ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
401int inline_size 470int inline_size
402array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
403{ 472{
404 int ncur = cur + 1; 473 int ncur = cur + 1;
405 474
417 } 486 }
418 487
419 return ncur; 488 return ncur;
420} 489}
421 490
422inline_speed void * 491static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 492array_realloc (int elem, void *base, int *cur, int cnt)
424{ 493{
425 *cur = array_nextsize (elem, *cur, cnt); 494 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 495 return ev_realloc (base, elem * *cur);
427} 496}
452 521
453void noinline 522void noinline
454ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
455{ 524{
456 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
457 527
458 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
459 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 536 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 537}
469 538
470void inline_size 539void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 541{
473 int i; 542 int i;
474 543
475 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
507} 576}
508 577
509void 578void
510ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 580{
581 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
513} 583}
514 584
515void inline_size 585void inline_size
516fd_reify (EV_P) 586fd_reify (EV_P)
517{ 587{
521 { 591 {
522 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
524 ev_io *w; 594 ev_io *w;
525 595
526 int events = 0; 596 unsigned char events = 0;
527 597
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 599 events |= (unsigned char)w->events;
530 600
531#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
532 if (events) 602 if (events)
533 { 603 {
534 unsigned long argp; 604 unsigned long argp;
535 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 607 }
538#endif 608#endif
539 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
540 anfd->reify = 0; 614 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
544 } 620 }
545 621
546 fdchangecnt = 0; 622 fdchangecnt = 0;
547} 623}
548 624
549void inline_size 625void inline_size
550fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
551{ 627{
552 if (expect_false (anfds [fd].reify)) 628 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
556 630
631 if (expect_true (!reify))
632 {
557 ++fdchangecnt; 633 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
560} 637}
561 638
562void inline_speed 639void inline_speed
563fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
564{ 641{
615 692
616 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 694 if (anfds [fd].events)
618 { 695 {
619 anfds [fd].events = 0; 696 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 698 }
622} 699}
623 700
624/*****************************************************************************/ 701/*****************************************************************************/
625 702
626void inline_speed 703void inline_speed
627upheap (WT *heap, int k) 704upheap (WT *heap, int k)
628{ 705{
629 WT w = heap [k]; 706 WT w = heap [k];
630 707
631 while (k && heap [k >> 1]->at > w->at) 708 while (k)
632 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
633 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
635 k >>= 1; 717 k = p;
636 } 718 }
637 719
638 heap [k] = w; 720 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
640
641} 722}
642 723
643void inline_speed 724void inline_speed
644downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
645{ 726{
646 WT w = heap [k]; 727 WT w = heap [k];
647 728
648 while (k < (N >> 1)) 729 for (;;)
649 { 730 {
650 int j = k << 1; 731 int c = (k << 1) + 1;
651 732
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 734 break;
657 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
658 heap [k] = heap [j]; 742 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
660 k = j; 745 k = c;
661 } 746 }
662 747
663 heap [k] = w; 748 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
665} 750}
747 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
750} 835}
751 836
752void inline_size 837void inline_speed
753fd_intern (int fd) 838fd_intern (int fd)
754{ 839{
755#ifdef _WIN32 840#ifdef _WIN32
756 int arg = 1; 841 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
773} 858}
774 859
775/*****************************************************************************/ 860/*****************************************************************************/
776 861
777static ev_child *childs [EV_PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
778 863
779#ifndef _WIN32 864#ifndef _WIN32
780 865
781static ev_signal childev; 866static ev_signal childev;
782 867
786 ev_child *w; 871 ev_child *w;
787 872
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
789 if (w->pid == pid || !w->pid) 874 if (w->pid == pid || !w->pid)
790 { 875 {
791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
792 w->rpid = pid; 877 w->rpid = pid;
793 w->rstatus = status; 878 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 880 }
796} 881}
797 882
798#ifndef WCONTINUED 883#ifndef WCONTINUED
897} 982}
898 983
899unsigned int 984unsigned int
900ev_embeddable_backends (void) 985ev_embeddable_backends (void)
901{ 986{
902 return EVBACKEND_EPOLL 987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 988
904 | EVBACKEND_PORT; 989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
905} 994}
906 995
907unsigned int 996unsigned int
908ev_backend (EV_P) 997ev_backend (EV_P)
909{ 998{
912 1001
913unsigned int 1002unsigned int
914ev_loop_count (EV_P) 1003ev_loop_count (EV_P)
915{ 1004{
916 return loop_count; 1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
917} 1018}
918 1019
919static void noinline 1020static void noinline
920loop_init (EV_P_ unsigned int flags) 1021loop_init (EV_P_ unsigned int flags)
921{ 1022{
932 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1034 mn_now = get_clock ();
934 now_floor = mn_now; 1035 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
936 1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040
937 /* pid check not overridable via env */ 1041 /* pid check not overridable via env */
938#ifndef _WIN32 1042#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1043 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1044 curpid = getpid ();
941#endif 1045#endif
1003#if EV_USE_SELECT 1107#if EV_USE_SELECT
1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1005#endif 1109#endif
1006 1110
1007 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
1008 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
1009 1120
1010 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
1011 array_free (fdchange, EMPTY0); 1122 array_free (fdchange, EMPTY);
1012 array_free (timer, EMPTY0); 1123 array_free (timer, EMPTY);
1013#if EV_PERIODIC_ENABLE 1124#if EV_PERIODIC_ENABLE
1014 array_free (periodic, EMPTY0); 1125 array_free (periodic, EMPTY);
1015#endif 1126#endif
1127#if EV_FORK_ENABLE
1016 array_free (idle, EMPTY0); 1128 array_free (fork, EMPTY);
1129#endif
1017 array_free (prepare, EMPTY0); 1130 array_free (prepare, EMPTY);
1018 array_free (check, EMPTY0); 1131 array_free (check, EMPTY);
1019 1132
1020 backend = 0; 1133 backend = 0;
1021} 1134}
1022 1135
1023void inline_size infy_fork (EV_P); 1136void inline_size infy_fork (EV_P);
1159 postfork = 1; 1272 postfork = 1;
1160} 1273}
1161 1274
1162/*****************************************************************************/ 1275/*****************************************************************************/
1163 1276
1164int inline_size 1277void
1165any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
1166{ 1279{
1167 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
1168
1169 for (pri = NUMPRI; pri--; )
1170 if (pendingcnt [pri])
1171 return 1;
1172
1173 return 0;
1174} 1281}
1175 1282
1176void inline_speed 1283void inline_speed
1177call_pending (EV_P) 1284call_pending (EV_P)
1178{ 1285{
1196void inline_size 1303void inline_size
1197timers_reify (EV_P) 1304timers_reify (EV_P)
1198{ 1305{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 { 1307 {
1201 ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
1202 1309
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1311
1205 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1206 if (w->repeat) 1313 if (w->repeat)
1209 1316
1210 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1213 1320
1214 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1215 } 1322 }
1216 else 1323 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1325
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1224void inline_size 1331void inline_size
1225periodics_reify (EV_P) 1332periodics_reify (EV_P)
1226{ 1333{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 1335 {
1229 ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1230 1337
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1339
1233 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1235 { 1342 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1239 } 1346 }
1240 else if (w->interval) 1347 else if (w->interval)
1241 { 1348 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1245 } 1353 }
1246 else 1354 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1356
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1364 int i;
1257 1365
1258 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1260 { 1368 {
1261 ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1370
1263 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1373 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1375 }
1268 1376
1269 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1272} 1380}
1273#endif 1381#endif
1274 1382
1383#if EV_IDLE_ENABLE
1275int inline_size 1384void inline_size
1276time_update_monotonic (EV_P) 1385idle_reify (EV_P)
1277{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1278 mn_now = get_clock (); 1416 mn_now = get_clock ();
1279 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1281 { 1421 {
1282 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1283 return 0; 1423 return;
1284 } 1424 }
1285 else 1425
1286 {
1287 now_floor = mn_now; 1426 now_floor = mn_now;
1288 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1289 return 1;
1290 }
1291}
1292 1428
1293void inline_size 1429 /* loop a few times, before making important decisions.
1294time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1295{ 1431 * in case we get preempted during the calls to
1296 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1297 1433 * to succeed in that case, though. and looping a few more times
1298#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1299 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1300 { 1436 */
1301 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1302 { 1438 {
1303 ev_tstamp odiff = rtmn_diff;
1304
1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1314 {
1315 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1316 1440
1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1318 return; /* all is well */ 1442 return; /* all is well */
1319 1443
1320 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1321 mn_now = get_clock (); 1445 mn_now = get_clock ();
1322 now_floor = mn_now; 1446 now_floor = mn_now;
1323 } 1447 }
1324 1448
1325# if EV_PERIODIC_ENABLE 1449# if EV_PERIODIC_ENABLE
1326 periodics_reschedule (EV_A); 1450 periodics_reschedule (EV_A);
1327# endif 1451# endif
1328 /* no timer adjustment, as the monotonic clock doesn't jump */ 1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1330 }
1331 } 1454 }
1332 else 1455 else
1333#endif 1456#endif
1334 { 1457 {
1335 ev_rt_now = ev_time (); 1458 ev_rt_now = ev_time ();
1336 1459
1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1338 { 1461 {
1339#if EV_PERIODIC_ENABLE 1462#if EV_PERIODIC_ENABLE
1340 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1341#endif 1464#endif
1342
1343 /* adjust timers. this is easy, as the offset is the same for all of them */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1344 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1345 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1346 } 1468 }
1347 1469
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A); 1514 call_pending (EV_A);
1393 } 1515 }
1394#endif 1516#endif
1395 1517
1396 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1397 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1398 { 1520 {
1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1400 call_pending (EV_A); 1522 call_pending (EV_A);
1401 } 1523 }
1410 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1411 fd_reify (EV_A); 1533 fd_reify (EV_A);
1412 1534
1413 /* calculate blocking time */ 1535 /* calculate blocking time */
1414 { 1536 {
1415 ev_tstamp block; 1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1416 1539
1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1418 block = 0.; /* do not block at all */
1419 else
1420 { 1541 {
1421 /* update time to cancel out callback processing overhead */ 1542 /* update time to cancel out callback processing overhead */
1422#if EV_USE_MONOTONIC
1423 if (expect_true (have_monotonic))
1424 time_update_monotonic (EV_A); 1543 time_update (EV_A_ 1e100);
1425 else
1426#endif
1427 {
1428 ev_rt_now = ev_time ();
1429 mn_now = ev_rt_now;
1430 }
1431 1544
1432 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1433 1546
1434 if (timercnt) 1547 if (timercnt)
1435 { 1548 {
1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1437 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1438 } 1551 }
1439 1552
1440#if EV_PERIODIC_ENABLE 1553#if EV_PERIODIC_ENABLE
1441 if (periodiccnt) 1554 if (periodiccnt)
1442 { 1555 {
1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1444 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1445 } 1558 }
1446#endif 1559#endif
1447 1560
1448 if (expect_false (block < 0.)) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1449 } 1574 }
1450 1575
1451 ++loop_count; 1576 ++loop_count;
1452 backend_poll (EV_A_ block); 1577 backend_poll (EV_A_ waittime);
1578
1579 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime);
1453 } 1581 }
1454
1455 /* update ev_rt_now, do magic */
1456 time_update (EV_A);
1457 1582
1458 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1459 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1460#if EV_PERIODIC_ENABLE 1585#if EV_PERIODIC_ENABLE
1461 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1462#endif 1587#endif
1463 1588
1589#if EV_IDLE_ENABLE
1464 /* queue idle watchers unless other events are pending */ 1590 /* queue idle watchers unless other events are pending */
1465 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1467 1593
1468 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1469 if (expect_false (checkcnt)) 1595 if (expect_false (checkcnt))
1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1471 1597
1507 head = &(*head)->next; 1633 head = &(*head)->next;
1508 } 1634 }
1509} 1635}
1510 1636
1511void inline_speed 1637void inline_speed
1512ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1513{ 1639{
1514 if (w->pending) 1640 if (w->pending)
1515 { 1641 {
1516 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1517 w->pending = 0; 1643 w->pending = 0;
1518 } 1644 }
1519} 1645}
1520 1646
1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1521void inline_speed 1673void inline_speed
1522ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1523{ 1675{
1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1526
1527 w->active = active; 1677 w->active = active;
1528 ev_ref (EV_A); 1678 ev_ref (EV_A);
1529} 1679}
1530 1680
1531void inline_size 1681void inline_size
1535 w->active = 0; 1685 w->active = 0;
1536} 1686}
1537 1687
1538/*****************************************************************************/ 1688/*****************************************************************************/
1539 1689
1540void 1690void noinline
1541ev_io_start (EV_P_ ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1542{ 1692{
1543 int fd = w->fd; 1693 int fd = w->fd;
1544 1694
1545 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1547 1697
1548 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1549 1699
1550 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1552 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1553 1703
1554 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1555} 1706}
1556 1707
1557void 1708void noinline
1558ev_io_stop (EV_P_ ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1559{ 1710{
1560 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1561 if (expect_false (!ev_is_active (w))) 1712 if (expect_false (!ev_is_active (w)))
1562 return; 1713 return;
1563 1714
1564 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1565 1716
1566 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1567 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1568 1719
1569 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1570} 1721}
1571 1722
1572void 1723void noinline
1573ev_timer_start (EV_P_ ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1574{ 1725{
1575 if (expect_false (ev_is_active (w))) 1726 if (expect_false (ev_is_active (w)))
1576 return; 1727 return;
1577 1728
1578 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1579 1730
1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1581 1732
1582 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1584 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1585 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1586 1737
1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1588} 1739}
1589 1740
1590void 1741void noinline
1591ev_timer_stop (EV_P_ ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1592{ 1743{
1593 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1594 if (expect_false (!ev_is_active (w))) 1745 if (expect_false (!ev_is_active (w)))
1595 return; 1746 return;
1596 1747
1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1598 1749
1599 { 1750 {
1600 int active = ((W)w)->active; 1751 int active = ((W)w)->active;
1601 1752
1602 if (expect_true (--active < --timercnt)) 1753 if (expect_true (--active < --timercnt))
1603 { 1754 {
1604 timers [active] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1605 adjustheap ((WT *)timers, timercnt, active); 1756 adjustheap (timers, timercnt, active);
1606 } 1757 }
1607 } 1758 }
1608 1759
1609 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1610 1761
1611 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1612} 1763}
1613 1764
1614void 1765void noinline
1615ev_timer_again (EV_P_ ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1616{ 1767{
1617 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1618 { 1769 {
1619 if (w->repeat) 1770 if (w->repeat)
1620 { 1771 {
1621 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1622 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1623 } 1774 }
1624 else 1775 else
1625 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1626 } 1777 }
1627 else if (w->repeat) 1778 else if (w->repeat)
1630 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1631 } 1782 }
1632} 1783}
1633 1784
1634#if EV_PERIODIC_ENABLE 1785#if EV_PERIODIC_ENABLE
1635void 1786void noinline
1636ev_periodic_start (EV_P_ ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1637{ 1788{
1638 if (expect_false (ev_is_active (w))) 1789 if (expect_false (ev_is_active (w)))
1639 return; 1790 return;
1640 1791
1642 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1794 else if (w->interval)
1644 { 1795 {
1645 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1646 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1648 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1649 1802
1650 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1652 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1653 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1654 1807
1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1656} 1809}
1657 1810
1658void 1811void noinline
1659ev_periodic_stop (EV_P_ ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1660{ 1813{
1661 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1662 if (expect_false (!ev_is_active (w))) 1815 if (expect_false (!ev_is_active (w)))
1663 return; 1816 return;
1664 1817
1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1666 1819
1667 { 1820 {
1668 int active = ((W)w)->active; 1821 int active = ((W)w)->active;
1669 1822
1670 if (expect_true (--active < --periodiccnt)) 1823 if (expect_true (--active < --periodiccnt))
1671 { 1824 {
1672 periodics [active] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1673 adjustheap ((WT *)periodics, periodiccnt, active); 1826 adjustheap (periodics, periodiccnt, active);
1674 } 1827 }
1675 } 1828 }
1676 1829
1677 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1678} 1831}
1679 1832
1680void 1833void noinline
1681ev_periodic_again (EV_P_ ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1682{ 1835{
1683 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1684 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1685 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1688 1841
1689#ifndef SA_RESTART 1842#ifndef SA_RESTART
1690# define SA_RESTART 0 1843# define SA_RESTART 0
1691#endif 1844#endif
1692 1845
1693void 1846void noinline
1694ev_signal_start (EV_P_ ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1695{ 1848{
1696#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1698#endif 1851#endif
1699 if (expect_false (ev_is_active (w))) 1852 if (expect_false (ev_is_active (w)))
1700 return; 1853 return;
1701 1854
1702 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1703 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1704 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1706 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1707 1873
1708 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1709 { 1875 {
1710#if _WIN32 1876#if _WIN32
1711 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1717 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1718#endif 1884#endif
1719 } 1885 }
1720} 1886}
1721 1887
1722void 1888void noinline
1723ev_signal_stop (EV_P_ ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1724{ 1890{
1725 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1726 if (expect_false (!ev_is_active (w))) 1892 if (expect_false (!ev_is_active (w)))
1727 return; 1893 return;
1728 1894
1729 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1730 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1731 1897
1732 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1733 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1734} 1900}
1741#endif 1907#endif
1742 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1743 return; 1909 return;
1744 1910
1745 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1747} 1913}
1748 1914
1749void 1915void
1750ev_child_stop (EV_P_ ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1751{ 1917{
1752 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1753 if (expect_false (!ev_is_active (w))) 1919 if (expect_false (!ev_is_active (w)))
1754 return; 1920 return;
1755 1921
1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1757 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1758} 1924}
1759 1925
1760#if EV_STAT_ENABLE 1926#if EV_STAT_ENABLE
1761 1927
1993} 2159}
1994 2160
1995void 2161void
1996ev_stat_stop (EV_P_ ev_stat *w) 2162ev_stat_stop (EV_P_ ev_stat *w)
1997{ 2163{
1998 ev_clear_pending (EV_A_ (W)w); 2164 clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w))) 2165 if (expect_false (!ev_is_active (w)))
2000 return; 2166 return;
2001 2167
2002#if EV_USE_INOTIFY 2168#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w); 2169 infy_del (EV_A_ w);
2006 2172
2007 ev_stop (EV_A_ (W)w); 2173 ev_stop (EV_A_ (W)w);
2008} 2174}
2009#endif 2175#endif
2010 2176
2177#if EV_IDLE_ENABLE
2011void 2178void
2012ev_idle_start (EV_P_ ev_idle *w) 2179ev_idle_start (EV_P_ ev_idle *w)
2013{ 2180{
2014 if (expect_false (ev_is_active (w))) 2181 if (expect_false (ev_is_active (w)))
2015 return; 2182 return;
2016 2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
2017 ev_start (EV_A_ (W)w, ++idlecnt); 2190 ev_start (EV_A_ (W)w, active);
2191
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2019 idles [idlecnt - 1] = w; 2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
2020} 2195}
2021 2196
2022void 2197void
2023ev_idle_stop (EV_P_ ev_idle *w) 2198ev_idle_stop (EV_P_ ev_idle *w)
2024{ 2199{
2025 ev_clear_pending (EV_A_ (W)w); 2200 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2201 if (expect_false (!ev_is_active (w)))
2027 return; 2202 return;
2028 2203
2029 { 2204 {
2030 int active = ((W)w)->active; 2205 int active = ((W)w)->active;
2031 idles [active - 1] = idles [--idlecnt]; 2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2032 ((W)idles [active - 1])->active = active; 2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2033 } 2212 }
2034
2035 ev_stop (EV_A_ (W)w);
2036} 2213}
2214#endif
2037 2215
2038void 2216void
2039ev_prepare_start (EV_P_ ev_prepare *w) 2217ev_prepare_start (EV_P_ ev_prepare *w)
2040{ 2218{
2041 if (expect_false (ev_is_active (w))) 2219 if (expect_false (ev_is_active (w)))
2047} 2225}
2048 2226
2049void 2227void
2050ev_prepare_stop (EV_P_ ev_prepare *w) 2228ev_prepare_stop (EV_P_ ev_prepare *w)
2051{ 2229{
2052 ev_clear_pending (EV_A_ (W)w); 2230 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2231 if (expect_false (!ev_is_active (w)))
2054 return; 2232 return;
2055 2233
2056 { 2234 {
2057 int active = ((W)w)->active; 2235 int active = ((W)w)->active;
2074} 2252}
2075 2253
2076void 2254void
2077ev_check_stop (EV_P_ ev_check *w) 2255ev_check_stop (EV_P_ ev_check *w)
2078{ 2256{
2079 ev_clear_pending (EV_A_ (W)w); 2257 clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w))) 2258 if (expect_false (!ev_is_active (w)))
2081 return; 2259 return;
2082 2260
2083 { 2261 {
2084 int active = ((W)w)->active; 2262 int active = ((W)w)->active;
2091 2269
2092#if EV_EMBED_ENABLE 2270#if EV_EMBED_ENABLE
2093void noinline 2271void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w) 2272ev_embed_sweep (EV_P_ ev_embed *w)
2095{ 2273{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK); 2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2097} 2275}
2098 2276
2099static void 2277static void
2100embed_cb (EV_P_ ev_io *io, int revents) 2278embed_io_cb (EV_P_ ev_io *io, int revents)
2101{ 2279{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103 2281
2104 if (ev_cb (w)) 2282 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else 2284 else
2107 ev_embed_sweep (loop, w); 2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2108} 2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2109 2311
2110void 2312void
2111ev_embed_start (EV_P_ ev_embed *w) 2313ev_embed_start (EV_P_ ev_embed *w)
2112{ 2314{
2113 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
2114 return; 2316 return;
2115 2317
2116 { 2318 {
2117 struct ev_loop *loop = w->loop; 2319 struct ev_loop *loop = w->other;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2120 } 2322 }
2121 2323
2122 ev_set_priority (&w->io, ev_priority (w)); 2324 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io); 2325 ev_io_start (EV_A_ &w->io);
2124 2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2125 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
2126} 2334}
2127 2335
2128void 2336void
2129ev_embed_stop (EV_P_ ev_embed *w) 2337ev_embed_stop (EV_P_ ev_embed *w)
2130{ 2338{
2131 ev_clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
2133 return; 2341 return;
2134 2342
2135 ev_io_stop (EV_A_ &w->io); 2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2136 2345
2137 ev_stop (EV_A_ (W)w); 2346 ev_stop (EV_A_ (W)w);
2138} 2347}
2139#endif 2348#endif
2140 2349
2151} 2360}
2152 2361
2153void 2362void
2154ev_fork_stop (EV_P_ ev_fork *w) 2363ev_fork_stop (EV_P_ ev_fork *w)
2155{ 2364{
2156 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
2158 return; 2367 return;
2159 2368
2160 { 2369 {
2161 int active = ((W)w)->active; 2370 int active = ((W)w)->active;
2229 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
2230 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
2231 } 2440 }
2232} 2441}
2233 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
2234#ifdef __cplusplus 2447#ifdef __cplusplus
2235} 2448}
2236#endif 2449#endif
2237 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines