ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 391# define inline_speed static noinline
279#else 392#else
280# define inline_speed static inline 393# define inline_speed static inline
281#endif 394#endif
282 395
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
285 403
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
288 406
289typedef ev_watcher *W; 407typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
292 410
293#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 422#endif
298 423
299#ifdef _WIN32 424#ifdef _WIN32
300# include "ev_win32.c" 425# include "ev_win32.c"
301#endif 426#endif
309{ 434{
310 syserr_cb = cb; 435 syserr_cb = cb;
311} 436}
312 437
313static void noinline 438static void noinline
314syserr (const char *msg) 439ev_syserr (const char *msg)
315{ 440{
316 if (!msg) 441 if (!msg)
317 msg = "(libev) system error"; 442 msg = "(libev) system error";
318 443
319 if (syserr_cb) 444 if (syserr_cb)
323 perror (msg); 448 perror (msg);
324 abort (); 449 abort ();
325 } 450 }
326} 451}
327 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
328static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 469
330void 470void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 472{
333 alloc = cb; 473 alloc = cb;
334} 474}
335 475
336inline_speed void * 476inline_speed void *
337ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
338{ 478{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
340 480
341 if (!ptr && size) 481 if (!ptr && size)
342 { 482 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 484 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
352 492
353/*****************************************************************************/ 493/*****************************************************************************/
354 494
495/* file descriptor info structure */
355typedef struct 496typedef struct
356{ 497{
357 WL head; 498 WL head;
358 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
360#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 507 SOCKET handle;
362#endif 508#endif
363} ANFD; 509} ANFD;
364 510
511/* stores the pending event set for a given watcher */
365typedef struct 512typedef struct
366{ 513{
367 W w; 514 W w;
368 int events; 515 int events; /* the pending event set for the given watcher */
369} ANPENDING; 516} ANPENDING;
370 517
371#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
372typedef struct 520typedef struct
373{ 521{
374 WL head; 522 WL head;
375} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
376#endif 544#endif
377 545
378#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
379 547
380 struct ev_loop 548 struct ev_loop
399 567
400 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
401 569
402#endif 570#endif
403 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
404/*****************************************************************************/ 582/*****************************************************************************/
405 583
584#ifndef EV_HAVE_EV_TIME
406ev_tstamp 585ev_tstamp
407ev_time (void) 586ev_time (void)
408{ 587{
409#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
410 struct timespec ts; 591 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 594 }
595#endif
596
414 struct timeval tv; 597 struct timeval tv;
415 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 600}
601#endif
419 602
420ev_tstamp inline_size 603inline_size ev_tstamp
421get_clock (void) 604get_clock (void)
422{ 605{
423#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
425 { 608 {
451 ts.tv_sec = (time_t)delay; 634 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 636
454 nanosleep (&ts, 0); 637 nanosleep (&ts, 0);
455#elif defined(_WIN32) 638#elif defined(_WIN32)
456 Sleep (delay * 1e3); 639 Sleep ((unsigned long)(delay * 1e3));
457#else 640#else
458 struct timeval tv; 641 struct timeval tv;
459 642
460 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
463 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
464#endif 650#endif
465 } 651 }
466} 652}
467 653
468/*****************************************************************************/ 654/*****************************************************************************/
469 655
470int inline_size 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
471array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
472{ 662{
473 int ncur = cur + 1; 663 int ncur = cur + 1;
474 664
475 do 665 do
476 ncur <<= 1; 666 ncur <<= 1;
477 while (cnt > ncur); 667 while (cnt > ncur);
478 668
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 671 {
482 ncur *= elem; 672 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 674 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 675 ncur /= elem;
486 } 676 }
487 677
488 return ncur; 678 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
493{ 683{
494 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
496} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 690
498#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
500 { \ 693 { \
501 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 707 }
515#endif 708#endif
516 709
517#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 712
520/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
521 720
522void noinline 721void noinline
523ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
524{ 723{
525 W w_ = (W)w; 724 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
536 } 735 }
537} 736}
538 737
539void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 755{
542 int i; 756 int i;
543 757
544 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
546} 760}
547 761
548/*****************************************************************************/ 762/*****************************************************************************/
549 763
550void inline_size 764inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
565{ 766{
566 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
567 ev_io *w; 768 ev_io *w;
568 769
580{ 781{
581 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
583} 784}
584 785
585void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
586fd_reify (EV_P) 789fd_reify (EV_P)
587{ 790{
588 int i; 791 int i;
589 792
590 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
600 803
601#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
602 if (events) 805 if (events)
603 { 806 {
604 unsigned long argp; 807 unsigned long arg;
808 #ifdef EV_FD_TO_WIN32_HANDLE
809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
810 #else
605 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
812 #endif
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
607 } 814 }
608#endif 815#endif
609 816
610 { 817 {
611 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
613 820
614 anfd->reify = 0; 821 anfd->reify = 0;
615 anfd->events = events; 822 anfd->events = events;
616 823
617 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
619 } 826 }
620 } 827 }
621 828
622 fdchangecnt = 0; 829 fdchangecnt = 0;
623} 830}
624 831
625void inline_size 832/* something about the given fd changed */
833inline_size void
626fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
627{ 835{
628 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
629 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
630 838
634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
635 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
636 } 844 }
637} 845}
638 846
639void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
640fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
641{ 850{
642 ev_io *w; 851 ev_io *w;
643 852
644 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
646 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
648 } 857 }
649} 858}
650 859
651int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
652fd_valid (int fd) 862fd_valid (int fd)
653{ 863{
654#ifdef _WIN32 864#ifdef _WIN32
655 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
656#else 866#else
664{ 874{
665 int fd; 875 int fd;
666 876
667 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
668 if (anfds [fd].events) 878 if (anfds [fd].events)
669 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
670 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
671} 881}
672 882
673/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
674static void noinline 884static void noinline
692 902
693 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
694 if (anfds [fd].events) 904 if (anfds [fd].events)
695 { 905 {
696 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
697 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
698 } 909 }
699} 910}
700 911
701/*****************************************************************************/ 912/*****************************************************************************/
702 913
703void inline_speed 914/*
704upheap (WT *heap, int k) 915 * the heap functions want a real array index. array index 0 uis guaranteed to not
705{ 916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
706 WT w = heap [k]; 917 * the branching factor of the d-tree.
918 */
707 919
708 while (k) 920/*
709 { 921 * at the moment we allow libev the luxury of two heaps,
710 int p = (k - 1) >> 1; 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
923 * which is more cache-efficient.
924 * the difference is about 5% with 50000+ watchers.
925 */
926#if EV_USE_4HEAP
711 927
712 if (heap [p]->at <= w->at) 928#define DHEAP 4
929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
932
933/* away from the root */
934inline_speed void
935downheap (ANHE *heap, int N, int k)
936{
937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
939
940 for (;;)
941 {
942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
945
946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
948 {
949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
713 break; 962 break;
714 963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975}
976
977#else /* 4HEAP */
978
979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
982
983/* away from the root */
984inline_speed void
985downheap (ANHE *heap, int N, int k)
986{
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
1002 heap [k] = heap [c];
1003 ev_active (ANHE_w (heap [k])) = k;
1004
1005 k = c;
1006 }
1007
1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
715 heap [k] = heap [p]; 1026 heap [k] = heap [p];
716 ((W)heap [k])->active = k + 1; 1027 ev_active (ANHE_w (heap [k])) = k;
717 k = p; 1028 k = p;
718 } 1029 }
719 1030
720 heap [k] = w; 1031 heap [k] = he;
721 ((W)heap [k])->active = k + 1; 1032 ev_active (ANHE_w (he)) = k;
722} 1033}
723 1034
724void inline_speed 1035/* move an element suitably so it is in a correct place */
725downheap (WT *heap, int N, int k) 1036inline_size void
726{
727 WT w = heap [k];
728
729 for (;;)
730 {
731 int c = (k << 1) + 1;
732
733 if (c >= N)
734 break;
735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
742 heap [k] = heap [c];
743 ((W)heap [k])->active = k + 1;
744
745 k = c;
746 }
747
748 heap [k] = w;
749 ((W)heap [k])->active = k + 1;
750}
751
752void inline_size
753adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
754{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
755 upheap (heap, k); 1040 upheap (heap, k);
1041 else
756 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
757} 1055}
758 1056
759/*****************************************************************************/ 1057/*****************************************************************************/
760 1058
1059/* associate signal watchers to a signal signal */
761typedef struct 1060typedef struct
762{ 1061{
763 WL head; 1062 WL head;
764 sig_atomic_t volatile gotsig; 1063 EV_ATOMIC_T gotsig;
765} ANSIG; 1064} ANSIG;
766 1065
767static ANSIG *signals; 1066static ANSIG *signals;
768static int signalmax; 1067static int signalmax;
769 1068
770static int sigpipe [2]; 1069static EV_ATOMIC_T gotsig;
771static sig_atomic_t volatile gotsig;
772static ev_io sigev;
773 1070
774void inline_size 1071/*****************************************************************************/
775signals_init (ANSIG *base, int count)
776{
777 while (count--)
778 {
779 base->head = 0;
780 base->gotsig = 0;
781 1072
782 ++base; 1073/* used to prepare libev internal fd's */
783 } 1074/* this is not fork-safe */
784} 1075inline_speed void
785
786static void
787sighandler (int signum)
788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
793 signals [signum - 1].gotsig = 1;
794
795 if (!gotsig)
796 {
797 int old_errno = errno;
798 gotsig = 1;
799 write (sigpipe [1], &signum, 1);
800 errno = old_errno;
801 }
802}
803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
824static void
825sigcb (EV_P_ ev_io *iow, int revents)
826{
827 int signum;
828
829 read (sigpipe [0], &revents, 1);
830 gotsig = 0;
831
832 for (signum = signalmax; signum--; )
833 if (signals [signum].gotsig)
834 ev_feed_signal_event (EV_A_ signum + 1);
835}
836
837void inline_speed
838fd_intern (int fd) 1076fd_intern (int fd)
839{ 1077{
840#ifdef _WIN32 1078#ifdef _WIN32
841 int arg = 1; 1079 unsigned long arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
843#else 1081#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif 1084#endif
847} 1085}
848 1086
849static void noinline 1087static void noinline
850siginit (EV_P) 1088evpipe_init (EV_P)
851{ 1089{
1090 if (!ev_is_active (&pipe_w))
1091 {
1092#if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100#endif
1101 {
1102 while (pipe (evpipe))
1103 ev_syserr ("(libev) error creating signal/async pipe");
1104
852 fd_intern (sigpipe [0]); 1105 fd_intern (evpipe [0]);
853 fd_intern (sigpipe [1]); 1106 fd_intern (evpipe [1]);
1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
854 1109
855 ev_io_set (&sigev, sigpipe [0], EV_READ);
856 ev_io_start (EV_A_ &sigev); 1110 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1112 }
1113}
1114
1115inline_size void
1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1117{
1118 if (!*flag)
1119 {
1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124#if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131#endif
1132 write (evpipe [1], &old_errno, 1);
1133
1134 errno = old_errno;
1135 }
1136}
1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1140static void
1141pipecb (EV_P_ ev_io *iow, int revents)
1142{
1143#if EV_USE_EVENTFD
1144 if (evfd >= 0)
1145 {
1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
1148 }
1149 else
1150#endif
1151 {
1152 char dummy;
1153 read (evpipe [0], &dummy, 1);
1154 }
1155
1156 if (gotsig && ev_is_default_loop (EV_A))
1157 {
1158 int signum;
1159 gotsig = 0;
1160
1161 for (signum = signalmax; signum--; )
1162 if (signals [signum].gotsig)
1163 ev_feed_signal_event (EV_A_ signum + 1);
1164 }
1165
1166#if EV_ASYNC_ENABLE
1167 if (gotasync)
1168 {
1169 int i;
1170 gotasync = 0;
1171
1172 for (i = asynccnt; i--; )
1173 if (asyncs [i]->sent)
1174 {
1175 asyncs [i]->sent = 0;
1176 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1177 }
1178 }
1179#endif
858} 1180}
859 1181
860/*****************************************************************************/ 1182/*****************************************************************************/
861 1183
1184static void
1185ev_sighandler (int signum)
1186{
1187#if EV_MULTIPLICITY
1188 struct ev_loop *loop = &default_loop_struct;
1189#endif
1190
1191#if _WIN32
1192 signal (signum, ev_sighandler);
1193#endif
1194
1195 signals [signum - 1].gotsig = 1;
1196 evpipe_write (EV_A_ &gotsig);
1197}
1198
1199void noinline
1200ev_feed_signal_event (EV_P_ int signum)
1201{
1202 WL w;
1203
1204#if EV_MULTIPLICITY
1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1206#endif
1207
1208 --signum;
1209
1210 if (signum < 0 || signum >= signalmax)
1211 return;
1212
1213 signals [signum].gotsig = 0;
1214
1215 for (w = signals [signum].head; w; w = w->next)
1216 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1217}
1218
1219/*****************************************************************************/
1220
862static WL childs [EV_PID_HASHSIZE]; 1221static WL childs [EV_PID_HASHSIZE];
863 1222
864#ifndef _WIN32 1223#ifndef _WIN32
865 1224
866static ev_signal childev; 1225static ev_signal childev;
867 1226
868void inline_speed 1227#ifndef WIFCONTINUED
1228# define WIFCONTINUED(status) 0
1229#endif
1230
1231/* handle a single child status event */
1232inline_speed void
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
870{ 1234{
871 ev_child *w; 1235 ev_child *w;
1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
872 1237
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1239 {
874 if (w->pid == pid || !w->pid) 1240 if ((w->pid == pid || !w->pid)
1241 && (!traced || (w->flags & 1)))
875 { 1242 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
877 w->rpid = pid; 1244 w->rpid = pid;
878 w->rstatus = status; 1245 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 } 1247 }
1248 }
881} 1249}
882 1250
883#ifndef WCONTINUED 1251#ifndef WCONTINUED
884# define WCONTINUED 0 1252# define WCONTINUED 0
885#endif 1253#endif
886 1254
1255/* called on sigchld etc., calls waitpid */
887static void 1256static void
888childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
889{ 1258{
890 int pid, status; 1259 int pid, status;
891 1260
894 if (!WCONTINUED 1263 if (!WCONTINUED
895 || errno != EINVAL 1264 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return; 1266 return;
898 1267
899 /* make sure we are called again until all childs have been reaped */ 1268 /* make sure we are called again until all children have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */ 1269 /* we need to do it this way so that the callback gets called before we continue */
901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
902 1271
903 child_reap (EV_A_ sw, pid, pid, status); 1272 child_reap (EV_A_ pid, pid, status);
904 if (EV_PID_HASHSIZE > 1) 1273 if (EV_PID_HASHSIZE > 1)
905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
906} 1275}
907 1276
908#endif 1277#endif
909 1278
910/*****************************************************************************/ 1279/*****************************************************************************/
972 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
975#endif 1344#endif
976#ifdef __APPLE__ 1345#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
978 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
979#endif 1349#endif
980 1350
981 return flags; 1351 return flags;
982} 1352}
983 1353
997ev_backend (EV_P) 1367ev_backend (EV_P)
998{ 1368{
999 return backend; 1369 return backend;
1000} 1370}
1001 1371
1372#if EV_MINIMAL < 2
1002unsigned int 1373unsigned int
1003ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1004{ 1375{
1005 return loop_count; 1376 return loop_count;
1006} 1377}
1007 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1008void 1385void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{ 1387{
1011 io_blocktime = interval; 1388 io_blocktime = interval;
1012} 1389}
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{ 1393{
1017 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1018} 1395}
1019 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1020static void noinline 1422static void noinline
1021loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1022{ 1424{
1023 if (!backend) 1425 if (!backend)
1024 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1025#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1026 { 1439 {
1027 struct timespec ts; 1440 struct timespec ts;
1441
1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1029 have_monotonic = 1; 1443 have_monotonic = 1;
1030 } 1444 }
1031#endif 1445#endif
1032 1446
1033 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1034 mn_now = get_clock (); 1448 mn_now = get_clock ();
1035 now_floor = mn_now; 1449 now_floor = mn_now;
1036 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1037 1454
1038 io_blocktime = 0.; 1455 io_blocktime = 0.;
1039 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1457 backend = 0;
1458 backend_fd = -1;
1459 gotasync = 0;
1460#if EV_USE_INOTIFY
1461 fs_fd = -2;
1462#endif
1040 1463
1041 /* pid check not overridable via env */ 1464 /* pid check not overridable via env */
1042#ifndef _WIN32 1465#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK) 1466 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid (); 1467 curpid = getpid ();
1047 if (!(flags & EVFLAG_NOENV) 1470 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure () 1471 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS")) 1472 && getenv ("LIBEV_FLAGS"))
1050 flags = atoi (getenv ("LIBEV_FLAGS")); 1473 flags = atoi (getenv ("LIBEV_FLAGS"));
1051 1474
1052 if (!(flags & 0x0000ffffUL)) 1475 if (!(flags & 0x0000ffffU))
1053 flags |= ev_recommended_backends (); 1476 flags |= ev_recommended_backends ();
1054
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060 1477
1061#if EV_USE_PORT 1478#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif 1480#endif
1064#if EV_USE_KQUEUE 1481#if EV_USE_KQUEUE
1072#endif 1489#endif
1073#if EV_USE_SELECT 1490#if EV_USE_SELECT
1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1075#endif 1492#endif
1076 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1077 ev_init (&sigev, sigcb); 1496 ev_init (&pipe_w, pipecb);
1078 ev_set_priority (&sigev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1079 } 1498 }
1080} 1499}
1081 1500
1501/* free up a loop structure */
1082static void noinline 1502static void noinline
1083loop_destroy (EV_P) 1503loop_destroy (EV_P)
1084{ 1504{
1085 int i; 1505 int i;
1506
1507 if (ev_is_active (&pipe_w))
1508 {
1509 ev_ref (EV_A); /* signal watcher */
1510 ev_io_stop (EV_A_ &pipe_w);
1511
1512#if EV_USE_EVENTFD
1513 if (evfd >= 0)
1514 close (evfd);
1515#endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1522 }
1086 1523
1087#if EV_USE_INOTIFY 1524#if EV_USE_INOTIFY
1088 if (fs_fd >= 0) 1525 if (fs_fd >= 0)
1089 close (fs_fd); 1526 close (fs_fd);
1090#endif 1527#endif
1117 } 1554 }
1118 1555
1119 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1120 1557
1121 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1122 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1123 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1124#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1125 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1126#endif 1564#endif
1127#if EV_FORK_ENABLE 1565#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY); 1566 array_free (fork, EMPTY);
1129#endif 1567#endif
1130 array_free (prepare, EMPTY); 1568 array_free (prepare, EMPTY);
1131 array_free (check, EMPTY); 1569 array_free (check, EMPTY);
1570#if EV_ASYNC_ENABLE
1571 array_free (async, EMPTY);
1572#endif
1132 1573
1133 backend = 0; 1574 backend = 0;
1134} 1575}
1135 1576
1577#if EV_USE_INOTIFY
1136void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1579#endif
1137 1580
1138void inline_size 1581inline_size void
1139loop_fork (EV_P) 1582loop_fork (EV_P)
1140{ 1583{
1141#if EV_USE_PORT 1584#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif 1586#endif
1149#endif 1592#endif
1150#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1151 infy_fork (EV_A); 1594 infy_fork (EV_A);
1152#endif 1595#endif
1153 1596
1154 if (ev_is_active (&sigev)) 1597 if (ev_is_active (&pipe_w))
1155 { 1598 {
1156 /* default loop */ 1599 /* this "locks" the handlers against writing to the pipe */
1600 /* while we modify the fd vars */
1601 gotsig = 1;
1602#if EV_ASYNC_ENABLE
1603 gotasync = 1;
1604#endif
1157 1605
1158 ev_ref (EV_A); 1606 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev); 1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609#if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612#endif
1613
1614 if (evpipe [0] >= 0)
1615 {
1160 close (sigpipe [0]); 1616 close (evpipe [0]);
1161 close (sigpipe [1]); 1617 close (evpipe [1]);
1618 }
1162 1619
1163 while (pipe (sigpipe))
1164 syserr ("(libev) error creating pipe");
1165
1166 siginit (EV_A); 1620 evpipe_init (EV_A);
1621 /* now iterate over everything, in case we missed something */
1622 pipecb (EV_A_ &pipe_w, EV_READ);
1167 } 1623 }
1168 1624
1169 postfork = 0; 1625 postfork = 0;
1170} 1626}
1171 1627
1172#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1173struct ev_loop * 1630struct ev_loop *
1174ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1175{ 1632{
1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1177 1634
1193} 1650}
1194 1651
1195void 1652void
1196ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1197{ 1654{
1198 postfork = 1; 1655 postfork = 1; /* must be in line with ev_default_fork */
1199} 1656}
1657#endif /* multiplicity */
1200 1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1757}
1201#endif 1758#endif
1202 1759
1203#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1204struct ev_loop * 1761struct ev_loop *
1205ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1206#else 1763#else
1207int 1764int
1208ev_default_loop (unsigned int flags) 1765ev_default_loop (unsigned int flags)
1209#endif 1766#endif
1210{ 1767{
1211 if (sigpipe [0] == sigpipe [1])
1212 if (pipe (sigpipe))
1213 return 0;
1214
1215 if (!ev_default_loop_ptr) 1768 if (!ev_default_loop_ptr)
1216 { 1769 {
1217#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1771 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1219#else 1772#else
1222 1775
1223 loop_init (EV_A_ flags); 1776 loop_init (EV_A_ flags);
1224 1777
1225 if (ev_backend (EV_A)) 1778 if (ev_backend (EV_A))
1226 { 1779 {
1227 siginit (EV_A);
1228
1229#ifndef _WIN32 1780#ifndef _WIN32
1230 ev_signal_init (&childev, childcb, SIGCHLD); 1781 ev_signal_init (&childev, childcb, SIGCHLD);
1231 ev_set_priority (&childev, EV_MAXPRI); 1782 ev_set_priority (&childev, EV_MAXPRI);
1232 ev_signal_start (EV_A_ &childev); 1783 ev_signal_start (EV_A_ &childev);
1233 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1784 ev_unref (EV_A); /* child watcher should not keep loop alive */
1245{ 1796{
1246#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1247 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1248#endif 1799#endif
1249 1800
1801 ev_default_loop_ptr = 0;
1802
1250#ifndef _WIN32 1803#ifndef _WIN32
1251 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1252 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1253#endif 1806#endif
1254 1807
1255 ev_ref (EV_A); /* signal watcher */
1256 ev_io_stop (EV_A_ &sigev);
1257
1258 close (sigpipe [0]); sigpipe [0] = 0;
1259 close (sigpipe [1]); sigpipe [1] = 0;
1260
1261 loop_destroy (EV_A); 1808 loop_destroy (EV_A);
1262} 1809}
1263 1810
1264void 1811void
1265ev_default_fork (void) 1812ev_default_fork (void)
1266{ 1813{
1267#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1268 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1269#endif 1816#endif
1270 1817
1271 if (backend) 1818 postfork = 1; /* must be in line with ev_loop_fork */
1272 postfork = 1;
1273} 1819}
1274 1820
1275/*****************************************************************************/ 1821/*****************************************************************************/
1276 1822
1277void 1823void
1278ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1279{ 1825{
1280 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1281} 1827}
1282 1828
1283void inline_speed 1829void noinline
1284call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1285{ 1831{
1286 int pri; 1832 int pri;
1287 1833
1288 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1289 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1290 { 1836 {
1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1292 1838
1293 if (expect_true (p->w))
1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1296 1841
1297 p->w->pending = 0; 1842 p->w->pending = 0;
1298 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1299 } 1844 EV_FREQUENT_CHECK;
1300 } 1845 }
1301} 1846}
1302 1847
1303void inline_size
1304timers_reify (EV_P)
1305{
1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1307 {
1308 ev_timer *w = (ev_timer *)timers [0];
1309
1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1311
1312 /* first reschedule or stop timer */
1313 if (w->repeat)
1314 {
1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
1321 downheap (timers, timercnt, 0);
1322 }
1323 else
1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1325
1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1327 }
1328}
1329
1330#if EV_PERIODIC_ENABLE
1331void inline_size
1332periodics_reify (EV_P)
1333{
1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1335 {
1336 ev_periodic *w = (ev_periodic *)periodics [0];
1337
1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1339
1340 /* first reschedule or stop timer */
1341 if (w->reschedule_cb)
1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1352 downheap (periodics, periodiccnt, 0);
1353 }
1354 else
1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1356
1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1358 }
1359}
1360
1361static void noinline
1362periodics_reschedule (EV_P)
1363{
1364 int i;
1365
1366 /* adjust periodics after time jump */
1367 for (i = 0; i < periodiccnt; ++i)
1368 {
1369 ev_periodic *w = (ev_periodic *)periodics [i];
1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382
1383#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1384void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1385idle_reify (EV_P) 1852idle_reify (EV_P)
1386{ 1853{
1387 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1388 { 1855 {
1389 int pri; 1856 int pri;
1401 } 1868 }
1402 } 1869 }
1403} 1870}
1404#endif 1871#endif
1405 1872
1406void inline_speed 1873/* make timers pending */
1874inline_size void
1875timers_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1880 {
1881 do
1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1895
1896 ANHE_at_cache (timers [HEAP0]);
1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1904 }
1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1906
1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1908 }
1909}
1910
1911#if EV_PERIODIC_ENABLE
1912/* make periodics pending */
1913inline_size void
1914periodics_reify (EV_P)
1915{
1916 EV_FREQUENT_CHECK;
1917
1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1919 {
1920 int feed_count = 0;
1921
1922 do
1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967}
1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971static void noinline
1972periodics_reschedule (EV_P)
1973{
1974 int i;
1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1407time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1408{ 2011{
1409 int i;
1410
1411#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1413 { 2014 {
2015 int i;
1414 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1415 2017
1416 mn_now = get_clock (); 2018 mn_now = get_clock ();
1417 2019
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1436 */ 2038 */
1437 for (i = 4; --i; ) 2039 for (i = 4; --i; )
1438 { 2040 {
1439 rtmn_diff = ev_rt_now - mn_now; 2041 rtmn_diff = ev_rt_now - mn_now;
1440 2042
1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1442 return; /* all is well */ 2044 return; /* all is well */
1443 2045
1444 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1445 mn_now = get_clock (); 2047 mn_now = get_clock ();
1446 now_floor = mn_now; 2048 now_floor = mn_now;
1447 } 2049 }
1448 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1451# endif 2055# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 } 2056 }
1455 else 2057 else
1456#endif 2058#endif
1457 { 2059 {
1458 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1459 2061
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1462#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1464#endif 2068#endif
1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i)
1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1468 } 2069 }
1469 2070
1470 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1471 } 2072 }
1472} 2073}
1473 2074
1474void 2075void
1475ev_ref (EV_P)
1476{
1477 ++activecnt;
1478}
1479
1480void
1481ev_unref (EV_P)
1482{
1483 --activecnt;
1484}
1485
1486static int loop_done;
1487
1488void
1489ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1490{ 2077{
1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2078#if EV_MINIMAL < 2
1492 ? EVUNLOOP_ONE 2079 ++loop_depth;
1493 : EVUNLOOP_CANCEL; 2080#endif
1494 2081
2082 loop_done = EVUNLOOP_CANCEL;
2083
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1496 2085
1497 do 2086 do
1498 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1499#ifndef _WIN32 2092#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1502 { 2095 {
1503 curpid = getpid (); 2096 curpid = getpid ();
1509 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1511 if (forkcnt) 2104 if (forkcnt)
1512 { 2105 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1515 } 2108 }
1516#endif 2109#endif
1517 2110
1518 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1519 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1520 { 2113 {
1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1522 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1523 } 2116 }
1524
1525 if (expect_false (!activecnt))
1526 break;
1527 2117
1528 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1529 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1530 loop_fork (EV_A); 2120 loop_fork (EV_A);
1531 2121
1537 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1539 2129
1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1541 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1542 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1543 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1544 2137
1545 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1546 2139
1547 if (timercnt) 2140 if (timercnt)
1548 { 2141 {
1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1550 if (waittime > to) waittime = to; 2143 if (waittime > to) waittime = to;
1551 } 2144 }
1552 2145
1553#if EV_PERIODIC_ENABLE 2146#if EV_PERIODIC_ENABLE
1554 if (periodiccnt) 2147 if (periodiccnt)
1555 { 2148 {
1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1557 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1558 } 2151 }
1559#endif 2152#endif
1560 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1561 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1563 2157
1564 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1565
1566 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1571 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1572 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1573 } 2171 }
1574 } 2172 }
1575 2173
2174#if EV_MINIMAL < 2
1576 ++loop_count; 2175 ++loop_count;
2176#endif
1577 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1578 2178
1579 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1581 } 2181 }
1593 2193
1594 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1595 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1597 2197
1598 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1599
1600 } 2199 }
1601 while (expect_true (activecnt && !loop_done)); 2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
1602 2205
1603 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1604 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1605} 2212}
1606 2213
1607void 2214void
1608ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1609{ 2216{
1610 loop_done = how; 2217 loop_done = how;
1611} 2218}
1612 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1613/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1614 2259
1615void inline_size 2260inline_size void
1616wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1617{ 2262{
1618 elem->next = *head; 2263 elem->next = *head;
1619 *head = elem; 2264 *head = elem;
1620} 2265}
1621 2266
1622void inline_size 2267inline_size void
1623wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1624{ 2269{
1625 while (*head) 2270 while (*head)
1626 { 2271 {
1627 if (*head == elem) 2272 if (*head == elem)
1632 2277
1633 head = &(*head)->next; 2278 head = &(*head)->next;
1634 } 2279 }
1635} 2280}
1636 2281
1637void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1638clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1639{ 2285{
1640 if (w->pending) 2286 if (w->pending)
1641 { 2287 {
1642 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1643 w->pending = 0; 2289 w->pending = 0;
1644 } 2290 }
1645} 2291}
1646 2292
1647int 2293int
1651 int pending = w_->pending; 2297 int pending = w_->pending;
1652 2298
1653 if (expect_true (pending)) 2299 if (expect_true (pending))
1654 { 2300 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1656 w_->pending = 0; 2303 w_->pending = 0;
1657 p->w = 0;
1658 return p->events; 2304 return p->events;
1659 } 2305 }
1660 else 2306 else
1661 return 0; 2307 return 0;
1662} 2308}
1663 2309
1664void inline_size 2310inline_size void
1665pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1666{ 2312{
1667 int pri = w->priority; 2313 int pri = ev_priority (w);
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri; 2316 ev_set_priority (w, pri);
1671} 2317}
1672 2318
1673void inline_speed 2319inline_speed void
1674ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1675{ 2321{
1676 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1677 w->active = active; 2323 w->active = active;
1678 ev_ref (EV_A); 2324 ev_ref (EV_A);
1679} 2325}
1680 2326
1681void inline_size 2327inline_size void
1682ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1683{ 2329{
1684 ev_unref (EV_A); 2330 ev_unref (EV_A);
1685 w->active = 0; 2331 w->active = 0;
1686} 2332}
1693 int fd = w->fd; 2339 int fd = w->fd;
1694 2340
1695 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1696 return; 2342 return;
1697 2343
1698 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1699 2348
1700 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1702 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1703 2352
1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
1706} 2357}
1707 2358
1708void noinline 2359void noinline
1709ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1710{ 2361{
1711 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1713 return; 2364 return;
1714 2365
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
1716 2369
1717 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1718 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1719 2372
1720 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
1721} 2376}
1722 2377
1723void noinline 2378void noinline
1724ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1725{ 2380{
1726 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1727 return; 2382 return;
1728 2383
1729 ((WT)w)->at += mn_now; 2384 ev_at (w) += mn_now;
1730 2385
1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1732 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1733 ev_start (EV_A_ (W)w, ++timercnt); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1735 timers [timercnt - 1] = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
1736 upheap (timers, timercnt - 1); 2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
1737 2396
2397 EV_FREQUENT_CHECK;
2398
1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1739} 2400}
1740 2401
1741void noinline 2402void noinline
1742ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1743{ 2404{
1744 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1745 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1746 return; 2407 return;
1747 2408
1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2409 EV_FREQUENT_CHECK;
1749 2410
1750 { 2411 {
1751 int active = ((W)w)->active; 2412 int active = ev_active (w);
1752 2413
2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2415
2416 --timercnt;
2417
1753 if (expect_true (--active < --timercnt)) 2418 if (expect_true (active < timercnt + HEAP0))
1754 { 2419 {
1755 timers [active] = timers [timercnt]; 2420 timers [active] = timers [timercnt + HEAP0];
1756 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
1757 } 2422 }
1758 } 2423 }
1759 2424
1760 ((WT)w)->at -= mn_now; 2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
1761 2428
1762 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
1763} 2430}
1764 2431
1765void noinline 2432void noinline
1766ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
1767{ 2434{
2435 EV_FREQUENT_CHECK;
2436
1768 if (ev_is_active (w)) 2437 if (ev_is_active (w))
1769 { 2438 {
1770 if (w->repeat) 2439 if (w->repeat)
1771 { 2440 {
1772 ((WT)w)->at = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
1773 adjustheap (timers, timercnt, ((W)w)->active - 1); 2443 adjustheap (timers, timercnt, ev_active (w));
1774 } 2444 }
1775 else 2445 else
1776 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
1777 } 2447 }
1778 else if (w->repeat) 2448 else if (w->repeat)
1779 { 2449 {
1780 w->at = w->repeat; 2450 ev_at (w) = w->repeat;
1781 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
1782 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
1783} 2455}
1784 2456
1785#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
1786void noinline 2458void noinline
1787ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
1788{ 2460{
1789 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1790 return; 2462 return;
1791 2463
1792 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval) 2466 else if (w->interval)
1795 { 2467 {
1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1797 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 } 2471 }
1800 else 2472 else
1801 ((WT)w)->at = w->offset; 2473 ev_at (w) = w->offset;
1802 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
1803 ev_start (EV_A_ (W)w, ++periodiccnt); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1805 periodics [periodiccnt - 1] = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1806 upheap (periodics, periodiccnt - 1); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
1807 2483
2484 EV_FREQUENT_CHECK;
2485
1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1809} 2487}
1810 2488
1811void noinline 2489void noinline
1812ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
1813{ 2491{
1814 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
1815 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
1816 return; 2494 return;
1817 2495
1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2496 EV_FREQUENT_CHECK;
1819 2497
1820 { 2498 {
1821 int active = ((W)w)->active; 2499 int active = ev_active (w);
1822 2500
2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2502
2503 --periodiccnt;
2504
1823 if (expect_true (--active < --periodiccnt)) 2505 if (expect_true (active < periodiccnt + HEAP0))
1824 { 2506 {
1825 periodics [active] = periodics [periodiccnt]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
1826 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
1827 } 2509 }
1828 } 2510 }
1829 2511
2512 EV_FREQUENT_CHECK;
2513
1830 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1831} 2515}
1832 2516
1833void noinline 2517void noinline
1834ev_periodic_again (EV_P_ ev_periodic *w) 2518ev_periodic_again (EV_P_ ev_periodic *w)
1845 2529
1846void noinline 2530void noinline
1847ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
1848{ 2532{
1849#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1851#endif 2535#endif
1852 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1853 return; 2537 return;
1854 2538
1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2540
2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
1856 2544
1857 { 2545 {
1858#ifndef _WIN32 2546#ifndef _WIN32
1859 sigset_t full, prev; 2547 sigset_t full, prev;
1860 sigfillset (&full); 2548 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif 2550#endif
1863 2551
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1865 2553
1866#ifndef _WIN32 2554#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif 2556#endif
1869 } 2557 }
1872 wlist_add (&signals [w->signum - 1].head, (WL)w); 2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
1873 2561
1874 if (!((WL)w)->next) 2562 if (!((WL)w)->next)
1875 { 2563 {
1876#if _WIN32 2564#if _WIN32
1877 signal (w->signum, sighandler); 2565 signal (w->signum, ev_sighandler);
1878#else 2566#else
1879 struct sigaction sa; 2567 struct sigaction sa;
1880 sa.sa_handler = sighandler; 2568 sa.sa_handler = ev_sighandler;
1881 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1883 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
1884#endif 2572#endif
1885 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
1886} 2576}
1887 2577
1888void noinline 2578void noinline
1889ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
1890{ 2580{
1891 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
1892 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
1893 return; 2583 return;
1894 2584
2585 EV_FREQUENT_CHECK;
2586
1895 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
1896 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1897 2589
1898 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
1899 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
1900} 2594}
1901 2595
1902void 2596void
1903ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
1904{ 2598{
1905#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2601#endif
1908 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1909 return; 2603 return;
1910 2604
2605 EV_FREQUENT_CHECK;
2606
1911 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
1913} 2611}
1914 2612
1915void 2613void
1916ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
1917{ 2615{
1918 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1919 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
1920 return; 2618 return;
1921 2619
2620 EV_FREQUENT_CHECK;
2621
1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1923 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
1924} 2626}
1925 2627
1926#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
1927 2629
1928# ifdef _WIN32 2630# ifdef _WIN32
1929# undef lstat 2631# undef lstat
1930# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
1931# endif 2633# endif
1932 2634
1933#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1934#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
1935 2638
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937 2640
1938#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
1943{ 2646{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945 2648
1946 if (w->wd < 0) 2649 if (w->wd < 0)
1947 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949 2653
1950 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 { 2658 {
1953 char path [4096]; 2659 char path [4096];
1954 strcpy (path, w->path); 2660 strcpy (path, w->path);
1955 2661
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960 2666
1961 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
1962 2668
1963 if (!pend) 2669 if (!pend || pend == path)
1964 break; /* whoops, no '/', complain to your admin */ 2670 break;
1965 2671
1966 *pend = 0; 2672 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 } 2674 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 } 2676 }
1971 } 2677 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974 2678
1975 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
1977} 2700}
1978 2701
1979static void noinline 2702static void noinline
1980infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
1981{ 2704{
1995 2718
1996static void noinline 2719static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{ 2721{
1999 if (slot < 0) 2722 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2003 else 2726 else
2004 { 2727 {
2005 WL w_; 2728 WL w_;
2011 2734
2012 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2013 { 2736 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2016 w->wd = -1; 2740 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2018 } 2742 }
2019 2743
2020 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2033 2757
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036} 2760}
2037 2761
2038void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2039infy_init (EV_P) 2786infy_init (EV_P)
2040{ 2787{
2041 if (fs_fd != -2) 2788 if (fs_fd != -2)
2042 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2043 2794
2044 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2045 2796
2046 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2047 { 2798 {
2049 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2051 } 2802 }
2052} 2803}
2053 2804
2054void inline_size 2805inline_size void
2055infy_fork (EV_P) 2806infy_fork (EV_P)
2056{ 2807{
2057 int slot; 2808 int slot;
2058 2809
2059 if (fs_fd < 0) 2810 if (fs_fd < 0)
2075 w->wd = -1; 2826 w->wd = -1;
2076 2827
2077 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else 2830 else
2080 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2081 } 2832 }
2082
2083 } 2833 }
2084} 2834}
2085 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2086#endif 2842#endif
2087 2843
2088void 2844void
2089ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2090{ 2846{
2117 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2120 ) { 2876 ) {
2121 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2122 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2125 #endif 2884 #endif
2126 2885
2127 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2128 } 2887 }
2129} 2888}
2132ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2133{ 2892{
2134 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2135 return; 2894 return;
2136 2895
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2142 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2143 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145 2900
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2147 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2148 2903
2149#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2150 infy_init (EV_A); 2905 infy_init (EV_A);
2151 2906
2152 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2153 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2154 else 2909 else
2155#endif 2910#endif
2156 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2157 2912
2158 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2159} 2916}
2160 2917
2161void 2918void
2162ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2163{ 2920{
2164 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2166 return; 2923 return;
2167 2924
2925 EV_FREQUENT_CHECK;
2926
2168#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2170#endif 2929#endif
2171 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2172 2931
2173 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2174} 2935}
2175#endif 2936#endif
2176 2937
2177#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2178void 2939void
2180{ 2941{
2181 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2182 return; 2943 return;
2183 2944
2184 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2185 2948
2186 { 2949 {
2187 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2188 2951
2189 ++idleall; 2952 ++idleall;
2190 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2191 2954
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2194 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2195} 2960}
2196 2961
2197void 2962void
2198ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2199{ 2964{
2200 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2202 return; 2967 return;
2203 2968
2969 EV_FREQUENT_CHECK;
2970
2204 { 2971 {
2205 int active = ((W)w)->active; 2972 int active = ev_active (w);
2206 2973
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2209 2976
2210 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2211 --idleall; 2978 --idleall;
2212 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2213} 2982}
2214#endif 2983#endif
2215 2984
2216void 2985void
2217ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2218{ 2987{
2219 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2220 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2221 2992
2222 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2225} 2998}
2226 2999
2227void 3000void
2228ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2229{ 3002{
2230 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2232 return; 3005 return;
2233 3006
3007 EV_FREQUENT_CHECK;
3008
2234 { 3009 {
2235 int active = ((W)w)->active; 3010 int active = ev_active (w);
3011
2236 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active; 3013 ev_active (prepares [active - 1]) = active;
2238 } 3014 }
2239 3015
2240 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2241} 3019}
2242 3020
2243void 3021void
2244ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2245{ 3023{
2246 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2247 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2248 3028
2249 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2252} 3034}
2253 3035
2254void 3036void
2255ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2256{ 3038{
2257 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2259 return; 3041 return;
2260 3042
3043 EV_FREQUENT_CHECK;
3044
2261 { 3045 {
2262 int active = ((W)w)->active; 3046 int active = ev_active (w);
3047
2263 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active; 3049 ev_active (checks [active - 1]) = active;
2265 } 3050 }
2266 3051
2267 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2268} 3055}
2269 3056
2270#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2271void noinline 3058void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 } 3087 }
2301 } 3088 }
2302} 3089}
2303 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2304#if 0 3108#if 0
2305static void 3109static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{ 3111{
2308 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2315 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2316 return; 3120 return;
2317 3121
2318 { 3122 {
2319 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2323 3129
2324 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2326 3132
2327 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2330 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332 3141
2333 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2334} 3145}
2335 3146
2336void 3147void
2337ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2338{ 3149{
2339 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2341 return; 3152 return;
2342 3153
3154 EV_FREQUENT_CHECK;
3155
2343 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2345 3159
2346 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2347} 3161}
2348#endif 3162#endif
2349 3163
2350#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2351void 3165void
2352ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2353{ 3167{
2354 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2355 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2356 3172
2357 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2360} 3178}
2361 3179
2362void 3180void
2363ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2364{ 3182{
2365 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2367 return; 3185 return;
2368 3186
3187 EV_FREQUENT_CHECK;
3188
2369 { 3189 {
2370 int active = ((W)w)->active; 3190 int active = ev_active (w);
3191
2371 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active; 3193 ev_active (forks [active - 1]) = active;
2373 } 3194 }
2374 3195
2375 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
3199}
3200#endif
3201
3202#if EV_ASYNC_ENABLE
3203void
3204ev_async_start (EV_P_ ev_async *w)
3205{
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
3212
3213 ev_start (EV_A_ (W)w, ++asynccnt);
3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
3218}
3219
3220void
3221ev_async_stop (EV_P_ ev_async *w)
3222{
3223 clear_pending (EV_A_ (W)w);
3224 if (expect_false (!ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 {
3230 int active = ev_active (w);
3231
3232 asyncs [active - 1] = asyncs [--asynccnt];
3233 ev_active (asyncs [active - 1]) = active;
3234 }
3235
3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
3239}
3240
3241void
3242ev_async_send (EV_P_ ev_async *w)
3243{
3244 w->sent = 1;
3245 evpipe_write (EV_A_ &gotasync);
2376} 3246}
2377#endif 3247#endif
2378 3248
2379/*****************************************************************************/ 3249/*****************************************************************************/
2380 3250
2390once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2391{ 3261{
2392 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2393 void *arg = once->arg; 3263 void *arg = once->arg;
2394 3264
2395 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2396 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2397 ev_free (once); 3267 ev_free (once);
2398 3268
2399 cb (revents, arg); 3269 cb (revents, arg);
2400} 3270}
2401 3271
2402static void 3272static void
2403once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2404{ 3274{
2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2406} 3278}
2407 3279
2408static void 3280static void
2409once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2410{ 3282{
2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2412} 3286}
2413 3287
2414void 3288void
2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2416{ 3290{
2438 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2439 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2440 } 3314 }
2441} 3315}
2442 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2443#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2444 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2445#endif 3427#endif
2446 3428
2447#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines