ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC vs.
Revision 1.346 by root, Thu Oct 14 05:07:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
62# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
64# endif 79# endif
65# endif 80# endif
66 81
82# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
70# else 86# else
87# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
73# endif 98# endif
74 99
100# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 103# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 104# else
105# undef EV_USE_POLL
87# define EV_USE_POLL 0 106# define EV_USE_POLL 0
88# endif
89# endif 107# endif
90 108
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
94# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
97# endif 116# endif
98 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
105# endif 125# endif
106 126
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
110# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
113# endif 134# endif
114 135
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
121# endif 143# endif
122 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
123#endif 163#endif
124 164
125#include <math.h> 165#include <math.h>
126#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
127#include <fcntl.h> 168#include <fcntl.h>
128#include <stddef.h> 169#include <stddef.h>
129 170
130#include <stdio.h> 171#include <stdio.h>
131 172
132#include <assert.h> 173#include <assert.h>
133#include <errno.h> 174#include <errno.h>
134#include <sys/types.h> 175#include <sys/types.h>
135#include <time.h> 176#include <time.h>
177#include <limits.h>
136 178
137#include <signal.h> 179#include <signal.h>
138 180
139#ifdef EV_H 181#ifdef EV_H
140# include EV_H 182# include EV_H
145#ifndef _WIN32 187#ifndef _WIN32
146# include <sys/time.h> 188# include <sys/time.h>
147# include <sys/wait.h> 189# include <sys/wait.h>
148# include <unistd.h> 190# include <unistd.h>
149#else 191#else
192# include <io.h>
150# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 194# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
154# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
155#endif 244# endif
156 245#endif
157/**/
158 246
159#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
160# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
161#endif 253#endif
162 254
163#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 257#endif
166 258
167#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
168# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
169#endif 265#endif
170 266
171#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 269#endif
174 270
175#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
176# ifdef _WIN32 272# ifdef _WIN32
177# define EV_USE_POLL 0 273# define EV_USE_POLL 0
178# else 274# else
179# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 276# endif
181#endif 277#endif
182 278
183#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
184# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
185#endif 285#endif
186 286
187#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
189#endif 289#endif
191#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 292# define EV_USE_PORT 0
193#endif 293#endif
194 294
195#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
196# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
197#endif 301#endif
198 302
199#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 314# else
203# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
204# endif 316# endif
205#endif 317#endif
206 318
207#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 322# else
211# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
212# endif 324# endif
213#endif 325#endif
214 326
215/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
216 366
217#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
220#endif 370#endif
234# include <sys/select.h> 384# include <sys/select.h>
235# endif 385# endif
236#endif 386#endif
237 387
238#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
239# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
240#endif 397#endif
241 398
242#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 400# include <winsock.h>
244#endif 401#endif
245 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
246/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
247 461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 464 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 465 * to ensure progress, time-wise, even when rounding
255 */ 469 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 471
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 474
262#if __GNUC__ >= 4 475#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
265#else 478#else
266# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
267# define noinline 480# define noinline
268# if __STDC_VERSION__ < 199901L 481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 482# define inline
270# endif 483# endif
271#endif 484#endif
272 485
273#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 488#define inline_size static inline
276 489
277#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
278# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
279#else 500#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
285 503
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
288 506
289typedef ev_watcher *W; 507typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
292 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
293#if EV_USE_MONOTONIC 520#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 532#endif
298 533
299#ifdef _WIN32 534#ifdef _WIN32
300# include "ev_win32.c" 535# include "ev_win32.c"
301#endif 536#endif
302 537
303/*****************************************************************************/ 538/*****************************************************************************/
304 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
305static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
306 549
307void 550void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 552{
310 syserr_cb = cb; 553 syserr_cb = cb;
311} 554}
312 555
313static void noinline 556static void noinline
314syserr (const char *msg) 557ev_syserr (const char *msg)
315{ 558{
316 if (!msg) 559 if (!msg)
317 msg = "(libev) system error"; 560 msg = "(libev) system error";
318 561
319 if (syserr_cb) 562 if (syserr_cb)
320 syserr_cb (msg); 563 syserr_cb (msg);
321 else 564 else
322 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
323 perror (msg); 574 perror (msg);
575#endif
324 abort (); 576 abort ();
325 } 577 }
326} 578}
327 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
328static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 600
330void 601void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 603{
333 alloc = cb; 604 alloc = cb;
334} 605}
335 606
336inline_speed void * 607inline_speed void *
337ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
338{ 609{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
340 611
341 if (!ptr && size) 612 if (!ptr && size)
342 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
344 abort (); 619 abort ();
345 } 620 }
346 621
347 return ptr; 622 return ptr;
348} 623}
350#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
352 627
353/*****************************************************************************/ 628/*****************************************************************************/
354 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
355typedef struct 634typedef struct
356{ 635{
357 WL head; 636 WL head;
358 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
360#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 645 SOCKET handle;
362#endif 646#endif
363} ANFD; 647} ANFD;
364 648
649/* stores the pending event set for a given watcher */
365typedef struct 650typedef struct
366{ 651{
367 W w; 652 W w;
368 int events; 653 int events; /* the pending event set for the given watcher */
369} ANPENDING; 654} ANPENDING;
370 655
371#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
372typedef struct 658typedef struct
373{ 659{
374 WL head; 660 WL head;
375} ANFS; 661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
376#endif 682#endif
377 683
378#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
379 685
380 struct ev_loop 686 struct ev_loop
399 705
400 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
401 707
402#endif 708#endif
403 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
404/*****************************************************************************/ 722/*****************************************************************************/
405 723
724#ifndef EV_HAVE_EV_TIME
406ev_tstamp 725ev_tstamp
407ev_time (void) 726ev_time (void)
408{ 727{
409#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
410 struct timespec ts; 731 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 734 }
735#endif
736
414 struct timeval tv; 737 struct timeval tv;
415 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 740}
741#endif
419 742
420ev_tstamp inline_size 743inline_size ev_tstamp
421get_clock (void) 744get_clock (void)
422{ 745{
423#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
425 { 748 {
451 ts.tv_sec = (time_t)delay; 774 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 776
454 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
455#elif defined(_WIN32) 778#elif defined(_WIN32)
456 Sleep (delay * 1e3); 779 Sleep ((unsigned long)(delay * 1e3));
457#else 780#else
458 struct timeval tv; 781 struct timeval tv;
459 782
460 tv.tv_sec = (time_t)delay; 783 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
463 select (0, 0, 0, 0, &tv); 789 select (0, 0, 0, 0, &tv);
464#endif 790#endif
465 } 791 }
466} 792}
467 793
468/*****************************************************************************/ 794/*****************************************************************************/
469 795
470int inline_size 796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
471array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
472{ 802{
473 int ncur = cur + 1; 803 int ncur = cur + 1;
474 804
475 do 805 do
476 ncur <<= 1; 806 ncur <<= 1;
477 while (cnt > ncur); 807 while (cnt > ncur);
478 808
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 811 {
482 ncur *= elem; 812 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 814 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 815 ncur /= elem;
486 } 816 }
487 817
488 return ncur; 818 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 822array_realloc (int elem, void *base, int *cur, int cnt)
493{ 823{
494 *cur = array_nextsize (elem, *cur, cnt); 824 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 825 return ev_realloc (base, elem * *cur);
496} 826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 830
498#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 832 if (expect_false ((cnt) > (cur))) \
500 { \ 833 { \
501 int ocur_ = (cur); \ 834 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 847 }
515#endif 848#endif
516 849
517#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 852
520/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
521 860
522void noinline 861void noinline
523ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
524{ 863{
525 W w_ = (W)w; 864 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 873 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 874 pendings [pri][w_->pending - 1].events = revents;
536 } 875 }
537} 876}
538 877
539void inline_speed 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 895{
542 int i; 896 int i;
543 897
544 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
546} 900}
547 901
548/*****************************************************************************/ 902/*****************************************************************************/
549 903
550void inline_size 904inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
565{ 906{
566 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
567 ev_io *w; 908 ev_io *w;
568 909
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 914 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
575 } 916 }
576} 917}
577 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
578void 930void
579ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 932{
581 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
583} 935}
584 936
585void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
586fd_reify (EV_P) 940fd_reify (EV_P)
587{ 941{
588 int i; 942 int i;
589 943
590 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 953 events |= (unsigned char)w->events;
600 954
601#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
602 if (events) 956 if (events)
603 { 957 {
604 unsigned long argp; 958 unsigned long arg;
605 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
607 } 961 }
608#endif 962#endif
609 963
610 { 964 {
611 unsigned char o_events = anfd->events; 965 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify; 966 unsigned char o_reify = anfd->reify;
613 967
614 anfd->reify = 0; 968 anfd->reify = 0;
615 anfd->events = events; 969 anfd->events = events;
616 970
617 if (o_events != events || o_reify & EV_IOFDSET) 971 if (o_events != events || o_reify & EV__IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events); 972 backend_modify (EV_A_ fd, o_events, events);
619 } 973 }
620 } 974 }
621 975
622 fdchangecnt = 0; 976 fdchangecnt = 0;
623} 977}
624 978
625void inline_size 979/* something about the given fd changed */
980inline_size void
626fd_change (EV_P_ int fd, int flags) 981fd_change (EV_P_ int fd, int flags)
627{ 982{
628 unsigned char reify = anfds [fd].reify; 983 unsigned char reify = anfds [fd].reify;
629 anfds [fd].reify |= flags; 984 anfds [fd].reify |= flags;
630 985
634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
635 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
636 } 991 }
637} 992}
638 993
639void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
640fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
641{ 997{
642 ev_io *w; 998 ev_io *w;
643 999
644 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
646 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
648 } 1004 }
649} 1005}
650 1006
651int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
652fd_valid (int fd) 1009fd_valid (int fd)
653{ 1010{
654#ifdef _WIN32 1011#ifdef _WIN32
655 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
656#else 1013#else
657 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
658#endif 1015#endif
659} 1016}
660 1017
664{ 1021{
665 int fd; 1022 int fd;
666 1023
667 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
668 if (anfds [fd].events) 1025 if (anfds [fd].events)
669 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
670 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
671} 1028}
672 1029
673/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
674static void noinline 1031static void noinline
678 1035
679 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
680 if (anfds [fd].events) 1037 if (anfds [fd].events)
681 { 1038 {
682 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
683 return; 1040 break;
684 } 1041 }
685} 1042}
686 1043
687/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
688static void noinline 1045static void noinline
692 1049
693 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
694 if (anfds [fd].events) 1051 if (anfds [fd].events)
695 { 1052 {
696 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
1054 anfds [fd].emask = 0;
697 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
698 } 1056 }
699} 1057}
700 1058
701/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
702 1060/* this is not fork-safe */
703void inline_speed 1061inline_speed void
704upheap (WT *heap, int k)
705{
706 WT w = heap [k];
707
708 while (k)
709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
715 heap [k] = heap [p];
716 ((W)heap [k])->active = k + 1;
717 k = p;
718 }
719
720 heap [k] = w;
721 ((W)heap [k])->active = k + 1;
722}
723
724void inline_speed
725downheap (WT *heap, int N, int k)
726{
727 WT w = heap [k];
728
729 for (;;)
730 {
731 int c = (k << 1) + 1;
732
733 if (c >= N)
734 break;
735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
742 heap [k] = heap [c];
743 ((W)heap [k])->active = k + 1;
744
745 k = c;
746 }
747
748 heap [k] = w;
749 ((W)heap [k])->active = k + 1;
750}
751
752void inline_size
753adjustheap (WT *heap, int N, int k)
754{
755 upheap (heap, k);
756 downheap (heap, N, k);
757}
758
759/*****************************************************************************/
760
761typedef struct
762{
763 WL head;
764 sig_atomic_t volatile gotsig;
765} ANSIG;
766
767static ANSIG *signals;
768static int signalmax;
769
770static int sigpipe [2];
771static sig_atomic_t volatile gotsig;
772static ev_io sigev;
773
774void inline_size
775signals_init (ANSIG *base, int count)
776{
777 while (count--)
778 {
779 base->head = 0;
780 base->gotsig = 0;
781
782 ++base;
783 }
784}
785
786static void
787sighandler (int signum)
788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
793 signals [signum - 1].gotsig = 1;
794
795 if (!gotsig)
796 {
797 int old_errno = errno;
798 gotsig = 1;
799 write (sigpipe [1], &signum, 1);
800 errno = old_errno;
801 }
802}
803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
824static void
825sigcb (EV_P_ ev_io *iow, int revents)
826{
827 int signum;
828
829 read (sigpipe [0], &revents, 1);
830 gotsig = 0;
831
832 for (signum = signalmax; signum--; )
833 if (signals [signum].gotsig)
834 ev_feed_signal_event (EV_A_ signum + 1);
835}
836
837void inline_speed
838fd_intern (int fd) 1062fd_intern (int fd)
839{ 1063{
840#ifdef _WIN32 1064#ifdef _WIN32
841 int arg = 1; 1065 unsigned long arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
843#else 1067#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif 1070#endif
847} 1071}
848 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
849static void noinline 1236static void noinline
850siginit (EV_P) 1237evpipe_init (EV_P)
851{ 1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
852 fd_intern (sigpipe [0]); 1258 fd_intern (evpipe [0]);
853 fd_intern (sigpipe [1]); 1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
854 1262
855 ev_io_set (&sigev, sigpipe [0], EV_READ);
856 ev_io_start (EV_A_ &sigev); 1263 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 /* win32 people keep sending patches that change this write() to send() */
1287 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288 /* so when you think this write should be a send instead, please find out */
1289 /* where your send() is from - it's definitely not the microsoft send, and */
1290 /* tell me. thank you. */
1291 write (evpipe [1], &dummy, 1);
1292
1293 errno = old_errno;
1294 }
1295}
1296
1297/* called whenever the libev signal pipe */
1298/* got some events (signal, async) */
1299static void
1300pipecb (EV_P_ ev_io *iow, int revents)
1301{
1302 int i;
1303
1304#if EV_USE_EVENTFD
1305 if (evfd >= 0)
1306 {
1307 uint64_t counter;
1308 read (evfd, &counter, sizeof (uint64_t));
1309 }
1310 else
1311#endif
1312 {
1313 char dummy;
1314 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1315 read (evpipe [0], &dummy, 1);
1316 }
1317
1318 if (sig_pending)
1319 {
1320 sig_pending = 0;
1321
1322 for (i = EV_NSIG - 1; i--; )
1323 if (expect_false (signals [i].pending))
1324 ev_feed_signal_event (EV_A_ i + 1);
1325 }
1326
1327#if EV_ASYNC_ENABLE
1328 if (async_pending)
1329 {
1330 async_pending = 0;
1331
1332 for (i = asynccnt; i--; )
1333 if (asyncs [i]->sent)
1334 {
1335 asyncs [i]->sent = 0;
1336 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1337 }
1338 }
1339#endif
858} 1340}
859 1341
860/*****************************************************************************/ 1342/*****************************************************************************/
861 1343
1344static void
1345ev_sighandler (int signum)
1346{
1347#if EV_MULTIPLICITY
1348 EV_P = signals [signum - 1].loop;
1349#endif
1350
1351#ifdef _WIN32
1352 signal (signum, ev_sighandler);
1353#endif
1354
1355 signals [signum - 1].pending = 1;
1356 evpipe_write (EV_A_ &sig_pending);
1357}
1358
1359void noinline
1360ev_feed_signal_event (EV_P_ int signum)
1361{
1362 WL w;
1363
1364 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365 return;
1366
1367 --signum;
1368
1369#if EV_MULTIPLICITY
1370 /* it is permissible to try to feed a signal to the wrong loop */
1371 /* or, likely more useful, feeding a signal nobody is waiting for */
1372
1373 if (expect_false (signals [signum].loop != EV_A))
1374 return;
1375#endif
1376
1377 signals [signum].pending = 0;
1378
1379 for (w = signals [signum].head; w; w = w->next)
1380 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1381}
1382
1383#if EV_USE_SIGNALFD
1384static void
1385sigfdcb (EV_P_ ev_io *iow, int revents)
1386{
1387 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388
1389 for (;;)
1390 {
1391 ssize_t res = read (sigfd, si, sizeof (si));
1392
1393 /* not ISO-C, as res might be -1, but works with SuS */
1394 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396
1397 if (res < (ssize_t)sizeof (si))
1398 break;
1399 }
1400}
1401#endif
1402
1403#endif
1404
1405/*****************************************************************************/
1406
1407#if EV_CHILD_ENABLE
862static WL childs [EV_PID_HASHSIZE]; 1408static WL childs [EV_PID_HASHSIZE];
863 1409
864#ifndef _WIN32
865
866static ev_signal childev; 1410static ev_signal childev;
867 1411
868void inline_speed 1412#ifndef WIFCONTINUED
1413# define WIFCONTINUED(status) 0
1414#endif
1415
1416/* handle a single child status event */
1417inline_speed void
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1418child_reap (EV_P_ int chain, int pid, int status)
870{ 1419{
871 ev_child *w; 1420 ev_child *w;
1421 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
872 1422
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1423 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1424 {
874 if (w->pid == pid || !w->pid) 1425 if ((w->pid == pid || !w->pid)
1426 && (!traced || (w->flags & 1)))
875 { 1427 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1428 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
877 w->rpid = pid; 1429 w->rpid = pid;
878 w->rstatus = status; 1430 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1431 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 } 1432 }
1433 }
881} 1434}
882 1435
883#ifndef WCONTINUED 1436#ifndef WCONTINUED
884# define WCONTINUED 0 1437# define WCONTINUED 0
885#endif 1438#endif
886 1439
1440/* called on sigchld etc., calls waitpid */
887static void 1441static void
888childcb (EV_P_ ev_signal *sw, int revents) 1442childcb (EV_P_ ev_signal *sw, int revents)
889{ 1443{
890 int pid, status; 1444 int pid, status;
891 1445
894 if (!WCONTINUED 1448 if (!WCONTINUED
895 || errno != EINVAL 1449 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1450 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return; 1451 return;
898 1452
899 /* make sure we are called again until all childs have been reaped */ 1453 /* make sure we are called again until all children have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */ 1454 /* we need to do it this way so that the callback gets called before we continue */
901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1455 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
902 1456
903 child_reap (EV_A_ sw, pid, pid, status); 1457 child_reap (EV_A_ pid, pid, status);
904 if (EV_PID_HASHSIZE > 1) 1458 if ((EV_PID_HASHSIZE) > 1)
905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1459 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
906} 1460}
907 1461
908#endif 1462#endif
909 1463
910/*****************************************************************************/ 1464/*****************************************************************************/
972 /* kqueue is borked on everything but netbsd apparently */ 1526 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */ 1527 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE; 1528 flags &= ~EVBACKEND_KQUEUE;
975#endif 1529#endif
976#ifdef __APPLE__ 1530#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation 1531 /* only select works correctly on that "unix-certified" platform */
978 flags &= ~EVBACKEND_POLL; 1532 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534#endif
1535#ifdef __FreeBSD__
1536 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
979#endif 1537#endif
980 1538
981 return flags; 1539 return flags;
982} 1540}
983 1541
997ev_backend (EV_P) 1555ev_backend (EV_P)
998{ 1556{
999 return backend; 1557 return backend;
1000} 1558}
1001 1559
1560#if EV_FEATURE_API
1002unsigned int 1561unsigned int
1003ev_loop_count (EV_P) 1562ev_iteration (EV_P)
1004{ 1563{
1005 return loop_count; 1564 return loop_count;
1006} 1565}
1007 1566
1567unsigned int
1568ev_depth (EV_P)
1569{
1570 return loop_depth;
1571}
1572
1008void 1573void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1574ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{ 1575{
1011 io_blocktime = interval; 1576 io_blocktime = interval;
1012} 1577}
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1580ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{ 1581{
1017 timeout_blocktime = interval; 1582 timeout_blocktime = interval;
1018} 1583}
1019 1584
1585void
1586ev_set_userdata (EV_P_ void *data)
1587{
1588 userdata = data;
1589}
1590
1591void *
1592ev_userdata (EV_P)
1593{
1594 return userdata;
1595}
1596
1597void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598{
1599 invoke_cb = invoke_pending_cb;
1600}
1601
1602void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603{
1604 release_cb = release;
1605 acquire_cb = acquire;
1606}
1607#endif
1608
1609/* initialise a loop structure, must be zero-initialised */
1020static void noinline 1610static void noinline
1021loop_init (EV_P_ unsigned int flags) 1611loop_init (EV_P_ unsigned int flags)
1022{ 1612{
1023 if (!backend) 1613 if (!backend)
1024 { 1614 {
1615#if EV_USE_REALTIME
1616 if (!have_realtime)
1617 {
1618 struct timespec ts;
1619
1620 if (!clock_gettime (CLOCK_REALTIME, &ts))
1621 have_realtime = 1;
1622 }
1623#endif
1624
1025#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
1626 if (!have_monotonic)
1026 { 1627 {
1027 struct timespec ts; 1628 struct timespec ts;
1629
1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1630 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1029 have_monotonic = 1; 1631 have_monotonic = 1;
1030 } 1632 }
1031#endif 1633#endif
1032
1033 ev_rt_now = ev_time ();
1034 mn_now = get_clock ();
1035 now_floor = mn_now;
1036 rtmn_diff = ev_rt_now - mn_now;
1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040 1634
1041 /* pid check not overridable via env */ 1635 /* pid check not overridable via env */
1042#ifndef _WIN32 1636#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK) 1637 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid (); 1638 curpid = getpid ();
1047 if (!(flags & EVFLAG_NOENV) 1641 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure () 1642 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS")) 1643 && getenv ("LIBEV_FLAGS"))
1050 flags = atoi (getenv ("LIBEV_FLAGS")); 1644 flags = atoi (getenv ("LIBEV_FLAGS"));
1051 1645
1646 ev_rt_now = ev_time ();
1647 mn_now = get_clock ();
1648 now_floor = mn_now;
1649 rtmn_diff = ev_rt_now - mn_now;
1650#if EV_FEATURE_API
1651 invoke_cb = ev_invoke_pending;
1652#endif
1653
1654 io_blocktime = 0.;
1655 timeout_blocktime = 0.;
1656 backend = 0;
1657 backend_fd = -1;
1658 sig_pending = 0;
1659#if EV_ASYNC_ENABLE
1660 async_pending = 0;
1661#endif
1662#if EV_USE_INOTIFY
1663 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1664#endif
1665#if EV_USE_SIGNALFD
1666 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1667#endif
1668
1052 if (!(flags & 0x0000ffffUL)) 1669 if (!(flags & 0x0000ffffU))
1053 flags |= ev_recommended_backends (); 1670 flags |= ev_recommended_backends ();
1054
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060 1671
1061#if EV_USE_PORT 1672#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1673 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif 1674#endif
1064#if EV_USE_KQUEUE 1675#if EV_USE_KQUEUE
1072#endif 1683#endif
1073#if EV_USE_SELECT 1684#if EV_USE_SELECT
1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1685 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1075#endif 1686#endif
1076 1687
1688 ev_prepare_init (&pending_w, pendingcb);
1689
1690#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1077 ev_init (&sigev, sigcb); 1691 ev_init (&pipe_w, pipecb);
1078 ev_set_priority (&sigev, EV_MAXPRI); 1692 ev_set_priority (&pipe_w, EV_MAXPRI);
1693#endif
1079 } 1694 }
1080} 1695}
1081 1696
1697/* free up a loop structure */
1082static void noinline 1698static void noinline
1083loop_destroy (EV_P) 1699loop_destroy (EV_P)
1084{ 1700{
1085 int i; 1701 int i;
1702
1703 if (ev_is_active (&pipe_w))
1704 {
1705 /*ev_ref (EV_A);*/
1706 /*ev_io_stop (EV_A_ &pipe_w);*/
1707
1708#if EV_USE_EVENTFD
1709 if (evfd >= 0)
1710 close (evfd);
1711#endif
1712
1713 if (evpipe [0] >= 0)
1714 {
1715 EV_WIN32_CLOSE_FD (evpipe [0]);
1716 EV_WIN32_CLOSE_FD (evpipe [1]);
1717 }
1718 }
1719
1720#if EV_USE_SIGNALFD
1721 if (ev_is_active (&sigfd_w))
1722 close (sigfd);
1723#endif
1086 1724
1087#if EV_USE_INOTIFY 1725#if EV_USE_INOTIFY
1088 if (fs_fd >= 0) 1726 if (fs_fd >= 0)
1089 close (fs_fd); 1727 close (fs_fd);
1090#endif 1728#endif
1114#if EV_IDLE_ENABLE 1752#if EV_IDLE_ENABLE
1115 array_free (idle, [i]); 1753 array_free (idle, [i]);
1116#endif 1754#endif
1117 } 1755 }
1118 1756
1119 ev_free (anfds); anfdmax = 0; 1757 ev_free (anfds); anfds = 0; anfdmax = 0;
1120 1758
1121 /* have to use the microsoft-never-gets-it-right macro */ 1759 /* have to use the microsoft-never-gets-it-right macro */
1760 array_free (rfeed, EMPTY);
1122 array_free (fdchange, EMPTY); 1761 array_free (fdchange, EMPTY);
1123 array_free (timer, EMPTY); 1762 array_free (timer, EMPTY);
1124#if EV_PERIODIC_ENABLE 1763#if EV_PERIODIC_ENABLE
1125 array_free (periodic, EMPTY); 1764 array_free (periodic, EMPTY);
1126#endif 1765#endif
1127#if EV_FORK_ENABLE 1766#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY); 1767 array_free (fork, EMPTY);
1129#endif 1768#endif
1130 array_free (prepare, EMPTY); 1769 array_free (prepare, EMPTY);
1131 array_free (check, EMPTY); 1770 array_free (check, EMPTY);
1771#if EV_ASYNC_ENABLE
1772 array_free (async, EMPTY);
1773#endif
1132 1774
1133 backend = 0; 1775 backend = 0;
1134} 1776}
1135 1777
1778#if EV_USE_INOTIFY
1136void inline_size infy_fork (EV_P); 1779inline_size void infy_fork (EV_P);
1780#endif
1137 1781
1138void inline_size 1782inline_size void
1139loop_fork (EV_P) 1783loop_fork (EV_P)
1140{ 1784{
1141#if EV_USE_PORT 1785#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1786 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif 1787#endif
1149#endif 1793#endif
1150#if EV_USE_INOTIFY 1794#if EV_USE_INOTIFY
1151 infy_fork (EV_A); 1795 infy_fork (EV_A);
1152#endif 1796#endif
1153 1797
1154 if (ev_is_active (&sigev)) 1798 if (ev_is_active (&pipe_w))
1155 { 1799 {
1156 /* default loop */ 1800 /* this "locks" the handlers against writing to the pipe */
1801 /* while we modify the fd vars */
1802 sig_pending = 1;
1803#if EV_ASYNC_ENABLE
1804 async_pending = 1;
1805#endif
1157 1806
1158 ev_ref (EV_A); 1807 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev); 1808 ev_io_stop (EV_A_ &pipe_w);
1160 close (sigpipe [0]);
1161 close (sigpipe [1]);
1162 1809
1163 while (pipe (sigpipe)) 1810#if EV_USE_EVENTFD
1164 syserr ("(libev) error creating pipe"); 1811 if (evfd >= 0)
1812 close (evfd);
1813#endif
1165 1814
1815 if (evpipe [0] >= 0)
1816 {
1817 EV_WIN32_CLOSE_FD (evpipe [0]);
1818 EV_WIN32_CLOSE_FD (evpipe [1]);
1819 }
1820
1821#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1166 siginit (EV_A); 1822 evpipe_init (EV_A);
1823 /* now iterate over everything, in case we missed something */
1824 pipecb (EV_A_ &pipe_w, EV_READ);
1825#endif
1167 } 1826 }
1168 1827
1169 postfork = 0; 1828 postfork = 0;
1170} 1829}
1171 1830
1172#if EV_MULTIPLICITY 1831#if EV_MULTIPLICITY
1832
1173struct ev_loop * 1833struct ev_loop *
1174ev_loop_new (unsigned int flags) 1834ev_loop_new (unsigned int flags)
1175{ 1835{
1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1836 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1177 1837
1178 memset (loop, 0, sizeof (struct ev_loop)); 1838 memset (EV_A, 0, sizeof (struct ev_loop));
1179
1180 loop_init (EV_A_ flags); 1839 loop_init (EV_A_ flags);
1181 1840
1182 if (ev_backend (EV_A)) 1841 if (ev_backend (EV_A))
1183 return loop; 1842 return EV_A;
1184 1843
1185 return 0; 1844 return 0;
1186} 1845}
1187 1846
1188void 1847void
1193} 1852}
1194 1853
1195void 1854void
1196ev_loop_fork (EV_P) 1855ev_loop_fork (EV_P)
1197{ 1856{
1198 postfork = 1; 1857 postfork = 1; /* must be in line with ev_default_fork */
1199} 1858}
1859#endif /* multiplicity */
1200 1860
1861#if EV_VERIFY
1862static void noinline
1863verify_watcher (EV_P_ W w)
1864{
1865 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1866
1867 if (w->pending)
1868 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1869}
1870
1871static void noinline
1872verify_heap (EV_P_ ANHE *heap, int N)
1873{
1874 int i;
1875
1876 for (i = HEAP0; i < N + HEAP0; ++i)
1877 {
1878 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1879 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1880 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1881
1882 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1883 }
1884}
1885
1886static void noinline
1887array_verify (EV_P_ W *ws, int cnt)
1888{
1889 while (cnt--)
1890 {
1891 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1892 verify_watcher (EV_A_ ws [cnt]);
1893 }
1894}
1895#endif
1896
1897#if EV_FEATURE_API
1898void
1899ev_verify (EV_P)
1900{
1901#if EV_VERIFY
1902 int i;
1903 WL w;
1904
1905 assert (activecnt >= -1);
1906
1907 assert (fdchangemax >= fdchangecnt);
1908 for (i = 0; i < fdchangecnt; ++i)
1909 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1910
1911 assert (anfdmax >= 0);
1912 for (i = 0; i < anfdmax; ++i)
1913 for (w = anfds [i].head; w; w = w->next)
1914 {
1915 verify_watcher (EV_A_ (W)w);
1916 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1917 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1918 }
1919
1920 assert (timermax >= timercnt);
1921 verify_heap (EV_A_ timers, timercnt);
1922
1923#if EV_PERIODIC_ENABLE
1924 assert (periodicmax >= periodiccnt);
1925 verify_heap (EV_A_ periodics, periodiccnt);
1926#endif
1927
1928 for (i = NUMPRI; i--; )
1929 {
1930 assert (pendingmax [i] >= pendingcnt [i]);
1931#if EV_IDLE_ENABLE
1932 assert (idleall >= 0);
1933 assert (idlemax [i] >= idlecnt [i]);
1934 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1935#endif
1936 }
1937
1938#if EV_FORK_ENABLE
1939 assert (forkmax >= forkcnt);
1940 array_verify (EV_A_ (W *)forks, forkcnt);
1941#endif
1942
1943#if EV_ASYNC_ENABLE
1944 assert (asyncmax >= asynccnt);
1945 array_verify (EV_A_ (W *)asyncs, asynccnt);
1946#endif
1947
1948#if EV_PREPARE_ENABLE
1949 assert (preparemax >= preparecnt);
1950 array_verify (EV_A_ (W *)prepares, preparecnt);
1951#endif
1952
1953#if EV_CHECK_ENABLE
1954 assert (checkmax >= checkcnt);
1955 array_verify (EV_A_ (W *)checks, checkcnt);
1956#endif
1957
1958# if 0
1959#if EV_CHILD_ENABLE
1960 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1961 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962#endif
1963# endif
1964#endif
1965}
1201#endif 1966#endif
1202 1967
1203#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1204struct ev_loop * 1969struct ev_loop *
1205ev_default_loop_init (unsigned int flags) 1970ev_default_loop_init (unsigned int flags)
1206#else 1971#else
1207int 1972int
1208ev_default_loop (unsigned int flags) 1973ev_default_loop (unsigned int flags)
1209#endif 1974#endif
1210{ 1975{
1211 if (sigpipe [0] == sigpipe [1])
1212 if (pipe (sigpipe))
1213 return 0;
1214
1215 if (!ev_default_loop_ptr) 1976 if (!ev_default_loop_ptr)
1216 { 1977 {
1217#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1979 EV_P = ev_default_loop_ptr = &default_loop_struct;
1219#else 1980#else
1220 ev_default_loop_ptr = 1; 1981 ev_default_loop_ptr = 1;
1221#endif 1982#endif
1222 1983
1223 loop_init (EV_A_ flags); 1984 loop_init (EV_A_ flags);
1224 1985
1225 if (ev_backend (EV_A)) 1986 if (ev_backend (EV_A))
1226 { 1987 {
1227 siginit (EV_A); 1988#if EV_CHILD_ENABLE
1228
1229#ifndef _WIN32
1230 ev_signal_init (&childev, childcb, SIGCHLD); 1989 ev_signal_init (&childev, childcb, SIGCHLD);
1231 ev_set_priority (&childev, EV_MAXPRI); 1990 ev_set_priority (&childev, EV_MAXPRI);
1232 ev_signal_start (EV_A_ &childev); 1991 ev_signal_start (EV_A_ &childev);
1233 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1992 ev_unref (EV_A); /* child watcher should not keep loop alive */
1234#endif 1993#endif
1242 2001
1243void 2002void
1244ev_default_destroy (void) 2003ev_default_destroy (void)
1245{ 2004{
1246#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1247 struct ev_loop *loop = ev_default_loop_ptr; 2006 EV_P = ev_default_loop_ptr;
1248#endif 2007#endif
1249 2008
1250#ifndef _WIN32 2009 ev_default_loop_ptr = 0;
2010
2011#if EV_CHILD_ENABLE
1251 ev_ref (EV_A); /* child watcher */ 2012 ev_ref (EV_A); /* child watcher */
1252 ev_signal_stop (EV_A_ &childev); 2013 ev_signal_stop (EV_A_ &childev);
1253#endif 2014#endif
1254 2015
1255 ev_ref (EV_A); /* signal watcher */
1256 ev_io_stop (EV_A_ &sigev);
1257
1258 close (sigpipe [0]); sigpipe [0] = 0;
1259 close (sigpipe [1]); sigpipe [1] = 0;
1260
1261 loop_destroy (EV_A); 2016 loop_destroy (EV_A);
1262} 2017}
1263 2018
1264void 2019void
1265ev_default_fork (void) 2020ev_default_fork (void)
1266{ 2021{
1267#if EV_MULTIPLICITY 2022#if EV_MULTIPLICITY
1268 struct ev_loop *loop = ev_default_loop_ptr; 2023 EV_P = ev_default_loop_ptr;
1269#endif 2024#endif
1270 2025
1271 if (backend) 2026 postfork = 1; /* must be in line with ev_loop_fork */
1272 postfork = 1;
1273} 2027}
1274 2028
1275/*****************************************************************************/ 2029/*****************************************************************************/
1276 2030
1277void 2031void
1278ev_invoke (EV_P_ void *w, int revents) 2032ev_invoke (EV_P_ void *w, int revents)
1279{ 2033{
1280 EV_CB_INVOKE ((W)w, revents); 2034 EV_CB_INVOKE ((W)w, revents);
1281} 2035}
1282 2036
1283void inline_speed 2037unsigned int
1284call_pending (EV_P) 2038ev_pending_count (EV_P)
2039{
2040 int pri;
2041 unsigned int count = 0;
2042
2043 for (pri = NUMPRI; pri--; )
2044 count += pendingcnt [pri];
2045
2046 return count;
2047}
2048
2049void noinline
2050ev_invoke_pending (EV_P)
1285{ 2051{
1286 int pri; 2052 int pri;
1287 2053
1288 for (pri = NUMPRI; pri--; ) 2054 for (pri = NUMPRI; pri--; )
1289 while (pendingcnt [pri]) 2055 while (pendingcnt [pri])
1290 { 2056 {
1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2057 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1292 2058
1293 if (expect_true (p->w))
1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2059 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2060 /* ^ this is no longer true, as pending_w could be here */
1296 2061
1297 p->w->pending = 0; 2062 p->w->pending = 0;
1298 EV_CB_INVOKE (p->w, p->events); 2063 EV_CB_INVOKE (p->w, p->events);
1299 } 2064 EV_FREQUENT_CHECK;
1300 } 2065 }
1301} 2066}
1302 2067
1303void inline_size
1304timers_reify (EV_P)
1305{
1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1307 {
1308 ev_timer *w = (ev_timer *)timers [0];
1309
1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1311
1312 /* first reschedule or stop timer */
1313 if (w->repeat)
1314 {
1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
1321 downheap (timers, timercnt, 0);
1322 }
1323 else
1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1325
1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1327 }
1328}
1329
1330#if EV_PERIODIC_ENABLE
1331void inline_size
1332periodics_reify (EV_P)
1333{
1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1335 {
1336 ev_periodic *w = (ev_periodic *)periodics [0];
1337
1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1339
1340 /* first reschedule or stop timer */
1341 if (w->reschedule_cb)
1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1352 downheap (periodics, periodiccnt, 0);
1353 }
1354 else
1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1356
1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1358 }
1359}
1360
1361static void noinline
1362periodics_reschedule (EV_P)
1363{
1364 int i;
1365
1366 /* adjust periodics after time jump */
1367 for (i = 0; i < periodiccnt; ++i)
1368 {
1369 ev_periodic *w = (ev_periodic *)periodics [i];
1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382
1383#if EV_IDLE_ENABLE 2068#if EV_IDLE_ENABLE
1384void inline_size 2069/* make idle watchers pending. this handles the "call-idle */
2070/* only when higher priorities are idle" logic */
2071inline_size void
1385idle_reify (EV_P) 2072idle_reify (EV_P)
1386{ 2073{
1387 if (expect_false (idleall)) 2074 if (expect_false (idleall))
1388 { 2075 {
1389 int pri; 2076 int pri;
1401 } 2088 }
1402 } 2089 }
1403} 2090}
1404#endif 2091#endif
1405 2092
1406void inline_speed 2093/* make timers pending */
2094inline_size void
2095timers_reify (EV_P)
2096{
2097 EV_FREQUENT_CHECK;
2098
2099 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2100 {
2101 do
2102 {
2103 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104
2105 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106
2107 /* first reschedule or stop timer */
2108 if (w->repeat)
2109 {
2110 ev_at (w) += w->repeat;
2111 if (ev_at (w) < mn_now)
2112 ev_at (w) = mn_now;
2113
2114 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2115
2116 ANHE_at_cache (timers [HEAP0]);
2117 downheap (timers, timercnt, HEAP0);
2118 }
2119 else
2120 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121
2122 EV_FREQUENT_CHECK;
2123 feed_reverse (EV_A_ (W)w);
2124 }
2125 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2126
2127 feed_reverse_done (EV_A_ EV_TIMER);
2128 }
2129}
2130
2131#if EV_PERIODIC_ENABLE
2132/* make periodics pending */
2133inline_size void
2134periodics_reify (EV_P)
2135{
2136 EV_FREQUENT_CHECK;
2137
2138 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2139 {
2140 int feed_count = 0;
2141
2142 do
2143 {
2144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145
2146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2147
2148 /* first reschedule or stop timer */
2149 if (w->reschedule_cb)
2150 {
2151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2152
2153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2154
2155 ANHE_at_cache (periodics [HEAP0]);
2156 downheap (periodics, periodiccnt, HEAP0);
2157 }
2158 else if (w->interval)
2159 {
2160 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161 /* if next trigger time is not sufficiently in the future, put it there */
2162 /* this might happen because of floating point inexactness */
2163 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164 {
2165 ev_at (w) += w->interval;
2166
2167 /* if interval is unreasonably low we might still have a time in the past */
2168 /* so correct this. this will make the periodic very inexact, but the user */
2169 /* has effectively asked to get triggered more often than possible */
2170 if (ev_at (w) < ev_rt_now)
2171 ev_at (w) = ev_rt_now;
2172 }
2173
2174 ANHE_at_cache (periodics [HEAP0]);
2175 downheap (periodics, periodiccnt, HEAP0);
2176 }
2177 else
2178 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179
2180 EV_FREQUENT_CHECK;
2181 feed_reverse (EV_A_ (W)w);
2182 }
2183 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2184
2185 feed_reverse_done (EV_A_ EV_PERIODIC);
2186 }
2187}
2188
2189/* simply recalculate all periodics */
2190/* TODO: maybe ensure that at least one event happens when jumping forward? */
2191static void noinline
2192periodics_reschedule (EV_P)
2193{
2194 int i;
2195
2196 /* adjust periodics after time jump */
2197 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2198 {
2199 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2200
2201 if (w->reschedule_cb)
2202 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2203 else if (w->interval)
2204 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2205
2206 ANHE_at_cache (periodics [i]);
2207 }
2208
2209 reheap (periodics, periodiccnt);
2210}
2211#endif
2212
2213/* adjust all timers by a given offset */
2214static void noinline
2215timers_reschedule (EV_P_ ev_tstamp adjust)
2216{
2217 int i;
2218
2219 for (i = 0; i < timercnt; ++i)
2220 {
2221 ANHE *he = timers + i + HEAP0;
2222 ANHE_w (*he)->at += adjust;
2223 ANHE_at_cache (*he);
2224 }
2225}
2226
2227/* fetch new monotonic and realtime times from the kernel */
2228/* also detect if there was a timejump, and act accordingly */
2229inline_speed void
1407time_update (EV_P_ ev_tstamp max_block) 2230time_update (EV_P_ ev_tstamp max_block)
1408{ 2231{
1409 int i;
1410
1411#if EV_USE_MONOTONIC 2232#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic)) 2233 if (expect_true (have_monotonic))
1413 { 2234 {
2235 int i;
1414 ev_tstamp odiff = rtmn_diff; 2236 ev_tstamp odiff = rtmn_diff;
1415 2237
1416 mn_now = get_clock (); 2238 mn_now = get_clock ();
1417 2239
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2240 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1436 */ 2258 */
1437 for (i = 4; --i; ) 2259 for (i = 4; --i; )
1438 { 2260 {
1439 rtmn_diff = ev_rt_now - mn_now; 2261 rtmn_diff = ev_rt_now - mn_now;
1440 2262
1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2263 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1442 return; /* all is well */ 2264 return; /* all is well */
1443 2265
1444 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1445 mn_now = get_clock (); 2267 mn_now = get_clock ();
1446 now_floor = mn_now; 2268 now_floor = mn_now;
1447 } 2269 }
1448 2270
2271 /* no timer adjustment, as the monotonic clock doesn't jump */
2272 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449# if EV_PERIODIC_ENABLE 2273# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1451# endif 2275# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 } 2276 }
1455 else 2277 else
1456#endif 2278#endif
1457 { 2279 {
1458 ev_rt_now = ev_time (); 2280 ev_rt_now = ev_time ();
1459 2281
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2282 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 { 2283 {
2284 /* adjust timers. this is easy, as the offset is the same for all of them */
2285 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1462#if EV_PERIODIC_ENABLE 2286#if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2287 periodics_reschedule (EV_A);
1464#endif 2288#endif
1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i)
1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1468 } 2289 }
1469 2290
1470 mn_now = ev_rt_now; 2291 mn_now = ev_rt_now;
1471 } 2292 }
1472} 2293}
1473 2294
1474void 2295void
1475ev_ref (EV_P)
1476{
1477 ++activecnt;
1478}
1479
1480void
1481ev_unref (EV_P)
1482{
1483 --activecnt;
1484}
1485
1486static int loop_done;
1487
1488void
1489ev_loop (EV_P_ int flags) 2296ev_loop (EV_P_ int flags)
1490{ 2297{
1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2298#if EV_FEATURE_API
1492 ? EVUNLOOP_ONE 2299 ++loop_depth;
1493 : EVUNLOOP_CANCEL; 2300#endif
1494 2301
2302 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303
2304 loop_done = EVUNLOOP_CANCEL;
2305
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2306 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1496 2307
1497 do 2308 do
1498 { 2309 {
2310#if EV_VERIFY >= 2
2311 ev_verify (EV_A);
2312#endif
2313
1499#ifndef _WIN32 2314#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */ 2315 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid)) 2316 if (expect_false (getpid () != curpid))
1502 { 2317 {
1503 curpid = getpid (); 2318 curpid = getpid ();
1509 /* we might have forked, so queue fork handlers */ 2324 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork)) 2325 if (expect_false (postfork))
1511 if (forkcnt) 2326 if (forkcnt)
1512 { 2327 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2328 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1515 } 2330 }
1516#endif 2331#endif
1517 2332
2333#if EV_PREPARE_ENABLE
1518 /* queue prepare watchers (and execute them) */ 2334 /* queue prepare watchers (and execute them) */
1519 if (expect_false (preparecnt)) 2335 if (expect_false (preparecnt))
1520 { 2336 {
1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2337 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1522 call_pending (EV_A); 2338 EV_INVOKE_PENDING;
1523 } 2339 }
2340#endif
1524 2341
1525 if (expect_false (!activecnt)) 2342 if (expect_false (loop_done))
1526 break; 2343 break;
1527 2344
1528 /* we might have forked, so reify kernel state if necessary */ 2345 /* we might have forked, so reify kernel state if necessary */
1529 if (expect_false (postfork)) 2346 if (expect_false (postfork))
1530 loop_fork (EV_A); 2347 loop_fork (EV_A);
1537 ev_tstamp waittime = 0.; 2354 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.; 2355 ev_tstamp sleeptime = 0.;
1539 2356
1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2357 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1541 { 2358 {
2359 /* remember old timestamp for io_blocktime calculation */
2360 ev_tstamp prev_mn_now = mn_now;
2361
1542 /* update time to cancel out callback processing overhead */ 2362 /* update time to cancel out callback processing overhead */
1543 time_update (EV_A_ 1e100); 2363 time_update (EV_A_ 1e100);
1544 2364
1545 waittime = MAX_BLOCKTIME; 2365 waittime = MAX_BLOCKTIME;
1546 2366
1547 if (timercnt) 2367 if (timercnt)
1548 { 2368 {
1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2369 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1550 if (waittime > to) waittime = to; 2370 if (waittime > to) waittime = to;
1551 } 2371 }
1552 2372
1553#if EV_PERIODIC_ENABLE 2373#if EV_PERIODIC_ENABLE
1554 if (periodiccnt) 2374 if (periodiccnt)
1555 { 2375 {
1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2376 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1557 if (waittime > to) waittime = to; 2377 if (waittime > to) waittime = to;
1558 } 2378 }
1559#endif 2379#endif
1560 2380
2381 /* don't let timeouts decrease the waittime below timeout_blocktime */
1561 if (expect_false (waittime < timeout_blocktime)) 2382 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime; 2383 waittime = timeout_blocktime;
1563 2384
1564 sleeptime = waittime - backend_fudge; 2385 /* extra check because io_blocktime is commonly 0 */
1565
1566 if (expect_true (sleeptime > io_blocktime)) 2386 if (expect_false (io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 { 2387 {
2388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389
2390 if (sleeptime > waittime - backend_fudge)
2391 sleeptime = waittime - backend_fudge;
2392
2393 if (expect_true (sleeptime > 0.))
2394 {
1571 ev_sleep (sleeptime); 2395 ev_sleep (sleeptime);
1572 waittime -= sleeptime; 2396 waittime -= sleeptime;
2397 }
1573 } 2398 }
1574 } 2399 }
1575 2400
2401#if EV_FEATURE_API
1576 ++loop_count; 2402 ++loop_count;
2403#endif
2404 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1577 backend_poll (EV_A_ waittime); 2405 backend_poll (EV_A_ waittime);
2406 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1578 2407
1579 /* update ev_rt_now, do magic */ 2408 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime); 2409 time_update (EV_A_ waittime + sleeptime);
1581 } 2410 }
1582 2411
1589#if EV_IDLE_ENABLE 2418#if EV_IDLE_ENABLE
1590 /* queue idle watchers unless other events are pending */ 2419 /* queue idle watchers unless other events are pending */
1591 idle_reify (EV_A); 2420 idle_reify (EV_A);
1592#endif 2421#endif
1593 2422
2423#if EV_CHECK_ENABLE
1594 /* queue check watchers, to be executed first */ 2424 /* queue check watchers, to be executed first */
1595 if (expect_false (checkcnt)) 2425 if (expect_false (checkcnt))
1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427#endif
1597 2428
1598 call_pending (EV_A); 2429 EV_INVOKE_PENDING;
1599
1600 } 2430 }
1601 while (expect_true (activecnt && !loop_done)); 2431 while (expect_true (
2432 activecnt
2433 && !loop_done
2434 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2435 ));
1602 2436
1603 if (loop_done == EVUNLOOP_ONE) 2437 if (loop_done == EVUNLOOP_ONE)
1604 loop_done = EVUNLOOP_CANCEL; 2438 loop_done = EVUNLOOP_CANCEL;
2439
2440#if EV_FEATURE_API
2441 --loop_depth;
2442#endif
1605} 2443}
1606 2444
1607void 2445void
1608ev_unloop (EV_P_ int how) 2446ev_unloop (EV_P_ int how)
1609{ 2447{
1610 loop_done = how; 2448 loop_done = how;
1611} 2449}
1612 2450
2451void
2452ev_ref (EV_P)
2453{
2454 ++activecnt;
2455}
2456
2457void
2458ev_unref (EV_P)
2459{
2460 --activecnt;
2461}
2462
2463void
2464ev_now_update (EV_P)
2465{
2466 time_update (EV_A_ 1e100);
2467}
2468
2469void
2470ev_suspend (EV_P)
2471{
2472 ev_now_update (EV_A);
2473}
2474
2475void
2476ev_resume (EV_P)
2477{
2478 ev_tstamp mn_prev = mn_now;
2479
2480 ev_now_update (EV_A);
2481 timers_reschedule (EV_A_ mn_now - mn_prev);
2482#if EV_PERIODIC_ENABLE
2483 /* TODO: really do this? */
2484 periodics_reschedule (EV_A);
2485#endif
2486}
2487
1613/*****************************************************************************/ 2488/*****************************************************************************/
2489/* singly-linked list management, used when the expected list length is short */
1614 2490
1615void inline_size 2491inline_size void
1616wlist_add (WL *head, WL elem) 2492wlist_add (WL *head, WL elem)
1617{ 2493{
1618 elem->next = *head; 2494 elem->next = *head;
1619 *head = elem; 2495 *head = elem;
1620} 2496}
1621 2497
1622void inline_size 2498inline_size void
1623wlist_del (WL *head, WL elem) 2499wlist_del (WL *head, WL elem)
1624{ 2500{
1625 while (*head) 2501 while (*head)
1626 { 2502 {
1627 if (*head == elem) 2503 if (expect_true (*head == elem))
1628 { 2504 {
1629 *head = elem->next; 2505 *head = elem->next;
1630 return; 2506 break;
1631 } 2507 }
1632 2508
1633 head = &(*head)->next; 2509 head = &(*head)->next;
1634 } 2510 }
1635} 2511}
1636 2512
1637void inline_speed 2513/* internal, faster, version of ev_clear_pending */
2514inline_speed void
1638clear_pending (EV_P_ W w) 2515clear_pending (EV_P_ W w)
1639{ 2516{
1640 if (w->pending) 2517 if (w->pending)
1641 { 2518 {
1642 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2519 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1643 w->pending = 0; 2520 w->pending = 0;
1644 } 2521 }
1645} 2522}
1646 2523
1647int 2524int
1651 int pending = w_->pending; 2528 int pending = w_->pending;
1652 2529
1653 if (expect_true (pending)) 2530 if (expect_true (pending))
1654 { 2531 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2532 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 p->w = (W)&pending_w;
1656 w_->pending = 0; 2534 w_->pending = 0;
1657 p->w = 0;
1658 return p->events; 2535 return p->events;
1659 } 2536 }
1660 else 2537 else
1661 return 0; 2538 return 0;
1662} 2539}
1663 2540
1664void inline_size 2541inline_size void
1665pri_adjust (EV_P_ W w) 2542pri_adjust (EV_P_ W w)
1666{ 2543{
1667 int pri = w->priority; 2544 int pri = ev_priority (w);
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2545 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2546 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri; 2547 ev_set_priority (w, pri);
1671} 2548}
1672 2549
1673void inline_speed 2550inline_speed void
1674ev_start (EV_P_ W w, int active) 2551ev_start (EV_P_ W w, int active)
1675{ 2552{
1676 pri_adjust (EV_A_ w); 2553 pri_adjust (EV_A_ w);
1677 w->active = active; 2554 w->active = active;
1678 ev_ref (EV_A); 2555 ev_ref (EV_A);
1679} 2556}
1680 2557
1681void inline_size 2558inline_size void
1682ev_stop (EV_P_ W w) 2559ev_stop (EV_P_ W w)
1683{ 2560{
1684 ev_unref (EV_A); 2561 ev_unref (EV_A);
1685 w->active = 0; 2562 w->active = 0;
1686} 2563}
1693 int fd = w->fd; 2570 int fd = w->fd;
1694 2571
1695 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
1696 return; 2573 return;
1697 2574
1698 assert (("ev_io_start called with negative fd", fd >= 0)); 2575 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2577
2578 EV_FREQUENT_CHECK;
1699 2579
1700 ev_start (EV_A_ (W)w, 1); 2580 ev_start (EV_A_ (W)w, 1);
1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2581 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1702 wlist_add (&anfds[fd].head, (WL)w); 2582 wlist_add (&anfds[fd].head, (WL)w);
1703 2583
1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2584 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1705 w->events &= ~EV_IOFDSET; 2585 w->events &= ~EV__IOFDSET;
2586
2587 EV_FREQUENT_CHECK;
1706} 2588}
1707 2589
1708void noinline 2590void noinline
1709ev_io_stop (EV_P_ ev_io *w) 2591ev_io_stop (EV_P_ ev_io *w)
1710{ 2592{
1711 clear_pending (EV_A_ (W)w); 2593 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2594 if (expect_false (!ev_is_active (w)))
1713 return; 2595 return;
1714 2596
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2597 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2598
2599 EV_FREQUENT_CHECK;
1716 2600
1717 wlist_del (&anfds[w->fd].head, (WL)w); 2601 wlist_del (&anfds[w->fd].head, (WL)w);
1718 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1719 2603
1720 fd_change (EV_A_ w->fd, 1); 2604 fd_change (EV_A_ w->fd, 1);
2605
2606 EV_FREQUENT_CHECK;
1721} 2607}
1722 2608
1723void noinline 2609void noinline
1724ev_timer_start (EV_P_ ev_timer *w) 2610ev_timer_start (EV_P_ ev_timer *w)
1725{ 2611{
1726 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
1727 return; 2613 return;
1728 2614
1729 ((WT)w)->at += mn_now; 2615 ev_at (w) += mn_now;
1730 2616
1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2617 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1732 2618
2619 EV_FREQUENT_CHECK;
2620
2621 ++timercnt;
1733 ev_start (EV_A_ (W)w, ++timercnt); 2622 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2623 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1735 timers [timercnt - 1] = (WT)w; 2624 ANHE_w (timers [ev_active (w)]) = (WT)w;
1736 upheap (timers, timercnt - 1); 2625 ANHE_at_cache (timers [ev_active (w)]);
2626 upheap (timers, ev_active (w));
1737 2627
2628 EV_FREQUENT_CHECK;
2629
1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2630 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1739} 2631}
1740 2632
1741void noinline 2633void noinline
1742ev_timer_stop (EV_P_ ev_timer *w) 2634ev_timer_stop (EV_P_ ev_timer *w)
1743{ 2635{
1744 clear_pending (EV_A_ (W)w); 2636 clear_pending (EV_A_ (W)w);
1745 if (expect_false (!ev_is_active (w))) 2637 if (expect_false (!ev_is_active (w)))
1746 return; 2638 return;
1747 2639
1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2640 EV_FREQUENT_CHECK;
1749 2641
1750 { 2642 {
1751 int active = ((W)w)->active; 2643 int active = ev_active (w);
1752 2644
2645 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2646
2647 --timercnt;
2648
1753 if (expect_true (--active < --timercnt)) 2649 if (expect_true (active < timercnt + HEAP0))
1754 { 2650 {
1755 timers [active] = timers [timercnt]; 2651 timers [active] = timers [timercnt + HEAP0];
1756 adjustheap (timers, timercnt, active); 2652 adjustheap (timers, timercnt, active);
1757 } 2653 }
1758 } 2654 }
1759 2655
1760 ((WT)w)->at -= mn_now; 2656 ev_at (w) -= mn_now;
1761 2657
1762 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
1763} 2661}
1764 2662
1765void noinline 2663void noinline
1766ev_timer_again (EV_P_ ev_timer *w) 2664ev_timer_again (EV_P_ ev_timer *w)
1767{ 2665{
2666 EV_FREQUENT_CHECK;
2667
1768 if (ev_is_active (w)) 2668 if (ev_is_active (w))
1769 { 2669 {
1770 if (w->repeat) 2670 if (w->repeat)
1771 { 2671 {
1772 ((WT)w)->at = mn_now + w->repeat; 2672 ev_at (w) = mn_now + w->repeat;
2673 ANHE_at_cache (timers [ev_active (w)]);
1773 adjustheap (timers, timercnt, ((W)w)->active - 1); 2674 adjustheap (timers, timercnt, ev_active (w));
1774 } 2675 }
1775 else 2676 else
1776 ev_timer_stop (EV_A_ w); 2677 ev_timer_stop (EV_A_ w);
1777 } 2678 }
1778 else if (w->repeat) 2679 else if (w->repeat)
1779 { 2680 {
1780 w->at = w->repeat; 2681 ev_at (w) = w->repeat;
1781 ev_timer_start (EV_A_ w); 2682 ev_timer_start (EV_A_ w);
1782 } 2683 }
2684
2685 EV_FREQUENT_CHECK;
2686}
2687
2688ev_tstamp
2689ev_timer_remaining (EV_P_ ev_timer *w)
2690{
2691 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1783} 2692}
1784 2693
1785#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
1786void noinline 2695void noinline
1787ev_periodic_start (EV_P_ ev_periodic *w) 2696ev_periodic_start (EV_P_ ev_periodic *w)
1788{ 2697{
1789 if (expect_false (ev_is_active (w))) 2698 if (expect_false (ev_is_active (w)))
1790 return; 2699 return;
1791 2700
1792 if (w->reschedule_cb) 2701 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2702 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval) 2703 else if (w->interval)
1795 { 2704 {
1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2705 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1797 /* this formula differs from the one in periodic_reify because we do not always round up */ 2706 /* this formula differs from the one in periodic_reify because we do not always round up */
1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2707 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 } 2708 }
1800 else 2709 else
1801 ((WT)w)->at = w->offset; 2710 ev_at (w) = w->offset;
1802 2711
2712 EV_FREQUENT_CHECK;
2713
2714 ++periodiccnt;
1803 ev_start (EV_A_ (W)w, ++periodiccnt); 2715 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2716 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1805 periodics [periodiccnt - 1] = (WT)w; 2717 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1806 upheap (periodics, periodiccnt - 1); 2718 ANHE_at_cache (periodics [ev_active (w)]);
2719 upheap (periodics, ev_active (w));
1807 2720
2721 EV_FREQUENT_CHECK;
2722
1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2723 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1809} 2724}
1810 2725
1811void noinline 2726void noinline
1812ev_periodic_stop (EV_P_ ev_periodic *w) 2727ev_periodic_stop (EV_P_ ev_periodic *w)
1813{ 2728{
1814 clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
1815 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
1816 return; 2731 return;
1817 2732
1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2733 EV_FREQUENT_CHECK;
1819 2734
1820 { 2735 {
1821 int active = ((W)w)->active; 2736 int active = ev_active (w);
1822 2737
2738 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2739
2740 --periodiccnt;
2741
1823 if (expect_true (--active < --periodiccnt)) 2742 if (expect_true (active < periodiccnt + HEAP0))
1824 { 2743 {
1825 periodics [active] = periodics [periodiccnt]; 2744 periodics [active] = periodics [periodiccnt + HEAP0];
1826 adjustheap (periodics, periodiccnt, active); 2745 adjustheap (periodics, periodiccnt, active);
1827 } 2746 }
1828 } 2747 }
1829 2748
1830 ev_stop (EV_A_ (W)w); 2749 ev_stop (EV_A_ (W)w);
2750
2751 EV_FREQUENT_CHECK;
1831} 2752}
1832 2753
1833void noinline 2754void noinline
1834ev_periodic_again (EV_P_ ev_periodic *w) 2755ev_periodic_again (EV_P_ ev_periodic *w)
1835{ 2756{
1841 2762
1842#ifndef SA_RESTART 2763#ifndef SA_RESTART
1843# define SA_RESTART 0 2764# define SA_RESTART 0
1844#endif 2765#endif
1845 2766
2767#if EV_SIGNAL_ENABLE
2768
1846void noinline 2769void noinline
1847ev_signal_start (EV_P_ ev_signal *w) 2770ev_signal_start (EV_P_ ev_signal *w)
1848{ 2771{
1849#if EV_MULTIPLICITY
1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1851#endif
1852 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
1853 return; 2773 return;
1854 2774
1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2775 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1856 2776
2777#if EV_MULTIPLICITY
2778 assert (("libev: a signal must not be attached to two different loops",
2779 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2780
2781 signals [w->signum - 1].loop = EV_A;
2782#endif
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_SIGNALFD
2787 if (sigfd == -2)
1857 { 2788 {
1858#ifndef _WIN32 2789 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1859 sigset_t full, prev; 2790 if (sigfd < 0 && errno == EINVAL)
1860 sigfillset (&full); 2791 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863 2792
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2793 if (sigfd >= 0)
2794 {
2795 fd_intern (sigfd); /* doing it twice will not hurt */
1865 2796
1866#ifndef _WIN32 2797 sigemptyset (&sigfd_set);
1867 sigprocmask (SIG_SETMASK, &prev, 0); 2798
1868#endif 2799 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800 ev_set_priority (&sigfd_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &sigfd_w);
2802 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803 }
1869 } 2804 }
2805
2806 if (sigfd >= 0)
2807 {
2808 /* TODO: check .head */
2809 sigaddset (&sigfd_set, w->signum);
2810 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811
2812 signalfd (sigfd, &sigfd_set, 0);
2813 }
2814#endif
1870 2815
1871 ev_start (EV_A_ (W)w, 1); 2816 ev_start (EV_A_ (W)w, 1);
1872 wlist_add (&signals [w->signum - 1].head, (WL)w); 2817 wlist_add (&signals [w->signum - 1].head, (WL)w);
1873 2818
1874 if (!((WL)w)->next) 2819 if (!((WL)w)->next)
2820# if EV_USE_SIGNALFD
2821 if (sigfd < 0) /*TODO*/
2822# endif
1875 { 2823 {
1876#if _WIN32 2824# ifdef _WIN32
2825 evpipe_init (EV_A);
2826
1877 signal (w->signum, sighandler); 2827 signal (w->signum, ev_sighandler);
1878#else 2828# else
1879 struct sigaction sa; 2829 struct sigaction sa;
2830
2831 evpipe_init (EV_A);
2832
1880 sa.sa_handler = sighandler; 2833 sa.sa_handler = ev_sighandler;
1881 sigfillset (&sa.sa_mask); 2834 sigfillset (&sa.sa_mask);
1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2835 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1883 sigaction (w->signum, &sa, 0); 2836 sigaction (w->signum, &sa, 0);
2837
2838 sigemptyset (&sa.sa_mask);
2839 sigaddset (&sa.sa_mask, w->signum);
2840 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1884#endif 2841#endif
1885 } 2842 }
2843
2844 EV_FREQUENT_CHECK;
1886} 2845}
1887 2846
1888void noinline 2847void noinline
1889ev_signal_stop (EV_P_ ev_signal *w) 2848ev_signal_stop (EV_P_ ev_signal *w)
1890{ 2849{
1891 clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
1892 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
1893 return; 2852 return;
1894 2853
2854 EV_FREQUENT_CHECK;
2855
1895 wlist_del (&signals [w->signum - 1].head, (WL)w); 2856 wlist_del (&signals [w->signum - 1].head, (WL)w);
1896 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
1897 2858
1898 if (!signals [w->signum - 1].head) 2859 if (!signals [w->signum - 1].head)
2860 {
2861#if EV_MULTIPLICITY
2862 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863#endif
2864#if EV_USE_SIGNALFD
2865 if (sigfd >= 0)
2866 {
2867 sigset_t ss;
2868
2869 sigemptyset (&ss);
2870 sigaddset (&ss, w->signum);
2871 sigdelset (&sigfd_set, w->signum);
2872
2873 signalfd (sigfd, &sigfd_set, 0);
2874 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 }
2876 else
2877#endif
1899 signal (w->signum, SIG_DFL); 2878 signal (w->signum, SIG_DFL);
2879 }
2880
2881 EV_FREQUENT_CHECK;
1900} 2882}
2883
2884#endif
2885
2886#if EV_CHILD_ENABLE
1901 2887
1902void 2888void
1903ev_child_start (EV_P_ ev_child *w) 2889ev_child_start (EV_P_ ev_child *w)
1904{ 2890{
1905#if EV_MULTIPLICITY 2891#if EV_MULTIPLICITY
1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2892 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2893#endif
1908 if (expect_false (ev_is_active (w))) 2894 if (expect_false (ev_is_active (w)))
1909 return; 2895 return;
1910 2896
2897 EV_FREQUENT_CHECK;
2898
1911 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901
2902 EV_FREQUENT_CHECK;
1913} 2903}
1914 2904
1915void 2905void
1916ev_child_stop (EV_P_ ev_child *w) 2906ev_child_stop (EV_P_ ev_child *w)
1917{ 2907{
1918 clear_pending (EV_A_ (W)w); 2908 clear_pending (EV_A_ (W)w);
1919 if (expect_false (!ev_is_active (w))) 2909 if (expect_false (!ev_is_active (w)))
1920 return; 2910 return;
1921 2911
2912 EV_FREQUENT_CHECK;
2913
1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2914 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1923 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
1924} 2918}
2919
2920#endif
1925 2921
1926#if EV_STAT_ENABLE 2922#if EV_STAT_ENABLE
1927 2923
1928# ifdef _WIN32 2924# ifdef _WIN32
1929# undef lstat 2925# undef lstat
1930# define lstat(a,b) _stati64 (a,b) 2926# define lstat(a,b) _stati64 (a,b)
1931# endif 2927# endif
1932 2928
1933#define DEF_STAT_INTERVAL 5.0074891 2929#define DEF_STAT_INTERVAL 5.0074891
2930#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1934#define MIN_STAT_INTERVAL 0.1074891 2931#define MIN_STAT_INTERVAL 0.1074891
1935 2932
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2933static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937 2934
1938#if EV_USE_INOTIFY 2935#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192 2936
2937/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1940 2939
1941static void noinline 2940static void noinline
1942infy_add (EV_P_ ev_stat *w) 2941infy_add (EV_P_ ev_stat *w)
1943{ 2942{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2943 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945 2944
1946 if (w->wd < 0) 2945 if (w->wd >= 0)
2946 {
2947 struct statfs sfs;
2948
2949 /* now local changes will be tracked by inotify, but remote changes won't */
2950 /* unless the filesystem is known to be local, we therefore still poll */
2951 /* also do poll on <2.6.25, but with normal frequency */
2952
2953 if (!fs_2625)
2954 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955 else if (!statfs (w->path, &sfs)
2956 && (sfs.f_type == 0x1373 /* devfs */
2957 || sfs.f_type == 0xEF53 /* ext2/3 */
2958 || sfs.f_type == 0x3153464a /* jfs */
2959 || sfs.f_type == 0x52654973 /* reiser3 */
2960 || sfs.f_type == 0x01021994 /* tempfs */
2961 || sfs.f_type == 0x58465342 /* xfs */))
2962 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963 else
2964 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1947 { 2965 }
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2966 else
2967 {
2968 /* can't use inotify, continue to stat */
2969 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1949 2970
1950 /* monitor some parent directory for speedup hints */ 2971 /* if path is not there, monitor some parent directory for speedup hints */
2972 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2973 /* but an efficiency issue only */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2974 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 { 2975 {
1953 char path [4096]; 2976 char path [4096];
1954 strcpy (path, w->path); 2977 strcpy (path, w->path);
1955 2978
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2981 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2982 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960 2983
1961 char *pend = strrchr (path, '/'); 2984 char *pend = strrchr (path, '/');
1962 2985
1963 if (!pend) 2986 if (!pend || pend == path)
1964 break; /* whoops, no '/', complain to your admin */ 2987 break;
1965 2988
1966 *pend = 0; 2989 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask); 2990 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 } 2991 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2992 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 } 2993 }
1971 } 2994 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974 2995
1975 if (w->wd >= 0) 2996 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2997 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998
2999 /* now re-arm timer, if required */
3000 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001 ev_timer_again (EV_A_ &w->timer);
3002 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1977} 3003}
1978 3004
1979static void noinline 3005static void noinline
1980infy_del (EV_P_ ev_stat *w) 3006infy_del (EV_P_ ev_stat *w)
1981{ 3007{
1984 3010
1985 if (wd < 0) 3011 if (wd < 0)
1986 return; 3012 return;
1987 3013
1988 w->wd = -2; 3014 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3015 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w); 3016 wlist_del (&fs_hash [slot].head, (WL)w);
1991 3017
1992 /* remove this watcher, if others are watching it, they will rearm */ 3018 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd); 3019 inotify_rm_watch (fs_fd, wd);
1994} 3020}
1995 3021
1996static void noinline 3022static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3023infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{ 3024{
1999 if (slot < 0) 3025 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */ 3026 /* overflow, need to check for all hash slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3027 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2002 infy_wd (EV_A_ slot, wd, ev); 3028 infy_wd (EV_A_ slot, wd, ev);
2003 else 3029 else
2004 { 3030 {
2005 WL w_; 3031 WL w_;
2006 3032
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3033 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2008 { 3034 {
2009 ev_stat *w = (ev_stat *)w_; 3035 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */ 3036 w_ = w_->next; /* lets us remove this watcher and all before it */
2011 3037
2012 if (w->wd == wd || wd == -1) 3038 if (w->wd == wd || wd == -1)
2013 { 3039 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3040 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 { 3041 {
3042 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2016 w->wd = -1; 3043 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */ 3044 infy_add (EV_A_ w); /* re-add, no matter what */
2018 } 3045 }
2019 3046
2020 stat_timer_cb (EV_A_ &w->timer, 0); 3047 stat_timer_cb (EV_A_ &w->timer, 0);
2025 3052
2026static void 3053static void
2027infy_cb (EV_P_ ev_io *w, int revents) 3054infy_cb (EV_P_ ev_io *w, int revents)
2028{ 3055{
2029 char buf [EV_INOTIFY_BUFSIZE]; 3056 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs; 3057 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf)); 3058 int len = read (fs_fd, buf, sizeof (buf));
2033 3059
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3060 for (ofs = 0; ofs < len; )
3061 {
3062 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3063 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064 ofs += sizeof (struct inotify_event) + ev->len;
3065 }
2036} 3066}
2037 3067
2038void inline_size 3068inline_size unsigned int
3069ev_linux_version (void)
3070{
3071 struct utsname buf;
3072 unsigned int v;
3073 int i;
3074 char *p = buf.release;
3075
3076 if (uname (&buf))
3077 return 0;
3078
3079 for (i = 3+1; --i; )
3080 {
3081 unsigned int c = 0;
3082
3083 for (;;)
3084 {
3085 if (*p >= '0' && *p <= '9')
3086 c = c * 10 + *p++ - '0';
3087 else
3088 {
3089 p += *p == '.';
3090 break;
3091 }
3092 }
3093
3094 v = (v << 8) | c;
3095 }
3096
3097 return v;
3098}
3099
3100inline_size void
3101ev_check_2625 (EV_P)
3102{
3103 /* kernels < 2.6.25 are borked
3104 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105 */
3106 if (ev_linux_version () < 0x020619)
3107 return;
3108
3109 fs_2625 = 1;
3110}
3111
3112inline_size int
3113infy_newfd (void)
3114{
3115#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117 if (fd >= 0)
3118 return fd;
3119#endif
3120 return inotify_init ();
3121}
3122
3123inline_size void
2039infy_init (EV_P) 3124infy_init (EV_P)
2040{ 3125{
2041 if (fs_fd != -2) 3126 if (fs_fd != -2)
2042 return; 3127 return;
2043 3128
3129 fs_fd = -1;
3130
3131 ev_check_2625 (EV_A);
3132
2044 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
2045 3134
2046 if (fs_fd >= 0) 3135 if (fs_fd >= 0)
2047 { 3136 {
3137 fd_intern (fs_fd);
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3138 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI); 3139 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w); 3140 ev_io_start (EV_A_ &fs_w);
3141 ev_unref (EV_A);
2051 } 3142 }
2052} 3143}
2053 3144
2054void inline_size 3145inline_size void
2055infy_fork (EV_P) 3146infy_fork (EV_P)
2056{ 3147{
2057 int slot; 3148 int slot;
2058 3149
2059 if (fs_fd < 0) 3150 if (fs_fd < 0)
2060 return; 3151 return;
2061 3152
3153 ev_ref (EV_A);
3154 ev_io_stop (EV_A_ &fs_w);
2062 close (fs_fd); 3155 close (fs_fd);
2063 fs_fd = inotify_init (); 3156 fs_fd = infy_newfd ();
2064 3157
3158 if (fs_fd >= 0)
3159 {
3160 fd_intern (fs_fd);
3161 ev_io_set (&fs_w, fs_fd, EV_READ);
3162 ev_io_start (EV_A_ &fs_w);
3163 ev_unref (EV_A);
3164 }
3165
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3166 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2066 { 3167 {
2067 WL w_ = fs_hash [slot].head; 3168 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0; 3169 fs_hash [slot].head = 0;
2069 3170
2070 while (w_) 3171 while (w_)
2075 w->wd = -1; 3176 w->wd = -1;
2076 3177
2077 if (fs_fd >= 0) 3178 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */ 3179 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else 3180 else
3181 {
3182 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2080 ev_timer_start (EV_A_ &w->timer); 3184 ev_timer_again (EV_A_ &w->timer);
3185 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186 }
2081 } 3187 }
2082
2083 } 3188 }
2084} 3189}
2085 3190
3191#endif
3192
3193#ifdef _WIN32
3194# define EV_LSTAT(p,b) _stati64 (p, b)
3195#else
3196# define EV_LSTAT(p,b) lstat (p, b)
2086#endif 3197#endif
2087 3198
2088void 3199void
2089ev_stat_stat (EV_P_ ev_stat *w) 3200ev_stat_stat (EV_P_ ev_stat *w)
2090{ 3201{
2097static void noinline 3208static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3209stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{ 3210{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3211 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101 3212
2102 /* we copy this here each the time so that */ 3213 ev_statdata prev = w->attr;
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w); 3214 ev_stat_stat (EV_A_ w);
2106 3215
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3216 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if ( 3217 if (
2109 w->prev.st_dev != w->attr.st_dev 3218 prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino 3219 || prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode 3220 || prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink 3221 || prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid 3222 || prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid 3223 || prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev 3224 || prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size 3225 || prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime 3226 || prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime 3227 || prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime 3228 || prev.st_ctime != w->attr.st_ctime
2120 ) { 3229 ) {
3230 /* we only update w->prev on actual differences */
3231 /* in case we test more often than invoke the callback, */
3232 /* to ensure that prev is always different to attr */
3233 w->prev = prev;
3234
2121 #if EV_USE_INOTIFY 3235 #if EV_USE_INOTIFY
3236 if (fs_fd >= 0)
3237 {
2122 infy_del (EV_A_ w); 3238 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w); 3239 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */ 3240 ev_stat_stat (EV_A_ w); /* avoid race... */
3241 }
2125 #endif 3242 #endif
2126 3243
2127 ev_feed_event (EV_A_ w, EV_STAT); 3244 ev_feed_event (EV_A_ w, EV_STAT);
2128 } 3245 }
2129} 3246}
2132ev_stat_start (EV_P_ ev_stat *w) 3249ev_stat_start (EV_P_ ev_stat *w)
2133{ 3250{
2134 if (expect_false (ev_is_active (w))) 3251 if (expect_false (ev_is_active (w)))
2135 return; 3252 return;
2136 3253
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w); 3254 ev_stat_stat (EV_A_ w);
2142 3255
3256 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2143 if (w->interval < MIN_STAT_INTERVAL) 3257 w->interval = MIN_STAT_INTERVAL;
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145 3258
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3259 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2147 ev_set_priority (&w->timer, ev_priority (w)); 3260 ev_set_priority (&w->timer, ev_priority (w));
2148 3261
2149#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2150 infy_init (EV_A); 3263 infy_init (EV_A);
2151 3264
2152 if (fs_fd >= 0) 3265 if (fs_fd >= 0)
2153 infy_add (EV_A_ w); 3266 infy_add (EV_A_ w);
2154 else 3267 else
2155#endif 3268#endif
3269 {
2156 ev_timer_start (EV_A_ &w->timer); 3270 ev_timer_again (EV_A_ &w->timer);
3271 ev_unref (EV_A);
3272 }
2157 3273
2158 ev_start (EV_A_ (W)w, 1); 3274 ev_start (EV_A_ (W)w, 1);
3275
3276 EV_FREQUENT_CHECK;
2159} 3277}
2160 3278
2161void 3279void
2162ev_stat_stop (EV_P_ ev_stat *w) 3280ev_stat_stop (EV_P_ ev_stat *w)
2163{ 3281{
2164 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2166 return; 3284 return;
2167 3285
3286 EV_FREQUENT_CHECK;
3287
2168#if EV_USE_INOTIFY 3288#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w); 3289 infy_del (EV_A_ w);
2170#endif 3290#endif
3291
3292 if (ev_is_active (&w->timer))
3293 {
3294 ev_ref (EV_A);
2171 ev_timer_stop (EV_A_ &w->timer); 3295 ev_timer_stop (EV_A_ &w->timer);
3296 }
2172 3297
2173 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
3299
3300 EV_FREQUENT_CHECK;
2174} 3301}
2175#endif 3302#endif
2176 3303
2177#if EV_IDLE_ENABLE 3304#if EV_IDLE_ENABLE
2178void 3305void
2180{ 3307{
2181 if (expect_false (ev_is_active (w))) 3308 if (expect_false (ev_is_active (w)))
2182 return; 3309 return;
2183 3310
2184 pri_adjust (EV_A_ (W)w); 3311 pri_adjust (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
2185 3314
2186 { 3315 {
2187 int active = ++idlecnt [ABSPRI (w)]; 3316 int active = ++idlecnt [ABSPRI (w)];
2188 3317
2189 ++idleall; 3318 ++idleall;
2190 ev_start (EV_A_ (W)w, active); 3319 ev_start (EV_A_ (W)w, active);
2191 3320
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3321 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w; 3322 idles [ABSPRI (w)][active - 1] = w;
2194 } 3323 }
3324
3325 EV_FREQUENT_CHECK;
2195} 3326}
2196 3327
2197void 3328void
2198ev_idle_stop (EV_P_ ev_idle *w) 3329ev_idle_stop (EV_P_ ev_idle *w)
2199{ 3330{
2200 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2202 return; 3333 return;
2203 3334
3335 EV_FREQUENT_CHECK;
3336
2204 { 3337 {
2205 int active = ((W)w)->active; 3338 int active = ev_active (w);
2206 3339
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3340 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3341 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2209 3342
2210 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
2211 --idleall; 3344 --idleall;
2212 } 3345 }
2213}
2214#endif
2215 3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_PREPARE_ENABLE
2216void 3352void
2217ev_prepare_start (EV_P_ ev_prepare *w) 3353ev_prepare_start (EV_P_ ev_prepare *w)
2218{ 3354{
2219 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2220 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
2221 3359
2222 ev_start (EV_A_ (W)w, ++preparecnt); 3360 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3361 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w; 3362 prepares [preparecnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
2225} 3365}
2226 3366
2227void 3367void
2228ev_prepare_stop (EV_P_ ev_prepare *w) 3368ev_prepare_stop (EV_P_ ev_prepare *w)
2229{ 3369{
2230 clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
2232 return; 3372 return;
2233 3373
3374 EV_FREQUENT_CHECK;
3375
2234 { 3376 {
2235 int active = ((W)w)->active; 3377 int active = ev_active (w);
3378
2236 prepares [active - 1] = prepares [--preparecnt]; 3379 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active; 3380 ev_active (prepares [active - 1]) = active;
2238 } 3381 }
2239 3382
2240 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
2241}
2242 3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_CHECK_ENABLE
2243void 3390void
2244ev_check_start (EV_P_ ev_check *w) 3391ev_check_start (EV_P_ ev_check *w)
2245{ 3392{
2246 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2247 return; 3394 return;
3395
3396 EV_FREQUENT_CHECK;
2248 3397
2249 ev_start (EV_A_ (W)w, ++checkcnt); 3398 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3399 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w; 3400 checks [checkcnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
2252} 3403}
2253 3404
2254void 3405void
2255ev_check_stop (EV_P_ ev_check *w) 3406ev_check_stop (EV_P_ ev_check *w)
2256{ 3407{
2257 clear_pending (EV_A_ (W)w); 3408 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w))) 3409 if (expect_false (!ev_is_active (w)))
2259 return; 3410 return;
2260 3411
3412 EV_FREQUENT_CHECK;
3413
2261 { 3414 {
2262 int active = ((W)w)->active; 3415 int active = ev_active (w);
3416
2263 checks [active - 1] = checks [--checkcnt]; 3417 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active; 3418 ev_active (checks [active - 1]) = active;
2265 } 3419 }
2266 3420
2267 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2268} 3424}
3425#endif
2269 3426
2270#if EV_EMBED_ENABLE 3427#if EV_EMBED_ENABLE
2271void noinline 3428void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w) 3429ev_embed_sweep (EV_P_ ev_embed *w)
2273{ 3430{
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3446embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{ 3447{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3448 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292 3449
2293 { 3450 {
2294 struct ev_loop *loop = w->other; 3451 EV_P = w->other;
2295 3452
2296 while (fdchangecnt) 3453 while (fdchangecnt)
2297 { 3454 {
2298 fd_reify (EV_A); 3455 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3456 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 } 3457 }
2301 } 3458 }
2302} 3459}
2303 3460
3461static void
3462embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465
3466 ev_embed_stop (EV_A_ w);
3467
3468 {
3469 EV_P = w->other;
3470
3471 ev_loop_fork (EV_A);
3472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 }
3474
3475 ev_embed_start (EV_A_ w);
3476}
3477
2304#if 0 3478#if 0
2305static void 3479static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{ 3481{
2308 ev_idle_stop (EV_A_ idle); 3482 ev_idle_stop (EV_A_ idle);
2314{ 3488{
2315 if (expect_false (ev_is_active (w))) 3489 if (expect_false (ev_is_active (w)))
2316 return; 3490 return;
2317 3491
2318 { 3492 {
2319 struct ev_loop *loop = w->other; 3493 EV_P = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3494 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 } 3496 }
3497
3498 EV_FREQUENT_CHECK;
2323 3499
2324 ev_set_priority (&w->io, ev_priority (w)); 3500 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io); 3501 ev_io_start (EV_A_ &w->io);
2326 3502
2327 ev_prepare_init (&w->prepare, embed_prepare_cb); 3503 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI); 3504 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare); 3505 ev_prepare_start (EV_A_ &w->prepare);
2330 3506
3507 ev_fork_init (&w->fork, embed_fork_cb);
3508 ev_fork_start (EV_A_ &w->fork);
3509
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3510 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332 3511
2333 ev_start (EV_A_ (W)w, 1); 3512 ev_start (EV_A_ (W)w, 1);
3513
3514 EV_FREQUENT_CHECK;
2334} 3515}
2335 3516
2336void 3517void
2337ev_embed_stop (EV_P_ ev_embed *w) 3518ev_embed_stop (EV_P_ ev_embed *w)
2338{ 3519{
2339 clear_pending (EV_A_ (W)w); 3520 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w))) 3521 if (expect_false (!ev_is_active (w)))
2341 return; 3522 return;
2342 3523
3524 EV_FREQUENT_CHECK;
3525
2343 ev_io_stop (EV_A_ &w->io); 3526 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare); 3527 ev_prepare_stop (EV_A_ &w->prepare);
3528 ev_fork_stop (EV_A_ &w->fork);
2345 3529
2346 ev_stop (EV_A_ (W)w); 3530 ev_stop (EV_A_ (W)w);
3531
3532 EV_FREQUENT_CHECK;
2347} 3533}
2348#endif 3534#endif
2349 3535
2350#if EV_FORK_ENABLE 3536#if EV_FORK_ENABLE
2351void 3537void
2352ev_fork_start (EV_P_ ev_fork *w) 3538ev_fork_start (EV_P_ ev_fork *w)
2353{ 3539{
2354 if (expect_false (ev_is_active (w))) 3540 if (expect_false (ev_is_active (w)))
2355 return; 3541 return;
3542
3543 EV_FREQUENT_CHECK;
2356 3544
2357 ev_start (EV_A_ (W)w, ++forkcnt); 3545 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3546 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w; 3547 forks [forkcnt - 1] = w;
3548
3549 EV_FREQUENT_CHECK;
2360} 3550}
2361 3551
2362void 3552void
2363ev_fork_stop (EV_P_ ev_fork *w) 3553ev_fork_stop (EV_P_ ev_fork *w)
2364{ 3554{
2365 clear_pending (EV_A_ (W)w); 3555 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3556 if (expect_false (!ev_is_active (w)))
2367 return; 3557 return;
2368 3558
3559 EV_FREQUENT_CHECK;
3560
2369 { 3561 {
2370 int active = ((W)w)->active; 3562 int active = ev_active (w);
3563
2371 forks [active - 1] = forks [--forkcnt]; 3564 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active; 3565 ev_active (forks [active - 1]) = active;
2373 } 3566 }
2374 3567
2375 ev_stop (EV_A_ (W)w); 3568 ev_stop (EV_A_ (W)w);
3569
3570 EV_FREQUENT_CHECK;
3571}
3572#endif
3573
3574#if EV_ASYNC_ENABLE
3575void
3576ev_async_start (EV_P_ ev_async *w)
3577{
3578 if (expect_false (ev_is_active (w)))
3579 return;
3580
3581 evpipe_init (EV_A);
3582
3583 EV_FREQUENT_CHECK;
3584
3585 ev_start (EV_A_ (W)w, ++asynccnt);
3586 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3587 asyncs [asynccnt - 1] = w;
3588
3589 EV_FREQUENT_CHECK;
3590}
3591
3592void
3593ev_async_stop (EV_P_ ev_async *w)
3594{
3595 clear_pending (EV_A_ (W)w);
3596 if (expect_false (!ev_is_active (w)))
3597 return;
3598
3599 EV_FREQUENT_CHECK;
3600
3601 {
3602 int active = ev_active (w);
3603
3604 asyncs [active - 1] = asyncs [--asynccnt];
3605 ev_active (asyncs [active - 1]) = active;
3606 }
3607
3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
3611}
3612
3613void
3614ev_async_send (EV_P_ ev_async *w)
3615{
3616 w->sent = 1;
3617 evpipe_write (EV_A_ &async_pending);
2376} 3618}
2377#endif 3619#endif
2378 3620
2379/*****************************************************************************/ 3621/*****************************************************************************/
2380 3622
2390once_cb (EV_P_ struct ev_once *once, int revents) 3632once_cb (EV_P_ struct ev_once *once, int revents)
2391{ 3633{
2392 void (*cb)(int revents, void *arg) = once->cb; 3634 void (*cb)(int revents, void *arg) = once->cb;
2393 void *arg = once->arg; 3635 void *arg = once->arg;
2394 3636
2395 ev_io_stop (EV_A_ &once->io); 3637 ev_io_stop (EV_A_ &once->io);
2396 ev_timer_stop (EV_A_ &once->to); 3638 ev_timer_stop (EV_A_ &once->to);
2397 ev_free (once); 3639 ev_free (once);
2398 3640
2399 cb (revents, arg); 3641 cb (revents, arg);
2400} 3642}
2401 3643
2402static void 3644static void
2403once_cb_io (EV_P_ ev_io *w, int revents) 3645once_cb_io (EV_P_ ev_io *w, int revents)
2404{ 3646{
2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3647 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648
3649 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2406} 3650}
2407 3651
2408static void 3652static void
2409once_cb_to (EV_P_ ev_timer *w, int revents) 3653once_cb_to (EV_P_ ev_timer *w, int revents)
2410{ 3654{
2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3655 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656
3657 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2412} 3658}
2413 3659
2414void 3660void
2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3661ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2416{ 3662{
2417 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3663 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2418 3664
2419 if (expect_false (!once)) 3665 if (expect_false (!once))
2420 { 3666 {
2421 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3667 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2422 return; 3668 return;
2423 } 3669 }
2424 3670
2425 once->cb = cb; 3671 once->cb = cb;
2426 once->arg = arg; 3672 once->arg = arg;
2438 ev_timer_set (&once->to, timeout, 0.); 3684 ev_timer_set (&once->to, timeout, 0.);
2439 ev_timer_start (EV_A_ &once->to); 3685 ev_timer_start (EV_A_ &once->to);
2440 } 3686 }
2441} 3687}
2442 3688
3689/*****************************************************************************/
3690
3691#if EV_WALK_ENABLE
3692void
3693ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694{
3695 int i, j;
3696 ev_watcher_list *wl, *wn;
3697
3698 if (types & (EV_IO | EV_EMBED))
3699 for (i = 0; i < anfdmax; ++i)
3700 for (wl = anfds [i].head; wl; )
3701 {
3702 wn = wl->next;
3703
3704#if EV_EMBED_ENABLE
3705 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706 {
3707 if (types & EV_EMBED)
3708 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709 }
3710 else
3711#endif
3712#if EV_USE_INOTIFY
3713 if (ev_cb ((ev_io *)wl) == infy_cb)
3714 ;
3715 else
3716#endif
3717 if ((ev_io *)wl != &pipe_w)
3718 if (types & EV_IO)
3719 cb (EV_A_ EV_IO, wl);
3720
3721 wl = wn;
3722 }
3723
3724 if (types & (EV_TIMER | EV_STAT))
3725 for (i = timercnt + HEAP0; i-- > HEAP0; )
3726#if EV_STAT_ENABLE
3727 /*TODO: timer is not always active*/
3728 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729 {
3730 if (types & EV_STAT)
3731 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732 }
3733 else
3734#endif
3735 if (types & EV_TIMER)
3736 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737
3738#if EV_PERIODIC_ENABLE
3739 if (types & EV_PERIODIC)
3740 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742#endif
3743
3744#if EV_IDLE_ENABLE
3745 if (types & EV_IDLE)
3746 for (j = NUMPRI; i--; )
3747 for (i = idlecnt [j]; i--; )
3748 cb (EV_A_ EV_IDLE, idles [j][i]);
3749#endif
3750
3751#if EV_FORK_ENABLE
3752 if (types & EV_FORK)
3753 for (i = forkcnt; i--; )
3754 if (ev_cb (forks [i]) != embed_fork_cb)
3755 cb (EV_A_ EV_FORK, forks [i]);
3756#endif
3757
3758#if EV_ASYNC_ENABLE
3759 if (types & EV_ASYNC)
3760 for (i = asynccnt; i--; )
3761 cb (EV_A_ EV_ASYNC, asyncs [i]);
3762#endif
3763
3764#if EV_PREPARE_ENABLE
3765 if (types & EV_PREPARE)
3766 for (i = preparecnt; i--; )
3767# if EV_EMBED_ENABLE
3768 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769# endif
3770 cb (EV_A_ EV_PREPARE, prepares [i]);
3771#endif
3772
3773#if EV_CHECK_ENABLE
3774 if (types & EV_CHECK)
3775 for (i = checkcnt; i--; )
3776 cb (EV_A_ EV_CHECK, checks [i]);
3777#endif
3778
3779#if EV_SIGNAL_ENABLE
3780 if (types & EV_SIGNAL)
3781 for (i = 0; i < EV_NSIG - 1; ++i)
3782 for (wl = signals [i].head; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_SIGNAL, wl);
3786 wl = wn;
3787 }
3788#endif
3789
3790#if EV_CHILD_ENABLE
3791 if (types & EV_CHILD)
3792 for (i = (EV_PID_HASHSIZE); i--; )
3793 for (wl = childs [i]; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_CHILD, wl);
3797 wl = wn;
3798 }
3799#endif
3800/* EV_STAT 0x00001000 /* stat data changed */
3801/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802}
3803#endif
3804
2443#if EV_MULTIPLICITY 3805#if EV_MULTIPLICITY
2444 #include "ev_wrap.h" 3806 #include "ev_wrap.h"
2445#endif 3807#endif
2446 3808
2447#ifdef __cplusplus 3809#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines