ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
281 perror (msg); 323 perror (msg);
282 abort (); 324 abort ();
283 } 325 }
284} 326}
285 327
286static void *(*alloc)(void *ptr, size_t size) = realloc; 328static void *(*alloc)(void *ptr, long size);
287 329
288void 330void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 332{
291 alloc = cb; 333 alloc = cb;
292} 334}
293 335
294inline_speed void * 336inline_speed void *
295ev_realloc (void *ptr, size_t size) 337ev_realloc (void *ptr, long size)
296{ 338{
297 ptr = alloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 340
299 if (!ptr && size) 341 if (!ptr && size)
300 { 342 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 344 abort ();
303 } 345 }
304 346
305 return ptr; 347 return ptr;
306} 348}
324{ 366{
325 W w; 367 W w;
326 int events; 368 int events;
327} ANPENDING; 369} ANPENDING;
328 370
371#if EV_USE_INOTIFY
329typedef struct 372typedef struct
330{ 373{
331#if EV_USE_INOTIFY
332 WL head; 374 WL head;
333#endif
334} ANFS; 375} ANFS;
376#endif
335 377
336#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
337 379
338 struct ev_loop 380 struct ev_loop
339 { 381 {
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 607 }
516#endif 608#endif
517 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
518 anfd->reify = 0; 614 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
522 } 620 }
523 621
524 fdchangecnt = 0; 622 fdchangecnt = 0;
525} 623}
526 624
527void inline_size 625void inline_size
528fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
529{ 627{
530 if (expect_false (anfds [fd].reify)) 628 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
534 630
631 if (expect_true (!reify))
632 {
535 ++fdchangecnt; 633 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
538} 637}
539 638
540void inline_speed 639void inline_speed
541fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
542{ 641{
589static void noinline 688static void noinline
590fd_rearm_all (EV_P) 689fd_rearm_all (EV_P)
591{ 690{
592 int fd; 691 int fd;
593 692
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 694 if (anfds [fd].events)
597 { 695 {
598 anfds [fd].events = 0; 696 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 698 }
601} 699}
602 700
603/*****************************************************************************/ 701/*****************************************************************************/
604 702
605void inline_speed 703void inline_speed
606upheap (WT *heap, int k) 704upheap (WT *heap, int k)
607{ 705{
608 WT w = heap [k]; 706 WT w = heap [k];
609 707
610 while (k && heap [k >> 1]->at > w->at) 708 while (k)
611 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
612 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
614 k >>= 1; 717 k = p;
615 } 718 }
616 719
617 heap [k] = w; 720 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
619
620} 722}
621 723
622void inline_speed 724void inline_speed
623downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
624{ 726{
625 WT w = heap [k]; 727 WT w = heap [k];
626 728
627 while (k < (N >> 1)) 729 for (;;)
628 { 730 {
629 int j = k << 1; 731 int c = (k << 1) + 1;
630 732
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 734 break;
636 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
637 heap [k] = heap [j]; 742 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
639 k = j; 745 k = c;
640 } 746 }
641 747
642 heap [k] = w; 748 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
644} 750}
726 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
729} 835}
730 836
731void inline_size 837void inline_speed
732fd_intern (int fd) 838fd_intern (int fd)
733{ 839{
734#ifdef _WIN32 840#ifdef _WIN32
735 int arg = 1; 841 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
752} 858}
753 859
754/*****************************************************************************/ 860/*****************************************************************************/
755 861
756static ev_child *childs [EV_PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
757 863
758#ifndef _WIN32 864#ifndef _WIN32
759 865
760static ev_signal childev; 866static ev_signal childev;
761 867
765 ev_child *w; 871 ev_child *w;
766 872
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 874 if (w->pid == pid || !w->pid)
769 { 875 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 877 w->rpid = pid;
772 w->rstatus = status; 878 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 880 }
775} 881}
776 882
777#ifndef WCONTINUED 883#ifndef WCONTINUED
876} 982}
877 983
878unsigned int 984unsigned int
879ev_embeddable_backends (void) 985ev_embeddable_backends (void)
880{ 986{
881 return EVBACKEND_EPOLL 987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 988
883 | EVBACKEND_PORT; 989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
884} 994}
885 995
886unsigned int 996unsigned int
887ev_backend (EV_P) 997ev_backend (EV_P)
888{ 998{
889 return backend; 999 return backend;
1000}
1001
1002unsigned int
1003ev_loop_count (EV_P)
1004{
1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
890} 1018}
891 1019
892static void noinline 1020static void noinline
893loop_init (EV_P_ unsigned int flags) 1021loop_init (EV_P_ unsigned int flags)
894{ 1022{
905 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1034 mn_now = get_clock ();
907 now_floor = mn_now; 1035 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
909 1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040
1041 /* pid check not overridable via env */
1042#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid ();
1045#endif
1046
910 if (!(flags & EVFLAG_NOENV) 1047 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1048 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1049 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1050 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1051
970#if EV_USE_SELECT 1107#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1109#endif
973 1110
974 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
975 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
976 1120
977 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1122 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1123 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1124#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1125 array_free (periodic, EMPTY);
982#endif 1126#endif
1127#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1128 array_free (fork, EMPTY);
1129#endif
984 array_free (prepare, EMPTY0); 1130 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1131 array_free (check, EMPTY);
986 1132
987 backend = 0; 1133 backend = 0;
988} 1134}
989 1135
990void inline_size infy_fork (EV_P); 1136void inline_size infy_fork (EV_P);
1126 postfork = 1; 1272 postfork = 1;
1127} 1273}
1128 1274
1129/*****************************************************************************/ 1275/*****************************************************************************/
1130 1276
1131int inline_size 1277void
1132any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
1133{ 1279{
1134 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1281}
1142 1282
1143void inline_speed 1283void inline_speed
1144call_pending (EV_P) 1284call_pending (EV_P)
1145{ 1285{
1163void inline_size 1303void inline_size
1164timers_reify (EV_P) 1304timers_reify (EV_P)
1165{ 1305{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1167 { 1307 {
1168 ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
1169 1309
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1311
1172 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1173 if (w->repeat) 1313 if (w->repeat)
1176 1316
1177 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1178 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1180 1320
1181 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1182 } 1322 }
1183 else 1323 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1325
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1191void inline_size 1331void inline_size
1192periodics_reify (EV_P) 1332periodics_reify (EV_P)
1193{ 1333{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1195 { 1335 {
1196 ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1197 1337
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1339
1200 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1202 { 1342 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1206 } 1346 }
1207 else if (w->interval) 1347 else if (w->interval)
1208 { 1348 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1212 } 1353 }
1213 else 1354 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1356
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1223 int i; 1364 int i;
1224 1365
1225 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1227 { 1368 {
1228 ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1370
1230 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1373 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1375 }
1235 1376
1236 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1239} 1380}
1240#endif 1381#endif
1241 1382
1383#if EV_IDLE_ENABLE
1242int inline_size 1384void inline_size
1243time_update_monotonic (EV_P) 1385idle_reify (EV_P)
1244{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1245 mn_now = get_clock (); 1416 mn_now = get_clock ();
1246 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1421 {
1249 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1423 return;
1251 } 1424 }
1252 else 1425
1253 {
1254 now_floor = mn_now; 1426 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1428
1260void inline_size 1429 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1262{ 1431 * in case we get preempted during the calls to
1263 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1264 1433 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1267 { 1436 */
1268 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1269 { 1438 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1283 1440
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1442 return; /* all is well */
1286 1443
1287 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1445 mn_now = get_clock ();
1289 now_floor = mn_now; 1446 now_floor = mn_now;
1290 } 1447 }
1291 1448
1292# if EV_PERIODIC_ENABLE 1449# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1450 periodics_reschedule (EV_A);
1294# endif 1451# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1454 }
1299 else 1455 else
1300#endif 1456#endif
1301 { 1457 {
1302 ev_rt_now = ev_time (); 1458 ev_rt_now = ev_time ();
1303 1459
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1461 {
1306#if EV_PERIODIC_ENABLE 1462#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1308#endif 1464#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1468 }
1314 1469
1315 mn_now = ev_rt_now; 1470 mn_now = ev_rt_now;
1335{ 1490{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1492 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1493 : EVUNLOOP_CANCEL;
1339 1494
1340 while (activecnt) 1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1496
1497 do
1341 { 1498 {
1342 /* we might have forked, so reify kernel state if necessary */ 1499#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid))
1502 {
1503 curpid = getpid ();
1504 postfork = 1;
1505 }
1506#endif
1507
1343 #if EV_FORK_ENABLE 1508#if EV_FORK_ENABLE
1509 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1510 if (expect_false (postfork))
1345 if (forkcnt) 1511 if (forkcnt)
1346 { 1512 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1514 call_pending (EV_A);
1349 } 1515 }
1350 #endif 1516#endif
1351 1517
1352 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1354 { 1520 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1522 call_pending (EV_A);
1357 } 1523 }
1358 1524
1525 if (expect_false (!activecnt))
1526 break;
1527
1359 /* we might have forked, so reify kernel state if necessary */ 1528 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1529 if (expect_false (postfork))
1361 loop_fork (EV_A); 1530 loop_fork (EV_A);
1362 1531
1363 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1533 fd_reify (EV_A);
1365 1534
1366 /* calculate blocking time */ 1535 /* calculate blocking time */
1367 { 1536 {
1368 double block; 1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1369 1539
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1541 {
1374 /* update time to cancel out callback processing overhead */ 1542 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1543 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1544
1385 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1386 1546
1387 if (timercnt) 1547 if (timercnt)
1388 { 1548 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1390 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1391 } 1551 }
1392 1552
1393#if EV_PERIODIC_ENABLE 1553#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1554 if (periodiccnt)
1395 { 1555 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1398 } 1558 }
1399#endif 1559#endif
1400 1560
1401 if (expect_false (block < 0.)) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1402 } 1574 }
1403 1575
1576 ++loop_count;
1404 backend_poll (EV_A_ block); 1577 backend_poll (EV_A_ waittime);
1578
1579 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime);
1405 } 1581 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1582
1410 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1585#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1587#endif
1415 1588
1589#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1590 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1419 1593
1420 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1595 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1597
1424 call_pending (EV_A); 1598 call_pending (EV_A);
1425 1599
1426 if (expect_false (loop_done))
1427 break;
1428 } 1600 }
1601 while (expect_true (activecnt && !loop_done));
1429 1602
1430 if (loop_done == EVUNLOOP_ONE) 1603 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1604 loop_done = EVUNLOOP_CANCEL;
1432} 1605}
1433 1606
1460 head = &(*head)->next; 1633 head = &(*head)->next;
1461 } 1634 }
1462} 1635}
1463 1636
1464void inline_speed 1637void inline_speed
1465ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1466{ 1639{
1467 if (w->pending) 1640 if (w->pending)
1468 { 1641 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1643 w->pending = 0;
1471 } 1644 }
1472} 1645}
1473 1646
1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1474void inline_speed 1673void inline_speed
1475ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1476{ 1675{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1677 w->active = active;
1481 ev_ref (EV_A); 1678 ev_ref (EV_A);
1482} 1679}
1483 1680
1484void inline_size 1681void inline_size
1488 w->active = 0; 1685 w->active = 0;
1489} 1686}
1490 1687
1491/*****************************************************************************/ 1688/*****************************************************************************/
1492 1689
1493void 1690void noinline
1494ev_io_start (EV_P_ ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1495{ 1692{
1496 int fd = w->fd; 1693 int fd = w->fd;
1497 1694
1498 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1500 1697
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1699
1503 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1506 1703
1507 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1508} 1706}
1509 1707
1510void 1708void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1512{ 1710{
1513 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1712 if (expect_false (!ev_is_active (w)))
1515 return; 1713 return;
1516 1714
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1716
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1521 1719
1522 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1523} 1721}
1524 1722
1525void 1723void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1527{ 1725{
1528 if (expect_false (ev_is_active (w))) 1726 if (expect_false (ev_is_active (w)))
1529 return; 1727 return;
1530 1728
1531 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1532 1730
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1732
1535 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1537 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1539 1737
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1739}
1542 1740
1543void 1741void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1743{
1546 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1745 if (expect_false (!ev_is_active (w)))
1548 return; 1746 return;
1549 1747
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1551 1749
1552 { 1750 {
1553 int active = ((W)w)->active; 1751 int active = ((W)w)->active;
1554 1752
1555 if (expect_true (--active < --timercnt)) 1753 if (expect_true (--active < --timercnt))
1556 { 1754 {
1557 timers [active] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1558 adjustheap ((WT *)timers, timercnt, active); 1756 adjustheap (timers, timercnt, active);
1559 } 1757 }
1560 } 1758 }
1561 1759
1562 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1563 1761
1564 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1565} 1763}
1566 1764
1567void 1765void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1569{ 1767{
1570 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1571 { 1769 {
1572 if (w->repeat) 1770 if (w->repeat)
1573 { 1771 {
1574 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1576 } 1774 }
1577 else 1775 else
1578 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1579 } 1777 }
1580 else if (w->repeat) 1778 else if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1584 } 1782 }
1585} 1783}
1586 1784
1587#if EV_PERIODIC_ENABLE 1785#if EV_PERIODIC_ENABLE
1588void 1786void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1788{
1591 if (expect_false (ev_is_active (w))) 1789 if (expect_false (ev_is_active (w)))
1592 return; 1790 return;
1593 1791
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1794 else if (w->interval)
1597 { 1795 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1602 1802
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1607 1807
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1809}
1610 1810
1611void 1811void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1813{
1614 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1815 if (expect_false (!ev_is_active (w)))
1616 return; 1816 return;
1617 1817
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1619 1819
1620 { 1820 {
1621 int active = ((W)w)->active; 1821 int active = ((W)w)->active;
1622 1822
1623 if (expect_true (--active < --periodiccnt)) 1823 if (expect_true (--active < --periodiccnt))
1624 { 1824 {
1625 periodics [active] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 1826 adjustheap (periodics, periodiccnt, active);
1627 } 1827 }
1628 } 1828 }
1629 1829
1630 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1631} 1831}
1632 1832
1633void 1833void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1835{
1636 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1641 1841
1642#ifndef SA_RESTART 1842#ifndef SA_RESTART
1643# define SA_RESTART 0 1843# define SA_RESTART 0
1644#endif 1844#endif
1645 1845
1646void 1846void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1648{ 1848{
1649#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1851#endif
1652 if (expect_false (ev_is_active (w))) 1852 if (expect_false (ev_is_active (w)))
1653 return; 1853 return;
1654 1854
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1657 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 1873
1661 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1662 { 1875 {
1663#if _WIN32 1876#if _WIN32
1664 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1670 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1671#endif 1884#endif
1672 } 1885 }
1673} 1886}
1674 1887
1675void 1888void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1890{
1678 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1892 if (expect_false (!ev_is_active (w)))
1680 return; 1893 return;
1681 1894
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1684 1897
1685 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1687} 1900}
1694#endif 1907#endif
1695 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1696 return; 1909 return;
1697 1910
1698 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 1913}
1701 1914
1702void 1915void
1703ev_child_stop (EV_P_ ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1704{ 1917{
1705 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1919 if (expect_false (!ev_is_active (w)))
1707 return; 1920 return;
1708 1921
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1711} 1924}
1712 1925
1713#if EV_STAT_ENABLE 1926#if EV_STAT_ENABLE
1714 1927
1718# endif 1931# endif
1719 1932
1720#define DEF_STAT_INTERVAL 5.0074891 1933#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1934#define MIN_STAT_INTERVAL 0.1074891
1722 1935
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1937
1725#if EV_USE_INOTIFY 1938#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1939# define EV_INOTIFY_BUFSIZE 8192
1727 1940
1728static void noinline 1941static void noinline
1879 w->attr.st_nlink = 0; 2092 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2093 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2094 w->attr.st_nlink = 1;
1882} 2095}
1883 2096
1884void noinline 2097static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2098stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2099{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2101
1889 /* we copy this here each the time so that */ 2102 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2103 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2104 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2105 ev_stat_stat (EV_A_ w);
1893 2106
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if (
2109 w->prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2120 ) {
1896 #if EV_USE_INOTIFY 2121 #if EV_USE_INOTIFY
1897 infy_del (EV_A_ w); 2122 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2123 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2124 ev_stat_stat (EV_A_ w); /* avoid race... */
1900 #endif 2125 #endif
1934} 2159}
1935 2160
1936void 2161void
1937ev_stat_stop (EV_P_ ev_stat *w) 2162ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2163{
1939 ev_clear_pending (EV_A_ (W)w); 2164 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2165 if (expect_false (!ev_is_active (w)))
1941 return; 2166 return;
1942 2167
1943#if EV_USE_INOTIFY 2168#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2169 infy_del (EV_A_ w);
1947 2172
1948 ev_stop (EV_A_ (W)w); 2173 ev_stop (EV_A_ (W)w);
1949} 2174}
1950#endif 2175#endif
1951 2176
2177#if EV_IDLE_ENABLE
1952void 2178void
1953ev_idle_start (EV_P_ ev_idle *w) 2179ev_idle_start (EV_P_ ev_idle *w)
1954{ 2180{
1955 if (expect_false (ev_is_active (w))) 2181 if (expect_false (ev_is_active (w)))
1956 return; 2182 return;
1957 2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2190 ev_start (EV_A_ (W)w, active);
2191
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
1961} 2195}
1962 2196
1963void 2197void
1964ev_idle_stop (EV_P_ ev_idle *w) 2198ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2199{
1966 ev_clear_pending (EV_A_ (W)w); 2200 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2201 if (expect_false (!ev_is_active (w)))
1968 return; 2202 return;
1969 2203
1970 { 2204 {
1971 int active = ((W)w)->active; 2205 int active = ((W)w)->active;
1972 idles [active - 1] = idles [--idlecnt]; 2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1973 ((W)idles [active - 1])->active = active; 2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
1974 } 2212 }
1975
1976 ev_stop (EV_A_ (W)w);
1977} 2213}
2214#endif
1978 2215
1979void 2216void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2217ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2218{
1982 if (expect_false (ev_is_active (w))) 2219 if (expect_false (ev_is_active (w)))
1988} 2225}
1989 2226
1990void 2227void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2228ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2229{
1993 ev_clear_pending (EV_A_ (W)w); 2230 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2231 if (expect_false (!ev_is_active (w)))
1995 return; 2232 return;
1996 2233
1997 { 2234 {
1998 int active = ((W)w)->active; 2235 int active = ((W)w)->active;
2015} 2252}
2016 2253
2017void 2254void
2018ev_check_stop (EV_P_ ev_check *w) 2255ev_check_stop (EV_P_ ev_check *w)
2019{ 2256{
2020 ev_clear_pending (EV_A_ (W)w); 2257 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2258 if (expect_false (!ev_is_active (w)))
2022 return; 2259 return;
2023 2260
2024 { 2261 {
2025 int active = ((W)w)->active; 2262 int active = ((W)w)->active;
2032 2269
2033#if EV_EMBED_ENABLE 2270#if EV_EMBED_ENABLE
2034void noinline 2271void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2272ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2273{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2275}
2039 2276
2040static void 2277static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2278embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2279{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2281
2045 if (ev_cb (w)) 2282 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2284 else
2048 ev_embed_sweep (loop, w); 2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2050 2311
2051void 2312void
2052ev_embed_start (EV_P_ ev_embed *w) 2313ev_embed_start (EV_P_ ev_embed *w)
2053{ 2314{
2054 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
2055 return; 2316 return;
2056 2317
2057 { 2318 {
2058 struct ev_loop *loop = w->loop; 2319 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2322 }
2062 2323
2063 ev_set_priority (&w->io, ev_priority (w)); 2324 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2325 ev_io_start (EV_A_ &w->io);
2065 2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2066 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
2067} 2334}
2068 2335
2069void 2336void
2070ev_embed_stop (EV_P_ ev_embed *w) 2337ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2338{
2072 ev_clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
2074 return; 2341 return;
2075 2342
2076 ev_io_stop (EV_A_ &w->io); 2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2077 2345
2078 ev_stop (EV_A_ (W)w); 2346 ev_stop (EV_A_ (W)w);
2079} 2347}
2080#endif 2348#endif
2081 2349
2092} 2360}
2093 2361
2094void 2362void
2095ev_fork_stop (EV_P_ ev_fork *w) 2363ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2364{
2097 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
2099 return; 2367 return;
2100 2368
2101 { 2369 {
2102 int active = ((W)w)->active; 2370 int active = ((W)w)->active;
2170 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
2172 } 2440 }
2173} 2441}
2174 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
2175#ifdef __cplusplus 2447#ifdef __cplusplus
2176} 2448}
2177#endif 2449#endif
2178 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines