ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.407 by root, Wed Jan 25 01:32:12 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
137#ifndef _WIN32 188#ifndef _WIN32
138# include <sys/time.h> 189# include <sys/time.h>
139# include <sys/wait.h> 190# include <sys/wait.h>
140# include <unistd.h> 191# include <unistd.h>
141#else 192#else
193# include <io.h>
142# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 195# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
146# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
147#endif 249# endif
148 250#endif
149/**/
150 251
151#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
152# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
153#endif 258#endif
154 259
155#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 262#endif
158 263
159#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
160# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 274#endif
166 275
167#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
168# ifdef _WIN32 277# ifdef _WIN32
169# define EV_USE_POLL 0 278# define EV_USE_POLL 0
170# else 279# else
171# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 281# endif
173#endif 282#endif
174 283
175#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
176# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
177#endif 290#endif
178 291
179#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
181#endif 294#endif
183#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 297# define EV_USE_PORT 0
185#endif 298#endif
186 299
187#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
188# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
305# endif
189#endif 306#endif
190 307
191#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 319# else
195# define EV_PID_HASHSIZE 16 320# define EV_USE_EVENTFD 0
196# endif 321# endif
197#endif 322#endif
198 323
199#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 326# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 327# else
203# define EV_INOTIFY_HASHSIZE 16 328# define EV_USE_SIGNALFD 0
204# endif 329# endif
205#endif 330#endif
206 331
207/**/ 332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
208 371
209#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
212#endif 375#endif
220# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
222#endif 385#endif
223 386
224#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
226# include <sys/select.h> 390# include <sys/select.h>
227# endif 391# endif
228#endif 392#endif
229 393
230#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
231# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
232#endif 402#endif
233 403
234#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 405# include <winsock.h>
236#endif 406#endif
237 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
238/**/ 446/**/
239 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
240/* 454/*
241 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 457 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 460
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 508 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
257#else 515#else
258# define expect(expr,value) (expr) 516 #include <inttypes.h>
259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
263#endif 531 #endif
532#endif
264 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
655 #define ecb_expect(expr,value) (expr)
656 #define ecb_prefetch(addr,rw,locality)
657#endif
658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
267#define inline_size static inline 937#define inline_size ecb_inline
268 938
269#if EV_MINIMAL 939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
270# define inline_speed static noinline 942# define inline_speed static noinline
943#endif
944
945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
271#else 949#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
277 952
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 953#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 954#define EMPTY2(a,b) /* used to suppress some warnings */
280 955
281typedef ev_watcher *W; 956typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 957typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 958typedef ev_watcher_time *WT;
284 959
960#define ev_active(w) ((W)(w))->active
961#define ev_at(w) ((WT)(w))->at
962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
285#if EV_USE_MONOTONIC 969#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
289#endif 981#endif
290 982
291#ifdef _WIN32 983#ifdef _WIN32
292# include "ev_win32.c" 984# include "ev_win32.c"
293#endif 985#endif
294 986
295/*****************************************************************************/ 987/*****************************************************************************/
296 988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
297static void (*syserr_cb)(const char *msg); 1087static void (*syserr_cb)(const char *msg);
298 1088
299void 1089void ecb_cold
300ev_set_syserr_cb (void (*cb)(const char *msg)) 1090ev_set_syserr_cb (void (*cb)(const char *msg))
301{ 1091{
302 syserr_cb = cb; 1092 syserr_cb = cb;
303} 1093}
304 1094
305static void noinline 1095static void noinline ecb_cold
306syserr (const char *msg) 1096ev_syserr (const char *msg)
307{ 1097{
308 if (!msg) 1098 if (!msg)
309 msg = "(libev) system error"; 1099 msg = "(libev) system error";
310 1100
311 if (syserr_cb) 1101 if (syserr_cb)
312 syserr_cb (msg); 1102 syserr_cb (msg);
313 else 1103 else
314 { 1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
315 perror (msg); 1111 perror (msg);
1112#endif
316 abort (); 1113 abort ();
317 } 1114 }
318} 1115}
319 1116
1117static void *
1118ev_realloc_emul (void *ptr, long size)
1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
1123 /* some systems, notably openbsd and darwin, fail to properly
1124 * implement realloc (x, 0) (as required by both ansi c-89 and
1125 * the single unix specification, so work around them here.
1126 */
1127
1128 if (size)
1129 return realloc (ptr, size);
1130
1131 free (ptr);
1132 return 0;
1133#endif
1134}
1135
320static void *(*alloc)(void *ptr, long size); 1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 1137
322void 1138void ecb_cold
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 1139ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 1140{
325 alloc = cb; 1141 alloc = cb;
326} 1142}
327 1143
328inline_speed void * 1144inline_speed void *
329ev_realloc (void *ptr, long size) 1145ev_realloc (void *ptr, long size)
330{ 1146{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1147 ptr = alloc (ptr, size);
332 1148
333 if (!ptr && size) 1149 if (!ptr && size)
334 { 1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
336 abort (); 1156 abort ();
337 } 1157 }
338 1158
339 return ptr; 1159 return ptr;
340} 1160}
342#define ev_malloc(size) ev_realloc (0, (size)) 1162#define ev_malloc(size) ev_realloc (0, (size))
343#define ev_free(ptr) ev_realloc ((ptr), 0) 1163#define ev_free(ptr) ev_realloc ((ptr), 0)
344 1164
345/*****************************************************************************/ 1165/*****************************************************************************/
346 1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
347typedef struct 1171typedef struct
348{ 1172{
349 WL head; 1173 WL head;
350 unsigned char events; 1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
351 unsigned char reify; 1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
352#if EV_SELECT_IS_WINSOCKET 1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
353 SOCKET handle; 1182 SOCKET handle;
354#endif 1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
355} ANFD; 1187} ANFD;
356 1188
1189/* stores the pending event set for a given watcher */
357typedef struct 1190typedef struct
358{ 1191{
359 W w; 1192 W w;
360 int events; 1193 int events; /* the pending event set for the given watcher */
361} ANPENDING; 1194} ANPENDING;
362 1195
363#if EV_USE_INOTIFY 1196#if EV_USE_INOTIFY
1197/* hash table entry per inotify-id */
364typedef struct 1198typedef struct
365{ 1199{
366 WL head; 1200 WL head;
367} ANFS; 1201} ANFS;
1202#endif
1203
1204/* Heap Entry */
1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
1207 typedef struct {
1208 ev_tstamp at;
1209 WT w;
1210 } ANHE;
1211
1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215#else
1216 /* a heap element */
1217 typedef WT ANHE;
1218
1219 #define ANHE_w(he) (he)
1220 #define ANHE_at(he) (he)->at
1221 #define ANHE_at_cache(he)
368#endif 1222#endif
369 1223
370#if EV_MULTIPLICITY 1224#if EV_MULTIPLICITY
371 1225
372 struct ev_loop 1226 struct ev_loop
378 #undef VAR 1232 #undef VAR
379 }; 1233 };
380 #include "ev_wrap.h" 1234 #include "ev_wrap.h"
381 1235
382 static struct ev_loop default_loop_struct; 1236 static struct ev_loop default_loop_struct;
383 struct ev_loop *ev_default_loop_ptr; 1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
384 1238
385#else 1239#else
386 1240
387 ev_tstamp ev_rt_now; 1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
388 #define VAR(name,decl) static decl; 1242 #define VAR(name,decl) static decl;
389 #include "ev_vars.h" 1243 #include "ev_vars.h"
390 #undef VAR 1244 #undef VAR
391 1245
392 static int ev_default_loop_ptr; 1246 static int ev_default_loop_ptr;
393 1247
394#endif 1248#endif
395 1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
1261
396/*****************************************************************************/ 1262/*****************************************************************************/
397 1263
1264#ifndef EV_HAVE_EV_TIME
398ev_tstamp 1265ev_tstamp
399ev_time (void) 1266ev_time (void)
400{ 1267{
401#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
402 struct timespec ts; 1271 struct timespec ts;
403 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
404 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
405#else 1274 }
1275#endif
1276
406 struct timeval tv; 1277 struct timeval tv;
407 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
408 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
409#endif
410} 1280}
1281#endif
411 1282
412ev_tstamp inline_size 1283inline_size ev_tstamp
413get_clock (void) 1284get_clock (void)
414{ 1285{
415#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
416 if (expect_true (have_monotonic)) 1287 if (expect_true (have_monotonic))
417 { 1288 {
438 if (delay > 0.) 1309 if (delay > 0.)
439 { 1310 {
440#if EV_USE_NANOSLEEP 1311#if EV_USE_NANOSLEEP
441 struct timespec ts; 1312 struct timespec ts;
442 1313
443 ts.tv_sec = (time_t)delay; 1314 EV_TS_SET (ts, delay);
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445
446 nanosleep (&ts, 0); 1315 nanosleep (&ts, 0);
447#elif defined(_WIN32) 1316#elif defined(_WIN32)
448 Sleep (delay * 1e3); 1317 Sleep ((unsigned long)(delay * 1e3));
449#else 1318#else
450 struct timeval tv; 1319 struct timeval tv;
451 1320
452 tv.tv_sec = (time_t)delay; 1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1322 /* something not guaranteed by newer posix versions, but guaranteed */
454 1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
455 select (0, 0, 0, 0, &tv); 1325 select (0, 0, 0, 0, &tv);
456#endif 1326#endif
457 } 1327 }
458} 1328}
459 1329
460/*****************************************************************************/ 1330/*****************************************************************************/
461 1331
462int inline_size 1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1333
1334/* find a suitable new size for the given array, */
1335/* hopefully by rounding to a nice-to-malloc size */
1336inline_size int
463array_nextsize (int elem, int cur, int cnt) 1337array_nextsize (int elem, int cur, int cnt)
464{ 1338{
465 int ncur = cur + 1; 1339 int ncur = cur + 1;
466 1340
467 do 1341 do
468 ncur <<= 1; 1342 ncur <<= 1;
469 while (cnt > ncur); 1343 while (cnt > ncur);
470 1344
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
472 if (elem * ncur > 4096) 1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 1347 {
474 ncur *= elem; 1348 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 1350 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 1351 ncur /= elem;
478 } 1352 }
479 1353
480 return ncur; 1354 return ncur;
481} 1355}
482 1356
483static noinline void * 1357static void * noinline ecb_cold
484array_realloc (int elem, void *base, int *cur, int cnt) 1358array_realloc (int elem, void *base, int *cur, int cnt)
485{ 1359{
486 *cur = array_nextsize (elem, *cur, cnt); 1360 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 1361 return ev_realloc (base, elem * *cur);
488} 1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 1366
490#define array_needsize(type,base,cur,cnt,init) \ 1367#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 1368 if (expect_false ((cnt) > (cur))) \
492 { \ 1369 { \
493 int ocur_ = (cur); \ 1370 int ecb_unused ocur_ = (cur); \
494 (base) = (type *)array_realloc \ 1371 (base) = (type *)array_realloc \
495 (sizeof (type), (base), &(cur), (cnt)); \ 1372 (sizeof (type), (base), &(cur), (cnt)); \
496 init ((base) + (ocur_), (cur) - ocur_); \ 1373 init ((base) + (ocur_), (cur) - ocur_); \
497 } 1374 }
498 1375
505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
506 } 1383 }
507#endif 1384#endif
508 1385
509#define array_free(stem, idx) \ 1386#define array_free(stem, idx) \
510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
511 1388
512/*****************************************************************************/ 1389/*****************************************************************************/
1390
1391/* dummy callback for pending events */
1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
1394{
1395}
513 1396
514void noinline 1397void noinline
515ev_feed_event (EV_P_ void *w, int revents) 1398ev_feed_event (EV_P_ void *w, int revents)
516{ 1399{
517 W w_ = (W)w; 1400 W w_ = (W)w;
526 pendings [pri][w_->pending - 1].w = w_; 1409 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents; 1410 pendings [pri][w_->pending - 1].events = revents;
528 } 1411 }
529} 1412}
530 1413
531void inline_speed 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
532queue_events (EV_P_ W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
533{ 1431{
534 int i; 1432 int i;
535 1433
536 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
538} 1436}
539 1437
540/*****************************************************************************/ 1438/*****************************************************************************/
541 1439
542void inline_size 1440inline_speed void
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed
556fd_event (EV_P_ int fd, int revents) 1441fd_event_nocheck (EV_P_ int fd, int revents)
557{ 1442{
558 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
559 ev_io *w; 1444 ev_io *w;
560 1445
561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
565 if (ev) 1450 if (ev)
566 ev_feed_event (EV_A_ (W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
567 } 1452 }
568} 1453}
569 1454
1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
1461
1462 if (expect_true (!anfd->reify))
1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
1465
570void 1466void
571ev_feed_fd_event (EV_P_ int fd, int revents) 1467ev_feed_fd_event (EV_P_ int fd, int revents)
572{ 1468{
573 if (fd >= 0 && fd < anfdmax) 1469 if (fd >= 0 && fd < anfdmax)
574 fd_event (EV_A_ fd, revents); 1470 fd_event_nocheck (EV_A_ fd, revents);
575} 1471}
576 1472
577void inline_size 1473/* make sure the external fd watch events are in-sync */
1474/* with the kernel/libev internal state */
1475inline_size void
578fd_reify (EV_P) 1476fd_reify (EV_P)
579{ 1477{
580 int i; 1478 int i;
1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1481 for (i = 0; i < fdchangecnt; ++i)
1482 {
1483 int fd = fdchanges [i];
1484 ANFD *anfd = anfds + fd;
1485
1486 if (anfd->reify & EV__IOFDSET && anfd->head)
1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
1492 unsigned long arg;
1493
1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
1497 backend_modify (EV_A_ fd, anfd->events, 0);
1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
1501 }
1502 }
1503#endif
581 1504
582 for (i = 0; i < fdchangecnt; ++i) 1505 for (i = 0; i < fdchangecnt; ++i)
583 { 1506 {
584 int fd = fdchanges [i]; 1507 int fd = fdchanges [i];
585 ANFD *anfd = anfds + fd; 1508 ANFD *anfd = anfds + fd;
586 ev_io *w; 1509 ev_io *w;
587 1510
588 unsigned char events = 0; 1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
589 1513
590 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1514 anfd->reify = 0;
591 events |= (unsigned char)w->events;
592 1515
593#if EV_SELECT_IS_WINSOCKET 1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
594 if (events)
595 { 1517 {
596 unsigned long argp; 1518 anfd->events = 0;
597 anfd->handle = _get_osfhandle (fd); 1519
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1521 anfd->events |= (unsigned char)w->events;
1522
1523 if (o_events != anfd->events)
1524 o_reify = EV__IOFDSET; /* actually |= */
599 } 1525 }
600#endif
601 1526
602 { 1527 if (o_reify & EV__IOFDSET)
603 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify;
605
606 anfd->reify = 0;
607 anfd->events = events;
608
609 if (o_events != events || o_reify & EV_IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events); 1528 backend_modify (EV_A_ fd, o_events, anfd->events);
611 }
612 } 1529 }
613 1530
614 fdchangecnt = 0; 1531 fdchangecnt = 0;
615} 1532}
616 1533
617void inline_size 1534/* something about the given fd changed */
1535inline_size void
618fd_change (EV_P_ int fd, int flags) 1536fd_change (EV_P_ int fd, int flags)
619{ 1537{
620 unsigned char reify = anfds [fd].reify; 1538 unsigned char reify = anfds [fd].reify;
621 anfds [fd].reify |= flags; 1539 anfds [fd].reify |= flags;
622 1540
626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
627 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
628 } 1546 }
629} 1547}
630 1548
631void inline_speed 1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
632fd_kill (EV_P_ int fd) 1551fd_kill (EV_P_ int fd)
633{ 1552{
634 ev_io *w; 1553 ev_io *w;
635 1554
636 while ((w = (ev_io *)anfds [fd].head)) 1555 while ((w = (ev_io *)anfds [fd].head))
638 ev_io_stop (EV_A_ w); 1557 ev_io_stop (EV_A_ w);
639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
640 } 1559 }
641} 1560}
642 1561
643int inline_size 1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
644fd_valid (int fd) 1564fd_valid (int fd)
645{ 1565{
646#ifdef _WIN32 1566#ifdef _WIN32
647 return _get_osfhandle (fd) != -1; 1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
648#else 1568#else
649 return fcntl (fd, F_GETFD) != -1; 1569 return fcntl (fd, F_GETFD) != -1;
650#endif 1570#endif
651} 1571}
652 1572
653/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
654static void noinline 1574static void noinline ecb_cold
655fd_ebadf (EV_P) 1575fd_ebadf (EV_P)
656{ 1576{
657 int fd; 1577 int fd;
658 1578
659 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 1580 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 1582 fd_kill (EV_A_ fd);
663} 1583}
664 1584
665/* called on ENOMEM in select/poll to kill some fds and retry */ 1585/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 1586static void noinline ecb_cold
667fd_enomem (EV_P) 1587fd_enomem (EV_P)
668{ 1588{
669 int fd; 1589 int fd;
670 1590
671 for (fd = anfdmax; fd--; ) 1591 for (fd = anfdmax; fd--; )
672 if (anfds [fd].events) 1592 if (anfds [fd].events)
673 { 1593 {
674 fd_kill (EV_A_ fd); 1594 fd_kill (EV_A_ fd);
675 return; 1595 break;
676 } 1596 }
677} 1597}
678 1598
679/* usually called after fork if backend needs to re-arm all fds from scratch */ 1599/* usually called after fork if backend needs to re-arm all fds from scratch */
680static void noinline 1600static void noinline
684 1604
685 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 1606 if (anfds [fd].events)
687 { 1607 {
688 anfds [fd].events = 0; 1608 anfds [fd].events = 0;
1609 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
690 } 1611 }
691} 1612}
692 1613
693/*****************************************************************************/ 1614/* used to prepare libev internal fd's */
694 1615/* this is not fork-safe */
695void inline_speed 1616inline_speed void
696upheap (WT *heap, int k)
697{
698 WT w = heap [k];
699
700 while (k)
701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
707 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1;
709 k = p;
710 }
711
712 heap [k] = w;
713 ((W)heap [k])->active = k + 1;
714}
715
716void inline_speed
717downheap (WT *heap, int N, int k)
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742}
743
744void inline_size
745adjustheap (WT *heap, int N, int k)
746{
747 upheap (heap, k);
748 downheap (heap, N, k);
749}
750
751/*****************************************************************************/
752
753typedef struct
754{
755 WL head;
756 sig_atomic_t volatile gotsig;
757} ANSIG;
758
759static ANSIG *signals;
760static int signalmax;
761
762static int sigpipe [2];
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765
766void inline_size
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773
774 ++base;
775 }
776}
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828
829void inline_speed
830fd_intern (int fd) 1617fd_intern (int fd)
831{ 1618{
832#ifdef _WIN32 1619#ifdef _WIN32
833 int arg = 1; 1620 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
835#else 1622#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1624 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1625#endif
839} 1626}
840 1627
841static void noinline
842siginit (EV_P)
843{
844 fd_intern (sigpipe [0]);
845 fd_intern (sigpipe [1]);
846
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */
850}
851
852/*****************************************************************************/ 1628/*****************************************************************************/
853 1629
1630/*
1631 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633 * the branching factor of the d-tree.
1634 */
1635
1636/*
1637 * at the moment we allow libev the luxury of two heaps,
1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1639 * which is more cache-efficient.
1640 * the difference is about 5% with 50000+ watchers.
1641 */
1642#if EV_USE_4HEAP
1643
1644#define DHEAP 4
1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647#define UPHEAP_DONE(p,k) ((p) == (k))
1648
1649/* away from the root */
1650inline_speed void
1651downheap (ANHE *heap, int N, int k)
1652{
1653 ANHE he = heap [k];
1654 ANHE *E = heap + N + HEAP0;
1655
1656 for (;;)
1657 {
1658 ev_tstamp minat;
1659 ANHE *minpos;
1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1661
1662 /* find minimum child */
1663 if (expect_true (pos + DHEAP - 1 < E))
1664 {
1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 }
1670 else if (pos < E)
1671 {
1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1676 }
1677 else
1678 break;
1679
1680 if (ANHE_at (he) <= minat)
1681 break;
1682
1683 heap [k] = *minpos;
1684 ev_active (ANHE_w (*minpos)) = k;
1685
1686 k = minpos - heap;
1687 }
1688
1689 heap [k] = he;
1690 ev_active (ANHE_w (he)) = k;
1691}
1692
1693#else /* 4HEAP */
1694
1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
1698
1699/* away from the root */
1700inline_speed void
1701downheap (ANHE *heap, int N, int k)
1702{
1703 ANHE he = heap [k];
1704
1705 for (;;)
1706 {
1707 int c = k << 1;
1708
1709 if (c >= N + HEAP0)
1710 break;
1711
1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1713 ? 1 : 0;
1714
1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
1716 break;
1717
1718 heap [k] = heap [c];
1719 ev_active (ANHE_w (heap [k])) = k;
1720
1721 k = c;
1722 }
1723
1724 heap [k] = he;
1725 ev_active (ANHE_w (he)) = k;
1726}
1727#endif
1728
1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
1743 ev_active (ANHE_w (heap [k])) = k;
1744 k = p;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
1753adjustheap (ANHE *heap, int N, int k)
1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1756 upheap (heap, k);
1757 else
1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
1771}
1772
1773/*****************************************************************************/
1774
1775/* associate signal watchers to a signal signal */
1776typedef struct
1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
1782 WL head;
1783} ANSIG;
1784
1785static ANSIG signals [EV_NSIG - 1];
1786
1787/*****************************************************************************/
1788
1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1790
1791static void noinline ecb_cold
1792evpipe_init (EV_P)
1793{
1794 if (!ev_is_active (&pipe_w))
1795 {
1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
1802 {
1803 evpipe [0] = -1;
1804 fd_intern (evfd); /* doing it twice doesn't hurt */
1805 ev_io_set (&pipe_w, evfd, EV_READ);
1806 }
1807 else
1808# endif
1809 {
1810 while (pipe (evpipe))
1811 ev_syserr ("(libev) error creating signal/async pipe");
1812
1813 fd_intern (evpipe [0]);
1814 fd_intern (evpipe [1]);
1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1816 }
1817
1818 ev_io_start (EV_A_ &pipe_w);
1819 ev_unref (EV_A); /* watcher should not keep loop alive */
1820 }
1821}
1822
1823inline_speed void
1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1825{
1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
1843 old_errno = errno; /* save errno because write will clobber it */
1844
1845#if EV_USE_EVENTFD
1846 if (evfd >= 0)
1847 {
1848 uint64_t counter = 1;
1849 write (evfd, &counter, sizeof (uint64_t));
1850 }
1851 else
1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
1861
1862 errno = old_errno;
1863 }
1864}
1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
1868static void
1869pipecb (EV_P_ ev_io *iow, int revents)
1870{
1871 int i;
1872
1873 if (revents & EV_READ)
1874 {
1875#if EV_USE_EVENTFD
1876 if (evfd >= 0)
1877 {
1878 uint64_t counter;
1879 read (evfd, &counter, sizeof (uint64_t));
1880 }
1881 else
1882#endif
1883 {
1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
1889
1890 pipe_write_skipped = 0;
1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1894 {
1895 sig_pending = 0;
1896
1897 for (i = EV_NSIG - 1; i--; )
1898 if (expect_false (signals [i].pending))
1899 ev_feed_signal_event (EV_A_ i + 1);
1900 }
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 if (async_pending)
1905 {
1906 async_pending = 0;
1907
1908 for (i = asynccnt; i--; )
1909 if (asyncs [i]->sent)
1910 {
1911 asyncs [i]->sent = 0;
1912 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1913 }
1914 }
1915#endif
1916}
1917
1918/*****************************************************************************/
1919
1920void
1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
1925
1926 if (!EV_A)
1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
1935}
1936
1937static void
1938ev_sighandler (int signum)
1939{
1940#ifdef _WIN32
1941 signal (signum, ev_sighandler);
1942#endif
1943
1944 ev_feed_signal (signum);
1945}
1946
1947void noinline
1948ev_feed_signal_event (EV_P_ int signum)
1949{
1950 WL w;
1951
1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1957#if EV_MULTIPLICITY
1958 /* it is permissible to try to feed a signal to the wrong loop */
1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1960
1961 if (expect_false (signals [signum].loop != EV_A))
1962 return;
1963#endif
1964
1965 signals [signum].pending = 0;
1966
1967 for (w = signals [signum].head; w; w = w->next)
1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1969}
1970
1971#if EV_USE_SIGNALFD
1972static void
1973sigfdcb (EV_P_ ev_io *iow, int revents)
1974{
1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976
1977 for (;;)
1978 {
1979 ssize_t res = read (sigfd, si, sizeof (si));
1980
1981 /* not ISO-C, as res might be -1, but works with SuS */
1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984
1985 if (res < (ssize_t)sizeof (si))
1986 break;
1987 }
1988}
1989#endif
1990
1991#endif
1992
1993/*****************************************************************************/
1994
1995#if EV_CHILD_ENABLE
854static WL childs [EV_PID_HASHSIZE]; 1996static WL childs [EV_PID_HASHSIZE];
855 1997
856#ifndef _WIN32
857
858static ev_signal childev; 1998static ev_signal childev;
859 1999
860void inline_speed 2000#ifndef WIFCONTINUED
2001# define WIFCONTINUED(status) 0
2002#endif
2003
2004/* handle a single child status event */
2005inline_speed void
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2006child_reap (EV_P_ int chain, int pid, int status)
862{ 2007{
863 ev_child *w; 2008 ev_child *w;
2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 2010
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2012 {
866 if (w->pid == pid || !w->pid) 2013 if ((w->pid == pid || !w->pid)
2014 && (!traced || (w->flags & 1)))
867 { 2015 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 2017 w->rpid = pid;
870 w->rstatus = status; 2018 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2019 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 2020 }
2021 }
873} 2022}
874 2023
875#ifndef WCONTINUED 2024#ifndef WCONTINUED
876# define WCONTINUED 0 2025# define WCONTINUED 0
877#endif 2026#endif
878 2027
2028/* called on sigchld etc., calls waitpid */
879static void 2029static void
880childcb (EV_P_ ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
881{ 2031{
882 int pid, status; 2032 int pid, status;
883 2033
886 if (!WCONTINUED 2036 if (!WCONTINUED
887 || errno != EINVAL 2037 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2038 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 2039 return;
890 2040
891 /* make sure we are called again until all childs have been reaped */ 2041 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 2042 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 2044
895 child_reap (EV_A_ sw, pid, pid, status); 2045 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 2046 if ((EV_PID_HASHSIZE) > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 2048}
899 2049
900#endif 2050#endif
901 2051
902/*****************************************************************************/ 2052/*****************************************************************************/
903 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
904#if EV_USE_PORT 2057#if EV_USE_PORT
905# include "ev_port.c" 2058# include "ev_port.c"
906#endif 2059#endif
907#if EV_USE_KQUEUE 2060#if EV_USE_KQUEUE
908# include "ev_kqueue.c" 2061# include "ev_kqueue.c"
915#endif 2068#endif
916#if EV_USE_SELECT 2069#if EV_USE_SELECT
917# include "ev_select.c" 2070# include "ev_select.c"
918#endif 2071#endif
919 2072
920int 2073int ecb_cold
921ev_version_major (void) 2074ev_version_major (void)
922{ 2075{
923 return EV_VERSION_MAJOR; 2076 return EV_VERSION_MAJOR;
924} 2077}
925 2078
926int 2079int ecb_cold
927ev_version_minor (void) 2080ev_version_minor (void)
928{ 2081{
929 return EV_VERSION_MINOR; 2082 return EV_VERSION_MINOR;
930} 2083}
931 2084
932/* return true if we are running with elevated privileges and should ignore env variables */ 2085/* return true if we are running with elevated privileges and should ignore env variables */
933int inline_size 2086int inline_size ecb_cold
934enable_secure (void) 2087enable_secure (void)
935{ 2088{
936#ifdef _WIN32 2089#ifdef _WIN32
937 return 0; 2090 return 0;
938#else 2091#else
939 return getuid () != geteuid () 2092 return getuid () != geteuid ()
940 || getgid () != getegid (); 2093 || getgid () != getegid ();
941#endif 2094#endif
942} 2095}
943 2096
944unsigned int 2097unsigned int ecb_cold
945ev_supported_backends (void) 2098ev_supported_backends (void)
946{ 2099{
947 unsigned int flags = 0; 2100 unsigned int flags = 0;
948 2101
949 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
953 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
954 2107
955 return flags; 2108 return flags;
956} 2109}
957 2110
958unsigned int 2111unsigned int ecb_cold
959ev_recommended_backends (void) 2112ev_recommended_backends (void)
960{ 2113{
961 unsigned int flags = ev_supported_backends (); 2114 unsigned int flags = ev_supported_backends ();
962 2115
963#ifndef __NetBSD__ 2116#ifndef __NetBSD__
964 /* kqueue is borked on everything but netbsd apparently */ 2117 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */ 2118 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE; 2119 flags &= ~EVBACKEND_KQUEUE;
967#endif 2120#endif
968#ifdef __APPLE__ 2121#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation 2122 /* only select works correctly on that "unix-certified" platform */
970 flags &= ~EVBACKEND_POLL; 2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
971#endif 2128#endif
972 2129
973 return flags; 2130 return flags;
974} 2131}
975 2132
976unsigned int 2133unsigned int ecb_cold
977ev_embeddable_backends (void) 2134ev_embeddable_backends (void)
978{ 2135{
979 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
980 2137
981 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
982 /* please fix it and tell me how to detect the fix */ 2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
983 flags &= ~EVBACKEND_EPOLL; 2140 flags &= ~EVBACKEND_EPOLL;
984 2141
985 return flags; 2142 return flags;
986} 2143}
987 2144
988unsigned int 2145unsigned int
989ev_backend (EV_P) 2146ev_backend (EV_P)
990{ 2147{
991 return backend; 2148 return backend;
992} 2149}
993 2150
2151#if EV_FEATURE_API
994unsigned int 2152unsigned int
995ev_loop_count (EV_P) 2153ev_iteration (EV_P)
996{ 2154{
997 return loop_count; 2155 return loop_count;
2156}
2157
2158unsigned int
2159ev_depth (EV_P)
2160{
2161 return loop_depth;
998} 2162}
999 2163
1000void 2164void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{ 2166{
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{ 2172{
1009 timeout_blocktime = interval; 2173 timeout_blocktime = interval;
1010} 2174}
1011 2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
1012static void noinline 2203static void noinline ecb_cold
1013loop_init (EV_P_ unsigned int flags) 2204loop_init (EV_P_ unsigned int flags)
1014{ 2205{
1015 if (!backend) 2206 if (!backend)
1016 { 2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
1017#if EV_USE_MONOTONIC 2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
1018 { 2222 {
1019 struct timespec ts; 2223 struct timespec ts;
2224
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 2226 have_monotonic = 1;
1022 } 2227 }
1023#endif 2228#endif
1024
1025 ev_rt_now = ev_time ();
1026 mn_now = get_clock ();
1027 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now;
1029
1030 io_blocktime = 0.;
1031 timeout_blocktime = 0.;
1032 2229
1033 /* pid check not overridable via env */ 2230 /* pid check not overridable via env */
1034#ifndef _WIN32 2231#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 2232 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 2233 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 2236 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 2237 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 2238 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 2239 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 2240
1044 if (!(flags & 0x0000ffffUL)) 2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
1045 flags |= ev_recommended_backends (); 2267 flags |= ev_recommended_backends ();
1046 2268
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY 2269#if EV_USE_IOCP
1050 fs_fd = -2; 2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1051#endif 2271#endif
1052
1053#if EV_USE_PORT 2272#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 2274#endif
1056#if EV_USE_KQUEUE 2275#if EV_USE_KQUEUE
1057 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1064#endif 2283#endif
1065#if EV_USE_SELECT 2284#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 2286#endif
1068 2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1069 ev_init (&sigev, sigcb); 2291 ev_init (&pipe_w, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
1071 } 2294 }
1072} 2295}
1073 2296
1074static void noinline 2297/* free up a loop structure */
2298void ecb_cold
1075loop_destroy (EV_P) 2299ev_loop_destroy (EV_P)
1076{ 2300{
1077 int i; 2301 int i;
2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
2326 if (ev_is_active (&pipe_w))
2327 {
2328 /*ev_ref (EV_A);*/
2329 /*ev_io_stop (EV_A_ &pipe_w);*/
2330
2331#if EV_USE_EVENTFD
2332 if (evfd >= 0)
2333 close (evfd);
2334#endif
2335
2336 if (evpipe [0] >= 0)
2337 {
2338 EV_WIN32_CLOSE_FD (evpipe [0]);
2339 EV_WIN32_CLOSE_FD (evpipe [1]);
2340 }
2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
1078 2347
1079#if EV_USE_INOTIFY 2348#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 2349 if (fs_fd >= 0)
1081 close (fs_fd); 2350 close (fs_fd);
1082#endif 2351#endif
1083 2352
1084 if (backend_fd >= 0) 2353 if (backend_fd >= 0)
1085 close (backend_fd); 2354 close (backend_fd);
1086 2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
1087#if EV_USE_PORT 2359#if EV_USE_PORT
1088 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1089#endif 2361#endif
1090#if EV_USE_KQUEUE 2362#if EV_USE_KQUEUE
1091 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1106#if EV_IDLE_ENABLE 2378#if EV_IDLE_ENABLE
1107 array_free (idle, [i]); 2379 array_free (idle, [i]);
1108#endif 2380#endif
1109 } 2381 }
1110 2382
1111 ev_free (anfds); anfdmax = 0; 2383 ev_free (anfds); anfds = 0; anfdmax = 0;
1112 2384
1113 /* have to use the microsoft-never-gets-it-right macro */ 2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
1114 array_free (fdchange, EMPTY); 2387 array_free (fdchange, EMPTY);
1115 array_free (timer, EMPTY); 2388 array_free (timer, EMPTY);
1116#if EV_PERIODIC_ENABLE 2389#if EV_PERIODIC_ENABLE
1117 array_free (periodic, EMPTY); 2390 array_free (periodic, EMPTY);
1118#endif 2391#endif
1119#if EV_FORK_ENABLE 2392#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 2393 array_free (fork, EMPTY);
1121#endif 2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
1122 array_free (prepare, EMPTY); 2398 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 2399 array_free (check, EMPTY);
2400#if EV_ASYNC_ENABLE
2401 array_free (async, EMPTY);
2402#endif
1124 2403
1125 backend = 0; 2404 backend = 0;
1126}
1127 2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
2414}
2415
2416#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 2417inline_size void infy_fork (EV_P);
2418#endif
1129 2419
1130void inline_size 2420inline_size void
1131loop_fork (EV_P) 2421loop_fork (EV_P)
1132{ 2422{
1133#if EV_USE_PORT 2423#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif 2425#endif
1141#endif 2431#endif
1142#if EV_USE_INOTIFY 2432#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 2433 infy_fork (EV_A);
1144#endif 2434#endif
1145 2435
1146 if (ev_is_active (&sigev)) 2436 if (ev_is_active (&pipe_w))
1147 { 2437 {
1148 /* default loop */ 2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1149 2439
1150 ev_ref (EV_A); 2440 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 2441 ev_io_stop (EV_A_ &pipe_w);
1152 close (sigpipe [0]);
1153 close (sigpipe [1]);
1154 2442
1155 while (pipe (sigpipe)) 2443#if EV_USE_EVENTFD
1156 syserr ("(libev) error creating pipe"); 2444 if (evfd >= 0)
2445 close (evfd);
2446#endif
1157 2447
2448 if (evpipe [0] >= 0)
2449 {
2450 EV_WIN32_CLOSE_FD (evpipe [0]);
2451 EV_WIN32_CLOSE_FD (evpipe [1]);
2452 }
2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1158 siginit (EV_A); 2455 evpipe_init (EV_A);
2456 /* now iterate over everything, in case we missed something */
2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
1159 } 2459 }
1160 2460
1161 postfork = 0; 2461 postfork = 0;
1162} 2462}
1163 2463
1164#if EV_MULTIPLICITY 2464#if EV_MULTIPLICITY
2465
1165struct ev_loop * 2466struct ev_loop * ecb_cold
1166ev_loop_new (unsigned int flags) 2467ev_loop_new (unsigned int flags)
1167{ 2468{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 2470
1170 memset (loop, 0, sizeof (struct ev_loop)); 2471 memset (EV_A, 0, sizeof (struct ev_loop));
1171
1172 loop_init (EV_A_ flags); 2472 loop_init (EV_A_ flags);
1173 2473
1174 if (ev_backend (EV_A)) 2474 if (ev_backend (EV_A))
1175 return loop; 2475 return EV_A;
1176 2476
2477 ev_free (EV_A);
1177 return 0; 2478 return 0;
1178} 2479}
1179 2480
1180void 2481#endif /* multiplicity */
1181ev_loop_destroy (EV_P)
1182{
1183 loop_destroy (EV_A);
1184 ev_free (loop);
1185}
1186 2482
1187void 2483#if EV_VERIFY
1188ev_loop_fork (EV_P) 2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
1189{ 2486{
1190 postfork = 1; 2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1191}
1192 2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
2536 {
2537 verify_watcher (EV_A_ (W)w);
2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 }
2541
2542 assert (timermax >= timercnt);
2543 verify_heap (EV_A_ timers, timercnt);
2544
2545#if EV_PERIODIC_ENABLE
2546 assert (periodicmax >= periodiccnt);
2547 verify_heap (EV_A_ periodics, periodiccnt);
2548#endif
2549
2550 for (i = NUMPRI; i--; )
2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
2559
2560#if EV_FORK_ENABLE
2561 assert (forkmax >= forkcnt);
2562 array_verify (EV_A_ (W *)forks, forkcnt);
2563#endif
2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
2590# endif
2591#endif
2592}
1193#endif 2593#endif
1194 2594
1195#if EV_MULTIPLICITY 2595#if EV_MULTIPLICITY
1196struct ev_loop * 2596struct ev_loop * ecb_cold
1197ev_default_loop_init (unsigned int flags)
1198#else 2597#else
1199int 2598int
2599#endif
1200ev_default_loop (unsigned int flags) 2600ev_default_loop (unsigned int flags)
1201#endif
1202{ 2601{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 2602 if (!ev_default_loop_ptr)
1208 { 2603 {
1209#if EV_MULTIPLICITY 2604#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
1211#else 2606#else
1212 ev_default_loop_ptr = 1; 2607 ev_default_loop_ptr = 1;
1213#endif 2608#endif
1214 2609
1215 loop_init (EV_A_ flags); 2610 loop_init (EV_A_ flags);
1216 2611
1217 if (ev_backend (EV_A)) 2612 if (ev_backend (EV_A))
1218 { 2613 {
1219 siginit (EV_A); 2614#if EV_CHILD_ENABLE
1220
1221#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 2615 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 2616 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 2617 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
1226#endif 2619#endif
1231 2624
1232 return ev_default_loop_ptr; 2625 return ev_default_loop_ptr;
1233} 2626}
1234 2627
1235void 2628void
1236ev_default_destroy (void) 2629ev_loop_fork (EV_P)
1237{ 2630{
1238#if EV_MULTIPLICITY 2631 postfork = 1; /* must be in line with ev_default_fork */
1239 struct ev_loop *loop = ev_default_loop_ptr;
1240#endif
1241
1242#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev);
1245#endif
1246
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A);
1254}
1255
1256void
1257ev_default_fork (void)
1258{
1259#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif
1262
1263 if (backend)
1264 postfork = 1;
1265} 2632}
1266 2633
1267/*****************************************************************************/ 2634/*****************************************************************************/
1268 2635
1269void 2636void
1270ev_invoke (EV_P_ void *w, int revents) 2637ev_invoke (EV_P_ void *w, int revents)
1271{ 2638{
1272 EV_CB_INVOKE ((W)w, revents); 2639 EV_CB_INVOKE ((W)w, revents);
1273} 2640}
1274 2641
1275void inline_speed 2642unsigned int
1276call_pending (EV_P) 2643ev_pending_count (EV_P)
2644{
2645 int pri;
2646 unsigned int count = 0;
2647
2648 for (pri = NUMPRI; pri--; )
2649 count += pendingcnt [pri];
2650
2651 return count;
2652}
2653
2654void noinline
2655ev_invoke_pending (EV_P)
1277{ 2656{
1278 int pri; 2657 int pri;
1279 2658
1280 for (pri = NUMPRI; pri--; ) 2659 for (pri = NUMPRI; pri--; )
1281 while (pendingcnt [pri]) 2660 while (pendingcnt [pri])
1282 { 2661 {
1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1284 2663
1285 if (expect_true (p->w))
1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288
1289 p->w->pending = 0; 2664 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 2665 EV_CB_INVOKE (p->w, p->events);
1291 } 2666 EV_FREQUENT_CHECK;
1292 } 2667 }
1293} 2668}
1294 2669
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374
1375#if EV_IDLE_ENABLE 2670#if EV_IDLE_ENABLE
1376void inline_size 2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
1377idle_reify (EV_P) 2674idle_reify (EV_P)
1378{ 2675{
1379 if (expect_false (idleall)) 2676 if (expect_false (idleall))
1380 { 2677 {
1381 int pri; 2678 int pri;
1393 } 2690 }
1394 } 2691 }
1395} 2692}
1396#endif 2693#endif
1397 2694
1398void inline_speed 2695/* make timers pending */
2696inline_size void
2697timers_reify (EV_P)
2698{
2699 EV_FREQUENT_CHECK;
2700
2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2702 {
2703 do
2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2717
2718 ANHE_at_cache (timers [HEAP0]);
2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
2726 }
2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2728
2729 feed_reverse_done (EV_A_ EV_TIMER);
2730 }
2731}
2732
2733#if EV_PERIODIC_ENABLE
2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
2743 {
2744 ev_tstamp nat = at + w->interval;
2745
2746 /* when resolution fails us, we use ev_rt_now */
2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
2761periodics_reify (EV_P)
2762{
2763 EV_FREQUENT_CHECK;
2764
2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2766 {
2767 int feed_count = 0;
2768
2769 do
2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774
2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
2782 ANHE_at_cache (periodics [HEAP0]);
2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
2796 }
2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2798
2799 feed_reverse_done (EV_A_ EV_PERIODIC);
2800 }
2801}
2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
2805static void noinline ecb_cold
2806periodics_reschedule (EV_P)
2807{
2808 int i;
2809
2810 /* adjust periodics after time jump */
2811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2812 {
2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2814
2815 if (w->reschedule_cb)
2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817 else if (w->interval)
2818 periodic_recalc (EV_A_ w);
2819
2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
2834 {
2835 ANHE *he = timers + i + HEAP0;
2836 ANHE_w (*he)->at += adjust;
2837 ANHE_at_cache (*he);
2838 }
2839}
2840
2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
1399time_update (EV_P_ ev_tstamp max_block) 2844time_update (EV_P_ ev_tstamp max_block)
1400{ 2845{
1401 int i;
1402
1403#if EV_USE_MONOTONIC 2846#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic)) 2847 if (expect_true (have_monotonic))
1405 { 2848 {
2849 int i;
1406 ev_tstamp odiff = rtmn_diff; 2850 ev_tstamp odiff = rtmn_diff;
1407 2851
1408 mn_now = get_clock (); 2852 mn_now = get_clock ();
1409 2853
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1426 * doesn't hurt either as we only do this on time-jumps or 2870 * doesn't hurt either as we only do this on time-jumps or
1427 * in the unlikely event of having been preempted here. 2871 * in the unlikely event of having been preempted here.
1428 */ 2872 */
1429 for (i = 4; --i; ) 2873 for (i = 4; --i; )
1430 { 2874 {
2875 ev_tstamp diff;
1431 rtmn_diff = ev_rt_now - mn_now; 2876 rtmn_diff = ev_rt_now - mn_now;
1432 2877
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2878 diff = odiff - rtmn_diff;
2879
2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 2881 return; /* all is well */
1435 2882
1436 ev_rt_now = ev_time (); 2883 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 2884 mn_now = get_clock ();
1438 now_floor = mn_now; 2885 now_floor = mn_now;
1439 } 2886 }
1440 2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1441# if EV_PERIODIC_ENABLE 2890# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A); 2891 periodics_reschedule (EV_A);
1443# endif 2892# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 } 2893 }
1447 else 2894 else
1448#endif 2895#endif
1449 { 2896 {
1450 ev_rt_now = ev_time (); 2897 ev_rt_now = ev_time ();
1451 2898
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 { 2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1454#if EV_PERIODIC_ENABLE 2903#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2904 periodics_reschedule (EV_A);
1456#endif 2905#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i)
1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1460 } 2906 }
1461 2907
1462 mn_now = ev_rt_now; 2908 mn_now = ev_rt_now;
1463 } 2909 }
1464} 2910}
1465 2911
1466void 2912void
1467ev_ref (EV_P)
1468{
1469 ++activecnt;
1470}
1471
1472void
1473ev_unref (EV_P)
1474{
1475 --activecnt;
1476}
1477
1478static int loop_done;
1479
1480void
1481ev_loop (EV_P_ int flags) 2913ev_run (EV_P_ int flags)
1482{ 2914{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2915#if EV_FEATURE_API
1484 ? EVUNLOOP_ONE 2916 ++loop_depth;
1485 : EVUNLOOP_CANCEL; 2917#endif
1486 2918
2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
2921 loop_done = EVBREAK_CANCEL;
2922
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1488 2924
1489 do 2925 do
1490 { 2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
1491#ifndef _WIN32 2931#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 2932 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 2933 if (expect_false (getpid () != curpid))
1494 { 2934 {
1495 curpid = getpid (); 2935 curpid = getpid ();
1501 /* we might have forked, so queue fork handlers */ 2941 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork)) 2942 if (expect_false (postfork))
1503 if (forkcnt) 2943 if (forkcnt)
1504 { 2944 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A); 2946 EV_INVOKE_PENDING;
1507 } 2947 }
1508#endif 2948#endif
1509 2949
2950#if EV_PREPARE_ENABLE
1510 /* queue prepare watchers (and execute them) */ 2951 /* queue prepare watchers (and execute them) */
1511 if (expect_false (preparecnt)) 2952 if (expect_false (preparecnt))
1512 { 2953 {
1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1514 call_pending (EV_A); 2955 EV_INVOKE_PENDING;
1515 } 2956 }
2957#endif
1516 2958
1517 if (expect_false (!activecnt)) 2959 if (expect_false (loop_done))
1518 break; 2960 break;
1519 2961
1520 /* we might have forked, so reify kernel state if necessary */ 2962 /* we might have forked, so reify kernel state if necessary */
1521 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1522 loop_fork (EV_A); 2964 loop_fork (EV_A);
1527 /* calculate blocking time */ 2969 /* calculate blocking time */
1528 { 2970 {
1529 ev_tstamp waittime = 0.; 2971 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.; 2972 ev_tstamp sleeptime = 0.;
1531 2973
2974 /* remember old timestamp for io_blocktime calculation */
2975 ev_tstamp prev_mn_now = mn_now;
2976
2977 /* update time to cancel out callback processing overhead */
2978 time_update (EV_A_ 1e100);
2979
2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1533 { 2986 {
1534 /* update time to cancel out callback processing overhead */
1535 time_update (EV_A_ 1e100);
1536
1537 waittime = MAX_BLOCKTIME; 2987 waittime = MAX_BLOCKTIME;
1538 2988
1539 if (timercnt) 2989 if (timercnt)
1540 { 2990 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1542 if (waittime > to) waittime = to; 2992 if (waittime > to) waittime = to;
1543 } 2993 }
1544 2994
1545#if EV_PERIODIC_ENABLE 2995#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2996 if (periodiccnt)
1547 { 2997 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1549 if (waittime > to) waittime = to; 2999 if (waittime > to) waittime = to;
1550 } 3000 }
1551#endif 3001#endif
1552 3002
3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
1553 if (expect_false (waittime < timeout_blocktime)) 3004 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime; 3005 waittime = timeout_blocktime;
1555 3006
1556 sleeptime = waittime - backend_fudge; 3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
1557 3011
3012 /* extra check because io_blocktime is commonly 0 */
1558 if (expect_true (sleeptime > io_blocktime)) 3013 if (expect_false (io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 { 3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
1563 ev_sleep (sleeptime); 3022 ev_sleep (sleeptime);
1564 waittime -= sleeptime; 3023 waittime -= sleeptime;
3024 }
1565 } 3025 }
1566 } 3026 }
1567 3027
3028#if EV_FEATURE_API
1568 ++loop_count; 3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1569 backend_poll (EV_A_ waittime); 3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
1570 3043
1571 /* update ev_rt_now, do magic */ 3044 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime); 3045 time_update (EV_A_ waittime + sleeptime);
1573 } 3046 }
1574 3047
1581#if EV_IDLE_ENABLE 3054#if EV_IDLE_ENABLE
1582 /* queue idle watchers unless other events are pending */ 3055 /* queue idle watchers unless other events are pending */
1583 idle_reify (EV_A); 3056 idle_reify (EV_A);
1584#endif 3057#endif
1585 3058
3059#if EV_CHECK_ENABLE
1586 /* queue check watchers, to be executed first */ 3060 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 3061 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
1589 3064
1590 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1591
1592 } 3066 }
1593 while (expect_true (activecnt && !loop_done)); 3067 while (expect_true (
3068 activecnt
3069 && !loop_done
3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3071 ));
1594 3072
1595 if (loop_done == EVUNLOOP_ONE) 3073 if (loop_done == EVBREAK_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
1597} 3079}
1598 3080
1599void 3081void
1600ev_unloop (EV_P_ int how) 3082ev_break (EV_P_ int how)
1601{ 3083{
1602 loop_done = how; 3084 loop_done = how;
1603} 3085}
1604 3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
1605/*****************************************************************************/ 3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
1606 3126
1607void inline_size 3127inline_size void
1608wlist_add (WL *head, WL elem) 3128wlist_add (WL *head, WL elem)
1609{ 3129{
1610 elem->next = *head; 3130 elem->next = *head;
1611 *head = elem; 3131 *head = elem;
1612} 3132}
1613 3133
1614void inline_size 3134inline_size void
1615wlist_del (WL *head, WL elem) 3135wlist_del (WL *head, WL elem)
1616{ 3136{
1617 while (*head) 3137 while (*head)
1618 { 3138 {
1619 if (*head == elem) 3139 if (expect_true (*head == elem))
1620 { 3140 {
1621 *head = elem->next; 3141 *head = elem->next;
1622 return; 3142 break;
1623 } 3143 }
1624 3144
1625 head = &(*head)->next; 3145 head = &(*head)->next;
1626 } 3146 }
1627} 3147}
1628 3148
1629void inline_speed 3149/* internal, faster, version of ev_clear_pending */
3150inline_speed void
1630clear_pending (EV_P_ W w) 3151clear_pending (EV_P_ W w)
1631{ 3152{
1632 if (w->pending) 3153 if (w->pending)
1633 { 3154 {
1634 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1635 w->pending = 0; 3156 w->pending = 0;
1636 } 3157 }
1637} 3158}
1638 3159
1639int 3160int
1643 int pending = w_->pending; 3164 int pending = w_->pending;
1644 3165
1645 if (expect_true (pending)) 3166 if (expect_true (pending))
1646 { 3167 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
1648 w_->pending = 0; 3170 w_->pending = 0;
1649 p->w = 0;
1650 return p->events; 3171 return p->events;
1651 } 3172 }
1652 else 3173 else
1653 return 0; 3174 return 0;
1654} 3175}
1655 3176
1656void inline_size 3177inline_size void
1657pri_adjust (EV_P_ W w) 3178pri_adjust (EV_P_ W w)
1658{ 3179{
1659 int pri = w->priority; 3180 int pri = ev_priority (w);
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri; 3183 ev_set_priority (w, pri);
1663} 3184}
1664 3185
1665void inline_speed 3186inline_speed void
1666ev_start (EV_P_ W w, int active) 3187ev_start (EV_P_ W w, int active)
1667{ 3188{
1668 pri_adjust (EV_A_ w); 3189 pri_adjust (EV_A_ w);
1669 w->active = active; 3190 w->active = active;
1670 ev_ref (EV_A); 3191 ev_ref (EV_A);
1671} 3192}
1672 3193
1673void inline_size 3194inline_size void
1674ev_stop (EV_P_ W w) 3195ev_stop (EV_P_ W w)
1675{ 3196{
1676 ev_unref (EV_A); 3197 ev_unref (EV_A);
1677 w->active = 0; 3198 w->active = 0;
1678} 3199}
1685 int fd = w->fd; 3206 int fd = w->fd;
1686 3207
1687 if (expect_false (ev_is_active (w))) 3208 if (expect_false (ev_is_active (w)))
1688 return; 3209 return;
1689 3210
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
1691 3215
1692 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 3218 wlist_add (&anfds[fd].head, (WL)w);
1695 3219
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1697 w->events &= ~EV_IOFDSET; 3221 w->events &= ~EV__IOFDSET;
3222
3223 EV_FREQUENT_CHECK;
1698} 3224}
1699 3225
1700void noinline 3226void noinline
1701ev_io_stop (EV_P_ ev_io *w) 3227ev_io_stop (EV_P_ ev_io *w)
1702{ 3228{
1703 clear_pending (EV_A_ (W)w); 3229 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 3230 if (expect_false (!ev_is_active (w)))
1705 return; 3231 return;
1706 3232
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234
3235 EV_FREQUENT_CHECK;
1708 3236
1709 wlist_del (&anfds[w->fd].head, (WL)w); 3237 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
1711 3239
1712 fd_change (EV_A_ w->fd, 1); 3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3241
3242 EV_FREQUENT_CHECK;
1713} 3243}
1714 3244
1715void noinline 3245void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 3246ev_timer_start (EV_P_ ev_timer *w)
1717{ 3247{
1718 if (expect_false (ev_is_active (w))) 3248 if (expect_false (ev_is_active (w)))
1719 return; 3249 return;
1720 3250
1721 ((WT)w)->at += mn_now; 3251 ev_at (w) += mn_now;
1722 3252
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 3261 ANHE_at_cache (timers [ev_active (w)]);
3262 upheap (timers, ev_active (w));
1729 3263
3264 EV_FREQUENT_CHECK;
3265
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 3267}
1732 3268
1733void noinline 3269void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 3270ev_timer_stop (EV_P_ ev_timer *w)
1735{ 3271{
1736 clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 3273 if (expect_false (!ev_is_active (w)))
1738 return; 3274 return;
1739 3275
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3276 EV_FREQUENT_CHECK;
1741 3277
1742 { 3278 {
1743 int active = ((W)w)->active; 3279 int active = ev_active (w);
1744 3280
3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3282
3283 --timercnt;
3284
1745 if (expect_true (--active < --timercnt)) 3285 if (expect_true (active < timercnt + HEAP0))
1746 { 3286 {
1747 timers [active] = timers [timercnt]; 3287 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 3288 adjustheap (timers, timercnt, active);
1749 } 3289 }
1750 } 3290 }
1751 3291
1752 ((WT)w)->at -= mn_now; 3292 ev_at (w) -= mn_now;
1753 3293
1754 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
1755} 3297}
1756 3298
1757void noinline 3299void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 3300ev_timer_again (EV_P_ ev_timer *w)
1759{ 3301{
3302 EV_FREQUENT_CHECK;
3303
3304 clear_pending (EV_A_ (W)w);
3305
1760 if (ev_is_active (w)) 3306 if (ev_is_active (w))
1761 { 3307 {
1762 if (w->repeat) 3308 if (w->repeat)
1763 { 3309 {
1764 ((WT)w)->at = mn_now + w->repeat; 3310 ev_at (w) = mn_now + w->repeat;
3311 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 3312 adjustheap (timers, timercnt, ev_active (w));
1766 } 3313 }
1767 else 3314 else
1768 ev_timer_stop (EV_A_ w); 3315 ev_timer_stop (EV_A_ w);
1769 } 3316 }
1770 else if (w->repeat) 3317 else if (w->repeat)
1771 { 3318 {
1772 w->at = w->repeat; 3319 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 3320 ev_timer_start (EV_A_ w);
1774 } 3321 }
3322
3323 EV_FREQUENT_CHECK;
3324}
3325
3326ev_tstamp
3327ev_timer_remaining (EV_P_ ev_timer *w)
3328{
3329 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1775} 3330}
1776 3331
1777#if EV_PERIODIC_ENABLE 3332#if EV_PERIODIC_ENABLE
1778void noinline 3333void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 3334ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 3335{
1781 if (expect_false (ev_is_active (w))) 3336 if (expect_false (ev_is_active (w)))
1782 return; 3337 return;
1783 3338
1784 if (w->reschedule_cb) 3339 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 3341 else if (w->interval)
1787 { 3342 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3343 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 3344 periodic_recalc (EV_A_ w);
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 3345 }
1792 else 3346 else
1793 ((WT)w)->at = w->offset; 3347 ev_at (w) = w->offset;
1794 3348
3349 EV_FREQUENT_CHECK;
3350
3351 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 3352 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3353 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 3354 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 3355 ANHE_at_cache (periodics [ev_active (w)]);
3356 upheap (periodics, ev_active (w));
1799 3357
3358 EV_FREQUENT_CHECK;
3359
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3360 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 3361}
1802 3362
1803void noinline 3363void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 3364ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 3365{
1806 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
1808 return; 3368 return;
1809 3369
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3370 EV_FREQUENT_CHECK;
1811 3371
1812 { 3372 {
1813 int active = ((W)w)->active; 3373 int active = ev_active (w);
1814 3374
3375 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3376
3377 --periodiccnt;
3378
1815 if (expect_true (--active < --periodiccnt)) 3379 if (expect_true (active < periodiccnt + HEAP0))
1816 { 3380 {
1817 periodics [active] = periodics [periodiccnt]; 3381 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 3382 adjustheap (periodics, periodiccnt, active);
1819 } 3383 }
1820 } 3384 }
1821 3385
1822 ev_stop (EV_A_ (W)w); 3386 ev_stop (EV_A_ (W)w);
3387
3388 EV_FREQUENT_CHECK;
1823} 3389}
1824 3390
1825void noinline 3391void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 3392ev_periodic_again (EV_P_ ev_periodic *w)
1827{ 3393{
1833 3399
1834#ifndef SA_RESTART 3400#ifndef SA_RESTART
1835# define SA_RESTART 0 3401# define SA_RESTART 0
1836#endif 3402#endif
1837 3403
3404#if EV_SIGNAL_ENABLE
3405
1838void noinline 3406void noinline
1839ev_signal_start (EV_P_ ev_signal *w) 3407ev_signal_start (EV_P_ ev_signal *w)
1840{ 3408{
1841#if EV_MULTIPLICITY
1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1843#endif
1844 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
1845 return; 3410 return;
1846 3411
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3412 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1848 3413
3414#if EV_MULTIPLICITY
3415 assert (("libev: a signal must not be attached to two different loops",
3416 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3417
3418 signals [w->signum - 1].loop = EV_A;
3419#endif
3420
3421 EV_FREQUENT_CHECK;
3422
3423#if EV_USE_SIGNALFD
3424 if (sigfd == -2)
1849 { 3425 {
1850#ifndef _WIN32 3426 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1851 sigset_t full, prev; 3427 if (sigfd < 0 && errno == EINVAL)
1852 sigfillset (&full); 3428 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855 3429
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3430 if (sigfd >= 0)
3431 {
3432 fd_intern (sigfd); /* doing it twice will not hurt */
1857 3433
1858#ifndef _WIN32 3434 sigemptyset (&sigfd_set);
1859 sigprocmask (SIG_SETMASK, &prev, 0); 3435
1860#endif 3436 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3437 ev_set_priority (&sigfd_w, EV_MAXPRI);
3438 ev_io_start (EV_A_ &sigfd_w);
3439 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3440 }
1861 } 3441 }
3442
3443 if (sigfd >= 0)
3444 {
3445 /* TODO: check .head */
3446 sigaddset (&sigfd_set, w->signum);
3447 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3448
3449 signalfd (sigfd, &sigfd_set, 0);
3450 }
3451#endif
1862 3452
1863 ev_start (EV_A_ (W)w, 1); 3453 ev_start (EV_A_ (W)w, 1);
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 3454 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 3455
1866 if (!((WL)w)->next) 3456 if (!((WL)w)->next)
3457# if EV_USE_SIGNALFD
3458 if (sigfd < 0) /*TODO*/
3459# endif
1867 { 3460 {
1868#if _WIN32 3461# ifdef _WIN32
3462 evpipe_init (EV_A);
3463
1869 signal (w->signum, sighandler); 3464 signal (w->signum, ev_sighandler);
1870#else 3465# else
1871 struct sigaction sa; 3466 struct sigaction sa;
3467
3468 evpipe_init (EV_A);
3469
1872 sa.sa_handler = sighandler; 3470 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 3471 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3472 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 3473 sigaction (w->signum, &sa, 0);
3474
3475 if (origflags & EVFLAG_NOSIGMASK)
3476 {
3477 sigemptyset (&sa.sa_mask);
3478 sigaddset (&sa.sa_mask, w->signum);
3479 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3480 }
1876#endif 3481#endif
1877 } 3482 }
3483
3484 EV_FREQUENT_CHECK;
1878} 3485}
1879 3486
1880void noinline 3487void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 3488ev_signal_stop (EV_P_ ev_signal *w)
1882{ 3489{
1883 clear_pending (EV_A_ (W)w); 3490 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 3491 if (expect_false (!ev_is_active (w)))
1885 return; 3492 return;
1886 3493
3494 EV_FREQUENT_CHECK;
3495
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 3496 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 3497 ev_stop (EV_A_ (W)w);
1889 3498
1890 if (!signals [w->signum - 1].head) 3499 if (!signals [w->signum - 1].head)
3500 {
3501#if EV_MULTIPLICITY
3502 signals [w->signum - 1].loop = 0; /* unattach from signal */
3503#endif
3504#if EV_USE_SIGNALFD
3505 if (sigfd >= 0)
3506 {
3507 sigset_t ss;
3508
3509 sigemptyset (&ss);
3510 sigaddset (&ss, w->signum);
3511 sigdelset (&sigfd_set, w->signum);
3512
3513 signalfd (sigfd, &sigfd_set, 0);
3514 sigprocmask (SIG_UNBLOCK, &ss, 0);
3515 }
3516 else
3517#endif
1891 signal (w->signum, SIG_DFL); 3518 signal (w->signum, SIG_DFL);
3519 }
3520
3521 EV_FREQUENT_CHECK;
1892} 3522}
3523
3524#endif
3525
3526#if EV_CHILD_ENABLE
1893 3527
1894void 3528void
1895ev_child_start (EV_P_ ev_child *w) 3529ev_child_start (EV_P_ ev_child *w)
1896{ 3530{
1897#if EV_MULTIPLICITY 3531#if EV_MULTIPLICITY
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 3533#endif
1900 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
1901 return; 3535 return;
1902 3536
3537 EV_FREQUENT_CHECK;
3538
1903 ev_start (EV_A_ (W)w, 1); 3539 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3540 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3541
3542 EV_FREQUENT_CHECK;
1905} 3543}
1906 3544
1907void 3545void
1908ev_child_stop (EV_P_ ev_child *w) 3546ev_child_stop (EV_P_ ev_child *w)
1909{ 3547{
1910 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
1912 return; 3550 return;
1913 3551
3552 EV_FREQUENT_CHECK;
3553
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3554 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
1916} 3558}
3559
3560#endif
1917 3561
1918#if EV_STAT_ENABLE 3562#if EV_STAT_ENABLE
1919 3563
1920# ifdef _WIN32 3564# ifdef _WIN32
1921# undef lstat 3565# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 3566# define lstat(a,b) _stati64 (a,b)
1923# endif 3567# endif
1924 3568
1925#define DEF_STAT_INTERVAL 5.0074891 3569#define DEF_STAT_INTERVAL 5.0074891
3570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 3571#define MIN_STAT_INTERVAL 0.1074891
1927 3572
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 3574
1930#if EV_USE_INOTIFY 3575#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 3576
3577/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3578# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1932 3579
1933static void noinline 3580static void noinline
1934infy_add (EV_P_ ev_stat *w) 3581infy_add (EV_P_ ev_stat *w)
1935{ 3582{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3583 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 3584
1938 if (w->wd < 0) 3585 if (w->wd >= 0)
3586 {
3587 struct statfs sfs;
3588
3589 /* now local changes will be tracked by inotify, but remote changes won't */
3590 /* unless the filesystem is known to be local, we therefore still poll */
3591 /* also do poll on <2.6.25, but with normal frequency */
3592
3593 if (!fs_2625)
3594 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3595 else if (!statfs (w->path, &sfs)
3596 && (sfs.f_type == 0x1373 /* devfs */
3597 || sfs.f_type == 0xEF53 /* ext2/3 */
3598 || sfs.f_type == 0x3153464a /* jfs */
3599 || sfs.f_type == 0x52654973 /* reiser3 */
3600 || sfs.f_type == 0x01021994 /* tempfs */
3601 || sfs.f_type == 0x58465342 /* xfs */))
3602 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3603 else
3604 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1939 { 3605 }
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3606 else
3607 {
3608 /* can't use inotify, continue to stat */
3609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1941 3610
1942 /* monitor some parent directory for speedup hints */ 3611 /* if path is not there, monitor some parent directory for speedup hints */
3612 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3613 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3614 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 3615 {
1945 char path [4096]; 3616 char path [4096];
1946 strcpy (path, w->path); 3617 strcpy (path, w->path);
1947 3618
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3621 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3622 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952 3623
1953 char *pend = strrchr (path, '/'); 3624 char *pend = strrchr (path, '/');
1954 3625
1955 if (!pend) 3626 if (!pend || pend == path)
1956 break; /* whoops, no '/', complain to your admin */ 3627 break;
1957 3628
1958 *pend = 0; 3629 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask); 3630 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 } 3631 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3632 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 3633 }
1963 } 3634 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966 3635
1967 if (w->wd >= 0) 3636 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3637 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3638
3639 /* now re-arm timer, if required */
3640 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3641 ev_timer_again (EV_A_ &w->timer);
3642 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1969} 3643}
1970 3644
1971static void noinline 3645static void noinline
1972infy_del (EV_P_ ev_stat *w) 3646infy_del (EV_P_ ev_stat *w)
1973{ 3647{
1976 3650
1977 if (wd < 0) 3651 if (wd < 0)
1978 return; 3652 return;
1979 3653
1980 w->wd = -2; 3654 w->wd = -2;
1981 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3655 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1982 wlist_del (&fs_hash [slot].head, (WL)w); 3656 wlist_del (&fs_hash [slot].head, (WL)w);
1983 3657
1984 /* remove this watcher, if others are watching it, they will rearm */ 3658 /* remove this watcher, if others are watching it, they will rearm */
1985 inotify_rm_watch (fs_fd, wd); 3659 inotify_rm_watch (fs_fd, wd);
1986} 3660}
1987 3661
1988static void noinline 3662static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3663infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 3664{
1991 if (slot < 0) 3665 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 3666 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3667 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 3668 infy_wd (EV_A_ slot, wd, ev);
1995 else 3669 else
1996 { 3670 {
1997 WL w_; 3671 WL w_;
1998 3672
1999 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3673 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2000 { 3674 {
2001 ev_stat *w = (ev_stat *)w_; 3675 ev_stat *w = (ev_stat *)w_;
2002 w_ = w_->next; /* lets us remove this watcher and all before it */ 3676 w_ = w_->next; /* lets us remove this watcher and all before it */
2003 3677
2004 if (w->wd == wd || wd == -1) 3678 if (w->wd == wd || wd == -1)
2005 { 3679 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3680 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 { 3681 {
3682 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2008 w->wd = -1; 3683 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */ 3684 infy_add (EV_A_ w); /* re-add, no matter what */
2010 } 3685 }
2011 3686
2012 stat_timer_cb (EV_A_ &w->timer, 0); 3687 stat_timer_cb (EV_A_ &w->timer, 0);
2017 3692
2018static void 3693static void
2019infy_cb (EV_P_ ev_io *w, int revents) 3694infy_cb (EV_P_ ev_io *w, int revents)
2020{ 3695{
2021 char buf [EV_INOTIFY_BUFSIZE]; 3696 char buf [EV_INOTIFY_BUFSIZE];
2022 struct inotify_event *ev = (struct inotify_event *)buf;
2023 int ofs; 3697 int ofs;
2024 int len = read (fs_fd, buf, sizeof (buf)); 3698 int len = read (fs_fd, buf, sizeof (buf));
2025 3699
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3700 for (ofs = 0; ofs < len; )
3701 {
3702 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3703 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3704 ofs += sizeof (struct inotify_event) + ev->len;
3705 }
2028} 3706}
2029 3707
2030void inline_size 3708inline_size void ecb_cold
3709ev_check_2625 (EV_P)
3710{
3711 /* kernels < 2.6.25 are borked
3712 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3713 */
3714 if (ev_linux_version () < 0x020619)
3715 return;
3716
3717 fs_2625 = 1;
3718}
3719
3720inline_size int
3721infy_newfd (void)
3722{
3723#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3724 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3725 if (fd >= 0)
3726 return fd;
3727#endif
3728 return inotify_init ();
3729}
3730
3731inline_size void
2031infy_init (EV_P) 3732infy_init (EV_P)
2032{ 3733{
2033 if (fs_fd != -2) 3734 if (fs_fd != -2)
2034 return; 3735 return;
2035 3736
3737 fs_fd = -1;
3738
3739 ev_check_2625 (EV_A);
3740
2036 fs_fd = inotify_init (); 3741 fs_fd = infy_newfd ();
2037 3742
2038 if (fs_fd >= 0) 3743 if (fs_fd >= 0)
2039 { 3744 {
3745 fd_intern (fs_fd);
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3746 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI); 3747 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w); 3748 ev_io_start (EV_A_ &fs_w);
3749 ev_unref (EV_A);
2043 } 3750 }
2044} 3751}
2045 3752
2046void inline_size 3753inline_size void
2047infy_fork (EV_P) 3754infy_fork (EV_P)
2048{ 3755{
2049 int slot; 3756 int slot;
2050 3757
2051 if (fs_fd < 0) 3758 if (fs_fd < 0)
2052 return; 3759 return;
2053 3760
3761 ev_ref (EV_A);
3762 ev_io_stop (EV_A_ &fs_w);
2054 close (fs_fd); 3763 close (fs_fd);
2055 fs_fd = inotify_init (); 3764 fs_fd = infy_newfd ();
2056 3765
3766 if (fs_fd >= 0)
3767 {
3768 fd_intern (fs_fd);
3769 ev_io_set (&fs_w, fs_fd, EV_READ);
3770 ev_io_start (EV_A_ &fs_w);
3771 ev_unref (EV_A);
3772 }
3773
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3774 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 { 3775 {
2059 WL w_ = fs_hash [slot].head; 3776 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0; 3777 fs_hash [slot].head = 0;
2061 3778
2062 while (w_) 3779 while (w_)
2067 w->wd = -1; 3784 w->wd = -1;
2068 3785
2069 if (fs_fd >= 0) 3786 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 3787 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 3788 else
3789 {
3790 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3791 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2072 ev_timer_start (EV_A_ &w->timer); 3792 ev_timer_again (EV_A_ &w->timer);
3793 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3794 }
2073 } 3795 }
2074
2075 } 3796 }
2076} 3797}
2077 3798
3799#endif
3800
3801#ifdef _WIN32
3802# define EV_LSTAT(p,b) _stati64 (p, b)
3803#else
3804# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 3805#endif
2079 3806
2080void 3807void
2081ev_stat_stat (EV_P_ ev_stat *w) 3808ev_stat_stat (EV_P_ ev_stat *w)
2082{ 3809{
2089static void noinline 3816static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3817stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{ 3818{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3819 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093 3820
2094 /* we copy this here each the time so that */ 3821 ev_statdata prev = w->attr;
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w); 3822 ev_stat_stat (EV_A_ w);
2098 3823
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3824 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if ( 3825 if (
2101 w->prev.st_dev != w->attr.st_dev 3826 prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino 3827 || prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode 3828 || prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink 3829 || prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid 3830 || prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid 3831 || prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev 3832 || prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size 3833 || prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime 3834 || prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 3835 || prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 3836 || prev.st_ctime != w->attr.st_ctime
2112 ) { 3837 ) {
3838 /* we only update w->prev on actual differences */
3839 /* in case we test more often than invoke the callback, */
3840 /* to ensure that prev is always different to attr */
3841 w->prev = prev;
3842
2113 #if EV_USE_INOTIFY 3843 #if EV_USE_INOTIFY
3844 if (fs_fd >= 0)
3845 {
2114 infy_del (EV_A_ w); 3846 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 3847 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 3848 ev_stat_stat (EV_A_ w); /* avoid race... */
3849 }
2117 #endif 3850 #endif
2118 3851
2119 ev_feed_event (EV_A_ w, EV_STAT); 3852 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 3853 }
2121} 3854}
2124ev_stat_start (EV_P_ ev_stat *w) 3857ev_stat_start (EV_P_ ev_stat *w)
2125{ 3858{
2126 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
2127 return; 3860 return;
2128 3861
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 3862 ev_stat_stat (EV_A_ w);
2134 3863
3864 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 3865 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 3866
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3867 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 3868 ev_set_priority (&w->timer, ev_priority (w));
2140 3869
2141#if EV_USE_INOTIFY 3870#if EV_USE_INOTIFY
2142 infy_init (EV_A); 3871 infy_init (EV_A);
2143 3872
2144 if (fs_fd >= 0) 3873 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 3874 infy_add (EV_A_ w);
2146 else 3875 else
2147#endif 3876#endif
3877 {
2148 ev_timer_start (EV_A_ &w->timer); 3878 ev_timer_again (EV_A_ &w->timer);
3879 ev_unref (EV_A);
3880 }
2149 3881
2150 ev_start (EV_A_ (W)w, 1); 3882 ev_start (EV_A_ (W)w, 1);
3883
3884 EV_FREQUENT_CHECK;
2151} 3885}
2152 3886
2153void 3887void
2154ev_stat_stop (EV_P_ ev_stat *w) 3888ev_stat_stop (EV_P_ ev_stat *w)
2155{ 3889{
2156 clear_pending (EV_A_ (W)w); 3890 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3891 if (expect_false (!ev_is_active (w)))
2158 return; 3892 return;
2159 3893
3894 EV_FREQUENT_CHECK;
3895
2160#if EV_USE_INOTIFY 3896#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 3897 infy_del (EV_A_ w);
2162#endif 3898#endif
3899
3900 if (ev_is_active (&w->timer))
3901 {
3902 ev_ref (EV_A);
2163 ev_timer_stop (EV_A_ &w->timer); 3903 ev_timer_stop (EV_A_ &w->timer);
3904 }
2164 3905
2165 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
3907
3908 EV_FREQUENT_CHECK;
2166} 3909}
2167#endif 3910#endif
2168 3911
2169#if EV_IDLE_ENABLE 3912#if EV_IDLE_ENABLE
2170void 3913void
2173 if (expect_false (ev_is_active (w))) 3916 if (expect_false (ev_is_active (w)))
2174 return; 3917 return;
2175 3918
2176 pri_adjust (EV_A_ (W)w); 3919 pri_adjust (EV_A_ (W)w);
2177 3920
3921 EV_FREQUENT_CHECK;
3922
2178 { 3923 {
2179 int active = ++idlecnt [ABSPRI (w)]; 3924 int active = ++idlecnt [ABSPRI (w)];
2180 3925
2181 ++idleall; 3926 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 3927 ev_start (EV_A_ (W)w, active);
2183 3928
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3929 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 3930 idles [ABSPRI (w)][active - 1] = w;
2186 } 3931 }
3932
3933 EV_FREQUENT_CHECK;
2187} 3934}
2188 3935
2189void 3936void
2190ev_idle_stop (EV_P_ ev_idle *w) 3937ev_idle_stop (EV_P_ ev_idle *w)
2191{ 3938{
2192 clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
2194 return; 3941 return;
2195 3942
3943 EV_FREQUENT_CHECK;
3944
2196 { 3945 {
2197 int active = ((W)w)->active; 3946 int active = ev_active (w);
2198 3947
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3948 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3949 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 3950
2202 ev_stop (EV_A_ (W)w); 3951 ev_stop (EV_A_ (W)w);
2203 --idleall; 3952 --idleall;
2204 } 3953 }
2205}
2206#endif
2207 3954
3955 EV_FREQUENT_CHECK;
3956}
3957#endif
3958
3959#if EV_PREPARE_ENABLE
2208void 3960void
2209ev_prepare_start (EV_P_ ev_prepare *w) 3961ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 3962{
2211 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
2212 return; 3964 return;
3965
3966 EV_FREQUENT_CHECK;
2213 3967
2214 ev_start (EV_A_ (W)w, ++preparecnt); 3968 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3969 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 3970 prepares [preparecnt - 1] = w;
3971
3972 EV_FREQUENT_CHECK;
2217} 3973}
2218 3974
2219void 3975void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 3976ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 3977{
2222 clear_pending (EV_A_ (W)w); 3978 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3979 if (expect_false (!ev_is_active (w)))
2224 return; 3980 return;
2225 3981
3982 EV_FREQUENT_CHECK;
3983
2226 { 3984 {
2227 int active = ((W)w)->active; 3985 int active = ev_active (w);
3986
2228 prepares [active - 1] = prepares [--preparecnt]; 3987 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 3988 ev_active (prepares [active - 1]) = active;
2230 } 3989 }
2231 3990
2232 ev_stop (EV_A_ (W)w); 3991 ev_stop (EV_A_ (W)w);
2233}
2234 3992
3993 EV_FREQUENT_CHECK;
3994}
3995#endif
3996
3997#if EV_CHECK_ENABLE
2235void 3998void
2236ev_check_start (EV_P_ ev_check *w) 3999ev_check_start (EV_P_ ev_check *w)
2237{ 4000{
2238 if (expect_false (ev_is_active (w))) 4001 if (expect_false (ev_is_active (w)))
2239 return; 4002 return;
4003
4004 EV_FREQUENT_CHECK;
2240 4005
2241 ev_start (EV_A_ (W)w, ++checkcnt); 4006 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4007 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 4008 checks [checkcnt - 1] = w;
4009
4010 EV_FREQUENT_CHECK;
2244} 4011}
2245 4012
2246void 4013void
2247ev_check_stop (EV_P_ ev_check *w) 4014ev_check_stop (EV_P_ ev_check *w)
2248{ 4015{
2249 clear_pending (EV_A_ (W)w); 4016 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 4017 if (expect_false (!ev_is_active (w)))
2251 return; 4018 return;
2252 4019
4020 EV_FREQUENT_CHECK;
4021
2253 { 4022 {
2254 int active = ((W)w)->active; 4023 int active = ev_active (w);
4024
2255 checks [active - 1] = checks [--checkcnt]; 4025 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 4026 ev_active (checks [active - 1]) = active;
2257 } 4027 }
2258 4028
2259 ev_stop (EV_A_ (W)w); 4029 ev_stop (EV_A_ (W)w);
4030
4031 EV_FREQUENT_CHECK;
2260} 4032}
4033#endif
2261 4034
2262#if EV_EMBED_ENABLE 4035#if EV_EMBED_ENABLE
2263void noinline 4036void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 4037ev_embed_sweep (EV_P_ ev_embed *w)
2265{ 4038{
2266 ev_loop (w->other, EVLOOP_NONBLOCK); 4039 ev_run (w->other, EVRUN_NOWAIT);
2267} 4040}
2268 4041
2269static void 4042static void
2270embed_io_cb (EV_P_ ev_io *io, int revents) 4043embed_io_cb (EV_P_ ev_io *io, int revents)
2271{ 4044{
2272 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4045 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2273 4046
2274 if (ev_cb (w)) 4047 if (ev_cb (w))
2275 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4048 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2276 else 4049 else
2277 ev_loop (w->other, EVLOOP_NONBLOCK); 4050 ev_run (w->other, EVRUN_NOWAIT);
2278} 4051}
2279 4052
2280static void 4053static void
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4054embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{ 4055{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4056 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284 4057
2285 { 4058 {
2286 struct ev_loop *loop = w->other; 4059 EV_P = w->other;
2287 4060
2288 while (fdchangecnt) 4061 while (fdchangecnt)
2289 { 4062 {
2290 fd_reify (EV_A); 4063 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4064 ev_run (EV_A_ EVRUN_NOWAIT);
2292 } 4065 }
2293 } 4066 }
4067}
4068
4069static void
4070embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4071{
4072 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4073
4074 ev_embed_stop (EV_A_ w);
4075
4076 {
4077 EV_P = w->other;
4078
4079 ev_loop_fork (EV_A);
4080 ev_run (EV_A_ EVRUN_NOWAIT);
4081 }
4082
4083 ev_embed_start (EV_A_ w);
2294} 4084}
2295 4085
2296#if 0 4086#if 0
2297static void 4087static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4088embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2306{ 4096{
2307 if (expect_false (ev_is_active (w))) 4097 if (expect_false (ev_is_active (w)))
2308 return; 4098 return;
2309 4099
2310 { 4100 {
2311 struct ev_loop *loop = w->other; 4101 EV_P = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4102 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4103 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 4104 }
4105
4106 EV_FREQUENT_CHECK;
2315 4107
2316 ev_set_priority (&w->io, ev_priority (w)); 4108 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 4109 ev_io_start (EV_A_ &w->io);
2318 4110
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 4111 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 4112 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 4113 ev_prepare_start (EV_A_ &w->prepare);
2322 4114
4115 ev_fork_init (&w->fork, embed_fork_cb);
4116 ev_fork_start (EV_A_ &w->fork);
4117
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4118 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 4119
2325 ev_start (EV_A_ (W)w, 1); 4120 ev_start (EV_A_ (W)w, 1);
4121
4122 EV_FREQUENT_CHECK;
2326} 4123}
2327 4124
2328void 4125void
2329ev_embed_stop (EV_P_ ev_embed *w) 4126ev_embed_stop (EV_P_ ev_embed *w)
2330{ 4127{
2331 clear_pending (EV_A_ (W)w); 4128 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 4129 if (expect_false (!ev_is_active (w)))
2333 return; 4130 return;
2334 4131
4132 EV_FREQUENT_CHECK;
4133
2335 ev_io_stop (EV_A_ &w->io); 4134 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 4135 ev_prepare_stop (EV_A_ &w->prepare);
4136 ev_fork_stop (EV_A_ &w->fork);
2337 4137
2338 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
2339} 4141}
2340#endif 4142#endif
2341 4143
2342#if EV_FORK_ENABLE 4144#if EV_FORK_ENABLE
2343void 4145void
2344ev_fork_start (EV_P_ ev_fork *w) 4146ev_fork_start (EV_P_ ev_fork *w)
2345{ 4147{
2346 if (expect_false (ev_is_active (w))) 4148 if (expect_false (ev_is_active (w)))
2347 return; 4149 return;
2348 4150
4151 EV_FREQUENT_CHECK;
4152
2349 ev_start (EV_A_ (W)w, ++forkcnt); 4153 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4154 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 4155 forks [forkcnt - 1] = w;
4156
4157 EV_FREQUENT_CHECK;
2352} 4158}
2353 4159
2354void 4160void
2355ev_fork_stop (EV_P_ ev_fork *w) 4161ev_fork_stop (EV_P_ ev_fork *w)
2356{ 4162{
2357 clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 4164 if (expect_false (!ev_is_active (w)))
2359 return; 4165 return;
2360 4166
4167 EV_FREQUENT_CHECK;
4168
2361 { 4169 {
2362 int active = ((W)w)->active; 4170 int active = ev_active (w);
4171
2363 forks [active - 1] = forks [--forkcnt]; 4172 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 4173 ev_active (forks [active - 1]) = active;
2365 } 4174 }
2366 4175
2367 ev_stop (EV_A_ (W)w); 4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179}
4180#endif
4181
4182#if EV_CLEANUP_ENABLE
4183void
4184ev_cleanup_start (EV_P_ ev_cleanup *w)
4185{
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 EV_FREQUENT_CHECK;
4190
4191 ev_start (EV_A_ (W)w, ++cleanupcnt);
4192 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4193 cleanups [cleanupcnt - 1] = w;
4194
4195 /* cleanup watchers should never keep a refcount on the loop */
4196 ev_unref (EV_A);
4197 EV_FREQUENT_CHECK;
4198}
4199
4200void
4201ev_cleanup_stop (EV_P_ ev_cleanup *w)
4202{
4203 clear_pending (EV_A_ (W)w);
4204 if (expect_false (!ev_is_active (w)))
4205 return;
4206
4207 EV_FREQUENT_CHECK;
4208 ev_ref (EV_A);
4209
4210 {
4211 int active = ev_active (w);
4212
4213 cleanups [active - 1] = cleanups [--cleanupcnt];
4214 ev_active (cleanups [active - 1]) = active;
4215 }
4216
4217 ev_stop (EV_A_ (W)w);
4218
4219 EV_FREQUENT_CHECK;
4220}
4221#endif
4222
4223#if EV_ASYNC_ENABLE
4224void
4225ev_async_start (EV_P_ ev_async *w)
4226{
4227 if (expect_false (ev_is_active (w)))
4228 return;
4229
4230 w->sent = 0;
4231
4232 evpipe_init (EV_A);
4233
4234 EV_FREQUENT_CHECK;
4235
4236 ev_start (EV_A_ (W)w, ++asynccnt);
4237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4238 asyncs [asynccnt - 1] = w;
4239
4240 EV_FREQUENT_CHECK;
4241}
4242
4243void
4244ev_async_stop (EV_P_ ev_async *w)
4245{
4246 clear_pending (EV_A_ (W)w);
4247 if (expect_false (!ev_is_active (w)))
4248 return;
4249
4250 EV_FREQUENT_CHECK;
4251
4252 {
4253 int active = ev_active (w);
4254
4255 asyncs [active - 1] = asyncs [--asynccnt];
4256 ev_active (asyncs [active - 1]) = active;
4257 }
4258
4259 ev_stop (EV_A_ (W)w);
4260
4261 EV_FREQUENT_CHECK;
4262}
4263
4264void
4265ev_async_send (EV_P_ ev_async *w)
4266{
4267 w->sent = 1;
4268 evpipe_write (EV_A_ &async_pending);
2368} 4269}
2369#endif 4270#endif
2370 4271
2371/*****************************************************************************/ 4272/*****************************************************************************/
2372 4273
2382once_cb (EV_P_ struct ev_once *once, int revents) 4283once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 4284{
2384 void (*cb)(int revents, void *arg) = once->cb; 4285 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 4286 void *arg = once->arg;
2386 4287
2387 ev_io_stop (EV_A_ &once->io); 4288 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 4289 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 4290 ev_free (once);
2390 4291
2391 cb (revents, arg); 4292 cb (revents, arg);
2392} 4293}
2393 4294
2394static void 4295static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 4296once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 4297{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4299
4300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 4301}
2399 4302
2400static void 4303static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 4304once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 4305{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4307
4308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 4309}
2405 4310
2406void 4311void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 4313{
2409 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4314 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2410 4315
2411 if (expect_false (!once)) 4316 if (expect_false (!once))
2412 { 4317 {
2413 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4318 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2414 return; 4319 return;
2415 } 4320 }
2416 4321
2417 once->cb = cb; 4322 once->cb = cb;
2418 once->arg = arg; 4323 once->arg = arg;
2430 ev_timer_set (&once->to, timeout, 0.); 4335 ev_timer_set (&once->to, timeout, 0.);
2431 ev_timer_start (EV_A_ &once->to); 4336 ev_timer_start (EV_A_ &once->to);
2432 } 4337 }
2433} 4338}
2434 4339
4340/*****************************************************************************/
4341
4342#if EV_WALK_ENABLE
4343void ecb_cold
4344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4345{
4346 int i, j;
4347 ev_watcher_list *wl, *wn;
4348
4349 if (types & (EV_IO | EV_EMBED))
4350 for (i = 0; i < anfdmax; ++i)
4351 for (wl = anfds [i].head; wl; )
4352 {
4353 wn = wl->next;
4354
4355#if EV_EMBED_ENABLE
4356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4357 {
4358 if (types & EV_EMBED)
4359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4360 }
4361 else
4362#endif
4363#if EV_USE_INOTIFY
4364 if (ev_cb ((ev_io *)wl) == infy_cb)
4365 ;
4366 else
4367#endif
4368 if ((ev_io *)wl != &pipe_w)
4369 if (types & EV_IO)
4370 cb (EV_A_ EV_IO, wl);
4371
4372 wl = wn;
4373 }
4374
4375 if (types & (EV_TIMER | EV_STAT))
4376 for (i = timercnt + HEAP0; i-- > HEAP0; )
4377#if EV_STAT_ENABLE
4378 /*TODO: timer is not always active*/
4379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4380 {
4381 if (types & EV_STAT)
4382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4383 }
4384 else
4385#endif
4386 if (types & EV_TIMER)
4387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4388
4389#if EV_PERIODIC_ENABLE
4390 if (types & EV_PERIODIC)
4391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4393#endif
4394
4395#if EV_IDLE_ENABLE
4396 if (types & EV_IDLE)
4397 for (j = NUMPRI; j--; )
4398 for (i = idlecnt [j]; i--; )
4399 cb (EV_A_ EV_IDLE, idles [j][i]);
4400#endif
4401
4402#if EV_FORK_ENABLE
4403 if (types & EV_FORK)
4404 for (i = forkcnt; i--; )
4405 if (ev_cb (forks [i]) != embed_fork_cb)
4406 cb (EV_A_ EV_FORK, forks [i]);
4407#endif
4408
4409#if EV_ASYNC_ENABLE
4410 if (types & EV_ASYNC)
4411 for (i = asynccnt; i--; )
4412 cb (EV_A_ EV_ASYNC, asyncs [i]);
4413#endif
4414
4415#if EV_PREPARE_ENABLE
4416 if (types & EV_PREPARE)
4417 for (i = preparecnt; i--; )
4418# if EV_EMBED_ENABLE
4419 if (ev_cb (prepares [i]) != embed_prepare_cb)
4420# endif
4421 cb (EV_A_ EV_PREPARE, prepares [i]);
4422#endif
4423
4424#if EV_CHECK_ENABLE
4425 if (types & EV_CHECK)
4426 for (i = checkcnt; i--; )
4427 cb (EV_A_ EV_CHECK, checks [i]);
4428#endif
4429
4430#if EV_SIGNAL_ENABLE
4431 if (types & EV_SIGNAL)
4432 for (i = 0; i < EV_NSIG - 1; ++i)
4433 for (wl = signals [i].head; wl; )
4434 {
4435 wn = wl->next;
4436 cb (EV_A_ EV_SIGNAL, wl);
4437 wl = wn;
4438 }
4439#endif
4440
4441#if EV_CHILD_ENABLE
4442 if (types & EV_CHILD)
4443 for (i = (EV_PID_HASHSIZE); i--; )
4444 for (wl = childs [i]; wl; )
4445 {
4446 wn = wl->next;
4447 cb (EV_A_ EV_CHILD, wl);
4448 wl = wn;
4449 }
4450#endif
4451/* EV_STAT 0x00001000 /* stat data changed */
4452/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4453}
4454#endif
4455
2435#if EV_MULTIPLICITY 4456#if EV_MULTIPLICITY
2436 #include "ev_wrap.h" 4457 #include "ev_wrap.h"
2437#endif 4458#endif
2438 4459
2439#ifdef __cplusplus
2440}
2441#endif
2442

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines