ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.370 by root, Sun Jan 30 19:05:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
62# else 82# else
83# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
65# endif 94# endif
66 95
96# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 99# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 100# else
101# undef EV_USE_POLL
79# define EV_USE_POLL 0 102# define EV_USE_POLL 0
80# endif
81# endif 103# endif
82 104
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
86# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
89# endif 112# endif
90 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
97# endif 121# endif
98 122
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
102# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
105# endif 130# endif
106 131
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
113# endif 139# endif
114 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
115#endif 159#endif
116 160
117#include <math.h> 161#include <math.h>
118#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
119#include <fcntl.h> 164#include <fcntl.h>
120#include <stddef.h> 165#include <stddef.h>
121 166
122#include <stdio.h> 167#include <stdio.h>
123 168
124#include <assert.h> 169#include <assert.h>
125#include <errno.h> 170#include <errno.h>
126#include <sys/types.h> 171#include <sys/types.h>
127#include <time.h> 172#include <time.h>
173#include <limits.h>
128 174
129#include <signal.h> 175#include <signal.h>
130 176
131#ifdef EV_H 177#ifdef EV_H
132# include EV_H 178# include EV_H
133#else 179#else
134# include "ev.h" 180# include "ev.h"
135#endif 181#endif
182
183EV_CPP(extern "C" {)
136 184
137#ifndef _WIN32 185#ifndef _WIN32
138# include <sys/time.h> 186# include <sys/time.h>
139# include <sys/wait.h> 187# include <sys/wait.h>
140# include <unistd.h> 188# include <unistd.h>
141#else 189#else
190# include <io.h>
142# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 192# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
146# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
147#endif 242# endif
148 243#endif
149/**/
150 244
151#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
152# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
153#endif 251#endif
154 252
155#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 255#endif
158 256
159#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
160# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
161#endif 263#endif
162 264
163#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 267#endif
166 268
167#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
168# ifdef _WIN32 270# ifdef _WIN32
169# define EV_USE_POLL 0 271# define EV_USE_POLL 0
170# else 272# else
171# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 274# endif
173#endif 275#endif
174 276
175#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
176# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
177#endif 283#endif
178 284
179#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
181#endif 287#endif
183#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 290# define EV_USE_PORT 0
185#endif 291#endif
186 292
187#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
188# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
189#endif 299#endif
190 300
191#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 312# else
195# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
196# endif 314# endif
197#endif 315#endif
198 316
199#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 320# else
203# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
204# endif 322# endif
205#endif 323#endif
206 324
207/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
208 364
209#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
212#endif 368#endif
220# undef EV_USE_INOTIFY 376# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 377# define EV_USE_INOTIFY 0
222#endif 378#endif
223 379
224#if !EV_USE_NANOSLEEP 380#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
226# include <sys/select.h> 383# include <sys/select.h>
227# endif 384# endif
228#endif 385#endif
229 386
230#if EV_USE_INOTIFY 387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
231# include <sys/inotify.h> 389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
232#endif 395#endif
233 396
234#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 398# include <winsock.h>
236#endif 399#endif
237 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
238/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
239 446
240/* 447/*
241 * This is used to avoid floating point rounding problems. 448 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 449 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 450 * to ensure progress, time-wise, even when rounding
247 */ 454 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 456
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
253 462
254#if __GNUC__ >= 4 463#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
257#else 466#else
258# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
259# define noinline 468# define noinline
260# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 470# define inline
262# endif 471# endif
263#endif 472#endif
264 473
265#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 476#define inline_size static inline
268 477
269#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
270# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
271#else 488#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
277 491
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
280 494
281typedef ev_watcher *W; 495typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
284 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
285#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
289#endif 520#endif
290 521
291#ifdef _WIN32 522#ifdef _WIN32
292# include "ev_win32.c" 523# include "ev_win32.c"
293#endif 524#endif
294 525
295/*****************************************************************************/ 526/*****************************************************************************/
296 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
297static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
298 579
299void 580void
300ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
301{ 582{
302 syserr_cb = cb; 583 syserr_cb = cb;
303} 584}
304 585
305static void noinline 586static void noinline
306syserr (const char *msg) 587ev_syserr (const char *msg)
307{ 588{
308 if (!msg) 589 if (!msg)
309 msg = "(libev) system error"; 590 msg = "(libev) system error";
310 591
311 if (syserr_cb) 592 if (syserr_cb)
312 syserr_cb (msg); 593 syserr_cb (msg);
313 else 594 else
314 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
315 perror (msg); 602 perror (msg);
603#endif
316 abort (); 604 abort ();
317 } 605 }
318} 606}
319 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
320static void *(*alloc)(void *ptr, long size); 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 628
322void 629void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 631{
325 alloc = cb; 632 alloc = cb;
326} 633}
327 634
328inline_speed void * 635inline_speed void *
329ev_realloc (void *ptr, long size) 636ev_realloc (void *ptr, long size)
330{ 637{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 638 ptr = alloc (ptr, size);
332 639
333 if (!ptr && size) 640 if (!ptr && size)
334 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
336 abort (); 647 abort ();
337 } 648 }
338 649
339 return ptr; 650 return ptr;
340} 651}
342#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
343#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
344 655
345/*****************************************************************************/ 656/*****************************************************************************/
346 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
347typedef struct 662typedef struct
348{ 663{
349 WL head; 664 WL head;
350 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
351 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
352#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
353 SOCKET handle; 673 SOCKET handle;
354#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
355} ANFD; 678} ANFD;
356 679
680/* stores the pending event set for a given watcher */
357typedef struct 681typedef struct
358{ 682{
359 W w; 683 W w;
360 int events; 684 int events; /* the pending event set for the given watcher */
361} ANPENDING; 685} ANPENDING;
362 686
363#if EV_USE_INOTIFY 687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
364typedef struct 689typedef struct
365{ 690{
366 WL head; 691 WL head;
367} ANFS; 692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
368#endif 713#endif
369 714
370#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
371 716
372 struct ev_loop 717 struct ev_loop
391 736
392 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
393 738
394#endif 739#endif
395 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
396/*****************************************************************************/ 753/*****************************************************************************/
397 754
755#ifndef EV_HAVE_EV_TIME
398ev_tstamp 756ev_tstamp
399ev_time (void) 757ev_time (void)
400{ 758{
401#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
402 struct timespec ts; 762 struct timespec ts;
403 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
404 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
405#else 765 }
766#endif
767
406 struct timeval tv; 768 struct timeval tv;
407 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
408 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
409#endif
410} 771}
772#endif
411 773
412ev_tstamp inline_size 774inline_size ev_tstamp
413get_clock (void) 775get_clock (void)
414{ 776{
415#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
416 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
417 { 779 {
438 if (delay > 0.) 800 if (delay > 0.)
439 { 801 {
440#if EV_USE_NANOSLEEP 802#if EV_USE_NANOSLEEP
441 struct timespec ts; 803 struct timespec ts;
442 804
443 ts.tv_sec = (time_t)delay; 805 EV_TS_SET (ts, delay);
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445
446 nanosleep (&ts, 0); 806 nanosleep (&ts, 0);
447#elif defined(_WIN32) 807#elif defined(_WIN32)
448 Sleep (delay * 1e3); 808 Sleep ((unsigned long)(delay * 1e3));
449#else 809#else
450 struct timeval tv; 810 struct timeval tv;
451 811
452 tv.tv_sec = (time_t)delay; 812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 813 /* something not guaranteed by newer posix versions, but guaranteed */
454 814 /* by older ones */
815 EV_TV_SET (tv, delay);
455 select (0, 0, 0, 0, &tv); 816 select (0, 0, 0, 0, &tv);
456#endif 817#endif
457 } 818 }
458} 819}
459 820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
460/*****************************************************************************/ 829/*****************************************************************************/
461 830
462int inline_size 831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
463array_nextsize (int elem, int cur, int cnt) 836array_nextsize (int elem, int cur, int cnt)
464{ 837{
465 int ncur = cur + 1; 838 int ncur = cur + 1;
466 839
467 do 840 do
468 ncur <<= 1; 841 ncur <<= 1;
469 while (cnt > ncur); 842 while (cnt > ncur);
470 843
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 846 {
474 ncur *= elem; 847 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 849 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 850 ncur /= elem;
478 } 851 }
479 852
480 return ncur; 853 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 857array_realloc (int elem, void *base, int *cur, int cnt)
485{ 858{
486 *cur = array_nextsize (elem, *cur, cnt); 859 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 860 return ev_realloc (base, elem * *cur);
488} 861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 865
490#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 867 if (expect_false ((cnt) > (cur))) \
492 { \ 868 { \
493 int ocur_ = (cur); \ 869 int ocur_ = (cur); \
505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
506 } 882 }
507#endif 883#endif
508 884
509#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
511 887
512/*****************************************************************************/ 888/*****************************************************************************/
889
890/* dummy callback for pending events */
891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
893{
894}
513 895
514void noinline 896void noinline
515ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
516{ 898{
517 W w_ = (W)w; 899 W w_ = (W)w;
526 pendings [pri][w_->pending - 1].w = w_; 908 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents; 909 pendings [pri][w_->pending - 1].events = revents;
528 } 910 }
529} 911}
530 912
531void inline_speed 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
532queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
533{ 930{
534 int i; 931 int i;
535 932
536 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
538} 935}
539 936
540/*****************************************************************************/ 937/*****************************************************************************/
541 938
542void inline_size 939inline_speed void
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed
556fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
557{ 941{
558 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
559 ev_io *w; 943 ev_io *w;
560 944
561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
565 if (ev) 949 if (ev)
566 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
567 } 951 }
568} 952}
569 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
570void 965void
571ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
572{ 967{
573 if (fd >= 0 && fd < anfdmax) 968 if (fd >= 0 && fd < anfdmax)
574 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
575} 970}
576 971
577void inline_size 972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
578fd_reify (EV_P) 975fd_reify (EV_P)
579{ 976{
580 int i; 977 int i;
581 978
582 for (i = 0; i < fdchangecnt; ++i) 979 for (i = 0; i < fdchangecnt; ++i)
583 { 980 {
584 int fd = fdchanges [i]; 981 int fd = fdchanges [i];
585 ANFD *anfd = anfds + fd; 982 ANFD *anfd = anfds + fd;
586 ev_io *w; 983 ev_io *w;
587 984
588 unsigned char events = 0; 985 unsigned char o_events = anfd->events;
986 unsigned char o_reify = anfd->reify;
589 987
590 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 988 anfd->reify = 0;
591 events |= (unsigned char)w->events;
592 989
593#if EV_SELECT_IS_WINSOCKET 990#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
594 if (events) 991 if (o_reify & EV__IOFDSET)
595 { 992 {
596 unsigned long argp; 993 unsigned long arg;
597 anfd->handle = _get_osfhandle (fd); 994 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 995 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
996 printf ("oi %d %x\n", fd, anfd->handle);//D
599 } 997 }
600#endif 998#endif
601 999
1000 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 { 1001 {
603 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify;
605
606 anfd->reify = 0;
607 anfd->events = events; 1002 anfd->events = 0;
608 1003
609 if (o_events != events || o_reify & EV_IOFDSET) 1004 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1005 anfd->events |= (unsigned char)w->events;
1006
1007 if (o_events != anfd->events)
1008 o_reify = EV__IOFDSET; /* actually |= */
1009 }
1010
1011 if (o_reify & EV__IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events); 1012 backend_modify (EV_A_ fd, o_events, anfd->events);
611 }
612 } 1013 }
613 1014
614 fdchangecnt = 0; 1015 fdchangecnt = 0;
615} 1016}
616 1017
617void inline_size 1018/* something about the given fd changed */
1019inline_size void
618fd_change (EV_P_ int fd, int flags) 1020fd_change (EV_P_ int fd, int flags)
619{ 1021{
620 unsigned char reify = anfds [fd].reify; 1022 unsigned char reify = anfds [fd].reify;
621 anfds [fd].reify |= flags; 1023 anfds [fd].reify |= flags;
622 1024
626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1028 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
627 fdchanges [fdchangecnt - 1] = fd; 1029 fdchanges [fdchangecnt - 1] = fd;
628 } 1030 }
629} 1031}
630 1032
631void inline_speed 1033/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1034inline_speed void
632fd_kill (EV_P_ int fd) 1035fd_kill (EV_P_ int fd)
633{ 1036{
634 ev_io *w; 1037 ev_io *w;
635 1038
636 while ((w = (ev_io *)anfds [fd].head)) 1039 while ((w = (ev_io *)anfds [fd].head))
638 ev_io_stop (EV_A_ w); 1041 ev_io_stop (EV_A_ w);
639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1042 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
640 } 1043 }
641} 1044}
642 1045
643int inline_size 1046/* check whether the given fd is actually valid, for error recovery */
1047inline_size int
644fd_valid (int fd) 1048fd_valid (int fd)
645{ 1049{
646#ifdef _WIN32 1050#ifdef _WIN32
647 return _get_osfhandle (fd) != -1; 1051 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
648#else 1052#else
649 return fcntl (fd, F_GETFD) != -1; 1053 return fcntl (fd, F_GETFD) != -1;
650#endif 1054#endif
651} 1055}
652 1056
656{ 1060{
657 int fd; 1061 int fd;
658 1062
659 for (fd = 0; fd < anfdmax; ++fd) 1063 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 1064 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 1065 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 1066 fd_kill (EV_A_ fd);
663} 1067}
664 1068
665/* called on ENOMEM in select/poll to kill some fds and retry */ 1069/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 1070static void noinline
670 1074
671 for (fd = anfdmax; fd--; ) 1075 for (fd = anfdmax; fd--; )
672 if (anfds [fd].events) 1076 if (anfds [fd].events)
673 { 1077 {
674 fd_kill (EV_A_ fd); 1078 fd_kill (EV_A_ fd);
675 return; 1079 break;
676 } 1080 }
677} 1081}
678 1082
679/* usually called after fork if backend needs to re-arm all fds from scratch */ 1083/* usually called after fork if backend needs to re-arm all fds from scratch */
680static void noinline 1084static void noinline
684 1088
685 for (fd = 0; fd < anfdmax; ++fd) 1089 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 1090 if (anfds [fd].events)
687 { 1091 {
688 anfds [fd].events = 0; 1092 anfds [fd].events = 0;
1093 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1094 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
690 } 1095 }
691} 1096}
692 1097
693/*****************************************************************************/ 1098/* used to prepare libev internal fd's */
694 1099/* this is not fork-safe */
695void inline_speed 1100inline_speed void
696upheap (WT *heap, int k)
697{
698 WT w = heap [k];
699
700 while (k)
701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
707 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1;
709 k = p;
710 }
711
712 heap [k] = w;
713 ((W)heap [k])->active = k + 1;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742}
743
744void inline_size
745adjustheap (WT *heap, int N, int k)
746{
747 upheap (heap, k);
748 downheap (heap, N, k);
749}
750
751/*****************************************************************************/
752
753typedef struct
754{
755 WL head;
756 sig_atomic_t volatile gotsig;
757} ANSIG;
758
759static ANSIG *signals;
760static int signalmax;
761
762static int sigpipe [2];
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765
766void inline_size
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828
829void inline_speed
830fd_intern (int fd) 1101fd_intern (int fd)
831{ 1102{
832#ifdef _WIN32 1103#ifdef _WIN32
833 int arg = 1; 1104 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1105 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
835#else 1106#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1107 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1108 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1109#endif
839} 1110}
840 1111
1112/*****************************************************************************/
1113
1114/*
1115 * the heap functions want a real array index. array index 0 is guaranteed to not
1116 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1117 * the branching factor of the d-tree.
1118 */
1119
1120/*
1121 * at the moment we allow libev the luxury of two heaps,
1122 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1123 * which is more cache-efficient.
1124 * the difference is about 5% with 50000+ watchers.
1125 */
1126#if EV_USE_4HEAP
1127
1128#define DHEAP 4
1129#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1130#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1131#define UPHEAP_DONE(p,k) ((p) == (k))
1132
1133/* away from the root */
1134inline_speed void
1135downheap (ANHE *heap, int N, int k)
1136{
1137 ANHE he = heap [k];
1138 ANHE *E = heap + N + HEAP0;
1139
1140 for (;;)
1141 {
1142 ev_tstamp minat;
1143 ANHE *minpos;
1144 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1145
1146 /* find minimum child */
1147 if (expect_true (pos + DHEAP - 1 < E))
1148 {
1149 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else if (pos < E)
1155 {
1156 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1157 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1158 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1159 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1160 }
1161 else
1162 break;
1163
1164 if (ANHE_at (he) <= minat)
1165 break;
1166
1167 heap [k] = *minpos;
1168 ev_active (ANHE_w (*minpos)) = k;
1169
1170 k = minpos - heap;
1171 }
1172
1173 heap [k] = he;
1174 ev_active (ANHE_w (he)) = k;
1175}
1176
1177#else /* 4HEAP */
1178
1179#define HEAP0 1
1180#define HPARENT(k) ((k) >> 1)
1181#define UPHEAP_DONE(p,k) (!(p))
1182
1183/* away from the root */
1184inline_speed void
1185downheap (ANHE *heap, int N, int k)
1186{
1187 ANHE he = heap [k];
1188
1189 for (;;)
1190 {
1191 int c = k << 1;
1192
1193 if (c >= N + HEAP0)
1194 break;
1195
1196 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1197 ? 1 : 0;
1198
1199 if (ANHE_at (he) <= ANHE_at (heap [c]))
1200 break;
1201
1202 heap [k] = heap [c];
1203 ev_active (ANHE_w (heap [k])) = k;
1204
1205 k = c;
1206 }
1207
1208 heap [k] = he;
1209 ev_active (ANHE_w (he)) = k;
1210}
1211#endif
1212
1213/* towards the root */
1214inline_speed void
1215upheap (ANHE *heap, int k)
1216{
1217 ANHE he = heap [k];
1218
1219 for (;;)
1220 {
1221 int p = HPARENT (k);
1222
1223 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1224 break;
1225
1226 heap [k] = heap [p];
1227 ev_active (ANHE_w (heap [k])) = k;
1228 k = p;
1229 }
1230
1231 heap [k] = he;
1232 ev_active (ANHE_w (he)) = k;
1233}
1234
1235/* move an element suitably so it is in a correct place */
1236inline_size void
1237adjustheap (ANHE *heap, int N, int k)
1238{
1239 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1240 upheap (heap, k);
1241 else
1242 downheap (heap, N, k);
1243}
1244
1245/* rebuild the heap: this function is used only once and executed rarely */
1246inline_size void
1247reheap (ANHE *heap, int N)
1248{
1249 int i;
1250
1251 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1252 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1253 for (i = 0; i < N; ++i)
1254 upheap (heap, i + HEAP0);
1255}
1256
1257/*****************************************************************************/
1258
1259/* associate signal watchers to a signal signal */
1260typedef struct
1261{
1262 EV_ATOMIC_T pending;
1263#if EV_MULTIPLICITY
1264 EV_P;
1265#endif
1266 WL head;
1267} ANSIG;
1268
1269static ANSIG signals [EV_NSIG - 1];
1270
1271/*****************************************************************************/
1272
1273#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1274
841static void noinline 1275static void noinline
842siginit (EV_P) 1276evpipe_init (EV_P)
843{ 1277{
1278 if (!ev_is_active (&pipe_w))
1279 {
1280# if EV_USE_EVENTFD
1281 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1282 if (evfd < 0 && errno == EINVAL)
1283 evfd = eventfd (0, 0);
1284
1285 if (evfd >= 0)
1286 {
1287 evpipe [0] = -1;
1288 fd_intern (evfd); /* doing it twice doesn't hurt */
1289 ev_io_set (&pipe_w, evfd, EV_READ);
1290 }
1291 else
1292# endif
1293 {
1294 while (pipe (evpipe))
1295 ev_syserr ("(libev) error creating signal/async pipe");
1296
844 fd_intern (sigpipe [0]); 1297 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1298 fd_intern (evpipe [1]);
1299 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1300 }
846 1301
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1302 ev_io_start (EV_A_ &pipe_w);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1303 ev_unref (EV_A); /* watcher should not keep loop alive */
1304 }
1305}
1306
1307inline_size void
1308evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1309{
1310 if (!*flag)
1311 {
1312 int old_errno = errno; /* save errno because write might clobber it */
1313 char dummy;
1314
1315 *flag = 1;
1316
1317#if EV_USE_EVENTFD
1318 if (evfd >= 0)
1319 {
1320 uint64_t counter = 1;
1321 write (evfd, &counter, sizeof (uint64_t));
1322 }
1323 else
1324#endif
1325 /* win32 people keep sending patches that change this write() to send() */
1326 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1327 /* so when you think this write should be a send instead, please find out */
1328 /* where your send() is from - it's definitely not the microsoft send, and */
1329 /* tell me. thank you. */
1330 write (evpipe [1], &dummy, 1);
1331
1332 errno = old_errno;
1333 }
1334}
1335
1336/* called whenever the libev signal pipe */
1337/* got some events (signal, async) */
1338static void
1339pipecb (EV_P_ ev_io *iow, int revents)
1340{
1341 int i;
1342
1343#if EV_USE_EVENTFD
1344 if (evfd >= 0)
1345 {
1346 uint64_t counter;
1347 read (evfd, &counter, sizeof (uint64_t));
1348 }
1349 else
1350#endif
1351 {
1352 char dummy;
1353 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1354 read (evpipe [0], &dummy, 1);
1355 }
1356
1357#if EV_SIGNAL_ENABLE
1358 if (sig_pending)
1359 {
1360 sig_pending = 0;
1361
1362 for (i = EV_NSIG - 1; i--; )
1363 if (expect_false (signals [i].pending))
1364 ev_feed_signal_event (EV_A_ i + 1);
1365 }
1366#endif
1367
1368#if EV_ASYNC_ENABLE
1369 if (async_pending)
1370 {
1371 async_pending = 0;
1372
1373 for (i = asynccnt; i--; )
1374 if (asyncs [i]->sent)
1375 {
1376 asyncs [i]->sent = 0;
1377 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1378 }
1379 }
1380#endif
850} 1381}
851 1382
852/*****************************************************************************/ 1383/*****************************************************************************/
853 1384
1385void
1386ev_feed_signal (int signum)
1387{
1388#if EV_MULTIPLICITY
1389 EV_P = signals [signum - 1].loop;
1390
1391 if (!EV_A)
1392 return;
1393#endif
1394
1395 signals [signum - 1].pending = 1;
1396 evpipe_write (EV_A_ &sig_pending);
1397}
1398
1399static void
1400ev_sighandler (int signum)
1401{
1402#ifdef _WIN32
1403 signal (signum, ev_sighandler);
1404#endif
1405
1406 ev_feed_signal (signum);
1407}
1408
1409void noinline
1410ev_feed_signal_event (EV_P_ int signum)
1411{
1412 WL w;
1413
1414 if (expect_false (signum <= 0 || signum > EV_NSIG))
1415 return;
1416
1417 --signum;
1418
1419#if EV_MULTIPLICITY
1420 /* it is permissible to try to feed a signal to the wrong loop */
1421 /* or, likely more useful, feeding a signal nobody is waiting for */
1422
1423 if (expect_false (signals [signum].loop != EV_A))
1424 return;
1425#endif
1426
1427 signals [signum].pending = 0;
1428
1429 for (w = signals [signum].head; w; w = w->next)
1430 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1431}
1432
1433#if EV_USE_SIGNALFD
1434static void
1435sigfdcb (EV_P_ ev_io *iow, int revents)
1436{
1437 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1438
1439 for (;;)
1440 {
1441 ssize_t res = read (sigfd, si, sizeof (si));
1442
1443 /* not ISO-C, as res might be -1, but works with SuS */
1444 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1445 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1446
1447 if (res < (ssize_t)sizeof (si))
1448 break;
1449 }
1450}
1451#endif
1452
1453#endif
1454
1455/*****************************************************************************/
1456
1457#if EV_CHILD_ENABLE
854static WL childs [EV_PID_HASHSIZE]; 1458static WL childs [EV_PID_HASHSIZE];
855 1459
856#ifndef _WIN32
857
858static ev_signal childev; 1460static ev_signal childev;
859 1461
860void inline_speed 1462#ifndef WIFCONTINUED
1463# define WIFCONTINUED(status) 0
1464#endif
1465
1466/* handle a single child status event */
1467inline_speed void
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1468child_reap (EV_P_ int chain, int pid, int status)
862{ 1469{
863 ev_child *w; 1470 ev_child *w;
1471 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1472
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1473 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1474 {
866 if (w->pid == pid || !w->pid) 1475 if ((w->pid == pid || !w->pid)
1476 && (!traced || (w->flags & 1)))
867 { 1477 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1478 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1479 w->rpid = pid;
870 w->rstatus = status; 1480 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1481 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1482 }
1483 }
873} 1484}
874 1485
875#ifndef WCONTINUED 1486#ifndef WCONTINUED
876# define WCONTINUED 0 1487# define WCONTINUED 0
877#endif 1488#endif
878 1489
1490/* called on sigchld etc., calls waitpid */
879static void 1491static void
880childcb (EV_P_ ev_signal *sw, int revents) 1492childcb (EV_P_ ev_signal *sw, int revents)
881{ 1493{
882 int pid, status; 1494 int pid, status;
883 1495
886 if (!WCONTINUED 1498 if (!WCONTINUED
887 || errno != EINVAL 1499 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1500 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1501 return;
890 1502
891 /* make sure we are called again until all childs have been reaped */ 1503 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1504 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1505 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1506
895 child_reap (EV_A_ sw, pid, pid, status); 1507 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1508 if ((EV_PID_HASHSIZE) > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1509 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1510}
899 1511
900#endif 1512#endif
901 1513
902/*****************************************************************************/ 1514/*****************************************************************************/
903 1515
1516#if EV_USE_IOCP
1517# include "ev_iocp.c"
1518#endif
904#if EV_USE_PORT 1519#if EV_USE_PORT
905# include "ev_port.c" 1520# include "ev_port.c"
906#endif 1521#endif
907#if EV_USE_KQUEUE 1522#if EV_USE_KQUEUE
908# include "ev_kqueue.c" 1523# include "ev_kqueue.c"
964 /* kqueue is borked on everything but netbsd apparently */ 1579 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */ 1580 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE; 1581 flags &= ~EVBACKEND_KQUEUE;
967#endif 1582#endif
968#ifdef __APPLE__ 1583#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation 1584 /* only select works correctly on that "unix-certified" platform */
970 flags &= ~EVBACKEND_POLL; 1585 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1586 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1587#endif
1588#ifdef __FreeBSD__
1589 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
971#endif 1590#endif
972 1591
973 return flags; 1592 return flags;
974} 1593}
975 1594
977ev_embeddable_backends (void) 1596ev_embeddable_backends (void)
978{ 1597{
979 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1598 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
980 1599
981 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1600 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
982 /* please fix it and tell me how to detect the fix */ 1601 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
983 flags &= ~EVBACKEND_EPOLL; 1602 flags &= ~EVBACKEND_EPOLL;
984 1603
985 return flags; 1604 return flags;
986} 1605}
987 1606
988unsigned int 1607unsigned int
989ev_backend (EV_P) 1608ev_backend (EV_P)
990{ 1609{
991 return backend; 1610 return backend;
992} 1611}
993 1612
1613#if EV_FEATURE_API
994unsigned int 1614unsigned int
995ev_loop_count (EV_P) 1615ev_iteration (EV_P)
996{ 1616{
997 return loop_count; 1617 return loop_count;
998} 1618}
999 1619
1620unsigned int
1621ev_depth (EV_P)
1622{
1623 return loop_depth;
1624}
1625
1000void 1626void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1627ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1628{
1003 io_blocktime = interval; 1629 io_blocktime = interval;
1004} 1630}
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1633ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{ 1634{
1009 timeout_blocktime = interval; 1635 timeout_blocktime = interval;
1010} 1636}
1011 1637
1638void
1639ev_set_userdata (EV_P_ void *data)
1640{
1641 userdata = data;
1642}
1643
1644void *
1645ev_userdata (EV_P)
1646{
1647 return userdata;
1648}
1649
1650void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1651{
1652 invoke_cb = invoke_pending_cb;
1653}
1654
1655void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1656{
1657 release_cb = release;
1658 acquire_cb = acquire;
1659}
1660#endif
1661
1662/* initialise a loop structure, must be zero-initialised */
1012static void noinline 1663static void noinline
1013loop_init (EV_P_ unsigned int flags) 1664loop_init (EV_P_ unsigned int flags)
1014{ 1665{
1015 if (!backend) 1666 if (!backend)
1016 { 1667 {
1668 origflags = flags;
1669
1670#if EV_USE_REALTIME
1671 if (!have_realtime)
1672 {
1673 struct timespec ts;
1674
1675 if (!clock_gettime (CLOCK_REALTIME, &ts))
1676 have_realtime = 1;
1677 }
1678#endif
1679
1017#if EV_USE_MONOTONIC 1680#if EV_USE_MONOTONIC
1681 if (!have_monotonic)
1018 { 1682 {
1019 struct timespec ts; 1683 struct timespec ts;
1684
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1685 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1686 have_monotonic = 1;
1022 } 1687 }
1023#endif 1688#endif
1024
1025 ev_rt_now = ev_time ();
1026 mn_now = get_clock ();
1027 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now;
1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032 1689
1033 /* pid check not overridable via env */ 1690 /* pid check not overridable via env */
1034#ifndef _WIN32 1691#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1692 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1693 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1696 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1697 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1698 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1699 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1700
1044 if (!(flags & 0x0000ffffUL)) 1701 ev_rt_now = ev_time ();
1702 mn_now = get_clock ();
1703 now_floor = mn_now;
1704 rtmn_diff = ev_rt_now - mn_now;
1705#if EV_FEATURE_API
1706 invoke_cb = ev_invoke_pending;
1707#endif
1708
1709 io_blocktime = 0.;
1710 timeout_blocktime = 0.;
1711 backend = 0;
1712 backend_fd = -1;
1713 sig_pending = 0;
1714#if EV_ASYNC_ENABLE
1715 async_pending = 0;
1716#endif
1717#if EV_USE_INOTIFY
1718 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1719#endif
1720#if EV_USE_SIGNALFD
1721 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1722#endif
1723
1724 if (!(flags & EVBACKEND_MASK))
1045 flags |= ev_recommended_backends (); 1725 flags |= ev_recommended_backends ();
1046 1726
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY 1727#if EV_USE_IOCP
1050 fs_fd = -2; 1728 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1051#endif 1729#endif
1052
1053#if EV_USE_PORT 1730#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1732#endif
1056#if EV_USE_KQUEUE 1733#if EV_USE_KQUEUE
1057 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1734 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1064#endif 1741#endif
1065#if EV_USE_SELECT 1742#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1743 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1744#endif
1068 1745
1746 ev_prepare_init (&pending_w, pendingcb);
1747
1748#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1069 ev_init (&sigev, sigcb); 1749 ev_init (&pipe_w, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1750 ev_set_priority (&pipe_w, EV_MAXPRI);
1751#endif
1071 } 1752 }
1072} 1753}
1073 1754
1074static void noinline 1755/* free up a loop structure */
1756void
1075loop_destroy (EV_P) 1757ev_loop_destroy (EV_P)
1076{ 1758{
1077 int i; 1759 int i;
1760
1761#if EV_MULTIPLICITY
1762 /* mimic free (0) */
1763 if (!EV_A)
1764 return;
1765#endif
1766
1767#if EV_CLEANUP_ENABLE
1768 /* queue cleanup watchers (and execute them) */
1769 if (expect_false (cleanupcnt))
1770 {
1771 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1772 EV_INVOKE_PENDING;
1773 }
1774#endif
1775
1776#if EV_CHILD_ENABLE
1777 if (ev_is_active (&childev))
1778 {
1779 ev_ref (EV_A); /* child watcher */
1780 ev_signal_stop (EV_A_ &childev);
1781 }
1782#endif
1783
1784 if (ev_is_active (&pipe_w))
1785 {
1786 /*ev_ref (EV_A);*/
1787 /*ev_io_stop (EV_A_ &pipe_w);*/
1788
1789#if EV_USE_EVENTFD
1790 if (evfd >= 0)
1791 close (evfd);
1792#endif
1793
1794 if (evpipe [0] >= 0)
1795 {
1796 EV_WIN32_CLOSE_FD (evpipe [0]);
1797 EV_WIN32_CLOSE_FD (evpipe [1]);
1798 }
1799 }
1800
1801#if EV_USE_SIGNALFD
1802 if (ev_is_active (&sigfd_w))
1803 close (sigfd);
1804#endif
1078 1805
1079#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1807 if (fs_fd >= 0)
1081 close (fs_fd); 1808 close (fs_fd);
1082#endif 1809#endif
1083 1810
1084 if (backend_fd >= 0) 1811 if (backend_fd >= 0)
1085 close (backend_fd); 1812 close (backend_fd);
1086 1813
1814#if EV_USE_IOCP
1815 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1816#endif
1087#if EV_USE_PORT 1817#if EV_USE_PORT
1088 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1818 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1089#endif 1819#endif
1090#if EV_USE_KQUEUE 1820#if EV_USE_KQUEUE
1091 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1821 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1106#if EV_IDLE_ENABLE 1836#if EV_IDLE_ENABLE
1107 array_free (idle, [i]); 1837 array_free (idle, [i]);
1108#endif 1838#endif
1109 } 1839 }
1110 1840
1111 ev_free (anfds); anfdmax = 0; 1841 ev_free (anfds); anfds = 0; anfdmax = 0;
1112 1842
1113 /* have to use the microsoft-never-gets-it-right macro */ 1843 /* have to use the microsoft-never-gets-it-right macro */
1844 array_free (rfeed, EMPTY);
1114 array_free (fdchange, EMPTY); 1845 array_free (fdchange, EMPTY);
1115 array_free (timer, EMPTY); 1846 array_free (timer, EMPTY);
1116#if EV_PERIODIC_ENABLE 1847#if EV_PERIODIC_ENABLE
1117 array_free (periodic, EMPTY); 1848 array_free (periodic, EMPTY);
1118#endif 1849#endif
1119#if EV_FORK_ENABLE 1850#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1851 array_free (fork, EMPTY);
1121#endif 1852#endif
1853#if EV_CLEANUP_ENABLE
1854 array_free (cleanup, EMPTY);
1855#endif
1122 array_free (prepare, EMPTY); 1856 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1857 array_free (check, EMPTY);
1858#if EV_ASYNC_ENABLE
1859 array_free (async, EMPTY);
1860#endif
1124 1861
1125 backend = 0; 1862 backend = 0;
1126}
1127 1863
1864#if EV_MULTIPLICITY
1865 if (ev_is_default_loop (EV_A))
1866#endif
1867 ev_default_loop_ptr = 0;
1868#if EV_MULTIPLICITY
1869 else
1870 ev_free (EV_A);
1871#endif
1872}
1873
1874#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1875inline_size void infy_fork (EV_P);
1876#endif
1129 1877
1130void inline_size 1878inline_size void
1131loop_fork (EV_P) 1879loop_fork (EV_P)
1132{ 1880{
1133#if EV_USE_PORT 1881#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1882 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif 1883#endif
1141#endif 1889#endif
1142#if EV_USE_INOTIFY 1890#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1891 infy_fork (EV_A);
1144#endif 1892#endif
1145 1893
1146 if (ev_is_active (&sigev)) 1894 if (ev_is_active (&pipe_w))
1147 { 1895 {
1148 /* default loop */ 1896 /* this "locks" the handlers against writing to the pipe */
1897 /* while we modify the fd vars */
1898 sig_pending = 1;
1899#if EV_ASYNC_ENABLE
1900 async_pending = 1;
1901#endif
1149 1902
1150 ev_ref (EV_A); 1903 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1904 ev_io_stop (EV_A_ &pipe_w);
1152 close (sigpipe [0]);
1153 close (sigpipe [1]);
1154 1905
1155 while (pipe (sigpipe)) 1906#if EV_USE_EVENTFD
1156 syserr ("(libev) error creating pipe"); 1907 if (evfd >= 0)
1908 close (evfd);
1909#endif
1157 1910
1911 if (evpipe [0] >= 0)
1912 {
1913 EV_WIN32_CLOSE_FD (evpipe [0]);
1914 EV_WIN32_CLOSE_FD (evpipe [1]);
1915 }
1916
1917#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1158 siginit (EV_A); 1918 evpipe_init (EV_A);
1919 /* now iterate over everything, in case we missed something */
1920 pipecb (EV_A_ &pipe_w, EV_READ);
1921#endif
1159 } 1922 }
1160 1923
1161 postfork = 0; 1924 postfork = 0;
1162} 1925}
1926
1927#if EV_MULTIPLICITY
1928
1929struct ev_loop *
1930ev_loop_new (unsigned int flags)
1931{
1932 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1933
1934 memset (EV_A, 0, sizeof (struct ev_loop));
1935 loop_init (EV_A_ flags);
1936
1937 if (ev_backend (EV_A))
1938 return EV_A;
1939
1940 ev_free (EV_A);
1941 return 0;
1942}
1943
1944#endif /* multiplicity */
1945
1946#if EV_VERIFY
1947static void noinline
1948verify_watcher (EV_P_ W w)
1949{
1950 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1951
1952 if (w->pending)
1953 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1954}
1955
1956static void noinline
1957verify_heap (EV_P_ ANHE *heap, int N)
1958{
1959 int i;
1960
1961 for (i = HEAP0; i < N + HEAP0; ++i)
1962 {
1963 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1964 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1965 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1966
1967 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1968 }
1969}
1970
1971static void noinline
1972array_verify (EV_P_ W *ws, int cnt)
1973{
1974 while (cnt--)
1975 {
1976 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1977 verify_watcher (EV_A_ ws [cnt]);
1978 }
1979}
1980#endif
1981
1982#if EV_FEATURE_API
1983void
1984ev_verify (EV_P)
1985{
1986#if EV_VERIFY
1987 int i;
1988 WL w;
1989
1990 assert (activecnt >= -1);
1991
1992 assert (fdchangemax >= fdchangecnt);
1993 for (i = 0; i < fdchangecnt; ++i)
1994 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1995
1996 assert (anfdmax >= 0);
1997 for (i = 0; i < anfdmax; ++i)
1998 for (w = anfds [i].head; w; w = w->next)
1999 {
2000 verify_watcher (EV_A_ (W)w);
2001 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2002 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2003 }
2004
2005 assert (timermax >= timercnt);
2006 verify_heap (EV_A_ timers, timercnt);
2007
2008#if EV_PERIODIC_ENABLE
2009 assert (periodicmax >= periodiccnt);
2010 verify_heap (EV_A_ periodics, periodiccnt);
2011#endif
2012
2013 for (i = NUMPRI; i--; )
2014 {
2015 assert (pendingmax [i] >= pendingcnt [i]);
2016#if EV_IDLE_ENABLE
2017 assert (idleall >= 0);
2018 assert (idlemax [i] >= idlecnt [i]);
2019 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2020#endif
2021 }
2022
2023#if EV_FORK_ENABLE
2024 assert (forkmax >= forkcnt);
2025 array_verify (EV_A_ (W *)forks, forkcnt);
2026#endif
2027
2028#if EV_CLEANUP_ENABLE
2029 assert (cleanupmax >= cleanupcnt);
2030 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2031#endif
2032
2033#if EV_ASYNC_ENABLE
2034 assert (asyncmax >= asynccnt);
2035 array_verify (EV_A_ (W *)asyncs, asynccnt);
2036#endif
2037
2038#if EV_PREPARE_ENABLE
2039 assert (preparemax >= preparecnt);
2040 array_verify (EV_A_ (W *)prepares, preparecnt);
2041#endif
2042
2043#if EV_CHECK_ENABLE
2044 assert (checkmax >= checkcnt);
2045 array_verify (EV_A_ (W *)checks, checkcnt);
2046#endif
2047
2048# if 0
2049#if EV_CHILD_ENABLE
2050 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2051 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2052#endif
2053# endif
2054#endif
2055}
2056#endif
1163 2057
1164#if EV_MULTIPLICITY 2058#if EV_MULTIPLICITY
1165struct ev_loop * 2059struct ev_loop *
1166ev_loop_new (unsigned int flags)
1167{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169
1170 memset (loop, 0, sizeof (struct ev_loop));
1171
1172 loop_init (EV_A_ flags);
1173
1174 if (ev_backend (EV_A))
1175 return loop;
1176
1177 return 0;
1178}
1179
1180void
1181ev_loop_destroy (EV_P)
1182{
1183 loop_destroy (EV_A);
1184 ev_free (loop);
1185}
1186
1187void
1188ev_loop_fork (EV_P)
1189{
1190 postfork = 1;
1191}
1192
1193#endif
1194
1195#if EV_MULTIPLICITY
1196struct ev_loop *
1197ev_default_loop_init (unsigned int flags)
1198#else 2060#else
1199int 2061int
2062#endif
1200ev_default_loop (unsigned int flags) 2063ev_default_loop (unsigned int flags)
1201#endif
1202{ 2064{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 2065 if (!ev_default_loop_ptr)
1208 { 2066 {
1209#if EV_MULTIPLICITY 2067#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2068 EV_P = ev_default_loop_ptr = &default_loop_struct;
1211#else 2069#else
1212 ev_default_loop_ptr = 1; 2070 ev_default_loop_ptr = 1;
1213#endif 2071#endif
1214 2072
1215 loop_init (EV_A_ flags); 2073 loop_init (EV_A_ flags);
1216 2074
1217 if (ev_backend (EV_A)) 2075 if (ev_backend (EV_A))
1218 { 2076 {
1219 siginit (EV_A); 2077#if EV_CHILD_ENABLE
1220
1221#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 2078 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 2079 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 2080 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2081 ev_unref (EV_A); /* child watcher should not keep loop alive */
1226#endif 2082#endif
1231 2087
1232 return ev_default_loop_ptr; 2088 return ev_default_loop_ptr;
1233} 2089}
1234 2090
1235void 2091void
1236ev_default_destroy (void) 2092ev_loop_fork (EV_P)
1237{ 2093{
1238#if EV_MULTIPLICITY 2094 postfork = 1; /* must be in line with ev_default_fork */
1239 struct ev_loop *loop = ev_default_loop_ptr;
1240#endif
1241
1242#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev);
1245#endif
1246
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A);
1254}
1255
1256void
1257ev_default_fork (void)
1258{
1259#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif
1262
1263 if (backend)
1264 postfork = 1;
1265} 2095}
1266 2096
1267/*****************************************************************************/ 2097/*****************************************************************************/
1268 2098
1269void 2099void
1270ev_invoke (EV_P_ void *w, int revents) 2100ev_invoke (EV_P_ void *w, int revents)
1271{ 2101{
1272 EV_CB_INVOKE ((W)w, revents); 2102 EV_CB_INVOKE ((W)w, revents);
1273} 2103}
1274 2104
1275void inline_speed 2105unsigned int
1276call_pending (EV_P) 2106ev_pending_count (EV_P)
2107{
2108 int pri;
2109 unsigned int count = 0;
2110
2111 for (pri = NUMPRI; pri--; )
2112 count += pendingcnt [pri];
2113
2114 return count;
2115}
2116
2117void noinline
2118ev_invoke_pending (EV_P)
1277{ 2119{
1278 int pri; 2120 int pri;
1279 2121
1280 for (pri = NUMPRI; pri--; ) 2122 for (pri = NUMPRI; pri--; )
1281 while (pendingcnt [pri]) 2123 while (pendingcnt [pri])
1282 { 2124 {
1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2125 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1284 2126
1285 if (expect_true (p->w))
1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288
1289 p->w->pending = 0; 2127 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 2128 EV_CB_INVOKE (p->w, p->events);
1291 } 2129 EV_FREQUENT_CHECK;
1292 } 2130 }
1293} 2131}
1294 2132
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374
1375#if EV_IDLE_ENABLE 2133#if EV_IDLE_ENABLE
1376void inline_size 2134/* make idle watchers pending. this handles the "call-idle */
2135/* only when higher priorities are idle" logic */
2136inline_size void
1377idle_reify (EV_P) 2137idle_reify (EV_P)
1378{ 2138{
1379 if (expect_false (idleall)) 2139 if (expect_false (idleall))
1380 { 2140 {
1381 int pri; 2141 int pri;
1393 } 2153 }
1394 } 2154 }
1395} 2155}
1396#endif 2156#endif
1397 2157
2158/* make timers pending */
2159inline_size void
2160timers_reify (EV_P)
2161{
2162 EV_FREQUENT_CHECK;
2163
2164 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2165 {
2166 do
2167 {
2168 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2169
2170 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2171
2172 /* first reschedule or stop timer */
2173 if (w->repeat)
2174 {
2175 ev_at (w) += w->repeat;
2176 if (ev_at (w) < mn_now)
2177 ev_at (w) = mn_now;
2178
2179 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2180
2181 ANHE_at_cache (timers [HEAP0]);
2182 downheap (timers, timercnt, HEAP0);
2183 }
2184 else
2185 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2186
2187 EV_FREQUENT_CHECK;
2188 feed_reverse (EV_A_ (W)w);
2189 }
2190 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2191
2192 feed_reverse_done (EV_A_ EV_TIMER);
2193 }
2194}
2195
2196#if EV_PERIODIC_ENABLE
2197
1398void inline_speed 2198inline_speed
2199periodic_recalc (EV_P_ ev_periodic *w)
2200{
2201 /* TODO: use slow but potentially more correct incremental algo, */
2202 /* also do not rely on ceil */
2203 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2204}
2205
2206/* make periodics pending */
2207inline_size void
2208periodics_reify (EV_P)
2209{
2210 EV_FREQUENT_CHECK;
2211
2212 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2213 {
2214 int feed_count = 0;
2215
2216 do
2217 {
2218 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2219
2220 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2221
2222 /* first reschedule or stop timer */
2223 if (w->reschedule_cb)
2224 {
2225 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2226
2227 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2228
2229 ANHE_at_cache (periodics [HEAP0]);
2230 downheap (periodics, periodiccnt, HEAP0);
2231 }
2232 else if (w->interval)
2233 {
2234 periodic_recalc (EV_A_ w);
2235
2236 /* if next trigger time is not sufficiently in the future, put it there */
2237 /* this might happen because of floating point inexactness */
2238 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2239 {
2240 ev_at (w) += w->interval;
2241
2242 /* if interval is unreasonably low we might still have a time in the past */
2243 /* so correct this. this will make the periodic very inexact, but the user */
2244 /* has effectively asked to get triggered more often than possible */
2245 if (ev_at (w) < ev_rt_now)
2246 ev_at (w) = ev_rt_now;
2247 }
2248
2249 ANHE_at_cache (periodics [HEAP0]);
2250 downheap (periodics, periodiccnt, HEAP0);
2251 }
2252 else
2253 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2254
2255 EV_FREQUENT_CHECK;
2256 feed_reverse (EV_A_ (W)w);
2257 }
2258 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2259
2260 feed_reverse_done (EV_A_ EV_PERIODIC);
2261 }
2262}
2263
2264/* simply recalculate all periodics */
2265/* TODO: maybe ensure that at least one event happens when jumping forward? */
2266static void noinline
2267periodics_reschedule (EV_P)
2268{
2269 int i;
2270
2271 /* adjust periodics after time jump */
2272 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2273 {
2274 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2275
2276 if (w->reschedule_cb)
2277 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2278 else if (w->interval)
2279 periodic_recalc (EV_A_ w);
2280
2281 ANHE_at_cache (periodics [i]);
2282 }
2283
2284 reheap (periodics, periodiccnt);
2285}
2286#endif
2287
2288/* adjust all timers by a given offset */
2289static void noinline
2290timers_reschedule (EV_P_ ev_tstamp adjust)
2291{
2292 int i;
2293
2294 for (i = 0; i < timercnt; ++i)
2295 {
2296 ANHE *he = timers + i + HEAP0;
2297 ANHE_w (*he)->at += adjust;
2298 ANHE_at_cache (*he);
2299 }
2300}
2301
2302/* fetch new monotonic and realtime times from the kernel */
2303/* also detect if there was a timejump, and act accordingly */
2304inline_speed void
1399time_update (EV_P_ ev_tstamp max_block) 2305time_update (EV_P_ ev_tstamp max_block)
1400{ 2306{
1401 int i;
1402
1403#if EV_USE_MONOTONIC 2307#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic)) 2308 if (expect_true (have_monotonic))
1405 { 2309 {
2310 int i;
1406 ev_tstamp odiff = rtmn_diff; 2311 ev_tstamp odiff = rtmn_diff;
1407 2312
1408 mn_now = get_clock (); 2313 mn_now = get_clock ();
1409 2314
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2315 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1428 */ 2333 */
1429 for (i = 4; --i; ) 2334 for (i = 4; --i; )
1430 { 2335 {
1431 rtmn_diff = ev_rt_now - mn_now; 2336 rtmn_diff = ev_rt_now - mn_now;
1432 2337
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2338 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 2339 return; /* all is well */
1435 2340
1436 ev_rt_now = ev_time (); 2341 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 2342 mn_now = get_clock ();
1438 now_floor = mn_now; 2343 now_floor = mn_now;
1439 } 2344 }
1440 2345
2346 /* no timer adjustment, as the monotonic clock doesn't jump */
2347 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1441# if EV_PERIODIC_ENABLE 2348# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1443# endif 2350# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 } 2351 }
1447 else 2352 else
1448#endif 2353#endif
1449 { 2354 {
1450 ev_rt_now = ev_time (); 2355 ev_rt_now = ev_time ();
1451 2356
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2357 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 { 2358 {
2359 /* adjust timers. this is easy, as the offset is the same for all of them */
2360 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1454#if EV_PERIODIC_ENABLE 2361#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2362 periodics_reschedule (EV_A);
1456#endif 2363#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i)
1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1460 } 2364 }
1461 2365
1462 mn_now = ev_rt_now; 2366 mn_now = ev_rt_now;
1463 } 2367 }
1464} 2368}
1465 2369
1466void 2370void
1467ev_ref (EV_P)
1468{
1469 ++activecnt;
1470}
1471
1472void
1473ev_unref (EV_P)
1474{
1475 --activecnt;
1476}
1477
1478static int loop_done;
1479
1480void
1481ev_loop (EV_P_ int flags) 2371ev_run (EV_P_ int flags)
1482{ 2372{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2373#if EV_FEATURE_API
1484 ? EVUNLOOP_ONE 2374 ++loop_depth;
1485 : EVUNLOOP_CANCEL; 2375#endif
1486 2376
2377 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2378
2379 loop_done = EVBREAK_CANCEL;
2380
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2381 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1488 2382
1489 do 2383 do
1490 { 2384 {
2385#if EV_VERIFY >= 2
2386 ev_verify (EV_A);
2387#endif
2388
1491#ifndef _WIN32 2389#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 2390 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 2391 if (expect_false (getpid () != curpid))
1494 { 2392 {
1495 curpid = getpid (); 2393 curpid = getpid ();
1501 /* we might have forked, so queue fork handlers */ 2399 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1503 if (forkcnt) 2401 if (forkcnt)
1504 { 2402 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2403 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A); 2404 EV_INVOKE_PENDING;
1507 } 2405 }
1508#endif 2406#endif
1509 2407
2408#if EV_PREPARE_ENABLE
1510 /* queue prepare watchers (and execute them) */ 2409 /* queue prepare watchers (and execute them) */
1511 if (expect_false (preparecnt)) 2410 if (expect_false (preparecnt))
1512 { 2411 {
1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2412 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1514 call_pending (EV_A); 2413 EV_INVOKE_PENDING;
1515 } 2414 }
2415#endif
1516 2416
1517 if (expect_false (!activecnt)) 2417 if (expect_false (loop_done))
1518 break; 2418 break;
1519 2419
1520 /* we might have forked, so reify kernel state if necessary */ 2420 /* we might have forked, so reify kernel state if necessary */
1521 if (expect_false (postfork)) 2421 if (expect_false (postfork))
1522 loop_fork (EV_A); 2422 loop_fork (EV_A);
1527 /* calculate blocking time */ 2427 /* calculate blocking time */
1528 { 2428 {
1529 ev_tstamp waittime = 0.; 2429 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.; 2430 ev_tstamp sleeptime = 0.;
1531 2431
2432 /* remember old timestamp for io_blocktime calculation */
2433 ev_tstamp prev_mn_now = mn_now;
2434
2435 /* update time to cancel out callback processing overhead */
2436 time_update (EV_A_ 1e100);
2437
1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2438 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1533 { 2439 {
1534 /* update time to cancel out callback processing overhead */
1535 time_update (EV_A_ 1e100);
1536
1537 waittime = MAX_BLOCKTIME; 2440 waittime = MAX_BLOCKTIME;
1538 2441
1539 if (timercnt) 2442 if (timercnt)
1540 { 2443 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2444 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 2445 if (waittime > to) waittime = to;
1543 } 2446 }
1544 2447
1545#if EV_PERIODIC_ENABLE 2448#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2449 if (periodiccnt)
1547 { 2450 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2451 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 2452 if (waittime > to) waittime = to;
1550 } 2453 }
1551#endif 2454#endif
1552 2455
2456 /* don't let timeouts decrease the waittime below timeout_blocktime */
1553 if (expect_false (waittime < timeout_blocktime)) 2457 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime; 2458 waittime = timeout_blocktime;
1555 2459
1556 sleeptime = waittime - backend_fudge; 2460 /* extra check because io_blocktime is commonly 0 */
1557
1558 if (expect_true (sleeptime > io_blocktime)) 2461 if (expect_false (io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 { 2462 {
2463 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2464
2465 if (sleeptime > waittime - backend_fudge)
2466 sleeptime = waittime - backend_fudge;
2467
2468 if (expect_true (sleeptime > 0.))
2469 {
1563 ev_sleep (sleeptime); 2470 ev_sleep (sleeptime);
1564 waittime -= sleeptime; 2471 waittime -= sleeptime;
2472 }
1565 } 2473 }
1566 } 2474 }
1567 2475
2476#if EV_FEATURE_API
1568 ++loop_count; 2477 ++loop_count;
2478#endif
2479 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1569 backend_poll (EV_A_ waittime); 2480 backend_poll (EV_A_ waittime);
2481 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1570 2482
1571 /* update ev_rt_now, do magic */ 2483 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime); 2484 time_update (EV_A_ waittime + sleeptime);
1573 } 2485 }
1574 2486
1581#if EV_IDLE_ENABLE 2493#if EV_IDLE_ENABLE
1582 /* queue idle watchers unless other events are pending */ 2494 /* queue idle watchers unless other events are pending */
1583 idle_reify (EV_A); 2495 idle_reify (EV_A);
1584#endif 2496#endif
1585 2497
2498#if EV_CHECK_ENABLE
1586 /* queue check watchers, to be executed first */ 2499 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2500 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2501 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2502#endif
1589 2503
1590 call_pending (EV_A); 2504 EV_INVOKE_PENDING;
1591
1592 } 2505 }
1593 while (expect_true (activecnt && !loop_done)); 2506 while (expect_true (
2507 activecnt
2508 && !loop_done
2509 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2510 ));
1594 2511
1595 if (loop_done == EVUNLOOP_ONE) 2512 if (loop_done == EVBREAK_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2513 loop_done = EVBREAK_CANCEL;
1597}
1598 2514
2515#if EV_FEATURE_API
2516 --loop_depth;
2517#endif
2518}
2519
1599void 2520void
1600ev_unloop (EV_P_ int how) 2521ev_break (EV_P_ int how)
1601{ 2522{
1602 loop_done = how; 2523 loop_done = how;
1603} 2524}
1604 2525
2526void
2527ev_ref (EV_P)
2528{
2529 ++activecnt;
2530}
2531
2532void
2533ev_unref (EV_P)
2534{
2535 --activecnt;
2536}
2537
2538void
2539ev_now_update (EV_P)
2540{
2541 time_update (EV_A_ 1e100);
2542}
2543
2544void
2545ev_suspend (EV_P)
2546{
2547 ev_now_update (EV_A);
2548}
2549
2550void
2551ev_resume (EV_P)
2552{
2553 ev_tstamp mn_prev = mn_now;
2554
2555 ev_now_update (EV_A);
2556 timers_reschedule (EV_A_ mn_now - mn_prev);
2557#if EV_PERIODIC_ENABLE
2558 /* TODO: really do this? */
2559 periodics_reschedule (EV_A);
2560#endif
2561}
2562
1605/*****************************************************************************/ 2563/*****************************************************************************/
2564/* singly-linked list management, used when the expected list length is short */
1606 2565
1607void inline_size 2566inline_size void
1608wlist_add (WL *head, WL elem) 2567wlist_add (WL *head, WL elem)
1609{ 2568{
1610 elem->next = *head; 2569 elem->next = *head;
1611 *head = elem; 2570 *head = elem;
1612} 2571}
1613 2572
1614void inline_size 2573inline_size void
1615wlist_del (WL *head, WL elem) 2574wlist_del (WL *head, WL elem)
1616{ 2575{
1617 while (*head) 2576 while (*head)
1618 { 2577 {
1619 if (*head == elem) 2578 if (expect_true (*head == elem))
1620 { 2579 {
1621 *head = elem->next; 2580 *head = elem->next;
1622 return; 2581 break;
1623 } 2582 }
1624 2583
1625 head = &(*head)->next; 2584 head = &(*head)->next;
1626 } 2585 }
1627} 2586}
1628 2587
1629void inline_speed 2588/* internal, faster, version of ev_clear_pending */
2589inline_speed void
1630clear_pending (EV_P_ W w) 2590clear_pending (EV_P_ W w)
1631{ 2591{
1632 if (w->pending) 2592 if (w->pending)
1633 { 2593 {
1634 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2594 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1635 w->pending = 0; 2595 w->pending = 0;
1636 } 2596 }
1637} 2597}
1638 2598
1639int 2599int
1643 int pending = w_->pending; 2603 int pending = w_->pending;
1644 2604
1645 if (expect_true (pending)) 2605 if (expect_true (pending))
1646 { 2606 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2607 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2608 p->w = (W)&pending_w;
1648 w_->pending = 0; 2609 w_->pending = 0;
1649 p->w = 0;
1650 return p->events; 2610 return p->events;
1651 } 2611 }
1652 else 2612 else
1653 return 0; 2613 return 0;
1654} 2614}
1655 2615
1656void inline_size 2616inline_size void
1657pri_adjust (EV_P_ W w) 2617pri_adjust (EV_P_ W w)
1658{ 2618{
1659 int pri = w->priority; 2619 int pri = ev_priority (w);
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2620 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2621 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri; 2622 ev_set_priority (w, pri);
1663} 2623}
1664 2624
1665void inline_speed 2625inline_speed void
1666ev_start (EV_P_ W w, int active) 2626ev_start (EV_P_ W w, int active)
1667{ 2627{
1668 pri_adjust (EV_A_ w); 2628 pri_adjust (EV_A_ w);
1669 w->active = active; 2629 w->active = active;
1670 ev_ref (EV_A); 2630 ev_ref (EV_A);
1671} 2631}
1672 2632
1673void inline_size 2633inline_size void
1674ev_stop (EV_P_ W w) 2634ev_stop (EV_P_ W w)
1675{ 2635{
1676 ev_unref (EV_A); 2636 ev_unref (EV_A);
1677 w->active = 0; 2637 w->active = 0;
1678} 2638}
1685 int fd = w->fd; 2645 int fd = w->fd;
1686 2646
1687 if (expect_false (ev_is_active (w))) 2647 if (expect_false (ev_is_active (w)))
1688 return; 2648 return;
1689 2649
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2650 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2651 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2652
2653 EV_FREQUENT_CHECK;
1691 2654
1692 ev_start (EV_A_ (W)w, 1); 2655 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2656 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2657 wlist_add (&anfds[fd].head, (WL)w);
1695 2658
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2659 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1697 w->events &= ~EV_IOFDSET; 2660 w->events &= ~EV__IOFDSET;
2661
2662 EV_FREQUENT_CHECK;
1698} 2663}
1699 2664
1700void noinline 2665void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2666ev_io_stop (EV_P_ ev_io *w)
1702{ 2667{
1703 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
1705 return; 2670 return;
1706 2671
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2672 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2673
2674 EV_FREQUENT_CHECK;
1708 2675
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2676 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2677 ev_stop (EV_A_ (W)w);
1711 2678
1712 fd_change (EV_A_ w->fd, 1); 2679 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2680
2681 EV_FREQUENT_CHECK;
1713} 2682}
1714 2683
1715void noinline 2684void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2685ev_timer_start (EV_P_ ev_timer *w)
1717{ 2686{
1718 if (expect_false (ev_is_active (w))) 2687 if (expect_false (ev_is_active (w)))
1719 return; 2688 return;
1720 2689
1721 ((WT)w)->at += mn_now; 2690 ev_at (w) += mn_now;
1722 2691
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2692 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2697 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2698 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2699 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2700 ANHE_at_cache (timers [ev_active (w)]);
2701 upheap (timers, ev_active (w));
1729 2702
2703 EV_FREQUENT_CHECK;
2704
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2705 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2706}
1732 2707
1733void noinline 2708void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2709ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2710{
1736 clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
1738 return; 2713 return;
1739 2714
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2715 EV_FREQUENT_CHECK;
1741 2716
1742 { 2717 {
1743 int active = ((W)w)->active; 2718 int active = ev_active (w);
1744 2719
2720 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2721
2722 --timercnt;
2723
1745 if (expect_true (--active < --timercnt)) 2724 if (expect_true (active < timercnt + HEAP0))
1746 { 2725 {
1747 timers [active] = timers [timercnt]; 2726 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2727 adjustheap (timers, timercnt, active);
1749 } 2728 }
1750 } 2729 }
1751 2730
1752 ((WT)w)->at -= mn_now; 2731 ev_at (w) -= mn_now;
1753 2732
1754 ev_stop (EV_A_ (W)w); 2733 ev_stop (EV_A_ (W)w);
2734
2735 EV_FREQUENT_CHECK;
1755} 2736}
1756 2737
1757void noinline 2738void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2739ev_timer_again (EV_P_ ev_timer *w)
1759{ 2740{
2741 EV_FREQUENT_CHECK;
2742
1760 if (ev_is_active (w)) 2743 if (ev_is_active (w))
1761 { 2744 {
1762 if (w->repeat) 2745 if (w->repeat)
1763 { 2746 {
1764 ((WT)w)->at = mn_now + w->repeat; 2747 ev_at (w) = mn_now + w->repeat;
2748 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2749 adjustheap (timers, timercnt, ev_active (w));
1766 } 2750 }
1767 else 2751 else
1768 ev_timer_stop (EV_A_ w); 2752 ev_timer_stop (EV_A_ w);
1769 } 2753 }
1770 else if (w->repeat) 2754 else if (w->repeat)
1771 { 2755 {
1772 w->at = w->repeat; 2756 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2757 ev_timer_start (EV_A_ w);
1774 } 2758 }
2759
2760 EV_FREQUENT_CHECK;
2761}
2762
2763ev_tstamp
2764ev_timer_remaining (EV_P_ ev_timer *w)
2765{
2766 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1775} 2767}
1776 2768
1777#if EV_PERIODIC_ENABLE 2769#if EV_PERIODIC_ENABLE
1778void noinline 2770void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2771ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2772{
1781 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
1782 return; 2774 return;
1783 2775
1784 if (w->reschedule_cb) 2776 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2778 else if (w->interval)
1787 { 2779 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2780 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2781 periodic_recalc (EV_A_ w);
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2782 }
1792 else 2783 else
1793 ((WT)w)->at = w->offset; 2784 ev_at (w) = w->offset;
1794 2785
2786 EV_FREQUENT_CHECK;
2787
2788 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2789 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2790 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2791 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2792 ANHE_at_cache (periodics [ev_active (w)]);
2793 upheap (periodics, ev_active (w));
1799 2794
2795 EV_FREQUENT_CHECK;
2796
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2797 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2798}
1802 2799
1803void noinline 2800void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2801ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2802{
1806 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1808 return; 2805 return;
1809 2806
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2807 EV_FREQUENT_CHECK;
1811 2808
1812 { 2809 {
1813 int active = ((W)w)->active; 2810 int active = ev_active (w);
1814 2811
2812 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2813
2814 --periodiccnt;
2815
1815 if (expect_true (--active < --periodiccnt)) 2816 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2817 {
1817 periodics [active] = periodics [periodiccnt]; 2818 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2819 adjustheap (periodics, periodiccnt, active);
1819 } 2820 }
1820 } 2821 }
1821 2822
1822 ev_stop (EV_A_ (W)w); 2823 ev_stop (EV_A_ (W)w);
2824
2825 EV_FREQUENT_CHECK;
1823} 2826}
1824 2827
1825void noinline 2828void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2829ev_periodic_again (EV_P_ ev_periodic *w)
1827{ 2830{
1833 2836
1834#ifndef SA_RESTART 2837#ifndef SA_RESTART
1835# define SA_RESTART 0 2838# define SA_RESTART 0
1836#endif 2839#endif
1837 2840
2841#if EV_SIGNAL_ENABLE
2842
1838void noinline 2843void noinline
1839ev_signal_start (EV_P_ ev_signal *w) 2844ev_signal_start (EV_P_ ev_signal *w)
1840{ 2845{
1841#if EV_MULTIPLICITY
1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1843#endif
1844 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
1845 return; 2847 return;
1846 2848
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2849 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1848 2850
2851#if EV_MULTIPLICITY
2852 assert (("libev: a signal must not be attached to two different loops",
2853 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2854
2855 signals [w->signum - 1].loop = EV_A;
2856#endif
2857
2858 EV_FREQUENT_CHECK;
2859
2860#if EV_USE_SIGNALFD
2861 if (sigfd == -2)
1849 { 2862 {
1850#ifndef _WIN32 2863 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1851 sigset_t full, prev; 2864 if (sigfd < 0 && errno == EINVAL)
1852 sigfillset (&full); 2865 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855 2866
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2867 if (sigfd >= 0)
2868 {
2869 fd_intern (sigfd); /* doing it twice will not hurt */
1857 2870
1858#ifndef _WIN32 2871 sigemptyset (&sigfd_set);
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2872
1860#endif 2873 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2874 ev_set_priority (&sigfd_w, EV_MAXPRI);
2875 ev_io_start (EV_A_ &sigfd_w);
2876 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2877 }
1861 } 2878 }
2879
2880 if (sigfd >= 0)
2881 {
2882 /* TODO: check .head */
2883 sigaddset (&sigfd_set, w->signum);
2884 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2885
2886 signalfd (sigfd, &sigfd_set, 0);
2887 }
2888#endif
1862 2889
1863 ev_start (EV_A_ (W)w, 1); 2890 ev_start (EV_A_ (W)w, 1);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2891 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2892
1866 if (!((WL)w)->next) 2893 if (!((WL)w)->next)
2894# if EV_USE_SIGNALFD
2895 if (sigfd < 0) /*TODO*/
2896# endif
1867 { 2897 {
1868#if _WIN32 2898# ifdef _WIN32
2899 evpipe_init (EV_A);
2900
1869 signal (w->signum, sighandler); 2901 signal (w->signum, ev_sighandler);
1870#else 2902# else
1871 struct sigaction sa; 2903 struct sigaction sa;
2904
2905 evpipe_init (EV_A);
2906
1872 sa.sa_handler = sighandler; 2907 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2908 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2909 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2910 sigaction (w->signum, &sa, 0);
2911
2912 if (origflags & EVFLAG_NOSIGMASK)
2913 {
2914 sigemptyset (&sa.sa_mask);
2915 sigaddset (&sa.sa_mask, w->signum);
2916 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2917 }
1876#endif 2918#endif
1877 } 2919 }
2920
2921 EV_FREQUENT_CHECK;
1878} 2922}
1879 2923
1880void noinline 2924void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2925ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2926{
1883 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
1885 return; 2929 return;
1886 2930
2931 EV_FREQUENT_CHECK;
2932
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2933 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2934 ev_stop (EV_A_ (W)w);
1889 2935
1890 if (!signals [w->signum - 1].head) 2936 if (!signals [w->signum - 1].head)
2937 {
2938#if EV_MULTIPLICITY
2939 signals [w->signum - 1].loop = 0; /* unattach from signal */
2940#endif
2941#if EV_USE_SIGNALFD
2942 if (sigfd >= 0)
2943 {
2944 sigset_t ss;
2945
2946 sigemptyset (&ss);
2947 sigaddset (&ss, w->signum);
2948 sigdelset (&sigfd_set, w->signum);
2949
2950 signalfd (sigfd, &sigfd_set, 0);
2951 sigprocmask (SIG_UNBLOCK, &ss, 0);
2952 }
2953 else
2954#endif
1891 signal (w->signum, SIG_DFL); 2955 signal (w->signum, SIG_DFL);
2956 }
2957
2958 EV_FREQUENT_CHECK;
1892} 2959}
2960
2961#endif
2962
2963#if EV_CHILD_ENABLE
1893 2964
1894void 2965void
1895ev_child_start (EV_P_ ev_child *w) 2966ev_child_start (EV_P_ ev_child *w)
1896{ 2967{
1897#if EV_MULTIPLICITY 2968#if EV_MULTIPLICITY
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2969 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2970#endif
1900 if (expect_false (ev_is_active (w))) 2971 if (expect_false (ev_is_active (w)))
1901 return; 2972 return;
1902 2973
2974 EV_FREQUENT_CHECK;
2975
1903 ev_start (EV_A_ (W)w, 1); 2976 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2977 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2978
2979 EV_FREQUENT_CHECK;
1905} 2980}
1906 2981
1907void 2982void
1908ev_child_stop (EV_P_ ev_child *w) 2983ev_child_stop (EV_P_ ev_child *w)
1909{ 2984{
1910 clear_pending (EV_A_ (W)w); 2985 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2986 if (expect_false (!ev_is_active (w)))
1912 return; 2987 return;
1913 2988
2989 EV_FREQUENT_CHECK;
2990
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2991 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2992 ev_stop (EV_A_ (W)w);
2993
2994 EV_FREQUENT_CHECK;
1916} 2995}
2996
2997#endif
1917 2998
1918#if EV_STAT_ENABLE 2999#if EV_STAT_ENABLE
1919 3000
1920# ifdef _WIN32 3001# ifdef _WIN32
1921# undef lstat 3002# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 3003# define lstat(a,b) _stati64 (a,b)
1923# endif 3004# endif
1924 3005
1925#define DEF_STAT_INTERVAL 5.0074891 3006#define DEF_STAT_INTERVAL 5.0074891
3007#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 3008#define MIN_STAT_INTERVAL 0.1074891
1927 3009
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3010static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 3011
1930#if EV_USE_INOTIFY 3012#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 3013
3014/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3015# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1932 3016
1933static void noinline 3017static void noinline
1934infy_add (EV_P_ ev_stat *w) 3018infy_add (EV_P_ ev_stat *w)
1935{ 3019{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3020 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 3021
1938 if (w->wd < 0) 3022 if (w->wd >= 0)
3023 {
3024 struct statfs sfs;
3025
3026 /* now local changes will be tracked by inotify, but remote changes won't */
3027 /* unless the filesystem is known to be local, we therefore still poll */
3028 /* also do poll on <2.6.25, but with normal frequency */
3029
3030 if (!fs_2625)
3031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3032 else if (!statfs (w->path, &sfs)
3033 && (sfs.f_type == 0x1373 /* devfs */
3034 || sfs.f_type == 0xEF53 /* ext2/3 */
3035 || sfs.f_type == 0x3153464a /* jfs */
3036 || sfs.f_type == 0x52654973 /* reiser3 */
3037 || sfs.f_type == 0x01021994 /* tempfs */
3038 || sfs.f_type == 0x58465342 /* xfs */))
3039 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3040 else
3041 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1939 { 3042 }
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3043 else
3044 {
3045 /* can't use inotify, continue to stat */
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1941 3047
1942 /* monitor some parent directory for speedup hints */ 3048 /* if path is not there, monitor some parent directory for speedup hints */
3049 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3050 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3051 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 3052 {
1945 char path [4096]; 3053 char path [4096];
1946 strcpy (path, w->path); 3054 strcpy (path, w->path);
1947 3055
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3058 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3059 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952 3060
1953 char *pend = strrchr (path, '/'); 3061 char *pend = strrchr (path, '/');
1954 3062
1955 if (!pend) 3063 if (!pend || pend == path)
1956 break; /* whoops, no '/', complain to your admin */ 3064 break;
1957 3065
1958 *pend = 0; 3066 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask); 3067 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 } 3068 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3069 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 3070 }
1963 } 3071 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966 3072
1967 if (w->wd >= 0) 3073 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3074 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3075
3076 /* now re-arm timer, if required */
3077 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3078 ev_timer_again (EV_A_ &w->timer);
3079 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1969} 3080}
1970 3081
1971static void noinline 3082static void noinline
1972infy_del (EV_P_ ev_stat *w) 3083infy_del (EV_P_ ev_stat *w)
1973{ 3084{
1976 3087
1977 if (wd < 0) 3088 if (wd < 0)
1978 return; 3089 return;
1979 3090
1980 w->wd = -2; 3091 w->wd = -2;
1981 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3092 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1982 wlist_del (&fs_hash [slot].head, (WL)w); 3093 wlist_del (&fs_hash [slot].head, (WL)w);
1983 3094
1984 /* remove this watcher, if others are watching it, they will rearm */ 3095 /* remove this watcher, if others are watching it, they will rearm */
1985 inotify_rm_watch (fs_fd, wd); 3096 inotify_rm_watch (fs_fd, wd);
1986} 3097}
1987 3098
1988static void noinline 3099static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3100infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 3101{
1991 if (slot < 0) 3102 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 3103 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3104 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 3105 infy_wd (EV_A_ slot, wd, ev);
1995 else 3106 else
1996 { 3107 {
1997 WL w_; 3108 WL w_;
1998 3109
1999 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3110 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2000 { 3111 {
2001 ev_stat *w = (ev_stat *)w_; 3112 ev_stat *w = (ev_stat *)w_;
2002 w_ = w_->next; /* lets us remove this watcher and all before it */ 3113 w_ = w_->next; /* lets us remove this watcher and all before it */
2003 3114
2004 if (w->wd == wd || wd == -1) 3115 if (w->wd == wd || wd == -1)
2005 { 3116 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3117 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 { 3118 {
3119 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2008 w->wd = -1; 3120 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
2010 } 3122 }
2011 3123
2012 stat_timer_cb (EV_A_ &w->timer, 0); 3124 stat_timer_cb (EV_A_ &w->timer, 0);
2017 3129
2018static void 3130static void
2019infy_cb (EV_P_ ev_io *w, int revents) 3131infy_cb (EV_P_ ev_io *w, int revents)
2020{ 3132{
2021 char buf [EV_INOTIFY_BUFSIZE]; 3133 char buf [EV_INOTIFY_BUFSIZE];
2022 struct inotify_event *ev = (struct inotify_event *)buf;
2023 int ofs; 3134 int ofs;
2024 int len = read (fs_fd, buf, sizeof (buf)); 3135 int len = read (fs_fd, buf, sizeof (buf));
2025 3136
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3137 for (ofs = 0; ofs < len; )
3138 {
3139 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3140 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3141 ofs += sizeof (struct inotify_event) + ev->len;
3142 }
2028} 3143}
2029 3144
2030void inline_size 3145inline_size void
3146ev_check_2625 (EV_P)
3147{
3148 /* kernels < 2.6.25 are borked
3149 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3150 */
3151 if (ev_linux_version () < 0x020619)
3152 return;
3153
3154 fs_2625 = 1;
3155}
3156
3157inline_size int
3158infy_newfd (void)
3159{
3160#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3161 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3162 if (fd >= 0)
3163 return fd;
3164#endif
3165 return inotify_init ();
3166}
3167
3168inline_size void
2031infy_init (EV_P) 3169infy_init (EV_P)
2032{ 3170{
2033 if (fs_fd != -2) 3171 if (fs_fd != -2)
2034 return; 3172 return;
2035 3173
3174 fs_fd = -1;
3175
3176 ev_check_2625 (EV_A);
3177
2036 fs_fd = inotify_init (); 3178 fs_fd = infy_newfd ();
2037 3179
2038 if (fs_fd >= 0) 3180 if (fs_fd >= 0)
2039 { 3181 {
3182 fd_intern (fs_fd);
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI); 3184 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w); 3185 ev_io_start (EV_A_ &fs_w);
3186 ev_unref (EV_A);
2043 } 3187 }
2044} 3188}
2045 3189
2046void inline_size 3190inline_size void
2047infy_fork (EV_P) 3191infy_fork (EV_P)
2048{ 3192{
2049 int slot; 3193 int slot;
2050 3194
2051 if (fs_fd < 0) 3195 if (fs_fd < 0)
2052 return; 3196 return;
2053 3197
3198 ev_ref (EV_A);
3199 ev_io_stop (EV_A_ &fs_w);
2054 close (fs_fd); 3200 close (fs_fd);
2055 fs_fd = inotify_init (); 3201 fs_fd = infy_newfd ();
2056 3202
3203 if (fs_fd >= 0)
3204 {
3205 fd_intern (fs_fd);
3206 ev_io_set (&fs_w, fs_fd, EV_READ);
3207 ev_io_start (EV_A_ &fs_w);
3208 ev_unref (EV_A);
3209 }
3210
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3211 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 { 3212 {
2059 WL w_ = fs_hash [slot].head; 3213 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0; 3214 fs_hash [slot].head = 0;
2061 3215
2062 while (w_) 3216 while (w_)
2067 w->wd = -1; 3221 w->wd = -1;
2068 3222
2069 if (fs_fd >= 0) 3223 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 3224 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 3225 else
3226 {
3227 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3228 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2072 ev_timer_start (EV_A_ &w->timer); 3229 ev_timer_again (EV_A_ &w->timer);
3230 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3231 }
2073 } 3232 }
2074
2075 } 3233 }
2076} 3234}
2077 3235
3236#endif
3237
3238#ifdef _WIN32
3239# define EV_LSTAT(p,b) _stati64 (p, b)
3240#else
3241# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 3242#endif
2079 3243
2080void 3244void
2081ev_stat_stat (EV_P_ ev_stat *w) 3245ev_stat_stat (EV_P_ ev_stat *w)
2082{ 3246{
2089static void noinline 3253static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3254stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{ 3255{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093 3257
2094 /* we copy this here each the time so that */ 3258 ev_statdata prev = w->attr;
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w); 3259 ev_stat_stat (EV_A_ w);
2098 3260
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3261 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if ( 3262 if (
2101 w->prev.st_dev != w->attr.st_dev 3263 prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino 3264 || prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode 3265 || prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink 3266 || prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid 3267 || prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid 3268 || prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev 3269 || prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size 3270 || prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime 3271 || prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 3272 || prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 3273 || prev.st_ctime != w->attr.st_ctime
2112 ) { 3274 ) {
3275 /* we only update w->prev on actual differences */
3276 /* in case we test more often than invoke the callback, */
3277 /* to ensure that prev is always different to attr */
3278 w->prev = prev;
3279
2113 #if EV_USE_INOTIFY 3280 #if EV_USE_INOTIFY
3281 if (fs_fd >= 0)
3282 {
2114 infy_del (EV_A_ w); 3283 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 3284 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 3285 ev_stat_stat (EV_A_ w); /* avoid race... */
3286 }
2117 #endif 3287 #endif
2118 3288
2119 ev_feed_event (EV_A_ w, EV_STAT); 3289 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 3290 }
2121} 3291}
2124ev_stat_start (EV_P_ ev_stat *w) 3294ev_stat_start (EV_P_ ev_stat *w)
2125{ 3295{
2126 if (expect_false (ev_is_active (w))) 3296 if (expect_false (ev_is_active (w)))
2127 return; 3297 return;
2128 3298
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 3299 ev_stat_stat (EV_A_ w);
2134 3300
3301 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 3302 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 3303
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3304 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 3305 ev_set_priority (&w->timer, ev_priority (w));
2140 3306
2141#if EV_USE_INOTIFY 3307#if EV_USE_INOTIFY
2142 infy_init (EV_A); 3308 infy_init (EV_A);
2143 3309
2144 if (fs_fd >= 0) 3310 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 3311 infy_add (EV_A_ w);
2146 else 3312 else
2147#endif 3313#endif
3314 {
2148 ev_timer_start (EV_A_ &w->timer); 3315 ev_timer_again (EV_A_ &w->timer);
3316 ev_unref (EV_A);
3317 }
2149 3318
2150 ev_start (EV_A_ (W)w, 1); 3319 ev_start (EV_A_ (W)w, 1);
3320
3321 EV_FREQUENT_CHECK;
2151} 3322}
2152 3323
2153void 3324void
2154ev_stat_stop (EV_P_ ev_stat *w) 3325ev_stat_stop (EV_P_ ev_stat *w)
2155{ 3326{
2156 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2158 return; 3329 return;
2159 3330
3331 EV_FREQUENT_CHECK;
3332
2160#if EV_USE_INOTIFY 3333#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 3334 infy_del (EV_A_ w);
2162#endif 3335#endif
3336
3337 if (ev_is_active (&w->timer))
3338 {
3339 ev_ref (EV_A);
2163 ev_timer_stop (EV_A_ &w->timer); 3340 ev_timer_stop (EV_A_ &w->timer);
3341 }
2164 3342
2165 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
3344
3345 EV_FREQUENT_CHECK;
2166} 3346}
2167#endif 3347#endif
2168 3348
2169#if EV_IDLE_ENABLE 3349#if EV_IDLE_ENABLE
2170void 3350void
2172{ 3352{
2173 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2174 return; 3354 return;
2175 3355
2176 pri_adjust (EV_A_ (W)w); 3356 pri_adjust (EV_A_ (W)w);
3357
3358 EV_FREQUENT_CHECK;
2177 3359
2178 { 3360 {
2179 int active = ++idlecnt [ABSPRI (w)]; 3361 int active = ++idlecnt [ABSPRI (w)];
2180 3362
2181 ++idleall; 3363 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 3364 ev_start (EV_A_ (W)w, active);
2183 3365
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3366 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 3367 idles [ABSPRI (w)][active - 1] = w;
2186 } 3368 }
3369
3370 EV_FREQUENT_CHECK;
2187} 3371}
2188 3372
2189void 3373void
2190ev_idle_stop (EV_P_ ev_idle *w) 3374ev_idle_stop (EV_P_ ev_idle *w)
2191{ 3375{
2192 clear_pending (EV_A_ (W)w); 3376 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3377 if (expect_false (!ev_is_active (w)))
2194 return; 3378 return;
2195 3379
3380 EV_FREQUENT_CHECK;
3381
2196 { 3382 {
2197 int active = ((W)w)->active; 3383 int active = ev_active (w);
2198 3384
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3385 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3386 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 3387
2202 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
2203 --idleall; 3389 --idleall;
2204 } 3390 }
2205}
2206#endif
2207 3391
3392 EV_FREQUENT_CHECK;
3393}
3394#endif
3395
3396#if EV_PREPARE_ENABLE
2208void 3397void
2209ev_prepare_start (EV_P_ ev_prepare *w) 3398ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 3399{
2211 if (expect_false (ev_is_active (w))) 3400 if (expect_false (ev_is_active (w)))
2212 return; 3401 return;
3402
3403 EV_FREQUENT_CHECK;
2213 3404
2214 ev_start (EV_A_ (W)w, ++preparecnt); 3405 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3406 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 3407 prepares [preparecnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
2217} 3410}
2218 3411
2219void 3412void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 3413ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 3414{
2222 clear_pending (EV_A_ (W)w); 3415 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3416 if (expect_false (!ev_is_active (w)))
2224 return; 3417 return;
2225 3418
3419 EV_FREQUENT_CHECK;
3420
2226 { 3421 {
2227 int active = ((W)w)->active; 3422 int active = ev_active (w);
3423
2228 prepares [active - 1] = prepares [--preparecnt]; 3424 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 3425 ev_active (prepares [active - 1]) = active;
2230 } 3426 }
2231 3427
2232 ev_stop (EV_A_ (W)w); 3428 ev_stop (EV_A_ (W)w);
2233}
2234 3429
3430 EV_FREQUENT_CHECK;
3431}
3432#endif
3433
3434#if EV_CHECK_ENABLE
2235void 3435void
2236ev_check_start (EV_P_ ev_check *w) 3436ev_check_start (EV_P_ ev_check *w)
2237{ 3437{
2238 if (expect_false (ev_is_active (w))) 3438 if (expect_false (ev_is_active (w)))
2239 return; 3439 return;
3440
3441 EV_FREQUENT_CHECK;
2240 3442
2241 ev_start (EV_A_ (W)w, ++checkcnt); 3443 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3444 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 3445 checks [checkcnt - 1] = w;
3446
3447 EV_FREQUENT_CHECK;
2244} 3448}
2245 3449
2246void 3450void
2247ev_check_stop (EV_P_ ev_check *w) 3451ev_check_stop (EV_P_ ev_check *w)
2248{ 3452{
2249 clear_pending (EV_A_ (W)w); 3453 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 3454 if (expect_false (!ev_is_active (w)))
2251 return; 3455 return;
2252 3456
3457 EV_FREQUENT_CHECK;
3458
2253 { 3459 {
2254 int active = ((W)w)->active; 3460 int active = ev_active (w);
3461
2255 checks [active - 1] = checks [--checkcnt]; 3462 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 3463 ev_active (checks [active - 1]) = active;
2257 } 3464 }
2258 3465
2259 ev_stop (EV_A_ (W)w); 3466 ev_stop (EV_A_ (W)w);
3467
3468 EV_FREQUENT_CHECK;
2260} 3469}
3470#endif
2261 3471
2262#if EV_EMBED_ENABLE 3472#if EV_EMBED_ENABLE
2263void noinline 3473void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 3474ev_embed_sweep (EV_P_ ev_embed *w)
2265{ 3475{
2266 ev_loop (w->other, EVLOOP_NONBLOCK); 3476 ev_run (w->other, EVRUN_NOWAIT);
2267} 3477}
2268 3478
2269static void 3479static void
2270embed_io_cb (EV_P_ ev_io *io, int revents) 3480embed_io_cb (EV_P_ ev_io *io, int revents)
2271{ 3481{
2272 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3482 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2273 3483
2274 if (ev_cb (w)) 3484 if (ev_cb (w))
2275 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3485 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2276 else 3486 else
2277 ev_loop (w->other, EVLOOP_NONBLOCK); 3487 ev_run (w->other, EVRUN_NOWAIT);
2278} 3488}
2279 3489
2280static void 3490static void
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3491embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{ 3492{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3493 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284 3494
2285 { 3495 {
2286 struct ev_loop *loop = w->other; 3496 EV_P = w->other;
2287 3497
2288 while (fdchangecnt) 3498 while (fdchangecnt)
2289 { 3499 {
2290 fd_reify (EV_A); 3500 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3501 ev_run (EV_A_ EVRUN_NOWAIT);
2292 } 3502 }
2293 } 3503 }
3504}
3505
3506static void
3507embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3508{
3509 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3510
3511 ev_embed_stop (EV_A_ w);
3512
3513 {
3514 EV_P = w->other;
3515
3516 ev_loop_fork (EV_A);
3517 ev_run (EV_A_ EVRUN_NOWAIT);
3518 }
3519
3520 ev_embed_start (EV_A_ w);
2294} 3521}
2295 3522
2296#if 0 3523#if 0
2297static void 3524static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3525embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2306{ 3533{
2307 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2308 return; 3535 return;
2309 3536
2310 { 3537 {
2311 struct ev_loop *loop = w->other; 3538 EV_P = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3539 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3540 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 3541 }
3542
3543 EV_FREQUENT_CHECK;
2315 3544
2316 ev_set_priority (&w->io, ev_priority (w)); 3545 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 3546 ev_io_start (EV_A_ &w->io);
2318 3547
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 3548 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 3549 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 3550 ev_prepare_start (EV_A_ &w->prepare);
2322 3551
3552 ev_fork_init (&w->fork, embed_fork_cb);
3553 ev_fork_start (EV_A_ &w->fork);
3554
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3555 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 3556
2325 ev_start (EV_A_ (W)w, 1); 3557 ev_start (EV_A_ (W)w, 1);
3558
3559 EV_FREQUENT_CHECK;
2326} 3560}
2327 3561
2328void 3562void
2329ev_embed_stop (EV_P_ ev_embed *w) 3563ev_embed_stop (EV_P_ ev_embed *w)
2330{ 3564{
2331 clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
2333 return; 3567 return;
2334 3568
3569 EV_FREQUENT_CHECK;
3570
2335 ev_io_stop (EV_A_ &w->io); 3571 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 3572 ev_prepare_stop (EV_A_ &w->prepare);
3573 ev_fork_stop (EV_A_ &w->fork);
2337 3574
2338 ev_stop (EV_A_ (W)w); 3575 ev_stop (EV_A_ (W)w);
3576
3577 EV_FREQUENT_CHECK;
2339} 3578}
2340#endif 3579#endif
2341 3580
2342#if EV_FORK_ENABLE 3581#if EV_FORK_ENABLE
2343void 3582void
2344ev_fork_start (EV_P_ ev_fork *w) 3583ev_fork_start (EV_P_ ev_fork *w)
2345{ 3584{
2346 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
2347 return; 3586 return;
3587
3588 EV_FREQUENT_CHECK;
2348 3589
2349 ev_start (EV_A_ (W)w, ++forkcnt); 3590 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3591 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 3592 forks [forkcnt - 1] = w;
3593
3594 EV_FREQUENT_CHECK;
2352} 3595}
2353 3596
2354void 3597void
2355ev_fork_stop (EV_P_ ev_fork *w) 3598ev_fork_stop (EV_P_ ev_fork *w)
2356{ 3599{
2357 clear_pending (EV_A_ (W)w); 3600 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 3601 if (expect_false (!ev_is_active (w)))
2359 return; 3602 return;
2360 3603
3604 EV_FREQUENT_CHECK;
3605
2361 { 3606 {
2362 int active = ((W)w)->active; 3607 int active = ev_active (w);
3608
2363 forks [active - 1] = forks [--forkcnt]; 3609 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 3610 ev_active (forks [active - 1]) = active;
2365 } 3611 }
2366 3612
2367 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
3614
3615 EV_FREQUENT_CHECK;
3616}
3617#endif
3618
3619#if EV_CLEANUP_ENABLE
3620void
3621ev_cleanup_start (EV_P_ ev_cleanup *w)
3622{
3623 if (expect_false (ev_is_active (w)))
3624 return;
3625
3626 EV_FREQUENT_CHECK;
3627
3628 ev_start (EV_A_ (W)w, ++cleanupcnt);
3629 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3630 cleanups [cleanupcnt - 1] = w;
3631
3632 /* cleanup watchers should never keep a refcount on the loop */
3633 ev_unref (EV_A);
3634 EV_FREQUENT_CHECK;
3635}
3636
3637void
3638ev_cleanup_stop (EV_P_ ev_cleanup *w)
3639{
3640 clear_pending (EV_A_ (W)w);
3641 if (expect_false (!ev_is_active (w)))
3642 return;
3643
3644 EV_FREQUENT_CHECK;
3645 ev_ref (EV_A);
3646
3647 {
3648 int active = ev_active (w);
3649
3650 cleanups [active - 1] = cleanups [--cleanupcnt];
3651 ev_active (cleanups [active - 1]) = active;
3652 }
3653
3654 ev_stop (EV_A_ (W)w);
3655
3656 EV_FREQUENT_CHECK;
3657}
3658#endif
3659
3660#if EV_ASYNC_ENABLE
3661void
3662ev_async_start (EV_P_ ev_async *w)
3663{
3664 if (expect_false (ev_is_active (w)))
3665 return;
3666
3667 w->sent = 0;
3668
3669 evpipe_init (EV_A);
3670
3671 EV_FREQUENT_CHECK;
3672
3673 ev_start (EV_A_ (W)w, ++asynccnt);
3674 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3675 asyncs [asynccnt - 1] = w;
3676
3677 EV_FREQUENT_CHECK;
3678}
3679
3680void
3681ev_async_stop (EV_P_ ev_async *w)
3682{
3683 clear_pending (EV_A_ (W)w);
3684 if (expect_false (!ev_is_active (w)))
3685 return;
3686
3687 EV_FREQUENT_CHECK;
3688
3689 {
3690 int active = ev_active (w);
3691
3692 asyncs [active - 1] = asyncs [--asynccnt];
3693 ev_active (asyncs [active - 1]) = active;
3694 }
3695
3696 ev_stop (EV_A_ (W)w);
3697
3698 EV_FREQUENT_CHECK;
3699}
3700
3701void
3702ev_async_send (EV_P_ ev_async *w)
3703{
3704 w->sent = 1;
3705 evpipe_write (EV_A_ &async_pending);
2368} 3706}
2369#endif 3707#endif
2370 3708
2371/*****************************************************************************/ 3709/*****************************************************************************/
2372 3710
2382once_cb (EV_P_ struct ev_once *once, int revents) 3720once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3721{
2384 void (*cb)(int revents, void *arg) = once->cb; 3722 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3723 void *arg = once->arg;
2386 3724
2387 ev_io_stop (EV_A_ &once->io); 3725 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3726 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3727 ev_free (once);
2390 3728
2391 cb (revents, arg); 3729 cb (revents, arg);
2392} 3730}
2393 3731
2394static void 3732static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3733once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3734{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3736
3737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3738}
2399 3739
2400static void 3740static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3741once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3742{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3743 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3744
3745 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3746}
2405 3747
2406void 3748void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3750{
2409 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2410 3752
2411 if (expect_false (!once)) 3753 if (expect_false (!once))
2412 { 3754 {
2413 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2414 return; 3756 return;
2415 } 3757 }
2416 3758
2417 once->cb = cb; 3759 once->cb = cb;
2418 once->arg = arg; 3760 once->arg = arg;
2430 ev_timer_set (&once->to, timeout, 0.); 3772 ev_timer_set (&once->to, timeout, 0.);
2431 ev_timer_start (EV_A_ &once->to); 3773 ev_timer_start (EV_A_ &once->to);
2432 } 3774 }
2433} 3775}
2434 3776
3777/*****************************************************************************/
3778
3779#if EV_WALK_ENABLE
3780void
3781ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3782{
3783 int i, j;
3784 ev_watcher_list *wl, *wn;
3785
3786 if (types & (EV_IO | EV_EMBED))
3787 for (i = 0; i < anfdmax; ++i)
3788 for (wl = anfds [i].head; wl; )
3789 {
3790 wn = wl->next;
3791
3792#if EV_EMBED_ENABLE
3793 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3794 {
3795 if (types & EV_EMBED)
3796 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3797 }
3798 else
3799#endif
3800#if EV_USE_INOTIFY
3801 if (ev_cb ((ev_io *)wl) == infy_cb)
3802 ;
3803 else
3804#endif
3805 if ((ev_io *)wl != &pipe_w)
3806 if (types & EV_IO)
3807 cb (EV_A_ EV_IO, wl);
3808
3809 wl = wn;
3810 }
3811
3812 if (types & (EV_TIMER | EV_STAT))
3813 for (i = timercnt + HEAP0; i-- > HEAP0; )
3814#if EV_STAT_ENABLE
3815 /*TODO: timer is not always active*/
3816 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3817 {
3818 if (types & EV_STAT)
3819 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3820 }
3821 else
3822#endif
3823 if (types & EV_TIMER)
3824 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3825
3826#if EV_PERIODIC_ENABLE
3827 if (types & EV_PERIODIC)
3828 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3829 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3830#endif
3831
3832#if EV_IDLE_ENABLE
3833 if (types & EV_IDLE)
3834 for (j = NUMPRI; i--; )
3835 for (i = idlecnt [j]; i--; )
3836 cb (EV_A_ EV_IDLE, idles [j][i]);
3837#endif
3838
3839#if EV_FORK_ENABLE
3840 if (types & EV_FORK)
3841 for (i = forkcnt; i--; )
3842 if (ev_cb (forks [i]) != embed_fork_cb)
3843 cb (EV_A_ EV_FORK, forks [i]);
3844#endif
3845
3846#if EV_ASYNC_ENABLE
3847 if (types & EV_ASYNC)
3848 for (i = asynccnt; i--; )
3849 cb (EV_A_ EV_ASYNC, asyncs [i]);
3850#endif
3851
3852#if EV_PREPARE_ENABLE
3853 if (types & EV_PREPARE)
3854 for (i = preparecnt; i--; )
3855# if EV_EMBED_ENABLE
3856 if (ev_cb (prepares [i]) != embed_prepare_cb)
3857# endif
3858 cb (EV_A_ EV_PREPARE, prepares [i]);
3859#endif
3860
3861#if EV_CHECK_ENABLE
3862 if (types & EV_CHECK)
3863 for (i = checkcnt; i--; )
3864 cb (EV_A_ EV_CHECK, checks [i]);
3865#endif
3866
3867#if EV_SIGNAL_ENABLE
3868 if (types & EV_SIGNAL)
3869 for (i = 0; i < EV_NSIG - 1; ++i)
3870 for (wl = signals [i].head; wl; )
3871 {
3872 wn = wl->next;
3873 cb (EV_A_ EV_SIGNAL, wl);
3874 wl = wn;
3875 }
3876#endif
3877
3878#if EV_CHILD_ENABLE
3879 if (types & EV_CHILD)
3880 for (i = (EV_PID_HASHSIZE); i--; )
3881 for (wl = childs [i]; wl; )
3882 {
3883 wn = wl->next;
3884 cb (EV_A_ EV_CHILD, wl);
3885 wl = wn;
3886 }
3887#endif
3888/* EV_STAT 0x00001000 /* stat data changed */
3889/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3890}
3891#endif
3892
2435#if EV_MULTIPLICITY 3893#if EV_MULTIPLICITY
2436 #include "ev_wrap.h" 3894 #include "ev_wrap.h"
2437#endif 3895#endif
2438 3896
2439#ifdef __cplusplus 3897EV_CPP(})
2440}
2441#endif
2442 3898

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines