2877
2878#endif
2879
2880#if EV_CHILD_ENABLE
1893 2881
1894void 2882void
1895ev_child_start (EV_P_ ev_child *w) 2883ev_child_start (EV_P_ ev_child *w)
1896{ 2884{
1897#if EV_MULTIPLICITY 2885#if EV_MULTIPLICITY
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2886 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2887#endif
1900 if (expect_false (ev_is_active (w))) 2888 if (expect_false (ev_is_active (w)))
1901 return; 2889 return;
1902 2890
2891 EV_FREQUENT_CHECK;
2892
1903 ev_start (EV_A_ (W)w, 1); 2893 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2894 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2895
2896 EV_FREQUENT_CHECK;
1905} 2897}
1906 2898
1907void 2899void
1908ev_child_stop (EV_P_ ev_child *w) 2900ev_child_stop (EV_P_ ev_child *w)
1909{ 2901{
1910 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
1912 return; 2904 return;
1913 2905
2906 EV_FREQUENT_CHECK;
2907
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2908 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2909 ev_stop (EV_A_ (W)w);
2910
2911 EV_FREQUENT_CHECK;
1916} 2912}
2913
2914#endif
1917 2915
1918#if EV_STAT_ENABLE 2916#if EV_STAT_ENABLE
1919 2917
1920# ifdef _WIN32 2918# ifdef _WIN32
1921# undef lstat 2919# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 2920# define lstat(a,b) _stati64 (a,b)
1923# endif 2921# endif
1924 2922
1925#define DEF_STAT_INTERVAL 5.0074891 2923#define DEF_STAT_INTERVAL 5.0074891
2924#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 2925#define MIN_STAT_INTERVAL 0.1074891
1927 2926
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2927static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 2928
1930#if EV_USE_INOTIFY 2929#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 2930
2931/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2932# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1932 2933
1933static void noinline 2934static void noinline
1934infy_add (EV_P_ ev_stat *w) 2935infy_add (EV_P_ ev_stat *w)
1935{ 2936{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2937 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 2938
1938 if (w->wd < 0) 2939 if (w->wd >= 0)
2940 {
2941 struct statfs sfs;
2942
2943 /* now local changes will be tracked by inotify, but remote changes won't */
2944 /* unless the filesystem is known to be local, we therefore still poll */
2945 /* also do poll on <2.6.25, but with normal frequency */
2946
2947 if (!fs_2625)
2948 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2949 else if (!statfs (w->path, &sfs)
2950 && (sfs.f_type == 0x1373 /* devfs */
2951 || sfs.f_type == 0xEF53 /* ext2/3 */
2952 || sfs.f_type == 0x3153464a /* jfs */
2953 || sfs.f_type == 0x52654973 /* reiser3 */
2954 || sfs.f_type == 0x01021994 /* tempfs */
2955 || sfs.f_type == 0x58465342 /* xfs */))
2956 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2957 else
2958 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1939 { 2959 }
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2960 else
2961 {
2962 /* can't use inotify, continue to stat */
2963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1941 2964
1942 /* monitor some parent directory for speedup hints */ 2965 /* if path is not there, monitor some parent directory for speedup hints */
2966 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2967 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2968 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2969 {
1945 char path [4096]; 2970 char path [4096];
1946 strcpy (path, w->path); 2971 strcpy (path, w->path);
1947 2972
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2975 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2976 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952 2977
1953 char *pend = strrchr (path, '/'); 2978 char *pend = strrchr (path, '/');
1954 2979
1955 if (!pend) 2980 if (!pend || pend == path)
1956 break; /* whoops, no '/', complain to your admin */ 2981 break;
1957 2982
1958 *pend = 0; 2983 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask); 2984 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 } 2985 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2986 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 2987 }
1963 } 2988 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966 2989
1967 if (w->wd >= 0) 2990 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2991 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2992
2993 /* now re-arm timer, if required */
2994 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2995 ev_timer_again (EV_A_ &w->timer);
2996 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1969} 2997}
1970 2998
1971static void noinline 2999static void noinline
1972infy_del (EV_P_ ev_stat *w) 3000infy_del (EV_P_ ev_stat *w)
1973{ 3001{
1976 3004
1977 if (wd < 0) 3005 if (wd < 0)
1978 return; 3006 return;
1979 3007
1980 w->wd = -2; 3008 w->wd = -2;
1981 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3009 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1982 wlist_del (&fs_hash [slot].head, (WL)w); 3010 wlist_del (&fs_hash [slot].head, (WL)w);
1983 3011
1984 /* remove this watcher, if others are watching it, they will rearm */ 3012 /* remove this watcher, if others are watching it, they will rearm */
1985 inotify_rm_watch (fs_fd, wd); 3013 inotify_rm_watch (fs_fd, wd);
1986} 3014}
1987 3015
1988static void noinline 3016static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3017infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 3018{
1991 if (slot < 0) 3019 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 3020 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3021 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 3022 infy_wd (EV_A_ slot, wd, ev);
1995 else 3023 else
1996 { 3024 {
1997 WL w_; 3025 WL w_;
1998 3026
1999 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3027 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2000 { 3028 {
2001 ev_stat *w = (ev_stat *)w_; 3029 ev_stat *w = (ev_stat *)w_;
2002 w_ = w_->next; /* lets us remove this watcher and all before it */ 3030 w_ = w_->next; /* lets us remove this watcher and all before it */
2003 3031
2004 if (w->wd == wd || wd == -1) 3032 if (w->wd == wd || wd == -1)
2005 { 3033 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3034 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 { 3035 {
3036 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2008 w->wd = -1; 3037 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */ 3038 infy_add (EV_A_ w); /* re-add, no matter what */
2010 } 3039 }
2011 3040
2012 stat_timer_cb (EV_A_ &w->timer, 0); 3041 stat_timer_cb (EV_A_ &w->timer, 0);
2017 3046
2018static void 3047static void
2019infy_cb (EV_P_ ev_io *w, int revents) 3048infy_cb (EV_P_ ev_io *w, int revents)
2020{ 3049{
2021 char buf [EV_INOTIFY_BUFSIZE]; 3050 char buf [EV_INOTIFY_BUFSIZE];
2022 struct inotify_event *ev = (struct inotify_event *)buf;
2023 int ofs; 3051 int ofs;
2024 int len = read (fs_fd, buf, sizeof (buf)); 3052 int len = read (fs_fd, buf, sizeof (buf));
2025 3053
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3054 for (ofs = 0; ofs < len; )
3055 {
3056 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3057 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3058 ofs += sizeof (struct inotify_event) + ev->len;
3059 }
2028} 3060}
2029 3061
2030void inline_size 3062inline_size unsigned int
3063ev_linux_version (void)
3064{
3065 struct utsname buf;
3066 unsigned int v;
3067 int i;
3068 char *p = buf.release;
3069
3070 if (uname (&buf))
3071 return 0;
3072
3073 for (i = 3+1; --i; )
3074 {
3075 unsigned int c = 0;
3076
3077 for (;;)
3078 {
3079 if (*p >= '0' && *p <= '9')
3080 c = c * 10 + *p++ - '0';
3081 else
3082 {
3083 p += *p == '.';
3084 break;
3085 }
3086 }
3087
3088 v = (v << 8) | c;
3089 }
3090
3091 return v;
3092}
3093
3094inline_size void
3095ev_check_2625 (EV_P)
3096{
3097 /* kernels < 2.6.25 are borked
3098 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3099 */
3100 if (ev_linux_version () < 0x020619)
3101 return;
3102
3103 fs_2625 = 1;
3104}
3105
3106inline_size int
3107infy_newfd (void)
3108{
3109#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3110 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3111 if (fd >= 0)
3112 return fd;
3113#endif
3114 return inotify_init ();
3115}
3116
3117inline_size void
2031infy_init (EV_P) 3118infy_init (EV_P)
2032{ 3119{
2033 if (fs_fd != -2) 3120 if (fs_fd != -2)
2034 return; 3121 return;
2035 3122
3123 fs_fd = -1;
3124
3125 ev_check_2625 (EV_A);
3126
2036 fs_fd = inotify_init (); 3127 fs_fd = infy_newfd ();
2037 3128
2038 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2039 { 3130 {
3131 fd_intern (fs_fd);
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3132 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI); 3133 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w); 3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
2043 } 3136 }
2044} 3137}
2045 3138
2046void inline_size 3139inline_size void
2047infy_fork (EV_P) 3140infy_fork (EV_P)
2048{ 3141{
2049 int slot; 3142 int slot;
2050 3143
2051 if (fs_fd < 0) 3144 if (fs_fd < 0)
2052 return; 3145 return;
2053 3146
3147 ev_ref (EV_A);
3148 ev_io_stop (EV_A_ &fs_w);
2054 close (fs_fd); 3149 close (fs_fd);
2055 fs_fd = inotify_init (); 3150 fs_fd = infy_newfd ();
2056 3151
3152 if (fs_fd >= 0)
3153 {
3154 fd_intern (fs_fd);
3155 ev_io_set (&fs_w, fs_fd, EV_READ);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3160 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 { 3161 {
2059 WL w_ = fs_hash [slot].head; 3162 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0; 3163 fs_hash [slot].head = 0;
2061 3164
2062 while (w_) 3165 while (w_)
2067 w->wd = -1; 3170 w->wd = -1;
2068 3171
2069 if (fs_fd >= 0) 3172 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 3173 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 3174 else
3175 {
3176 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3177 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2072 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3180 }
2073 } 3181 }
2074
2075 } 3182 }
2076} 3183}
2077 3184
3185#endif
3186
3187#ifdef _WIN32
3188# define EV_LSTAT(p,b) _stati64 (p, b)
3189#else
3190# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 3191#endif
2079 3192
2080void 3193void
2081ev_stat_stat (EV_P_ ev_stat *w) 3194ev_stat_stat (EV_P_ ev_stat *w)
2082{ 3195{
2089static void noinline 3202static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3203stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{ 3204{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3205 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093 3206
2094 /* we copy this here each the time so that */ 3207 ev_statdata prev = w->attr;
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w); 3208 ev_stat_stat (EV_A_ w);
2098 3209
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3210 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if ( 3211 if (
2101 w->prev.st_dev != w->attr.st_dev 3212 prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino 3213 || prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode 3214 || prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink 3215 || prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid 3216 || prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid 3217 || prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev 3218 || prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size 3219 || prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime 3220 || prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 3221 || prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 3222 || prev.st_ctime != w->attr.st_ctime
2112 ) { 3223 ) {
3224 /* we only update w->prev on actual differences */
3225 /* in case we test more often than invoke the callback, */
3226 /* to ensure that prev is always different to attr */
3227 w->prev = prev;
3228
2113 #if EV_USE_INOTIFY 3229 #if EV_USE_INOTIFY
3230 if (fs_fd >= 0)
3231 {
2114 infy_del (EV_A_ w); 3232 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 3233 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 3234 ev_stat_stat (EV_A_ w); /* avoid race... */
3235 }
2117 #endif 3236 #endif
2118 3237
2119 ev_feed_event (EV_A_ w, EV_STAT); 3238 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 3239 }
2121} 3240}
2124ev_stat_start (EV_P_ ev_stat *w) 3243ev_stat_start (EV_P_ ev_stat *w)
2125{ 3244{
2126 if (expect_false (ev_is_active (w))) 3245 if (expect_false (ev_is_active (w)))
2127 return; 3246 return;
2128 3247
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 3248 ev_stat_stat (EV_A_ w);
2134 3249
3250 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 3251 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 3252
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3253 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 3254 ev_set_priority (&w->timer, ev_priority (w));
2140 3255
2141#if EV_USE_INOTIFY 3256#if EV_USE_INOTIFY
2142 infy_init (EV_A); 3257 infy_init (EV_A);
2143 3258
2144 if (fs_fd >= 0) 3259 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 3260 infy_add (EV_A_ w);
2146 else 3261 else
2147#endif 3262#endif
3263 {
2148 ev_timer_start (EV_A_ &w->timer); 3264 ev_timer_again (EV_A_ &w->timer);
3265 ev_unref (EV_A);
3266 }
2149 3267
2150 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
3269
3270 EV_FREQUENT_CHECK;
2151} 3271}
2152 3272
2153void 3273void
2154ev_stat_stop (EV_P_ ev_stat *w) 3274ev_stat_stop (EV_P_ ev_stat *w)
2155{ 3275{
2156 clear_pending (EV_A_ (W)w); 3276 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3277 if (expect_false (!ev_is_active (w)))
2158 return; 3278 return;
2159 3279
3280 EV_FREQUENT_CHECK;
3281
2160#if EV_USE_INOTIFY 3282#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 3283 infy_del (EV_A_ w);
2162#endif 3284#endif
3285
3286 if (ev_is_active (&w->timer))
3287 {
3288 ev_ref (EV_A);
2163 ev_timer_stop (EV_A_ &w->timer); 3289 ev_timer_stop (EV_A_ &w->timer);
3290 }
2164 3291
2165 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
3293
3294 EV_FREQUENT_CHECK;
2166} 3295}
2167#endif 3296#endif
2168 3297
2169#if EV_IDLE_ENABLE 3298#if EV_IDLE_ENABLE
2170void 3299void
2172{ 3301{
2173 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
2174 return; 3303 return;
2175 3304
2176 pri_adjust (EV_A_ (W)w); 3305 pri_adjust (EV_A_ (W)w);
3306
3307 EV_FREQUENT_CHECK;
2177 3308
2178 { 3309 {
2179 int active = ++idlecnt [ABSPRI (w)]; 3310 int active = ++idlecnt [ABSPRI (w)];
2180 3311
2181 ++idleall; 3312 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 3313 ev_start (EV_A_ (W)w, active);
2183 3314
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3315 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 3316 idles [ABSPRI (w)][active - 1] = w;
2186 } 3317 }
3318
3319 EV_FREQUENT_CHECK;
2187} 3320}
2188 3321
2189void 3322void
2190ev_idle_stop (EV_P_ ev_idle *w) 3323ev_idle_stop (EV_P_ ev_idle *w)
2191{ 3324{
2192 clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
2194 return; 3327 return;
2195 3328
3329 EV_FREQUENT_CHECK;
3330
2196 { 3331 {
2197 int active = ((W)w)->active; 3332 int active = ev_active (w);
2198 3333
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3334 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3335 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 3336
2202 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
2203 --idleall; 3338 --idleall;
2204 } 3339 }
2205}
2206#endif
2207 3340
3341 EV_FREQUENT_CHECK;
3342}
3343#endif
3344
3345#if EV_PREPARE_ENABLE
2208void 3346void
2209ev_prepare_start (EV_P_ ev_prepare *w) 3347ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 3348{
2211 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2212 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2213 3353
2214 ev_start (EV_A_ (W)w, ++preparecnt); 3354 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3355 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 3356 prepares [preparecnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2217} 3359}
2218 3360
2219void 3361void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 3362ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 3363{
2222 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2224 return; 3366 return;
2225 3367
3368 EV_FREQUENT_CHECK;
3369
2226 { 3370 {
2227 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
2228 prepares [active - 1] = prepares [--preparecnt]; 3373 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 3374 ev_active (prepares [active - 1]) = active;
2230 } 3375 }
2231 3376
2232 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
2233}
2234 3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_CHECK_ENABLE
2235void 3384void
2236ev_check_start (EV_P_ ev_check *w) 3385ev_check_start (EV_P_ ev_check *w)
2237{ 3386{
2238 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2239 return; 3388 return;
3389
3390 EV_FREQUENT_CHECK;
2240 3391
2241 ev_start (EV_A_ (W)w, ++checkcnt); 3392 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3393 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 3394 checks [checkcnt - 1] = w;
3395
3396 EV_FREQUENT_CHECK;
2244} 3397}
2245 3398
2246void 3399void
2247ev_check_stop (EV_P_ ev_check *w) 3400ev_check_stop (EV_P_ ev_check *w)
2248{ 3401{
2249 clear_pending (EV_A_ (W)w); 3402 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 3403 if (expect_false (!ev_is_active (w)))
2251 return; 3404 return;
2252 3405
3406 EV_FREQUENT_CHECK;
3407
2253 { 3408 {
2254 int active = ((W)w)->active; 3409 int active = ev_active (w);
3410
2255 checks [active - 1] = checks [--checkcnt]; 3411 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 3412 ev_active (checks [active - 1]) = active;
2257 } 3413 }
2258 3414
2259 ev_stop (EV_A_ (W)w); 3415 ev_stop (EV_A_ (W)w);
3416
3417 EV_FREQUENT_CHECK;
2260} 3418}
3419#endif
2261 3420
2262#if EV_EMBED_ENABLE 3421#if EV_EMBED_ENABLE
2263void noinline 3422void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 3423ev_embed_sweep (EV_P_ ev_embed *w)
2265{ 3424{
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3440embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{ 3441{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3442 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284 3443
2285 { 3444 {
2286 struct ev_loop *loop = w->other; 3445 EV_P = w->other;
2287 3446
2288 while (fdchangecnt) 3447 while (fdchangecnt)
2289 { 3448 {
2290 fd_reify (EV_A); 3449 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3450 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 3451 }
2293 } 3452 }
2294} 3453}
2295 3454
3455static void
3456embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3459
3460 ev_embed_stop (EV_A_ w);
3461
3462 {
3463 EV_P = w->other;
3464
3465 ev_loop_fork (EV_A);
3466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3467 }
3468
3469 ev_embed_start (EV_A_ w);
3470}
3471
2296#if 0 3472#if 0
2297static void 3473static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 3475{
2300 ev_idle_stop (EV_A_ idle); 3476 ev_idle_stop (EV_A_ idle);
2306{ 3482{
2307 if (expect_false (ev_is_active (w))) 3483 if (expect_false (ev_is_active (w)))
2308 return; 3484 return;
2309 3485
2310 { 3486 {
2311 struct ev_loop *loop = w->other; 3487 EV_P = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3488 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 3490 }
3491
3492 EV_FREQUENT_CHECK;
2315 3493
2316 ev_set_priority (&w->io, ev_priority (w)); 3494 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 3495 ev_io_start (EV_A_ &w->io);
2318 3496
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 3497 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 3498 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 3499 ev_prepare_start (EV_A_ &w->prepare);
2322 3500
3501 ev_fork_init (&w->fork, embed_fork_cb);
3502 ev_fork_start (EV_A_ &w->fork);
3503
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 3505
2325 ev_start (EV_A_ (W)w, 1); 3506 ev_start (EV_A_ (W)w, 1);
3507
3508 EV_FREQUENT_CHECK;
2326} 3509}
2327 3510
2328void 3511void
2329ev_embed_stop (EV_P_ ev_embed *w) 3512ev_embed_stop (EV_P_ ev_embed *w)
2330{ 3513{
2331 clear_pending (EV_A_ (W)w); 3514 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3515 if (expect_false (!ev_is_active (w)))
2333 return; 3516 return;
2334 3517
3518 EV_FREQUENT_CHECK;
3519
2335 ev_io_stop (EV_A_ &w->io); 3520 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 3521 ev_prepare_stop (EV_A_ &w->prepare);
3522 ev_fork_stop (EV_A_ &w->fork);
2337 3523
2338 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
3525
3526 EV_FREQUENT_CHECK;
2339} 3527}
2340#endif 3528#endif
2341 3529
2342#if EV_FORK_ENABLE 3530#if EV_FORK_ENABLE
2343void 3531void
2344ev_fork_start (EV_P_ ev_fork *w) 3532ev_fork_start (EV_P_ ev_fork *w)
2345{ 3533{
2346 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2347 return; 3535 return;
3536
3537 EV_FREQUENT_CHECK;
2348 3538
2349 ev_start (EV_A_ (W)w, ++forkcnt); 3539 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3540 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 3541 forks [forkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
2352} 3544}
2353 3545
2354void 3546void
2355ev_fork_stop (EV_P_ ev_fork *w) 3547ev_fork_stop (EV_P_ ev_fork *w)
2356{ 3548{
2357 clear_pending (EV_A_ (W)w); 3549 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 3550 if (expect_false (!ev_is_active (w)))
2359 return; 3551 return;
2360 3552
3553 EV_FREQUENT_CHECK;
3554
2361 { 3555 {
2362 int active = ((W)w)->active; 3556 int active = ev_active (w);
3557
2363 forks [active - 1] = forks [--forkcnt]; 3558 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 3559 ev_active (forks [active - 1]) = active;
2365 } 3560 }
2366 3561
2367 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
3565}
3566#endif
3567
3568#if EV_ASYNC_ENABLE
3569void
3570ev_async_start (EV_P_ ev_async *w)
3571{
3572 if (expect_false (ev_is_active (w)))
3573 return;
3574
3575 evpipe_init (EV_A);
3576
3577 EV_FREQUENT_CHECK;
3578
3579 ev_start (EV_A_ (W)w, ++asynccnt);
3580 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3581 asyncs [asynccnt - 1] = w;
3582
3583 EV_FREQUENT_CHECK;
3584}
3585
3586void
3587ev_async_stop (EV_P_ ev_async *w)
3588{
3589 clear_pending (EV_A_ (W)w);
3590 if (expect_false (!ev_is_active (w)))
3591 return;
3592
3593 EV_FREQUENT_CHECK;
3594
3595 {
3596 int active = ev_active (w);
3597
3598 asyncs [active - 1] = asyncs [--asynccnt];
3599 ev_active (asyncs [active - 1]) = active;
3600 }
3601
3602 ev_stop (EV_A_ (W)w);
3603
3604 EV_FREQUENT_CHECK;
3605}
3606
3607void
3608ev_async_send (EV_P_ ev_async *w)
3609{
3610 w->sent = 1;
3611 evpipe_write (EV_A_ &async_pending);
2368} 3612}
2369#endif 3613#endif
2370 3614
2371/*****************************************************************************/ 3615/*****************************************************************************/
2372 3616
2382once_cb (EV_P_ struct ev_once *once, int revents) 3626once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3627{
2384 void (*cb)(int revents, void *arg) = once->cb; 3628 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3629 void *arg = once->arg;
2386 3630
2387 ev_io_stop (EV_A_ &once->io); 3631 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3632 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3633 ev_free (once);
2390 3634
2391 cb (revents, arg); 3635 cb (revents, arg);
2392} 3636}
2393 3637
2394static void 3638static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3639once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3640{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3644}
2399 3645
2400static void 3646static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3647once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3648{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3649 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3650
3651 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3652}
2405 3653
2406void 3654void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3655ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3656{
2409 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3657 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2410 3658
2411 if (expect_false (!once)) 3659 if (expect_false (!once))
2412 { 3660 {
2413 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3661 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2414 return; 3662 return;
2415 } 3663 }
2416 3664
2417 once->cb = cb; 3665 once->cb = cb;
2418 once->arg = arg; 3666 once->arg = arg;
2430 ev_timer_set (&once->to, timeout, 0.); 3678 ev_timer_set (&once->to, timeout, 0.);
2431 ev_timer_start (EV_A_ &once->to); 3679 ev_timer_start (EV_A_ &once->to);
2432 } 3680 }
2433} 3681}
2434 3682
3683/*****************************************************************************/
3684
3685#if EV_WALK_ENABLE
3686void
3687ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3688{
3689 int i, j;
3690 ev_watcher_list *wl, *wn;
3691
3692 if (types & (EV_IO | EV_EMBED))
3693 for (i = 0; i < anfdmax; ++i)
3694 for (wl = anfds [i].head; wl; )
3695 {
3696 wn = wl->next;
3697
3698#if EV_EMBED_ENABLE
3699 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3700 {
3701 if (types & EV_EMBED)
3702 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3703 }
3704 else
3705#endif
3706#if EV_USE_INOTIFY
3707 if (ev_cb ((ev_io *)wl) == infy_cb)
3708 ;
3709 else
3710#endif
3711 if ((ev_io *)wl != &pipe_w)
3712 if (types & EV_IO)
3713 cb (EV_A_ EV_IO, wl);
3714
3715 wl = wn;
3716 }
3717
3718 if (types & (EV_TIMER | EV_STAT))
3719 for (i = timercnt + HEAP0; i-- > HEAP0; )
3720#if EV_STAT_ENABLE
3721 /*TODO: timer is not always active*/
3722 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3723 {
3724 if (types & EV_STAT)
3725 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3726 }
3727 else
3728#endif
3729 if (types & EV_TIMER)
3730 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3731
3732#if EV_PERIODIC_ENABLE
3733 if (types & EV_PERIODIC)
3734 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3735 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3736#endif
3737
3738#if EV_IDLE_ENABLE
3739 if (types & EV_IDLE)
3740 for (j = NUMPRI; i--; )
3741 for (i = idlecnt [j]; i--; )
3742 cb (EV_A_ EV_IDLE, idles [j][i]);
3743#endif
3744
3745#if EV_FORK_ENABLE
3746 if (types & EV_FORK)
3747 for (i = forkcnt; i--; )
3748 if (ev_cb (forks [i]) != embed_fork_cb)
3749 cb (EV_A_ EV_FORK, forks [i]);
3750#endif
3751
3752#if EV_ASYNC_ENABLE
3753 if (types & EV_ASYNC)
3754 for (i = asynccnt; i--; )
3755 cb (EV_A_ EV_ASYNC, asyncs [i]);
3756#endif
3757
3758#if EV_PREPARE_ENABLE
3759 if (types & EV_PREPARE)
3760 for (i = preparecnt; i--; )
3761# if EV_EMBED_ENABLE
3762 if (ev_cb (prepares [i]) != embed_prepare_cb)
3763# endif
3764 cb (EV_A_ EV_PREPARE, prepares [i]);
3765#endif
3766
3767#if EV_CHECK_ENABLE
3768 if (types & EV_CHECK)
3769 for (i = checkcnt; i--; )
3770 cb (EV_A_ EV_CHECK, checks [i]);
3771#endif
3772
3773#if EV_SIGNAL_ENABLE
3774 if (types & EV_SIGNAL)
3775 for (i = 0; i < EV_NSIG - 1; ++i)
3776 for (wl = signals [i].head; wl; )
3777 {
3778 wn = wl->next;
3779 cb (EV_A_ EV_SIGNAL, wl);
3780 wl = wn;
3781 }
3782#endif
3783
3784#if EV_CHILD_ENABLE
3785 if (types & EV_CHILD)
3786 for (i = (EV_PID_HASHSIZE); i--; )
3787 for (wl = childs [i]; wl; )
3788 {
3789 wn = wl->next;
3790 cb (EV_A_ EV_CHILD, wl);
3791 wl = wn;
3792 }
3793#endif
3794/* EV_STAT 0x00001000 /* stat data changed */
3795/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3796}
3797#endif
3798
2435#if EV_MULTIPLICITY 3799#if EV_MULTIPLICITY
2436 #include "ev_wrap.h" 3800 #include "ev_wrap.h"
2437#endif 3801#endif
2438 3802
2439#ifdef __cplusplus 3803#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines