ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
47# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
49# endif 61# endif
50# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
52# endif 72# endif
53# endif 73# endif
54 74
55# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 110# else
91# define EV_USE_PORT 0 111# define EV_USE_PORT 0
92# endif 112# endif
93# endif 113# endif
94 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
95#endif 123#endif
96 124
97#include <math.h> 125#include <math.h>
98#include <stdlib.h> 126#include <stdlib.h>
99#include <fcntl.h> 127#include <fcntl.h>
106#include <sys/types.h> 134#include <sys/types.h>
107#include <time.h> 135#include <time.h>
108 136
109#include <signal.h> 137#include <signal.h>
110 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
111#ifndef _WIN32 145#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 146# include <sys/time.h>
114# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
115#else 149#else
116# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 151# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
128 162
129#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
131#endif 165#endif
132 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
133#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
135#endif 173#endif
136 174
137#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
152 190
153#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 192# define EV_USE_PORT 0
155#endif 193#endif
156 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
157/**/ 215/**/
158
159/* darwin simply cannot be helped */
160#ifdef __APPLE__
161# undef EV_USE_POLL
162# undef EV_USE_KQUEUE
163#endif
164 216
165#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
168#endif 220#endif
170#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
173#endif 225#endif
174 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
175#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 243# include <winsock.h>
177#endif 244#endif
178 245
179/**/ 246/**/
180 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 261
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 262#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 264# define noinline __attribute__ ((noinline))
195#else 265#else
196# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
197# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
198#endif 271#endif
199 272
200#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
202 282
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 285
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
208 288
209typedef struct ev_watcher *W; 289typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
212 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
214 298
215#ifdef _WIN32 299#ifdef _WIN32
216# include "ev_win32.c" 300# include "ev_win32.c"
217#endif 301#endif
218 302
219/*****************************************************************************/ 303/*****************************************************************************/
220 304
221static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
222 306
307void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 309{
225 syserr_cb = cb; 310 syserr_cb = cb;
226} 311}
227 312
228static void 313static void noinline
229syserr (const char *msg) 314syserr (const char *msg)
230{ 315{
231 if (!msg) 316 if (!msg)
232 msg = "(libev) system error"; 317 msg = "(libev) system error";
233 318
240 } 325 }
241} 326}
242 327
243static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
244 329
330void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 332{
247 alloc = cb; 333 alloc = cb;
248} 334}
249 335
250static void * 336inline_speed void *
251ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
252{ 338{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
254 340
255 if (!ptr && size) 341 if (!ptr && size)
279typedef struct 365typedef struct
280{ 366{
281 W w; 367 W w;
282 int events; 368 int events;
283} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
284 377
285#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
286 379
287 struct ev_loop 380 struct ev_loop
288 { 381 {
322 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 417#endif
325} 418}
326 419
327inline ev_tstamp 420ev_tstamp inline_size
328get_clock (void) 421get_clock (void)
329{ 422{
330#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
332 { 425 {
345{ 438{
346 return ev_rt_now; 439 return ev_rt_now;
347} 440}
348#endif 441#endif
349 442
350#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
351 497
352#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
354 { \ 500 { \
355 int newcnt = cur; \ 501 int ocur_ = (cur); \
356 do \ 502 (base) = (type *)array_realloc \
357 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 505 }
366 506
507#if 0
367#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 510 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 514 }
515#endif
374 516
375#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 519
378/*****************************************************************************/ 520/*****************************************************************************/
379 521
380static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
381anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
382{ 552{
383 while (count--) 553 while (count--)
384 { 554 {
385 base->head = 0; 555 base->head = 0;
388 558
389 ++base; 559 ++base;
390 } 560 }
391} 561}
392 562
393void 563void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
421{ 565{
422 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 567 ev_io *w;
424 568
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 570 {
427 int ev = w->events & revents; 571 int ev = w->events & revents;
428 572
429 if (ev) 573 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
432} 576}
433 577
434void 578void
435ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 580{
581 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
438} 583}
439 584
440/*****************************************************************************/ 585void inline_size
441
442inline void
443fd_reify (EV_P) 586fd_reify (EV_P)
444{ 587{
445 int i; 588 int i;
446 589
447 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
448 { 591 {
449 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 594 ev_io *w;
452 595
453 int events = 0; 596 unsigned char events = 0;
454 597
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 599 events |= (unsigned char)w->events;
457 600
458#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
459 if (events) 602 if (events)
460 { 603 {
461 unsigned long argp; 604 unsigned long argp;
462 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 } 607 }
465#endif 608#endif
466 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
467 anfd->reify = 0; 614 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
471 } 620 }
472 621
473 fdchangecnt = 0; 622 fdchangecnt = 0;
474} 623}
475 624
476static void 625void inline_size
477fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
478{ 627{
479 if (expect_false (anfds [fd].reify)) 628 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
483 630
631 if (expect_true (!reify))
632 {
484 ++fdchangecnt; 633 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
487} 637}
488 638
489static void 639void inline_speed
490fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
491{ 641{
492 struct ev_io *w; 642 ev_io *w;
493 643
494 while ((w = (struct ev_io *)anfds [fd].head)) 644 while ((w = (ev_io *)anfds [fd].head))
495 { 645 {
496 ev_io_stop (EV_A_ w); 646 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 648 }
499} 649}
500 650
501inline int 651int inline_size
502fd_valid (int fd) 652fd_valid (int fd)
503{ 653{
504#ifdef _WIN32 654#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 655 return _get_osfhandle (fd) != -1;
506#else 656#else
507 return fcntl (fd, F_GETFD) != -1; 657 return fcntl (fd, F_GETFD) != -1;
508#endif 658#endif
509} 659}
510 660
511/* called on EBADF to verify fds */ 661/* called on EBADF to verify fds */
512static void 662static void noinline
513fd_ebadf (EV_P) 663fd_ebadf (EV_P)
514{ 664{
515 int fd; 665 int fd;
516 666
517 for (fd = 0; fd < anfdmax; ++fd) 667 for (fd = 0; fd < anfdmax; ++fd)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 669 if (!fd_valid (fd) == -1 && errno == EBADF)
520 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
521} 671}
522 672
523/* called on ENOMEM in select/poll to kill some fds and retry */ 673/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 674static void noinline
525fd_enomem (EV_P) 675fd_enomem (EV_P)
526{ 676{
527 int fd; 677 int fd;
528 678
529 for (fd = anfdmax; fd--; ) 679 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 682 fd_kill (EV_A_ fd);
533 return; 683 return;
534 } 684 }
535} 685}
536 686
537/* usually called after fork if method needs to re-arm all fds from scratch */ 687/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 688static void noinline
539fd_rearm_all (EV_P) 689fd_rearm_all (EV_P)
540{ 690{
541 int fd; 691 int fd;
542 692
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 694 if (anfds [fd].events)
546 { 695 {
547 anfds [fd].events = 0; 696 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 698 }
550} 699}
551 700
552/*****************************************************************************/ 701/*****************************************************************************/
553 702
554static void 703void inline_speed
555upheap (WT *heap, int k) 704upheap (WT *heap, int k)
556{ 705{
557 WT w = heap [k]; 706 WT w = heap [k];
558 707
559 while (k && heap [k >> 1]->at > w->at) 708 while (k)
560 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
561 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
562 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
563 k >>= 1; 717 k = p;
564 } 718 }
565 719
566 heap [k] = w; 720 heap [k] = w;
567 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
568
569} 722}
570 723
571static void 724void inline_speed
572downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
573{ 726{
574 WT w = heap [k]; 727 WT w = heap [k];
575 728
576 while (k < (N >> 1)) 729 for (;;)
577 { 730 {
578 int j = k << 1; 731 int c = (k << 1) + 1;
579 732
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break; 734 break;
585 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
586 heap [k] = heap [j]; 742 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
588 k = j; 745 k = c;
589 } 746 }
590 747
591 heap [k] = w; 748 heap [k] = w;
592 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
593} 750}
594 751
595inline void 752void inline_size
596adjustheap (WT *heap, int N, int k) 753adjustheap (WT *heap, int N, int k)
597{ 754{
598 upheap (heap, k); 755 upheap (heap, k);
599 downheap (heap, N, k); 756 downheap (heap, N, k);
600} 757}
610static ANSIG *signals; 767static ANSIG *signals;
611static int signalmax; 768static int signalmax;
612 769
613static int sigpipe [2]; 770static int sigpipe [2];
614static sig_atomic_t volatile gotsig; 771static sig_atomic_t volatile gotsig;
615static struct ev_io sigev; 772static ev_io sigev;
616 773
617static void 774void inline_size
618signals_init (ANSIG *base, int count) 775signals_init (ANSIG *base, int count)
619{ 776{
620 while (count--) 777 while (count--)
621 { 778 {
622 base->head = 0; 779 base->head = 0;
642 write (sigpipe [1], &signum, 1); 799 write (sigpipe [1], &signum, 1);
643 errno = old_errno; 800 errno = old_errno;
644 } 801 }
645} 802}
646 803
647void 804void noinline
648ev_feed_signal_event (EV_P_ int signum) 805ev_feed_signal_event (EV_P_ int signum)
649{ 806{
650 WL w; 807 WL w;
651 808
652#if EV_MULTIPLICITY 809#if EV_MULTIPLICITY
663 for (w = signals [signum].head; w; w = w->next) 820 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665} 822}
666 823
667static void 824static void
668sigcb (EV_P_ struct ev_io *iow, int revents) 825sigcb (EV_P_ ev_io *iow, int revents)
669{ 826{
670 int signum; 827 int signum;
671 828
672 read (sigpipe [0], &revents, 1); 829 read (sigpipe [0], &revents, 1);
673 gotsig = 0; 830 gotsig = 0;
675 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
678} 835}
679 836
680static void 837void inline_speed
681fd_intern (int fd) 838fd_intern (int fd)
682{ 839{
683#ifdef _WIN32 840#ifdef _WIN32
684 int arg = 1; 841 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 844 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 845 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 846#endif
690} 847}
691 848
692static void 849static void noinline
693siginit (EV_P) 850siginit (EV_P)
694{ 851{
695 fd_intern (sigpipe [0]); 852 fd_intern (sigpipe [0]);
696 fd_intern (sigpipe [1]); 853 fd_intern (sigpipe [1]);
697 854
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
701} 858}
702 859
703/*****************************************************************************/ 860/*****************************************************************************/
704 861
705static struct ev_child *childs [PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
706 863
707#ifndef _WIN32 864#ifndef _WIN32
708 865
709static struct ev_signal childev; 866static ev_signal childev;
867
868void inline_speed
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
870{
871 ev_child *w;
872
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
874 if (w->pid == pid || !w->pid)
875 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
877 w->rpid = pid;
878 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 }
881}
710 882
711#ifndef WCONTINUED 883#ifndef WCONTINUED
712# define WCONTINUED 0 884# define WCONTINUED 0
713#endif 885#endif
714 886
715static void 887static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 888childcb (EV_P_ ev_signal *sw, int revents)
732{ 889{
733 int pid, status; 890 int pid, status;
734 891
892 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 893 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 894 if (!WCONTINUED
895 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return;
898
737 /* make sure we are called again until all childs have been reaped */ 899 /* make sure we are called again until all childs have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 902
740 child_reap (EV_A_ sw, pid, pid, status); 903 child_reap (EV_A_ sw, pid, pid, status);
904 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 906}
744 907
745#endif 908#endif
746 909
747/*****************************************************************************/ 910/*****************************************************************************/
773{ 936{
774 return EV_VERSION_MINOR; 937 return EV_VERSION_MINOR;
775} 938}
776 939
777/* return true if we are running with elevated privileges and should ignore env variables */ 940/* return true if we are running with elevated privileges and should ignore env variables */
778static int 941int inline_size
779enable_secure (void) 942enable_secure (void)
780{ 943{
781#ifdef _WIN32 944#ifdef _WIN32
782 return 0; 945 return 0;
783#else 946#else
785 || getgid () != getegid (); 948 || getgid () != getegid ();
786#endif 949#endif
787} 950}
788 951
789unsigned int 952unsigned int
790ev_method (EV_P) 953ev_supported_backends (void)
791{ 954{
792 return method; 955 unsigned int flags = 0;
793}
794 956
795static void 957 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
958 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
959 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
960 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
961 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
962
963 return flags;
964}
965
966unsigned int
967ev_recommended_backends (void)
968{
969 unsigned int flags = ev_supported_backends ();
970
971#ifndef __NetBSD__
972 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE;
975#endif
976#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation
978 flags &= ~EVBACKEND_POLL;
979#endif
980
981 return flags;
982}
983
984unsigned int
985ev_embeddable_backends (void)
986{
987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
988
989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
994}
995
996unsigned int
997ev_backend (EV_P)
998{
999 return backend;
1000}
1001
1002unsigned int
1003ev_loop_count (EV_P)
1004{
1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
1018}
1019
1020static void noinline
796loop_init (EV_P_ unsigned int flags) 1021loop_init (EV_P_ unsigned int flags)
797{ 1022{
798 if (!method) 1023 if (!backend)
799 { 1024 {
800#if EV_USE_MONOTONIC 1025#if EV_USE_MONOTONIC
801 { 1026 {
802 struct timespec ts; 1027 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
808 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1034 mn_now = get_clock ();
810 now_floor = mn_now; 1035 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
812 1037
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040
1041 /* pid check not overridable via env */
1042#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid ();
1045#endif
1046
1047 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1050 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1051
816 if (!(flags & 0x0000ffff)) 1052 if (!(flags & 0x0000ffffUL))
817 flags |= 0x0000ffff; 1053 flags |= ev_recommended_backends ();
818 1054
819 method = 0; 1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060
820#if EV_USE_PORT 1061#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1063#endif
823#if EV_USE_KQUEUE 1064#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1066#endif
826#if EV_USE_EPOLL 1067#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1068 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1069#endif
829#if EV_USE_POLL 1070#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1071 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1072#endif
832#if EV_USE_SELECT 1073#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1075#endif
835 1076
836 ev_init (&sigev, sigcb); 1077 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1078 ev_set_priority (&sigev, EV_MAXPRI);
838 } 1079 }
839} 1080}
840 1081
841static void 1082static void noinline
842loop_destroy (EV_P) 1083loop_destroy (EV_P)
843{ 1084{
844 int i; 1085 int i;
845 1086
1087#if EV_USE_INOTIFY
1088 if (fs_fd >= 0)
1089 close (fs_fd);
1090#endif
1091
1092 if (backend_fd >= 0)
1093 close (backend_fd);
1094
846#if EV_USE_PORT 1095#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1097#endif
849#if EV_USE_KQUEUE 1098#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1099 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1100#endif
852#if EV_USE_EPOLL 1101#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1102 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1103#endif
855#if EV_USE_POLL 1104#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1105 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1106#endif
858#if EV_USE_SELECT 1107#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1109#endif
861 1110
862 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
863 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
864 1120
865 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1122 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1123 array_free (timer, EMPTY);
868#if EV_PERIODICS 1124#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1125 array_free (periodic, EMPTY);
870#endif 1126#endif
1127#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1128 array_free (fork, EMPTY);
1129#endif
872 array_free (prepare, EMPTY0); 1130 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1131 array_free (check, EMPTY);
874 1132
875 method = 0; 1133 backend = 0;
876} 1134}
877 1135
878static void 1136void inline_size infy_fork (EV_P);
1137
1138void inline_size
879loop_fork (EV_P) 1139loop_fork (EV_P)
880{ 1140{
881#if EV_USE_PORT 1141#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1143#endif
884#if EV_USE_KQUEUE 1144#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1145 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1146#endif
887#if EV_USE_EPOLL 1147#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1148 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1149#endif
1150#if EV_USE_INOTIFY
1151 infy_fork (EV_A);
889#endif 1152#endif
890 1153
891 if (ev_is_active (&sigev)) 1154 if (ev_is_active (&sigev))
892 { 1155 {
893 /* default loop */ 1156 /* default loop */
914 1177
915 memset (loop, 0, sizeof (struct ev_loop)); 1178 memset (loop, 0, sizeof (struct ev_loop));
916 1179
917 loop_init (EV_A_ flags); 1180 loop_init (EV_A_ flags);
918 1181
919 if (ev_method (EV_A)) 1182 if (ev_backend (EV_A))
920 return loop; 1183 return loop;
921 1184
922 return 0; 1185 return 0;
923} 1186}
924 1187
957 ev_default_loop_ptr = 1; 1220 ev_default_loop_ptr = 1;
958#endif 1221#endif
959 1222
960 loop_init (EV_A_ flags); 1223 loop_init (EV_A_ flags);
961 1224
962 if (ev_method (EV_A)) 1225 if (ev_backend (EV_A))
963 { 1226 {
964 siginit (EV_A); 1227 siginit (EV_A);
965 1228
966#ifndef _WIN32 1229#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1230 ev_signal_init (&childev, childcb, SIGCHLD);
1003{ 1266{
1004#if EV_MULTIPLICITY 1267#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1268 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1269#endif
1007 1270
1008 if (method) 1271 if (backend)
1009 postfork = 1; 1272 postfork = 1;
1010} 1273}
1011 1274
1012/*****************************************************************************/ 1275/*****************************************************************************/
1013 1276
1014static int 1277void
1015any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
1016{ 1279{
1017 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1281}
1025 1282
1026inline void 1283void inline_speed
1027call_pending (EV_P) 1284call_pending (EV_P)
1028{ 1285{
1029 int pri; 1286 int pri;
1030 1287
1031 for (pri = NUMPRI; pri--; ) 1288 for (pri = NUMPRI; pri--; )
1033 { 1290 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1292
1036 if (expect_true (p->w)) 1293 if (expect_true (p->w))
1037 { 1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
1038 p->w->pending = 0; 1297 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1298 EV_CB_INVOKE (p->w, p->events);
1040 } 1299 }
1041 } 1300 }
1042} 1301}
1043 1302
1044inline void 1303void inline_size
1045timers_reify (EV_P) 1304timers_reify (EV_P)
1046{ 1305{
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1048 { 1307 {
1049 struct ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
1050 1309
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1311
1053 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1054 if (w->repeat) 1313 if (w->repeat)
1055 { 1314 {
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1316
1058 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1059 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1061 1320
1062 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1063 } 1322 }
1064 else 1323 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1325
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1327 }
1069} 1328}
1070 1329
1071#if EV_PERIODICS 1330#if EV_PERIODIC_ENABLE
1072inline void 1331void inline_size
1073periodics_reify (EV_P) 1332periodics_reify (EV_P)
1074{ 1333{
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1076 { 1335 {
1077 struct ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1078 1337
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1339
1081 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1083 { 1342 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1086 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1087 } 1346 }
1088 else if (w->interval) 1347 else if (w->interval)
1089 { 1348 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1093 } 1353 }
1094 else 1354 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1356
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1358 }
1099} 1359}
1100 1360
1101static void 1361static void noinline
1102periodics_reschedule (EV_P) 1362periodics_reschedule (EV_P)
1103{ 1363{
1104 int i; 1364 int i;
1105 1365
1106 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1108 { 1368 {
1109 struct ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1110 1370
1111 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1373 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1115 } 1375 }
1116 1376
1117 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1120} 1380}
1121#endif 1381#endif
1122 1382
1123inline int 1383#if EV_IDLE_ENABLE
1124time_update_monotonic (EV_P) 1384void inline_size
1385idle_reify (EV_P)
1125{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1126 mn_now = get_clock (); 1416 mn_now = get_clock ();
1127 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1421 {
1130 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1423 return;
1132 } 1424 }
1133 else 1425
1134 {
1135 now_floor = mn_now; 1426 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1428
1141inline void 1429 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1143{ 1431 * in case we get preempted during the calls to
1144 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1145 1433 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1148 { 1436 */
1149 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1150 { 1438 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1156 1440
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1158 return; /* all is well */ 1442 return; /* all is well */
1159 1443
1160 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 1445 mn_now = get_clock ();
1162 now_floor = mn_now; 1446 now_floor = mn_now;
1163 } 1447 }
1164 1448
1165# if EV_PERIODICS 1449# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A);
1451# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 }
1455 else
1456#endif
1457 {
1458 ev_rt_now = ev_time ();
1459
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 {
1462#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1167# endif 1464#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1184 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 } 1468 }
1187 1469
1188 mn_now = ev_rt_now; 1470 mn_now = ev_rt_now;
1204static int loop_done; 1486static int loop_done;
1205 1487
1206void 1488void
1207ev_loop (EV_P_ int flags) 1489ev_loop (EV_P_ int flags)
1208{ 1490{
1209 double block;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1492 ? EVUNLOOP_ONE
1493 : EVUNLOOP_CANCEL;
1211 1494
1212 while (activecnt) 1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1496
1497 do
1213 { 1498 {
1499#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid))
1502 {
1503 curpid = getpid ();
1504 postfork = 1;
1505 }
1506#endif
1507
1508#if EV_FORK_ENABLE
1509 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork))
1511 if (forkcnt)
1512 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A);
1515 }
1516#endif
1517
1214 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1216 { 1520 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1522 call_pending (EV_A);
1219 } 1523 }
1220 1524
1525 if (expect_false (!activecnt))
1526 break;
1527
1221 /* we might have forked, so reify kernel state if necessary */ 1528 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1529 if (expect_false (postfork))
1223 loop_fork (EV_A); 1530 loop_fork (EV_A);
1224 1531
1225 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1533 fd_reify (EV_A);
1227 1534
1228 /* calculate blocking time */ 1535 /* calculate blocking time */
1536 {
1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1229 1539
1230 /* we only need this for !monotonic clock or timers, but as we basically 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1541 {
1238 ev_rt_now = ev_time (); 1542 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1543 time_update (EV_A_ 1e100);
1240 }
1241 1544
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1247 1546
1248 if (timercnt) 1547 if (timercnt)
1249 { 1548 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1251 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1252 } 1551 }
1253 1552
1254#if EV_PERIODICS 1553#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1554 if (periodiccnt)
1256 { 1555 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1259 } 1558 }
1260#endif 1559#endif
1261 1560
1262 if (expect_false (block < 0.)) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1263 } 1574 }
1264 1575
1265 method_poll (EV_A_ block); 1576 ++loop_count;
1577 backend_poll (EV_A_ waittime);
1266 1578
1267 /* update ev_rt_now, do magic */ 1579 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 1580 time_update (EV_A_ waittime + sleeptime);
1581 }
1269 1582
1270 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 1585#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 1587#endif
1275 1588
1589#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 1590 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1279 1593
1280 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 1595 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 1597
1284 call_pending (EV_A); 1598 call_pending (EV_A);
1285 1599
1286 if (expect_false (loop_done))
1287 break;
1288 } 1600 }
1601 while (expect_true (activecnt && !loop_done));
1289 1602
1290 if (loop_done != 2) 1603 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 1604 loop_done = EVUNLOOP_CANCEL;
1292} 1605}
1293 1606
1294void 1607void
1295ev_unloop (EV_P_ int how) 1608ev_unloop (EV_P_ int how)
1296{ 1609{
1297 loop_done = how; 1610 loop_done = how;
1298} 1611}
1299 1612
1300/*****************************************************************************/ 1613/*****************************************************************************/
1301 1614
1302inline void 1615void inline_size
1303wlist_add (WL *head, WL elem) 1616wlist_add (WL *head, WL elem)
1304{ 1617{
1305 elem->next = *head; 1618 elem->next = *head;
1306 *head = elem; 1619 *head = elem;
1307} 1620}
1308 1621
1309inline void 1622void inline_size
1310wlist_del (WL *head, WL elem) 1623wlist_del (WL *head, WL elem)
1311{ 1624{
1312 while (*head) 1625 while (*head)
1313 { 1626 {
1314 if (*head == elem) 1627 if (*head == elem)
1319 1632
1320 head = &(*head)->next; 1633 head = &(*head)->next;
1321 } 1634 }
1322} 1635}
1323 1636
1324inline void 1637void inline_speed
1325ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1326{ 1639{
1327 if (w->pending) 1640 if (w->pending)
1328 { 1641 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 1643 w->pending = 0;
1331 } 1644 }
1332} 1645}
1333 1646
1334inline void 1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1673void inline_speed
1335ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1336{ 1675{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 1677 w->active = active;
1341 ev_ref (EV_A); 1678 ev_ref (EV_A);
1342} 1679}
1343 1680
1344inline void 1681void inline_size
1345ev_stop (EV_P_ W w) 1682ev_stop (EV_P_ W w)
1346{ 1683{
1347 ev_unref (EV_A); 1684 ev_unref (EV_A);
1348 w->active = 0; 1685 w->active = 0;
1349} 1686}
1350 1687
1351/*****************************************************************************/ 1688/*****************************************************************************/
1352 1689
1353void 1690void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1355{ 1692{
1356 int fd = w->fd; 1693 int fd = w->fd;
1357 1694
1358 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1359 return; 1696 return;
1360 1697
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1362 1699
1363 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1366 1703
1367 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1368} 1706}
1369 1707
1370void 1708void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1372{ 1710{
1373 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 1712 if (expect_false (!ev_is_active (w)))
1375 return; 1713 return;
1376 1714
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 1716
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1381 1719
1382 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1383} 1721}
1384 1722
1385void 1723void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1387{ 1725{
1388 if (expect_false (ev_is_active (w))) 1726 if (expect_false (ev_is_active (w)))
1389 return; 1727 return;
1390 1728
1391 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1392 1730
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 1732
1395 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1397 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1399 1737
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1401} 1739}
1402 1740
1403void 1741void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1405{ 1743{
1406 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1745 if (expect_false (!ev_is_active (w)))
1408 return; 1746 return;
1409 1747
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1411 1749
1750 {
1751 int active = ((W)w)->active;
1752
1412 if (expect_true (((W)w)->active < timercnt--)) 1753 if (expect_true (--active < --timercnt))
1413 { 1754 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1756 adjustheap (timers, timercnt, active);
1416 } 1757 }
1758 }
1417 1759
1418 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1419 1761
1420 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1421} 1763}
1422 1764
1423void 1765void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1425{ 1767{
1426 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1427 { 1769 {
1428 if (w->repeat) 1770 if (w->repeat)
1429 { 1771 {
1430 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1432 } 1774 }
1433 else 1775 else
1434 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1435 } 1777 }
1436 else if (w->repeat) 1778 else if (w->repeat)
1438 w->at = w->repeat; 1780 w->at = w->repeat;
1439 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1440 } 1782 }
1441} 1783}
1442 1784
1443#if EV_PERIODICS 1785#if EV_PERIODIC_ENABLE
1444void 1786void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 1788{
1447 if (expect_false (ev_is_active (w))) 1789 if (expect_false (ev_is_active (w)))
1448 return; 1790 return;
1449 1791
1450 if (w->reschedule_cb) 1792 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 1794 else if (w->interval)
1453 { 1795 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1458 1802
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1463 1807
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1465} 1809}
1466 1810
1467void 1811void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 1813{
1470 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 1815 if (expect_false (!ev_is_active (w)))
1472 return; 1816 return;
1473 1817
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1475 1819
1820 {
1821 int active = ((W)w)->active;
1822
1476 if (expect_true (((W)w)->active < periodiccnt--)) 1823 if (expect_true (--active < --periodiccnt))
1477 { 1824 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1826 adjustheap (periodics, periodiccnt, active);
1480 } 1827 }
1828 }
1481 1829
1482 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1483} 1831}
1484 1832
1485void 1833void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 1835{
1488 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1491} 1839}
1492#endif 1840#endif
1493 1841
1494void
1495ev_idle_start (EV_P_ struct ev_idle *w)
1496{
1497 if (expect_false (ev_is_active (w)))
1498 return;
1499
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART 1842#ifndef SA_RESTART
1561# define SA_RESTART 0 1843# define SA_RESTART 0
1562#endif 1844#endif
1563 1845
1564void 1846void noinline
1565ev_signal_start (EV_P_ struct ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1566{ 1848{
1567#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif 1851#endif
1570 if (expect_false (ev_is_active (w))) 1852 if (expect_false (ev_is_active (w)))
1571 return; 1853 return;
1572 1854
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1575 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 1873
1579 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1580 { 1875 {
1581#if _WIN32 1876#if _WIN32
1582 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1588 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1589#endif 1884#endif
1590 } 1885 }
1591} 1886}
1592 1887
1593void 1888void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1595{ 1890{
1596 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 1892 if (expect_false (!ev_is_active (w)))
1598 return; 1893 return;
1599 1894
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1602 1897
1603 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1605} 1900}
1606 1901
1607void 1902void
1608ev_child_start (EV_P_ struct ev_child *w) 1903ev_child_start (EV_P_ ev_child *w)
1609{ 1904{
1610#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 1907#endif
1613 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1614 return; 1909 return;
1615 1910
1616 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618} 1913}
1619 1914
1620void 1915void
1621ev_child_stop (EV_P_ struct ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1622{ 1917{
1623 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 1919 if (expect_false (!ev_is_active (w)))
1625 return; 1920 return;
1626 1921
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1629} 1924}
1630 1925
1926#if EV_STAT_ENABLE
1927
1928# ifdef _WIN32
1929# undef lstat
1930# define lstat(a,b) _stati64 (a,b)
1931# endif
1932
1933#define DEF_STAT_INTERVAL 5.0074891
1934#define MIN_STAT_INTERVAL 0.1074891
1935
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937
1938#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192
1940
1941static void noinline
1942infy_add (EV_P_ ev_stat *w)
1943{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945
1946 if (w->wd < 0)
1947 {
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949
1950 /* monitor some parent directory for speedup hints */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 {
1953 char path [4096];
1954 strcpy (path, w->path);
1955
1956 do
1957 {
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960
1961 char *pend = strrchr (path, '/');
1962
1963 if (!pend)
1964 break; /* whoops, no '/', complain to your admin */
1965
1966 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 }
1971 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974
1975 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1977}
1978
1979static void noinline
1980infy_del (EV_P_ ev_stat *w)
1981{
1982 int slot;
1983 int wd = w->wd;
1984
1985 if (wd < 0)
1986 return;
1987
1988 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w);
1991
1992 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd);
1994}
1995
1996static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{
1999 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev);
2003 else
2004 {
2005 WL w_;
2006
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2008 {
2009 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */
2011
2012 if (w->wd == wd || wd == -1)
2013 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 {
2016 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */
2018 }
2019
2020 stat_timer_cb (EV_A_ &w->timer, 0);
2021 }
2022 }
2023 }
2024}
2025
2026static void
2027infy_cb (EV_P_ ev_io *w, int revents)
2028{
2029 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf));
2033
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036}
2037
2038void inline_size
2039infy_init (EV_P)
2040{
2041 if (fs_fd != -2)
2042 return;
2043
2044 fs_fd = inotify_init ();
2045
2046 if (fs_fd >= 0)
2047 {
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w);
2051 }
2052}
2053
2054void inline_size
2055infy_fork (EV_P)
2056{
2057 int slot;
2058
2059 if (fs_fd < 0)
2060 return;
2061
2062 close (fs_fd);
2063 fs_fd = inotify_init ();
2064
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2066 {
2067 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0;
2069
2070 while (w_)
2071 {
2072 ev_stat *w = (ev_stat *)w_;
2073 w_ = w_->next; /* lets us add this watcher */
2074
2075 w->wd = -1;
2076
2077 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else
2080 ev_timer_start (EV_A_ &w->timer);
2081 }
2082
2083 }
2084}
2085
2086#endif
2087
2088void
2089ev_stat_stat (EV_P_ ev_stat *w)
2090{
2091 if (lstat (w->path, &w->attr) < 0)
2092 w->attr.st_nlink = 0;
2093 else if (!w->attr.st_nlink)
2094 w->attr.st_nlink = 1;
2095}
2096
2097static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101
2102 /* we copy this here each the time so that */
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w);
2106
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if (
2109 w->prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime
2120 ) {
2121 #if EV_USE_INOTIFY
2122 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */
2125 #endif
2126
2127 ev_feed_event (EV_A_ w, EV_STAT);
2128 }
2129}
2130
2131void
2132ev_stat_start (EV_P_ ev_stat *w)
2133{
2134 if (expect_false (ev_is_active (w)))
2135 return;
2136
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w);
2142
2143 if (w->interval < MIN_STAT_INTERVAL)
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2147 ev_set_priority (&w->timer, ev_priority (w));
2148
2149#if EV_USE_INOTIFY
2150 infy_init (EV_A);
2151
2152 if (fs_fd >= 0)
2153 infy_add (EV_A_ w);
2154 else
2155#endif
2156 ev_timer_start (EV_A_ &w->timer);
2157
2158 ev_start (EV_A_ (W)w, 1);
2159}
2160
2161void
2162ev_stat_stop (EV_P_ ev_stat *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w);
2170#endif
2171 ev_timer_stop (EV_A_ &w->timer);
2172
2173 ev_stop (EV_A_ (W)w);
2174}
2175#endif
2176
2177#if EV_IDLE_ENABLE
2178void
2179ev_idle_start (EV_P_ ev_idle *w)
2180{
2181 if (expect_false (ev_is_active (w)))
2182 return;
2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
2190 ev_start (EV_A_ (W)w, active);
2191
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
2195}
2196
2197void
2198ev_idle_stop (EV_P_ ev_idle *w)
2199{
2200 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w)))
2202 return;
2203
2204 {
2205 int active = ((W)w)->active;
2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2212 }
2213}
2214#endif
2215
2216void
2217ev_prepare_start (EV_P_ ev_prepare *w)
2218{
2219 if (expect_false (ev_is_active (w)))
2220 return;
2221
2222 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w;
2225}
2226
2227void
2228ev_prepare_stop (EV_P_ ev_prepare *w)
2229{
2230 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w)))
2232 return;
2233
2234 {
2235 int active = ((W)w)->active;
2236 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active;
2238 }
2239
2240 ev_stop (EV_A_ (W)w);
2241}
2242
2243void
2244ev_check_start (EV_P_ ev_check *w)
2245{
2246 if (expect_false (ev_is_active (w)))
2247 return;
2248
2249 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w;
2252}
2253
2254void
2255ev_check_stop (EV_P_ ev_check *w)
2256{
2257 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w)))
2259 return;
2260
2261 {
2262 int active = ((W)w)->active;
2263 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active;
2265 }
2266
2267 ev_stop (EV_A_ (W)w);
2268}
2269
2270#if EV_EMBED_ENABLE
2271void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w)
2273{
2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2275}
2276
2277static void
2278embed_io_cb (EV_P_ ev_io *io, int revents)
2279{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281
2282 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2311
2312void
2313ev_embed_start (EV_P_ ev_embed *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 {
2319 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 }
2323
2324 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io);
2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2333 ev_start (EV_A_ (W)w, 1);
2334}
2335
2336void
2337ev_embed_stop (EV_P_ ev_embed *w)
2338{
2339 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w)))
2341 return;
2342
2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2345
2346 ev_stop (EV_A_ (W)w);
2347}
2348#endif
2349
2350#if EV_FORK_ENABLE
2351void
2352ev_fork_start (EV_P_ ev_fork *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w;
2360}
2361
2362void
2363ev_fork_stop (EV_P_ ev_fork *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377#endif
2378
1631/*****************************************************************************/ 2379/*****************************************************************************/
1632 2380
1633struct ev_once 2381struct ev_once
1634{ 2382{
1635 struct ev_io io; 2383 ev_io io;
1636 struct ev_timer to; 2384 ev_timer to;
1637 void (*cb)(int revents, void *arg); 2385 void (*cb)(int revents, void *arg);
1638 void *arg; 2386 void *arg;
1639}; 2387};
1640 2388
1641static void 2389static void
1650 2398
1651 cb (revents, arg); 2399 cb (revents, arg);
1652} 2400}
1653 2401
1654static void 2402static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 2403once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 2404{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1658} 2406}
1659 2407
1660static void 2408static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 2409once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 2410{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1664} 2412}
1665 2413
1666void 2414void
1690 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
1692 } 2440 }
1693} 2441}
1694 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
1695#ifdef __cplusplus 2447#ifdef __cplusplus
1696} 2448}
1697#endif 2449#endif
1698 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines