ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC vs.
Revision 1.367 by root, Tue Jan 11 02:15:58 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
51# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
54# endif 65# endif
55# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
57# endif 68# endif
58# else 69# else
59# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
61# endif 72# endif
62# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
64# endif 75# endif
65# endif 76# endif
66 77
78# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
70# else 82# else
83# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
73# endif 94# endif
74 95
96# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 99# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 100# else
101# undef EV_USE_POLL
87# define EV_USE_POLL 0 102# define EV_USE_POLL 0
88# endif
89# endif 103# endif
90 104
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
94# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
97# endif 112# endif
98 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
105# endif 121# endif
106 122
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
110# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
113# endif 130# endif
114 131
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
121# endif 139# endif
122 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
123#endif 159#endif
124 160
125#include <math.h> 161#include <math.h>
126#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
127#include <fcntl.h> 164#include <fcntl.h>
128#include <stddef.h> 165#include <stddef.h>
129 166
130#include <stdio.h> 167#include <stdio.h>
131 168
132#include <assert.h> 169#include <assert.h>
133#include <errno.h> 170#include <errno.h>
134#include <sys/types.h> 171#include <sys/types.h>
135#include <time.h> 172#include <time.h>
173#include <limits.h>
136 174
137#include <signal.h> 175#include <signal.h>
138 176
139#ifdef EV_H 177#ifdef EV_H
140# include EV_H 178# include EV_H
141#else 179#else
142# include "ev.h" 180# include "ev.h"
143#endif 181#endif
182
183EV_CPP(extern "C" {)
144 184
145#ifndef _WIN32 185#ifndef _WIN32
146# include <sys/time.h> 186# include <sys/time.h>
147# include <sys/wait.h> 187# include <sys/wait.h>
148# include <unistd.h> 188# include <unistd.h>
149#else 189#else
190# include <io.h>
150# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 192# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
154# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
155#endif 242# endif
156 243#endif
157/**/
158 244
159#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
160# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
161#endif 251#endif
162 252
163#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 255#endif
166 256
167#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
168# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
169#endif 263#endif
170 264
171#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 267#endif
174 268
175#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
176# ifdef _WIN32 270# ifdef _WIN32
177# define EV_USE_POLL 0 271# define EV_USE_POLL 0
178# else 272# else
179# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 274# endif
181#endif 275#endif
182 276
183#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
184# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
185#endif 283#endif
186 284
187#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
189#endif 287#endif
191#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 290# define EV_USE_PORT 0
193#endif 291#endif
194 292
195#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
196# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
197#endif 299#endif
198 300
199#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 312# else
203# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
204# endif 314# endif
205#endif 315#endif
206 316
207#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 320# else
211# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
212# endif 322# endif
213#endif 323#endif
214 324
215/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
216 364
217#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
220#endif 368#endif
234# include <sys/select.h> 382# include <sys/select.h>
235# endif 383# endif
236#endif 384#endif
237 385
238#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
239# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
240#endif 394#endif
241 395
242#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 397# include <winsock.h>
244#endif 398#endif
245 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
246/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
247 445
248/* 446/*
249 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
255 */ 453 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 455
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
261 461
262#if __GNUC__ >= 4 462#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
265#else 465#else
266# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
267# define noinline 467# define noinline
268# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 469# define inline
270# endif 470# endif
271#endif 471#endif
272 472
273#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 475#define inline_size static inline
276 476
277#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
278# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
279#else 487#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
285 490
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
288 493
289typedef ev_watcher *W; 494typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
292 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
293#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 519#endif
298 520
299#ifdef _WIN32 521#ifdef _WIN32
300# include "ev_win32.c" 522# include "ev_win32.c"
301#endif 523#endif
302 524
303/*****************************************************************************/ 525/*****************************************************************************/
304 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
305static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
306 578
307void 579void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 581{
310 syserr_cb = cb; 582 syserr_cb = cb;
311} 583}
312 584
313static void noinline 585static void noinline
314syserr (const char *msg) 586ev_syserr (const char *msg)
315{ 587{
316 if (!msg) 588 if (!msg)
317 msg = "(libev) system error"; 589 msg = "(libev) system error";
318 590
319 if (syserr_cb) 591 if (syserr_cb)
320 syserr_cb (msg); 592 syserr_cb (msg);
321 else 593 else
322 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
323 perror (msg); 601 perror (msg);
602#endif
324 abort (); 603 abort ();
325 } 604 }
326} 605}
327 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
328static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 627
330void 628void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 630{
333 alloc = cb; 631 alloc = cb;
334} 632}
335 633
336inline_speed void * 634inline_speed void *
337ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
338{ 636{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
340 638
341 if (!ptr && size) 639 if (!ptr && size)
342 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
344 abort (); 646 abort ();
345 } 647 }
346 648
347 return ptr; 649 return ptr;
348} 650}
350#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
352 654
353/*****************************************************************************/ 655/*****************************************************************************/
354 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
355typedef struct 661typedef struct
356{ 662{
357 WL head; 663 WL head;
358 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
360#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 672 SOCKET handle;
362#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
363} ANFD; 677} ANFD;
364 678
679/* stores the pending event set for a given watcher */
365typedef struct 680typedef struct
366{ 681{
367 W w; 682 W w;
368 int events; 683 int events; /* the pending event set for the given watcher */
369} ANPENDING; 684} ANPENDING;
370 685
371#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
372typedef struct 688typedef struct
373{ 689{
374 WL head; 690 WL head;
375} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
376#endif 712#endif
377 713
378#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
379 715
380 struct ev_loop 716 struct ev_loop
399 735
400 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
401 737
402#endif 738#endif
403 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
404/*****************************************************************************/ 752/*****************************************************************************/
405 753
754#ifndef EV_HAVE_EV_TIME
406ev_tstamp 755ev_tstamp
407ev_time (void) 756ev_time (void)
408{ 757{
409#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
410 struct timespec ts; 761 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 764 }
765#endif
766
414 struct timeval tv; 767 struct timeval tv;
415 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 770}
771#endif
419 772
420ev_tstamp inline_size 773inline_size ev_tstamp
421get_clock (void) 774get_clock (void)
422{ 775{
423#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
425 { 778 {
446 if (delay > 0.) 799 if (delay > 0.)
447 { 800 {
448#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
449 struct timespec ts; 802 struct timespec ts;
450 803
451 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
455#elif defined(_WIN32) 806#elif defined(_WIN32)
456 Sleep (delay * 1e3); 807 Sleep ((unsigned long)(delay * 1e3));
457#else 808#else
458 struct timeval tv; 809 struct timeval tv;
459 810
460 tv.tv_sec = (time_t)delay; 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 812 /* something not guaranteed by newer posix versions, but guaranteed */
462 813 /* by older ones */
814 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
464#endif 816#endif
465 } 817 }
466} 818}
467 819
468/*****************************************************************************/ 820/*****************************************************************************/
469 821
470int inline_size 822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
471array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
472{ 828{
473 int ncur = cur + 1; 829 int ncur = cur + 1;
474 830
475 do 831 do
476 ncur <<= 1; 832 ncur <<= 1;
477 while (cnt > ncur); 833 while (cnt > ncur);
478 834
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 837 {
482 ncur *= elem; 838 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 840 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 841 ncur /= elem;
486 } 842 }
487 843
488 return ncur; 844 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
493{ 849{
494 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
496} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 856
498#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
500 { \ 859 { \
501 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 873 }
515#endif 874#endif
516 875
517#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 878
520/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
521 886
522void noinline 887void noinline
523ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
524{ 889{
525 W w_ = (W)w; 890 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 899 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 900 pendings [pri][w_->pending - 1].events = revents;
536 } 901 }
537} 902}
538 903
539void inline_speed 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 921{
542 int i; 922 int i;
543 923
544 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
546} 926}
547 927
548/*****************************************************************************/ 928/*****************************************************************************/
549 929
550void inline_size 930inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
565{ 932{
566 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
567 ev_io *w; 934 ev_io *w;
568 935
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 940 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
575 } 942 }
576} 943}
577 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
578void 956void
579ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 958{
581 if (fd >= 0 && fd < anfdmax) 959 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
583} 961}
584 962
585void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
586fd_reify (EV_P) 966fd_reify (EV_P)
587{ 967{
588 int i; 968 int i;
589 969
590 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
591 { 971 {
592 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
594 ev_io *w; 974 ev_io *w;
595 975
596 unsigned char events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
597 978
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 980
601#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
602 if (events) 982 if (o_reify & EV__IOFDSET)
603 { 983 {
604 unsigned long argp; 984 unsigned long arg;
605 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
607 } 988 }
608#endif 989#endif
609 990
991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
610 { 992 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
614 anfd->reify = 0;
615 anfd->events = events; 993 anfd->events = 0;
616 994
617 if (o_events != events || o_reify & EV_IOFDSET) 995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
619 }
620 } 1004 }
621 1005
622 fdchangecnt = 0; 1006 fdchangecnt = 0;
623} 1007}
624 1008
625void inline_size 1009/* something about the given fd changed */
1010inline_size void
626fd_change (EV_P_ int fd, int flags) 1011fd_change (EV_P_ int fd, int flags)
627{ 1012{
628 unsigned char reify = anfds [fd].reify; 1013 unsigned char reify = anfds [fd].reify;
629 anfds [fd].reify |= flags; 1014 anfds [fd].reify |= flags;
630 1015
634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
635 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
636 } 1021 }
637} 1022}
638 1023
639void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
640fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
641{ 1027{
642 ev_io *w; 1028 ev_io *w;
643 1029
644 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
646 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
648 } 1034 }
649} 1035}
650 1036
651int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
652fd_valid (int fd) 1039fd_valid (int fd)
653{ 1040{
654#ifdef _WIN32 1041#ifdef _WIN32
655 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
656#else 1043#else
657 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
658#endif 1045#endif
659} 1046}
660 1047
664{ 1051{
665 int fd; 1052 int fd;
666 1053
667 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
668 if (anfds [fd].events) 1055 if (anfds [fd].events)
669 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
670 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
671} 1058}
672 1059
673/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
674static void noinline 1061static void noinline
678 1065
679 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
680 if (anfds [fd].events) 1067 if (anfds [fd].events)
681 { 1068 {
682 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
683 return; 1070 break;
684 } 1071 }
685} 1072}
686 1073
687/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
688static void noinline 1075static void noinline
692 1079
693 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
694 if (anfds [fd].events) 1081 if (anfds [fd].events)
695 { 1082 {
696 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
1084 anfds [fd].emask = 0;
697 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
698 } 1086 }
699} 1087}
700 1088
701/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
702 1090/* this is not fork-safe */
703void inline_speed 1091inline_speed void
704upheap (WT *heap, int k)
705{
706 WT w = heap [k];
707
708 while (k)
709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
715 heap [k] = heap [p];
716 ((W)heap [k])->active = k + 1;
717 k = p;
718 }
719
720 heap [k] = w;
721 ((W)heap [k])->active = k + 1;
722}
723
724void inline_speed
725downheap (WT *heap, int N, int k)
726{
727 WT w = heap [k];
728
729 for (;;)
730 {
731 int c = (k << 1) + 1;
732
733 if (c >= N)
734 break;
735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
742 heap [k] = heap [c];
743 ((W)heap [k])->active = k + 1;
744
745 k = c;
746 }
747
748 heap [k] = w;
749 ((W)heap [k])->active = k + 1;
750}
751
752void inline_size
753adjustheap (WT *heap, int N, int k)
754{
755 upheap (heap, k);
756 downheap (heap, N, k);
757}
758
759/*****************************************************************************/
760
761typedef struct
762{
763 WL head;
764 sig_atomic_t volatile gotsig;
765} ANSIG;
766
767static ANSIG *signals;
768static int signalmax;
769
770static int sigpipe [2];
771static sig_atomic_t volatile gotsig;
772static ev_io sigev;
773
774void inline_size
775signals_init (ANSIG *base, int count)
776{
777 while (count--)
778 {
779 base->head = 0;
780 base->gotsig = 0;
781
782 ++base;
783 }
784}
785
786static void
787sighandler (int signum)
788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
793 signals [signum - 1].gotsig = 1;
794
795 if (!gotsig)
796 {
797 int old_errno = errno;
798 gotsig = 1;
799 write (sigpipe [1], &signum, 1);
800 errno = old_errno;
801 }
802}
803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
824static void
825sigcb (EV_P_ ev_io *iow, int revents)
826{
827 int signum;
828
829 read (sigpipe [0], &revents, 1);
830 gotsig = 0;
831
832 for (signum = signalmax; signum--; )
833 if (signals [signum].gotsig)
834 ev_feed_signal_event (EV_A_ signum + 1);
835}
836
837void inline_speed
838fd_intern (int fd) 1092fd_intern (int fd)
839{ 1093{
840#ifdef _WIN32 1094#ifdef _WIN32
841 int arg = 1; 1095 unsigned long arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
843#else 1097#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif 1100#endif
847} 1101}
848 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
849static void noinline 1266static void noinline
850siginit (EV_P) 1267evpipe_init (EV_P)
851{ 1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
852 fd_intern (sigpipe [0]); 1288 fd_intern (evpipe [0]);
853 fd_intern (sigpipe [1]); 1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
854 1292
855 ev_io_set (&sigev, sigpipe [0], EV_READ);
856 ev_io_start (EV_A_ &sigev); 1293 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1329static void
1330pipecb (EV_P_ ev_io *iow, int revents)
1331{
1332 int i;
1333
1334#if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
858} 1370}
859 1371
860/*****************************************************************************/ 1372/*****************************************************************************/
861 1373
1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1388static void
1389ev_sighandler (int signum)
1390{
1391#ifdef _WIN32
1392 signal (signum, ev_sighandler);
1393#endif
1394
1395 ev_feed_signal (signum);
1396}
1397
1398void noinline
1399ev_feed_signal_event (EV_P_ int signum)
1400{
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408#if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414#endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420}
1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1444/*****************************************************************************/
1445
1446#if EV_CHILD_ENABLE
862static WL childs [EV_PID_HASHSIZE]; 1447static WL childs [EV_PID_HASHSIZE];
863 1448
864#ifndef _WIN32
865
866static ev_signal childev; 1449static ev_signal childev;
867 1450
868void inline_speed 1451#ifndef WIFCONTINUED
1452# define WIFCONTINUED(status) 0
1453#endif
1454
1455/* handle a single child status event */
1456inline_speed void
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1457child_reap (EV_P_ int chain, int pid, int status)
870{ 1458{
871 ev_child *w; 1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
872 1461
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
874 if (w->pid == pid || !w->pid) 1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
875 { 1466 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
877 w->rpid = pid; 1468 w->rpid = pid;
878 w->rstatus = status; 1469 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 } 1471 }
1472 }
881} 1473}
882 1474
883#ifndef WCONTINUED 1475#ifndef WCONTINUED
884# define WCONTINUED 0 1476# define WCONTINUED 0
885#endif 1477#endif
886 1478
1479/* called on sigchld etc., calls waitpid */
887static void 1480static void
888childcb (EV_P_ ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
889{ 1482{
890 int pid, status; 1483 int pid, status;
891 1484
894 if (!WCONTINUED 1487 if (!WCONTINUED
895 || errno != EINVAL 1488 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return; 1490 return;
898 1491
899 /* make sure we are called again until all childs have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */ 1493 /* we need to do it this way so that the callback gets called before we continue */
901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
902 1495
903 child_reap (EV_A_ sw, pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
904 if (EV_PID_HASHSIZE > 1) 1497 if ((EV_PID_HASHSIZE) > 1)
905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
906} 1499}
907 1500
908#endif 1501#endif
909 1502
910/*****************************************************************************/ 1503/*****************************************************************************/
911 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
912#if EV_USE_PORT 1508#if EV_USE_PORT
913# include "ev_port.c" 1509# include "ev_port.c"
914#endif 1510#endif
915#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
916# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
972 /* kqueue is borked on everything but netbsd apparently */ 1568 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */ 1569 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE; 1570 flags &= ~EVBACKEND_KQUEUE;
975#endif 1571#endif
976#ifdef __APPLE__ 1572#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation 1573 /* only select works correctly on that "unix-certified" platform */
978 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
979#endif 1579#endif
980 1580
981 return flags; 1581 return flags;
982} 1582}
983 1583
985ev_embeddable_backends (void) 1585ev_embeddable_backends (void)
986{ 1586{
987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
988 1588
989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */ 1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
991 flags &= ~EVBACKEND_EPOLL; 1591 flags &= ~EVBACKEND_EPOLL;
992 1592
993 return flags; 1593 return flags;
994} 1594}
995 1595
996unsigned int 1596unsigned int
997ev_backend (EV_P) 1597ev_backend (EV_P)
998{ 1598{
999 return backend; 1599 return backend;
1000} 1600}
1001 1601
1602#if EV_FEATURE_API
1002unsigned int 1603unsigned int
1003ev_loop_count (EV_P) 1604ev_iteration (EV_P)
1004{ 1605{
1005 return loop_count; 1606 return loop_count;
1006} 1607}
1007 1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1008void 1615void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{ 1617{
1011 io_blocktime = interval; 1618 io_blocktime = interval;
1012} 1619}
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{ 1623{
1017 timeout_blocktime = interval; 1624 timeout_blocktime = interval;
1018} 1625}
1019 1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
1020static void noinline 1652static void noinline
1021loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
1022{ 1654{
1023 if (!backend) 1655 if (!backend)
1024 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
1025#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
1026 { 1671 {
1027 struct timespec ts; 1672 struct timespec ts;
1673
1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1029 have_monotonic = 1; 1675 have_monotonic = 1;
1030 } 1676 }
1031#endif 1677#endif
1032
1033 ev_rt_now = ev_time ();
1034 mn_now = get_clock ();
1035 now_floor = mn_now;
1036 rtmn_diff = ev_rt_now - mn_now;
1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040 1678
1041 /* pid check not overridable via env */ 1679 /* pid check not overridable via env */
1042#ifndef _WIN32 1680#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK) 1681 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid (); 1682 curpid = getpid ();
1047 if (!(flags & EVFLAG_NOENV) 1685 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure () 1686 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS")) 1687 && getenv ("LIBEV_FLAGS"))
1050 flags = atoi (getenv ("LIBEV_FLAGS")); 1688 flags = atoi (getenv ("LIBEV_FLAGS"));
1051 1689
1052 if (!(flags & 0x0000ffffUL)) 1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1697
1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1706#if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708#endif
1709#if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711#endif
1712
1713 if (!(flags & EVBACKEND_MASK))
1053 flags |= ev_recommended_backends (); 1714 flags |= ev_recommended_backends ();
1054 1715
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY 1716#if EV_USE_IOCP
1058 fs_fd = -2; 1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1059#endif 1718#endif
1060
1061#if EV_USE_PORT 1719#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif 1721#endif
1064#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1072#endif 1730#endif
1073#if EV_USE_SELECT 1731#if EV_USE_SELECT
1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1075#endif 1733#endif
1076 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1077 ev_init (&sigev, sigcb); 1738 ev_init (&pipe_w, pipecb);
1078 ev_set_priority (&sigev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
1079 } 1741 }
1080} 1742}
1081 1743
1082static void noinline 1744/* free up a loop structure */
1745void
1083loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
1084{ 1747{
1085 int i; 1748 int i;
1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778#if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781#endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
1086 1794
1087#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1088 if (fs_fd >= 0) 1796 if (fs_fd >= 0)
1089 close (fs_fd); 1797 close (fs_fd);
1090#endif 1798#endif
1091 1799
1092 if (backend_fd >= 0) 1800 if (backend_fd >= 0)
1093 close (backend_fd); 1801 close (backend_fd);
1094 1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
1095#if EV_USE_PORT 1806#if EV_USE_PORT
1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1097#endif 1808#endif
1098#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
1099 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1114#if EV_IDLE_ENABLE 1825#if EV_IDLE_ENABLE
1115 array_free (idle, [i]); 1826 array_free (idle, [i]);
1116#endif 1827#endif
1117 } 1828 }
1118 1829
1119 ev_free (anfds); anfdmax = 0; 1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1120 1831
1121 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1122 array_free (fdchange, EMPTY); 1834 array_free (fdchange, EMPTY);
1123 array_free (timer, EMPTY); 1835 array_free (timer, EMPTY);
1124#if EV_PERIODIC_ENABLE 1836#if EV_PERIODIC_ENABLE
1125 array_free (periodic, EMPTY); 1837 array_free (periodic, EMPTY);
1126#endif 1838#endif
1127#if EV_FORK_ENABLE 1839#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY); 1840 array_free (fork, EMPTY);
1129#endif 1841#endif
1842#if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844#endif
1130 array_free (prepare, EMPTY); 1845 array_free (prepare, EMPTY);
1131 array_free (check, EMPTY); 1846 array_free (check, EMPTY);
1847#if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849#endif
1132 1850
1133 backend = 0; 1851 backend = 0;
1134}
1135 1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1861}
1862
1863#if EV_USE_INOTIFY
1136void inline_size infy_fork (EV_P); 1864inline_size void infy_fork (EV_P);
1865#endif
1137 1866
1138void inline_size 1867inline_size void
1139loop_fork (EV_P) 1868loop_fork (EV_P)
1140{ 1869{
1141#if EV_USE_PORT 1870#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif 1872#endif
1149#endif 1878#endif
1150#if EV_USE_INOTIFY 1879#if EV_USE_INOTIFY
1151 infy_fork (EV_A); 1880 infy_fork (EV_A);
1152#endif 1881#endif
1153 1882
1154 if (ev_is_active (&sigev)) 1883 if (ev_is_active (&pipe_w))
1155 { 1884 {
1156 /* default loop */ 1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890#endif
1157 1891
1158 ev_ref (EV_A); 1892 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev); 1893 ev_io_stop (EV_A_ &pipe_w);
1160 close (sigpipe [0]);
1161 close (sigpipe [1]);
1162 1894
1163 while (pipe (sigpipe)) 1895#if EV_USE_EVENTFD
1164 syserr ("(libev) error creating pipe"); 1896 if (evfd >= 0)
1897 close (evfd);
1898#endif
1165 1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1166 siginit (EV_A); 1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1167 } 1911 }
1168 1912
1169 postfork = 0; 1913 postfork = 0;
1170} 1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
1171 2046
1172#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1173struct ev_loop * 2048struct ev_loop *
1174ev_loop_new (unsigned int flags)
1175{
1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1177
1178 memset (loop, 0, sizeof (struct ev_loop));
1179
1180 loop_init (EV_A_ flags);
1181
1182 if (ev_backend (EV_A))
1183 return loop;
1184
1185 return 0;
1186}
1187
1188void
1189ev_loop_destroy (EV_P)
1190{
1191 loop_destroy (EV_A);
1192 ev_free (loop);
1193}
1194
1195void
1196ev_loop_fork (EV_P)
1197{
1198 postfork = 1;
1199}
1200
1201#endif
1202
1203#if EV_MULTIPLICITY
1204struct ev_loop *
1205ev_default_loop_init (unsigned int flags)
1206#else 2049#else
1207int 2050int
2051#endif
1208ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
1209#endif
1210{ 2053{
1211 if (sigpipe [0] == sigpipe [1])
1212 if (pipe (sigpipe))
1213 return 0;
1214
1215 if (!ev_default_loop_ptr) 2054 if (!ev_default_loop_ptr)
1216 { 2055 {
1217#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
1219#else 2058#else
1220 ev_default_loop_ptr = 1; 2059 ev_default_loop_ptr = 1;
1221#endif 2060#endif
1222 2061
1223 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
1224 2063
1225 if (ev_backend (EV_A)) 2064 if (ev_backend (EV_A))
1226 { 2065 {
1227 siginit (EV_A); 2066#if EV_CHILD_ENABLE
1228
1229#ifndef _WIN32
1230 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
1231 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
1232 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
1233 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
1234#endif 2071#endif
1239 2076
1240 return ev_default_loop_ptr; 2077 return ev_default_loop_ptr;
1241} 2078}
1242 2079
1243void 2080void
1244ev_default_destroy (void) 2081ev_loop_fork (EV_P)
1245{ 2082{
1246#if EV_MULTIPLICITY 2083 postfork = 1; /* must be in line with ev_default_fork */
1247 struct ev_loop *loop = ev_default_loop_ptr;
1248#endif
1249
1250#ifndef _WIN32
1251 ev_ref (EV_A); /* child watcher */
1252 ev_signal_stop (EV_A_ &childev);
1253#endif
1254
1255 ev_ref (EV_A); /* signal watcher */
1256 ev_io_stop (EV_A_ &sigev);
1257
1258 close (sigpipe [0]); sigpipe [0] = 0;
1259 close (sigpipe [1]); sigpipe [1] = 0;
1260
1261 loop_destroy (EV_A);
1262}
1263
1264void
1265ev_default_fork (void)
1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = ev_default_loop_ptr;
1269#endif
1270
1271 if (backend)
1272 postfork = 1;
1273} 2084}
1274 2085
1275/*****************************************************************************/ 2086/*****************************************************************************/
1276 2087
1277void 2088void
1278ev_invoke (EV_P_ void *w, int revents) 2089ev_invoke (EV_P_ void *w, int revents)
1279{ 2090{
1280 EV_CB_INVOKE ((W)w, revents); 2091 EV_CB_INVOKE ((W)w, revents);
1281} 2092}
1282 2093
1283void inline_speed 2094unsigned int
1284call_pending (EV_P) 2095ev_pending_count (EV_P)
2096{
2097 int pri;
2098 unsigned int count = 0;
2099
2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104}
2105
2106void noinline
2107ev_invoke_pending (EV_P)
1285{ 2108{
1286 int pri; 2109 int pri;
1287 2110
1288 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1289 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
1290 { 2113 {
1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1292 2115
1293 if (expect_true (p->w))
1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
1297 p->w->pending = 0; 2116 p->w->pending = 0;
1298 EV_CB_INVOKE (p->w, p->events); 2117 EV_CB_INVOKE (p->w, p->events);
1299 } 2118 EV_FREQUENT_CHECK;
1300 } 2119 }
1301} 2120}
1302 2121
1303void inline_size
1304timers_reify (EV_P)
1305{
1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1307 {
1308 ev_timer *w = (ev_timer *)timers [0];
1309
1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1311
1312 /* first reschedule or stop timer */
1313 if (w->repeat)
1314 {
1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
1321 downheap (timers, timercnt, 0);
1322 }
1323 else
1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1325
1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1327 }
1328}
1329
1330#if EV_PERIODIC_ENABLE
1331void inline_size
1332periodics_reify (EV_P)
1333{
1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1335 {
1336 ev_periodic *w = (ev_periodic *)periodics [0];
1337
1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1339
1340 /* first reschedule or stop timer */
1341 if (w->reschedule_cb)
1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1352 downheap (periodics, periodiccnt, 0);
1353 }
1354 else
1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1356
1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1358 }
1359}
1360
1361static void noinline
1362periodics_reschedule (EV_P)
1363{
1364 int i;
1365
1366 /* adjust periodics after time jump */
1367 for (i = 0; i < periodiccnt; ++i)
1368 {
1369 ev_periodic *w = (ev_periodic *)periodics [i];
1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382
1383#if EV_IDLE_ENABLE 2122#if EV_IDLE_ENABLE
1384void inline_size 2123/* make idle watchers pending. this handles the "call-idle */
2124/* only when higher priorities are idle" logic */
2125inline_size void
1385idle_reify (EV_P) 2126idle_reify (EV_P)
1386{ 2127{
1387 if (expect_false (idleall)) 2128 if (expect_false (idleall))
1388 { 2129 {
1389 int pri; 2130 int pri;
1401 } 2142 }
1402 } 2143 }
1403} 2144}
1404#endif 2145#endif
1405 2146
1406void inline_speed 2147/* make timers pending */
2148inline_size void
2149timers_reify (EV_P)
2150{
2151 EV_FREQUENT_CHECK;
2152
2153 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2154 {
2155 do
2156 {
2157 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2158
2159 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2160
2161 /* first reschedule or stop timer */
2162 if (w->repeat)
2163 {
2164 ev_at (w) += w->repeat;
2165 if (ev_at (w) < mn_now)
2166 ev_at (w) = mn_now;
2167
2168 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2169
2170 ANHE_at_cache (timers [HEAP0]);
2171 downheap (timers, timercnt, HEAP0);
2172 }
2173 else
2174 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2175
2176 EV_FREQUENT_CHECK;
2177 feed_reverse (EV_A_ (W)w);
2178 }
2179 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2180
2181 feed_reverse_done (EV_A_ EV_TIMER);
2182 }
2183}
2184
2185#if EV_PERIODIC_ENABLE
2186/* make periodics pending */
2187inline_size void
2188periodics_reify (EV_P)
2189{
2190 EV_FREQUENT_CHECK;
2191
2192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2193 {
2194 int feed_count = 0;
2195
2196 do
2197 {
2198 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2199
2200 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2201
2202 /* first reschedule or stop timer */
2203 if (w->reschedule_cb)
2204 {
2205 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2206
2207 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2208
2209 ANHE_at_cache (periodics [HEAP0]);
2210 downheap (periodics, periodiccnt, HEAP0);
2211 }
2212 else if (w->interval)
2213 {
2214 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2215 /* if next trigger time is not sufficiently in the future, put it there */
2216 /* this might happen because of floating point inexactness */
2217 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2218 {
2219 ev_at (w) += w->interval;
2220
2221 /* if interval is unreasonably low we might still have a time in the past */
2222 /* so correct this. this will make the periodic very inexact, but the user */
2223 /* has effectively asked to get triggered more often than possible */
2224 if (ev_at (w) < ev_rt_now)
2225 ev_at (w) = ev_rt_now;
2226 }
2227
2228 ANHE_at_cache (periodics [HEAP0]);
2229 downheap (periodics, periodiccnt, HEAP0);
2230 }
2231 else
2232 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2233
2234 EV_FREQUENT_CHECK;
2235 feed_reverse (EV_A_ (W)w);
2236 }
2237 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2238
2239 feed_reverse_done (EV_A_ EV_PERIODIC);
2240 }
2241}
2242
2243/* simply recalculate all periodics */
2244/* TODO: maybe ensure that at least one event happens when jumping forward? */
2245static void noinline
2246periodics_reschedule (EV_P)
2247{
2248 int i;
2249
2250 /* adjust periodics after time jump */
2251 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2252 {
2253 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2254
2255 if (w->reschedule_cb)
2256 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2257 else if (w->interval)
2258 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2259
2260 ANHE_at_cache (periodics [i]);
2261 }
2262
2263 reheap (periodics, periodiccnt);
2264}
2265#endif
2266
2267/* adjust all timers by a given offset */
2268static void noinline
2269timers_reschedule (EV_P_ ev_tstamp adjust)
2270{
2271 int i;
2272
2273 for (i = 0; i < timercnt; ++i)
2274 {
2275 ANHE *he = timers + i + HEAP0;
2276 ANHE_w (*he)->at += adjust;
2277 ANHE_at_cache (*he);
2278 }
2279}
2280
2281/* fetch new monotonic and realtime times from the kernel */
2282/* also detect if there was a timejump, and act accordingly */
2283inline_speed void
1407time_update (EV_P_ ev_tstamp max_block) 2284time_update (EV_P_ ev_tstamp max_block)
1408{ 2285{
1409 int i;
1410
1411#if EV_USE_MONOTONIC 2286#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic)) 2287 if (expect_true (have_monotonic))
1413 { 2288 {
2289 int i;
1414 ev_tstamp odiff = rtmn_diff; 2290 ev_tstamp odiff = rtmn_diff;
1415 2291
1416 mn_now = get_clock (); 2292 mn_now = get_clock ();
1417 2293
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2294 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1436 */ 2312 */
1437 for (i = 4; --i; ) 2313 for (i = 4; --i; )
1438 { 2314 {
1439 rtmn_diff = ev_rt_now - mn_now; 2315 rtmn_diff = ev_rt_now - mn_now;
1440 2316
1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2317 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1442 return; /* all is well */ 2318 return; /* all is well */
1443 2319
1444 ev_rt_now = ev_time (); 2320 ev_rt_now = ev_time ();
1445 mn_now = get_clock (); 2321 mn_now = get_clock ();
1446 now_floor = mn_now; 2322 now_floor = mn_now;
1447 } 2323 }
1448 2324
2325 /* no timer adjustment, as the monotonic clock doesn't jump */
2326 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449# if EV_PERIODIC_ENABLE 2327# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A); 2328 periodics_reschedule (EV_A);
1451# endif 2329# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 } 2330 }
1455 else 2331 else
1456#endif 2332#endif
1457 { 2333 {
1458 ev_rt_now = ev_time (); 2334 ev_rt_now = ev_time ();
1459 2335
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2336 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 { 2337 {
2338 /* adjust timers. this is easy, as the offset is the same for all of them */
2339 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1462#if EV_PERIODIC_ENABLE 2340#if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2341 periodics_reschedule (EV_A);
1464#endif 2342#endif
1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i)
1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1468 } 2343 }
1469 2344
1470 mn_now = ev_rt_now; 2345 mn_now = ev_rt_now;
1471 } 2346 }
1472} 2347}
1473 2348
1474void 2349void
1475ev_ref (EV_P)
1476{
1477 ++activecnt;
1478}
1479
1480void
1481ev_unref (EV_P)
1482{
1483 --activecnt;
1484}
1485
1486static int loop_done;
1487
1488void
1489ev_loop (EV_P_ int flags) 2350ev_run (EV_P_ int flags)
1490{ 2351{
1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2352#if EV_FEATURE_API
1492 ? EVUNLOOP_ONE 2353 ++loop_depth;
1493 : EVUNLOOP_CANCEL; 2354#endif
1494 2355
2356 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2357
2358 loop_done = EVBREAK_CANCEL;
2359
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2360 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1496 2361
1497 do 2362 do
1498 { 2363 {
2364#if EV_VERIFY >= 2
2365 ev_verify (EV_A);
2366#endif
2367
1499#ifndef _WIN32 2368#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */ 2369 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid)) 2370 if (expect_false (getpid () != curpid))
1502 { 2371 {
1503 curpid = getpid (); 2372 curpid = getpid ();
1509 /* we might have forked, so queue fork handlers */ 2378 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1511 if (forkcnt) 2380 if (forkcnt)
1512 { 2381 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2382 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A); 2383 EV_INVOKE_PENDING;
1515 } 2384 }
1516#endif 2385#endif
1517 2386
2387#if EV_PREPARE_ENABLE
1518 /* queue prepare watchers (and execute them) */ 2388 /* queue prepare watchers (and execute them) */
1519 if (expect_false (preparecnt)) 2389 if (expect_false (preparecnt))
1520 { 2390 {
1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2391 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1522 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1523 } 2393 }
2394#endif
1524 2395
1525 if (expect_false (!activecnt)) 2396 if (expect_false (loop_done))
1526 break; 2397 break;
1527 2398
1528 /* we might have forked, so reify kernel state if necessary */ 2399 /* we might have forked, so reify kernel state if necessary */
1529 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1530 loop_fork (EV_A); 2401 loop_fork (EV_A);
1535 /* calculate blocking time */ 2406 /* calculate blocking time */
1536 { 2407 {
1537 ev_tstamp waittime = 0.; 2408 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.; 2409 ev_tstamp sleeptime = 0.;
1539 2410
2411 /* remember old timestamp for io_blocktime calculation */
2412 ev_tstamp prev_mn_now = mn_now;
2413
2414 /* update time to cancel out callback processing overhead */
2415 time_update (EV_A_ 1e100);
2416
1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2417 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1541 { 2418 {
1542 /* update time to cancel out callback processing overhead */
1543 time_update (EV_A_ 1e100);
1544
1545 waittime = MAX_BLOCKTIME; 2419 waittime = MAX_BLOCKTIME;
1546 2420
1547 if (timercnt) 2421 if (timercnt)
1548 { 2422 {
1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2423 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1550 if (waittime > to) waittime = to; 2424 if (waittime > to) waittime = to;
1551 } 2425 }
1552 2426
1553#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1554 if (periodiccnt) 2428 if (periodiccnt)
1555 { 2429 {
1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2430 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1557 if (waittime > to) waittime = to; 2431 if (waittime > to) waittime = to;
1558 } 2432 }
1559#endif 2433#endif
1560 2434
2435 /* don't let timeouts decrease the waittime below timeout_blocktime */
1561 if (expect_false (waittime < timeout_blocktime)) 2436 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime; 2437 waittime = timeout_blocktime;
1563 2438
1564 sleeptime = waittime - backend_fudge; 2439 /* extra check because io_blocktime is commonly 0 */
1565
1566 if (expect_true (sleeptime > io_blocktime)) 2440 if (expect_false (io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 { 2441 {
2442 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2443
2444 if (sleeptime > waittime - backend_fudge)
2445 sleeptime = waittime - backend_fudge;
2446
2447 if (expect_true (sleeptime > 0.))
2448 {
1571 ev_sleep (sleeptime); 2449 ev_sleep (sleeptime);
1572 waittime -= sleeptime; 2450 waittime -= sleeptime;
2451 }
1573 } 2452 }
1574 } 2453 }
1575 2454
2455#if EV_FEATURE_API
1576 ++loop_count; 2456 ++loop_count;
2457#endif
2458 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1577 backend_poll (EV_A_ waittime); 2459 backend_poll (EV_A_ waittime);
2460 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1578 2461
1579 /* update ev_rt_now, do magic */ 2462 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime); 2463 time_update (EV_A_ waittime + sleeptime);
1581 } 2464 }
1582 2465
1589#if EV_IDLE_ENABLE 2472#if EV_IDLE_ENABLE
1590 /* queue idle watchers unless other events are pending */ 2473 /* queue idle watchers unless other events are pending */
1591 idle_reify (EV_A); 2474 idle_reify (EV_A);
1592#endif 2475#endif
1593 2476
2477#if EV_CHECK_ENABLE
1594 /* queue check watchers, to be executed first */ 2478 /* queue check watchers, to be executed first */
1595 if (expect_false (checkcnt)) 2479 if (expect_false (checkcnt))
1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2480 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2481#endif
1597 2482
1598 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1599
1600 } 2484 }
1601 while (expect_true (activecnt && !loop_done)); 2485 while (expect_true (
2486 activecnt
2487 && !loop_done
2488 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2489 ));
1602 2490
1603 if (loop_done == EVUNLOOP_ONE) 2491 if (loop_done == EVBREAK_ONE)
1604 loop_done = EVUNLOOP_CANCEL; 2492 loop_done = EVBREAK_CANCEL;
1605}
1606 2493
2494#if EV_FEATURE_API
2495 --loop_depth;
2496#endif
2497}
2498
1607void 2499void
1608ev_unloop (EV_P_ int how) 2500ev_break (EV_P_ int how)
1609{ 2501{
1610 loop_done = how; 2502 loop_done = how;
1611} 2503}
1612 2504
2505void
2506ev_ref (EV_P)
2507{
2508 ++activecnt;
2509}
2510
2511void
2512ev_unref (EV_P)
2513{
2514 --activecnt;
2515}
2516
2517void
2518ev_now_update (EV_P)
2519{
2520 time_update (EV_A_ 1e100);
2521}
2522
2523void
2524ev_suspend (EV_P)
2525{
2526 ev_now_update (EV_A);
2527}
2528
2529void
2530ev_resume (EV_P)
2531{
2532 ev_tstamp mn_prev = mn_now;
2533
2534 ev_now_update (EV_A);
2535 timers_reschedule (EV_A_ mn_now - mn_prev);
2536#if EV_PERIODIC_ENABLE
2537 /* TODO: really do this? */
2538 periodics_reschedule (EV_A);
2539#endif
2540}
2541
1613/*****************************************************************************/ 2542/*****************************************************************************/
2543/* singly-linked list management, used when the expected list length is short */
1614 2544
1615void inline_size 2545inline_size void
1616wlist_add (WL *head, WL elem) 2546wlist_add (WL *head, WL elem)
1617{ 2547{
1618 elem->next = *head; 2548 elem->next = *head;
1619 *head = elem; 2549 *head = elem;
1620} 2550}
1621 2551
1622void inline_size 2552inline_size void
1623wlist_del (WL *head, WL elem) 2553wlist_del (WL *head, WL elem)
1624{ 2554{
1625 while (*head) 2555 while (*head)
1626 { 2556 {
1627 if (*head == elem) 2557 if (expect_true (*head == elem))
1628 { 2558 {
1629 *head = elem->next; 2559 *head = elem->next;
1630 return; 2560 break;
1631 } 2561 }
1632 2562
1633 head = &(*head)->next; 2563 head = &(*head)->next;
1634 } 2564 }
1635} 2565}
1636 2566
1637void inline_speed 2567/* internal, faster, version of ev_clear_pending */
2568inline_speed void
1638clear_pending (EV_P_ W w) 2569clear_pending (EV_P_ W w)
1639{ 2570{
1640 if (w->pending) 2571 if (w->pending)
1641 { 2572 {
1642 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2573 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1643 w->pending = 0; 2574 w->pending = 0;
1644 } 2575 }
1645} 2576}
1646 2577
1647int 2578int
1651 int pending = w_->pending; 2582 int pending = w_->pending;
1652 2583
1653 if (expect_true (pending)) 2584 if (expect_true (pending))
1654 { 2585 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2586 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2587 p->w = (W)&pending_w;
1656 w_->pending = 0; 2588 w_->pending = 0;
1657 p->w = 0;
1658 return p->events; 2589 return p->events;
1659 } 2590 }
1660 else 2591 else
1661 return 0; 2592 return 0;
1662} 2593}
1663 2594
1664void inline_size 2595inline_size void
1665pri_adjust (EV_P_ W w) 2596pri_adjust (EV_P_ W w)
1666{ 2597{
1667 int pri = w->priority; 2598 int pri = ev_priority (w);
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2599 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2600 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri; 2601 ev_set_priority (w, pri);
1671} 2602}
1672 2603
1673void inline_speed 2604inline_speed void
1674ev_start (EV_P_ W w, int active) 2605ev_start (EV_P_ W w, int active)
1675{ 2606{
1676 pri_adjust (EV_A_ w); 2607 pri_adjust (EV_A_ w);
1677 w->active = active; 2608 w->active = active;
1678 ev_ref (EV_A); 2609 ev_ref (EV_A);
1679} 2610}
1680 2611
1681void inline_size 2612inline_size void
1682ev_stop (EV_P_ W w) 2613ev_stop (EV_P_ W w)
1683{ 2614{
1684 ev_unref (EV_A); 2615 ev_unref (EV_A);
1685 w->active = 0; 2616 w->active = 0;
1686} 2617}
1693 int fd = w->fd; 2624 int fd = w->fd;
1694 2625
1695 if (expect_false (ev_is_active (w))) 2626 if (expect_false (ev_is_active (w)))
1696 return; 2627 return;
1697 2628
1698 assert (("ev_io_start called with negative fd", fd >= 0)); 2629 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2630 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2631
2632 EV_FREQUENT_CHECK;
1699 2633
1700 ev_start (EV_A_ (W)w, 1); 2634 ev_start (EV_A_ (W)w, 1);
1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2635 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1702 wlist_add (&anfds[fd].head, (WL)w); 2636 wlist_add (&anfds[fd].head, (WL)w);
1703 2637
1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2638 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1705 w->events &= ~EV_IOFDSET; 2639 w->events &= ~EV__IOFDSET;
2640
2641 EV_FREQUENT_CHECK;
1706} 2642}
1707 2643
1708void noinline 2644void noinline
1709ev_io_stop (EV_P_ ev_io *w) 2645ev_io_stop (EV_P_ ev_io *w)
1710{ 2646{
1711 clear_pending (EV_A_ (W)w); 2647 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2648 if (expect_false (!ev_is_active (w)))
1713 return; 2649 return;
1714 2650
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2651 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2652
2653 EV_FREQUENT_CHECK;
1716 2654
1717 wlist_del (&anfds[w->fd].head, (WL)w); 2655 wlist_del (&anfds[w->fd].head, (WL)w);
1718 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
1719 2657
1720 fd_change (EV_A_ w->fd, 1); 2658 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2659
2660 EV_FREQUENT_CHECK;
1721} 2661}
1722 2662
1723void noinline 2663void noinline
1724ev_timer_start (EV_P_ ev_timer *w) 2664ev_timer_start (EV_P_ ev_timer *w)
1725{ 2665{
1726 if (expect_false (ev_is_active (w))) 2666 if (expect_false (ev_is_active (w)))
1727 return; 2667 return;
1728 2668
1729 ((WT)w)->at += mn_now; 2669 ev_at (w) += mn_now;
1730 2670
1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2671 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1732 2672
2673 EV_FREQUENT_CHECK;
2674
2675 ++timercnt;
1733 ev_start (EV_A_ (W)w, ++timercnt); 2676 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2677 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1735 timers [timercnt - 1] = (WT)w; 2678 ANHE_w (timers [ev_active (w)]) = (WT)w;
1736 upheap (timers, timercnt - 1); 2679 ANHE_at_cache (timers [ev_active (w)]);
2680 upheap (timers, ev_active (w));
1737 2681
2682 EV_FREQUENT_CHECK;
2683
1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2684 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1739} 2685}
1740 2686
1741void noinline 2687void noinline
1742ev_timer_stop (EV_P_ ev_timer *w) 2688ev_timer_stop (EV_P_ ev_timer *w)
1743{ 2689{
1744 clear_pending (EV_A_ (W)w); 2690 clear_pending (EV_A_ (W)w);
1745 if (expect_false (!ev_is_active (w))) 2691 if (expect_false (!ev_is_active (w)))
1746 return; 2692 return;
1747 2693
1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2694 EV_FREQUENT_CHECK;
1749 2695
1750 { 2696 {
1751 int active = ((W)w)->active; 2697 int active = ev_active (w);
1752 2698
2699 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2700
2701 --timercnt;
2702
1753 if (expect_true (--active < --timercnt)) 2703 if (expect_true (active < timercnt + HEAP0))
1754 { 2704 {
1755 timers [active] = timers [timercnt]; 2705 timers [active] = timers [timercnt + HEAP0];
1756 adjustheap (timers, timercnt, active); 2706 adjustheap (timers, timercnt, active);
1757 } 2707 }
1758 } 2708 }
1759 2709
1760 ((WT)w)->at -= mn_now; 2710 ev_at (w) -= mn_now;
1761 2711
1762 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
1763} 2715}
1764 2716
1765void noinline 2717void noinline
1766ev_timer_again (EV_P_ ev_timer *w) 2718ev_timer_again (EV_P_ ev_timer *w)
1767{ 2719{
2720 EV_FREQUENT_CHECK;
2721
1768 if (ev_is_active (w)) 2722 if (ev_is_active (w))
1769 { 2723 {
1770 if (w->repeat) 2724 if (w->repeat)
1771 { 2725 {
1772 ((WT)w)->at = mn_now + w->repeat; 2726 ev_at (w) = mn_now + w->repeat;
2727 ANHE_at_cache (timers [ev_active (w)]);
1773 adjustheap (timers, timercnt, ((W)w)->active - 1); 2728 adjustheap (timers, timercnt, ev_active (w));
1774 } 2729 }
1775 else 2730 else
1776 ev_timer_stop (EV_A_ w); 2731 ev_timer_stop (EV_A_ w);
1777 } 2732 }
1778 else if (w->repeat) 2733 else if (w->repeat)
1779 { 2734 {
1780 w->at = w->repeat; 2735 ev_at (w) = w->repeat;
1781 ev_timer_start (EV_A_ w); 2736 ev_timer_start (EV_A_ w);
1782 } 2737 }
2738
2739 EV_FREQUENT_CHECK;
2740}
2741
2742ev_tstamp
2743ev_timer_remaining (EV_P_ ev_timer *w)
2744{
2745 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1783} 2746}
1784 2747
1785#if EV_PERIODIC_ENABLE 2748#if EV_PERIODIC_ENABLE
1786void noinline 2749void noinline
1787ev_periodic_start (EV_P_ ev_periodic *w) 2750ev_periodic_start (EV_P_ ev_periodic *w)
1788{ 2751{
1789 if (expect_false (ev_is_active (w))) 2752 if (expect_false (ev_is_active (w)))
1790 return; 2753 return;
1791 2754
1792 if (w->reschedule_cb) 2755 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2756 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval) 2757 else if (w->interval)
1795 { 2758 {
1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2759 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1797 /* this formula differs from the one in periodic_reify because we do not always round up */ 2760 /* this formula differs from the one in periodic_reify because we do not always round up */
1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2761 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 } 2762 }
1800 else 2763 else
1801 ((WT)w)->at = w->offset; 2764 ev_at (w) = w->offset;
1802 2765
2766 EV_FREQUENT_CHECK;
2767
2768 ++periodiccnt;
1803 ev_start (EV_A_ (W)w, ++periodiccnt); 2769 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2770 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1805 periodics [periodiccnt - 1] = (WT)w; 2771 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1806 upheap (periodics, periodiccnt - 1); 2772 ANHE_at_cache (periodics [ev_active (w)]);
2773 upheap (periodics, ev_active (w));
1807 2774
2775 EV_FREQUENT_CHECK;
2776
1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2777 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1809} 2778}
1810 2779
1811void noinline 2780void noinline
1812ev_periodic_stop (EV_P_ ev_periodic *w) 2781ev_periodic_stop (EV_P_ ev_periodic *w)
1813{ 2782{
1814 clear_pending (EV_A_ (W)w); 2783 clear_pending (EV_A_ (W)w);
1815 if (expect_false (!ev_is_active (w))) 2784 if (expect_false (!ev_is_active (w)))
1816 return; 2785 return;
1817 2786
1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2787 EV_FREQUENT_CHECK;
1819 2788
1820 { 2789 {
1821 int active = ((W)w)->active; 2790 int active = ev_active (w);
1822 2791
2792 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2793
2794 --periodiccnt;
2795
1823 if (expect_true (--active < --periodiccnt)) 2796 if (expect_true (active < periodiccnt + HEAP0))
1824 { 2797 {
1825 periodics [active] = periodics [periodiccnt]; 2798 periodics [active] = periodics [periodiccnt + HEAP0];
1826 adjustheap (periodics, periodiccnt, active); 2799 adjustheap (periodics, periodiccnt, active);
1827 } 2800 }
1828 } 2801 }
1829 2802
1830 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
1831} 2806}
1832 2807
1833void noinline 2808void noinline
1834ev_periodic_again (EV_P_ ev_periodic *w) 2809ev_periodic_again (EV_P_ ev_periodic *w)
1835{ 2810{
1841 2816
1842#ifndef SA_RESTART 2817#ifndef SA_RESTART
1843# define SA_RESTART 0 2818# define SA_RESTART 0
1844#endif 2819#endif
1845 2820
2821#if EV_SIGNAL_ENABLE
2822
1846void noinline 2823void noinline
1847ev_signal_start (EV_P_ ev_signal *w) 2824ev_signal_start (EV_P_ ev_signal *w)
1848{ 2825{
1849#if EV_MULTIPLICITY
1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1851#endif
1852 if (expect_false (ev_is_active (w))) 2826 if (expect_false (ev_is_active (w)))
1853 return; 2827 return;
1854 2828
1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2829 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1856 2830
2831#if EV_MULTIPLICITY
2832 assert (("libev: a signal must not be attached to two different loops",
2833 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2834
2835 signals [w->signum - 1].loop = EV_A;
2836#endif
2837
2838 EV_FREQUENT_CHECK;
2839
2840#if EV_USE_SIGNALFD
2841 if (sigfd == -2)
1857 { 2842 {
1858#ifndef _WIN32 2843 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1859 sigset_t full, prev; 2844 if (sigfd < 0 && errno == EINVAL)
1860 sigfillset (&full); 2845 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863 2846
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2847 if (sigfd >= 0)
2848 {
2849 fd_intern (sigfd); /* doing it twice will not hurt */
1865 2850
1866#ifndef _WIN32 2851 sigemptyset (&sigfd_set);
1867 sigprocmask (SIG_SETMASK, &prev, 0); 2852
1868#endif 2853 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2854 ev_set_priority (&sigfd_w, EV_MAXPRI);
2855 ev_io_start (EV_A_ &sigfd_w);
2856 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2857 }
1869 } 2858 }
2859
2860 if (sigfd >= 0)
2861 {
2862 /* TODO: check .head */
2863 sigaddset (&sigfd_set, w->signum);
2864 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2865
2866 signalfd (sigfd, &sigfd_set, 0);
2867 }
2868#endif
1870 2869
1871 ev_start (EV_A_ (W)w, 1); 2870 ev_start (EV_A_ (W)w, 1);
1872 wlist_add (&signals [w->signum - 1].head, (WL)w); 2871 wlist_add (&signals [w->signum - 1].head, (WL)w);
1873 2872
1874 if (!((WL)w)->next) 2873 if (!((WL)w)->next)
2874# if EV_USE_SIGNALFD
2875 if (sigfd < 0) /*TODO*/
2876# endif
1875 { 2877 {
1876#if _WIN32 2878# ifdef _WIN32
2879 evpipe_init (EV_A);
2880
1877 signal (w->signum, sighandler); 2881 signal (w->signum, ev_sighandler);
1878#else 2882# else
1879 struct sigaction sa; 2883 struct sigaction sa;
2884
2885 evpipe_init (EV_A);
2886
1880 sa.sa_handler = sighandler; 2887 sa.sa_handler = ev_sighandler;
1881 sigfillset (&sa.sa_mask); 2888 sigfillset (&sa.sa_mask);
1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2889 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1883 sigaction (w->signum, &sa, 0); 2890 sigaction (w->signum, &sa, 0);
2891
2892 if (origflags & EVFLAG_NOSIGMASK)
2893 {
2894 sigemptyset (&sa.sa_mask);
2895 sigaddset (&sa.sa_mask, w->signum);
2896 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2897 }
1884#endif 2898#endif
1885 } 2899 }
2900
2901 EV_FREQUENT_CHECK;
1886} 2902}
1887 2903
1888void noinline 2904void noinline
1889ev_signal_stop (EV_P_ ev_signal *w) 2905ev_signal_stop (EV_P_ ev_signal *w)
1890{ 2906{
1891 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
1892 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
1893 return; 2909 return;
1894 2910
2911 EV_FREQUENT_CHECK;
2912
1895 wlist_del (&signals [w->signum - 1].head, (WL)w); 2913 wlist_del (&signals [w->signum - 1].head, (WL)w);
1896 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
1897 2915
1898 if (!signals [w->signum - 1].head) 2916 if (!signals [w->signum - 1].head)
2917 {
2918#if EV_MULTIPLICITY
2919 signals [w->signum - 1].loop = 0; /* unattach from signal */
2920#endif
2921#if EV_USE_SIGNALFD
2922 if (sigfd >= 0)
2923 {
2924 sigset_t ss;
2925
2926 sigemptyset (&ss);
2927 sigaddset (&ss, w->signum);
2928 sigdelset (&sigfd_set, w->signum);
2929
2930 signalfd (sigfd, &sigfd_set, 0);
2931 sigprocmask (SIG_UNBLOCK, &ss, 0);
2932 }
2933 else
2934#endif
1899 signal (w->signum, SIG_DFL); 2935 signal (w->signum, SIG_DFL);
2936 }
2937
2938 EV_FREQUENT_CHECK;
1900} 2939}
2940
2941#endif
2942
2943#if EV_CHILD_ENABLE
1901 2944
1902void 2945void
1903ev_child_start (EV_P_ ev_child *w) 2946ev_child_start (EV_P_ ev_child *w)
1904{ 2947{
1905#if EV_MULTIPLICITY 2948#if EV_MULTIPLICITY
1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2949 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2950#endif
1908 if (expect_false (ev_is_active (w))) 2951 if (expect_false (ev_is_active (w)))
1909 return; 2952 return;
1910 2953
2954 EV_FREQUENT_CHECK;
2955
1911 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2957 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2958
2959 EV_FREQUENT_CHECK;
1913} 2960}
1914 2961
1915void 2962void
1916ev_child_stop (EV_P_ ev_child *w) 2963ev_child_stop (EV_P_ ev_child *w)
1917{ 2964{
1918 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
1919 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
1920 return; 2967 return;
1921 2968
2969 EV_FREQUENT_CHECK;
2970
1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2971 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1923 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
1924} 2975}
2976
2977#endif
1925 2978
1926#if EV_STAT_ENABLE 2979#if EV_STAT_ENABLE
1927 2980
1928# ifdef _WIN32 2981# ifdef _WIN32
1929# undef lstat 2982# undef lstat
1930# define lstat(a,b) _stati64 (a,b) 2983# define lstat(a,b) _stati64 (a,b)
1931# endif 2984# endif
1932 2985
1933#define DEF_STAT_INTERVAL 5.0074891 2986#define DEF_STAT_INTERVAL 5.0074891
2987#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1934#define MIN_STAT_INTERVAL 0.1074891 2988#define MIN_STAT_INTERVAL 0.1074891
1935 2989
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2990static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937 2991
1938#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192 2993
2994/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2995# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1940 2996
1941static void noinline 2997static void noinline
1942infy_add (EV_P_ ev_stat *w) 2998infy_add (EV_P_ ev_stat *w)
1943{ 2999{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945 3001
1946 if (w->wd < 0) 3002 if (w->wd >= 0)
3003 {
3004 struct statfs sfs;
3005
3006 /* now local changes will be tracked by inotify, but remote changes won't */
3007 /* unless the filesystem is known to be local, we therefore still poll */
3008 /* also do poll on <2.6.25, but with normal frequency */
3009
3010 if (!fs_2625)
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012 else if (!statfs (w->path, &sfs)
3013 && (sfs.f_type == 0x1373 /* devfs */
3014 || sfs.f_type == 0xEF53 /* ext2/3 */
3015 || sfs.f_type == 0x3153464a /* jfs */
3016 || sfs.f_type == 0x52654973 /* reiser3 */
3017 || sfs.f_type == 0x01021994 /* tempfs */
3018 || sfs.f_type == 0x58465342 /* xfs */))
3019 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3020 else
3021 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1947 { 3022 }
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3023 else
3024 {
3025 /* can't use inotify, continue to stat */
3026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1949 3027
1950 /* monitor some parent directory for speedup hints */ 3028 /* if path is not there, monitor some parent directory for speedup hints */
3029 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3030 /* but an efficiency issue only */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3031 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 { 3032 {
1953 char path [4096]; 3033 char path [4096];
1954 strcpy (path, w->path); 3034 strcpy (path, w->path);
1955 3035
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3038 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3039 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960 3040
1961 char *pend = strrchr (path, '/'); 3041 char *pend = strrchr (path, '/');
1962 3042
1963 if (!pend) 3043 if (!pend || pend == path)
1964 break; /* whoops, no '/', complain to your admin */ 3044 break;
1965 3045
1966 *pend = 0; 3046 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask); 3047 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 } 3048 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3049 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 } 3050 }
1971 } 3051 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974 3052
1975 if (w->wd >= 0) 3053 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3054 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3055
3056 /* now re-arm timer, if required */
3057 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3058 ev_timer_again (EV_A_ &w->timer);
3059 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1977} 3060}
1978 3061
1979static void noinline 3062static void noinline
1980infy_del (EV_P_ ev_stat *w) 3063infy_del (EV_P_ ev_stat *w)
1981{ 3064{
1984 3067
1985 if (wd < 0) 3068 if (wd < 0)
1986 return; 3069 return;
1987 3070
1988 w->wd = -2; 3071 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3072 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w); 3073 wlist_del (&fs_hash [slot].head, (WL)w);
1991 3074
1992 /* remove this watcher, if others are watching it, they will rearm */ 3075 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd); 3076 inotify_rm_watch (fs_fd, wd);
1994} 3077}
1995 3078
1996static void noinline 3079static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3080infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{ 3081{
1999 if (slot < 0) 3082 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */ 3083 /* overflow, need to check for all hash slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3084 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2002 infy_wd (EV_A_ slot, wd, ev); 3085 infy_wd (EV_A_ slot, wd, ev);
2003 else 3086 else
2004 { 3087 {
2005 WL w_; 3088 WL w_;
2006 3089
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3090 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2008 { 3091 {
2009 ev_stat *w = (ev_stat *)w_; 3092 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */ 3093 w_ = w_->next; /* lets us remove this watcher and all before it */
2011 3094
2012 if (w->wd == wd || wd == -1) 3095 if (w->wd == wd || wd == -1)
2013 { 3096 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3097 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 { 3098 {
3099 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2016 w->wd = -1; 3100 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */ 3101 infy_add (EV_A_ w); /* re-add, no matter what */
2018 } 3102 }
2019 3103
2020 stat_timer_cb (EV_A_ &w->timer, 0); 3104 stat_timer_cb (EV_A_ &w->timer, 0);
2025 3109
2026static void 3110static void
2027infy_cb (EV_P_ ev_io *w, int revents) 3111infy_cb (EV_P_ ev_io *w, int revents)
2028{ 3112{
2029 char buf [EV_INOTIFY_BUFSIZE]; 3113 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs; 3114 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf)); 3115 int len = read (fs_fd, buf, sizeof (buf));
2033 3116
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3117 for (ofs = 0; ofs < len; )
3118 {
3119 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3120 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3121 ofs += sizeof (struct inotify_event) + ev->len;
3122 }
2036} 3123}
2037 3124
2038void inline_size 3125inline_size void
3126ev_check_2625 (EV_P)
3127{
3128 /* kernels < 2.6.25 are borked
3129 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3130 */
3131 if (ev_linux_version () < 0x020619)
3132 return;
3133
3134 fs_2625 = 1;
3135}
3136
3137inline_size int
3138infy_newfd (void)
3139{
3140#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3141 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3142 if (fd >= 0)
3143 return fd;
3144#endif
3145 return inotify_init ();
3146}
3147
3148inline_size void
2039infy_init (EV_P) 3149infy_init (EV_P)
2040{ 3150{
2041 if (fs_fd != -2) 3151 if (fs_fd != -2)
2042 return; 3152 return;
2043 3153
3154 fs_fd = -1;
3155
3156 ev_check_2625 (EV_A);
3157
2044 fs_fd = inotify_init (); 3158 fs_fd = infy_newfd ();
2045 3159
2046 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
2047 { 3161 {
3162 fd_intern (fs_fd);
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3163 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI); 3164 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w); 3165 ev_io_start (EV_A_ &fs_w);
3166 ev_unref (EV_A);
2051 } 3167 }
2052} 3168}
2053 3169
2054void inline_size 3170inline_size void
2055infy_fork (EV_P) 3171infy_fork (EV_P)
2056{ 3172{
2057 int slot; 3173 int slot;
2058 3174
2059 if (fs_fd < 0) 3175 if (fs_fd < 0)
2060 return; 3176 return;
2061 3177
3178 ev_ref (EV_A);
3179 ev_io_stop (EV_A_ &fs_w);
2062 close (fs_fd); 3180 close (fs_fd);
2063 fs_fd = inotify_init (); 3181 fs_fd = infy_newfd ();
2064 3182
3183 if (fs_fd >= 0)
3184 {
3185 fd_intern (fs_fd);
3186 ev_io_set (&fs_w, fs_fd, EV_READ);
3187 ev_io_start (EV_A_ &fs_w);
3188 ev_unref (EV_A);
3189 }
3190
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3191 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2066 { 3192 {
2067 WL w_ = fs_hash [slot].head; 3193 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0; 3194 fs_hash [slot].head = 0;
2069 3195
2070 while (w_) 3196 while (w_)
2075 w->wd = -1; 3201 w->wd = -1;
2076 3202
2077 if (fs_fd >= 0) 3203 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */ 3204 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else 3205 else
3206 {
3207 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3208 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2080 ev_timer_start (EV_A_ &w->timer); 3209 ev_timer_again (EV_A_ &w->timer);
3210 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3211 }
2081 } 3212 }
2082
2083 } 3213 }
2084} 3214}
2085 3215
3216#endif
3217
3218#ifdef _WIN32
3219# define EV_LSTAT(p,b) _stati64 (p, b)
3220#else
3221# define EV_LSTAT(p,b) lstat (p, b)
2086#endif 3222#endif
2087 3223
2088void 3224void
2089ev_stat_stat (EV_P_ ev_stat *w) 3225ev_stat_stat (EV_P_ ev_stat *w)
2090{ 3226{
2097static void noinline 3233static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3234stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{ 3235{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3236 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101 3237
2102 /* we copy this here each the time so that */ 3238 ev_statdata prev = w->attr;
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w); 3239 ev_stat_stat (EV_A_ w);
2106 3240
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if ( 3242 if (
2109 w->prev.st_dev != w->attr.st_dev 3243 prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino 3244 || prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode 3245 || prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink 3246 || prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid 3247 || prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid 3248 || prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev 3249 || prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size 3250 || prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime 3251 || prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime 3252 || prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime 3253 || prev.st_ctime != w->attr.st_ctime
2120 ) { 3254 ) {
3255 /* we only update w->prev on actual differences */
3256 /* in case we test more often than invoke the callback, */
3257 /* to ensure that prev is always different to attr */
3258 w->prev = prev;
3259
2121 #if EV_USE_INOTIFY 3260 #if EV_USE_INOTIFY
3261 if (fs_fd >= 0)
3262 {
2122 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */ 3265 ev_stat_stat (EV_A_ w); /* avoid race... */
3266 }
2125 #endif 3267 #endif
2126 3268
2127 ev_feed_event (EV_A_ w, EV_STAT); 3269 ev_feed_event (EV_A_ w, EV_STAT);
2128 } 3270 }
2129} 3271}
2132ev_stat_start (EV_P_ ev_stat *w) 3274ev_stat_start (EV_P_ ev_stat *w)
2133{ 3275{
2134 if (expect_false (ev_is_active (w))) 3276 if (expect_false (ev_is_active (w)))
2135 return; 3277 return;
2136 3278
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w); 3279 ev_stat_stat (EV_A_ w);
2142 3280
3281 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2143 if (w->interval < MIN_STAT_INTERVAL) 3282 w->interval = MIN_STAT_INTERVAL;
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145 3283
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3284 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2147 ev_set_priority (&w->timer, ev_priority (w)); 3285 ev_set_priority (&w->timer, ev_priority (w));
2148 3286
2149#if EV_USE_INOTIFY 3287#if EV_USE_INOTIFY
2150 infy_init (EV_A); 3288 infy_init (EV_A);
2151 3289
2152 if (fs_fd >= 0) 3290 if (fs_fd >= 0)
2153 infy_add (EV_A_ w); 3291 infy_add (EV_A_ w);
2154 else 3292 else
2155#endif 3293#endif
3294 {
2156 ev_timer_start (EV_A_ &w->timer); 3295 ev_timer_again (EV_A_ &w->timer);
3296 ev_unref (EV_A);
3297 }
2157 3298
2158 ev_start (EV_A_ (W)w, 1); 3299 ev_start (EV_A_ (W)w, 1);
3300
3301 EV_FREQUENT_CHECK;
2159} 3302}
2160 3303
2161void 3304void
2162ev_stat_stop (EV_P_ ev_stat *w) 3305ev_stat_stop (EV_P_ ev_stat *w)
2163{ 3306{
2164 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2166 return; 3309 return;
2167 3310
3311 EV_FREQUENT_CHECK;
3312
2168#if EV_USE_INOTIFY 3313#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w); 3314 infy_del (EV_A_ w);
2170#endif 3315#endif
3316
3317 if (ev_is_active (&w->timer))
3318 {
3319 ev_ref (EV_A);
2171 ev_timer_stop (EV_A_ &w->timer); 3320 ev_timer_stop (EV_A_ &w->timer);
3321 }
2172 3322
2173 ev_stop (EV_A_ (W)w); 3323 ev_stop (EV_A_ (W)w);
3324
3325 EV_FREQUENT_CHECK;
2174} 3326}
2175#endif 3327#endif
2176 3328
2177#if EV_IDLE_ENABLE 3329#if EV_IDLE_ENABLE
2178void 3330void
2180{ 3332{
2181 if (expect_false (ev_is_active (w))) 3333 if (expect_false (ev_is_active (w)))
2182 return; 3334 return;
2183 3335
2184 pri_adjust (EV_A_ (W)w); 3336 pri_adjust (EV_A_ (W)w);
3337
3338 EV_FREQUENT_CHECK;
2185 3339
2186 { 3340 {
2187 int active = ++idlecnt [ABSPRI (w)]; 3341 int active = ++idlecnt [ABSPRI (w)];
2188 3342
2189 ++idleall; 3343 ++idleall;
2190 ev_start (EV_A_ (W)w, active); 3344 ev_start (EV_A_ (W)w, active);
2191 3345
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3346 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w; 3347 idles [ABSPRI (w)][active - 1] = w;
2194 } 3348 }
3349
3350 EV_FREQUENT_CHECK;
2195} 3351}
2196 3352
2197void 3353void
2198ev_idle_stop (EV_P_ ev_idle *w) 3354ev_idle_stop (EV_P_ ev_idle *w)
2199{ 3355{
2200 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2202 return; 3358 return;
2203 3359
3360 EV_FREQUENT_CHECK;
3361
2204 { 3362 {
2205 int active = ((W)w)->active; 3363 int active = ev_active (w);
2206 3364
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3366 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2209 3367
2210 ev_stop (EV_A_ (W)w); 3368 ev_stop (EV_A_ (W)w);
2211 --idleall; 3369 --idleall;
2212 } 3370 }
2213}
2214#endif
2215 3371
3372 EV_FREQUENT_CHECK;
3373}
3374#endif
3375
3376#if EV_PREPARE_ENABLE
2216void 3377void
2217ev_prepare_start (EV_P_ ev_prepare *w) 3378ev_prepare_start (EV_P_ ev_prepare *w)
2218{ 3379{
2219 if (expect_false (ev_is_active (w))) 3380 if (expect_false (ev_is_active (w)))
2220 return; 3381 return;
3382
3383 EV_FREQUENT_CHECK;
2221 3384
2222 ev_start (EV_A_ (W)w, ++preparecnt); 3385 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3386 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w; 3387 prepares [preparecnt - 1] = w;
3388
3389 EV_FREQUENT_CHECK;
2225} 3390}
2226 3391
2227void 3392void
2228ev_prepare_stop (EV_P_ ev_prepare *w) 3393ev_prepare_stop (EV_P_ ev_prepare *w)
2229{ 3394{
2230 clear_pending (EV_A_ (W)w); 3395 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w))) 3396 if (expect_false (!ev_is_active (w)))
2232 return; 3397 return;
2233 3398
3399 EV_FREQUENT_CHECK;
3400
2234 { 3401 {
2235 int active = ((W)w)->active; 3402 int active = ev_active (w);
3403
2236 prepares [active - 1] = prepares [--preparecnt]; 3404 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active; 3405 ev_active (prepares [active - 1]) = active;
2238 } 3406 }
2239 3407
2240 ev_stop (EV_A_ (W)w); 3408 ev_stop (EV_A_ (W)w);
2241}
2242 3409
3410 EV_FREQUENT_CHECK;
3411}
3412#endif
3413
3414#if EV_CHECK_ENABLE
2243void 3415void
2244ev_check_start (EV_P_ ev_check *w) 3416ev_check_start (EV_P_ ev_check *w)
2245{ 3417{
2246 if (expect_false (ev_is_active (w))) 3418 if (expect_false (ev_is_active (w)))
2247 return; 3419 return;
3420
3421 EV_FREQUENT_CHECK;
2248 3422
2249 ev_start (EV_A_ (W)w, ++checkcnt); 3423 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3424 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w; 3425 checks [checkcnt - 1] = w;
3426
3427 EV_FREQUENT_CHECK;
2252} 3428}
2253 3429
2254void 3430void
2255ev_check_stop (EV_P_ ev_check *w) 3431ev_check_stop (EV_P_ ev_check *w)
2256{ 3432{
2257 clear_pending (EV_A_ (W)w); 3433 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w))) 3434 if (expect_false (!ev_is_active (w)))
2259 return; 3435 return;
2260 3436
3437 EV_FREQUENT_CHECK;
3438
2261 { 3439 {
2262 int active = ((W)w)->active; 3440 int active = ev_active (w);
3441
2263 checks [active - 1] = checks [--checkcnt]; 3442 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active; 3443 ev_active (checks [active - 1]) = active;
2265 } 3444 }
2266 3445
2267 ev_stop (EV_A_ (W)w); 3446 ev_stop (EV_A_ (W)w);
3447
3448 EV_FREQUENT_CHECK;
2268} 3449}
3450#endif
2269 3451
2270#if EV_EMBED_ENABLE 3452#if EV_EMBED_ENABLE
2271void noinline 3453void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w) 3454ev_embed_sweep (EV_P_ ev_embed *w)
2273{ 3455{
2274 ev_loop (w->other, EVLOOP_NONBLOCK); 3456 ev_run (w->other, EVRUN_NOWAIT);
2275} 3457}
2276 3458
2277static void 3459static void
2278embed_io_cb (EV_P_ ev_io *io, int revents) 3460embed_io_cb (EV_P_ ev_io *io, int revents)
2279{ 3461{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3462 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281 3463
2282 if (ev_cb (w)) 3464 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3465 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else 3466 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK); 3467 ev_run (w->other, EVRUN_NOWAIT);
2286} 3468}
2287 3469
2288static void 3470static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3471embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{ 3472{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3473 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292 3474
2293 { 3475 {
2294 struct ev_loop *loop = w->other; 3476 EV_P = w->other;
2295 3477
2296 while (fdchangecnt) 3478 while (fdchangecnt)
2297 { 3479 {
2298 fd_reify (EV_A); 3480 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3481 ev_run (EV_A_ EVRUN_NOWAIT);
2300 } 3482 }
2301 } 3483 }
3484}
3485
3486static void
3487embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3488{
3489 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3490
3491 ev_embed_stop (EV_A_ w);
3492
3493 {
3494 EV_P = w->other;
3495
3496 ev_loop_fork (EV_A);
3497 ev_run (EV_A_ EVRUN_NOWAIT);
3498 }
3499
3500 ev_embed_start (EV_A_ w);
2302} 3501}
2303 3502
2304#if 0 3503#if 0
2305static void 3504static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3505embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2314{ 3513{
2315 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2316 return; 3515 return;
2317 3516
2318 { 3517 {
2319 struct ev_loop *loop = w->other; 3518 EV_P = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3519 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3520 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 } 3521 }
3522
3523 EV_FREQUENT_CHECK;
2323 3524
2324 ev_set_priority (&w->io, ev_priority (w)); 3525 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io); 3526 ev_io_start (EV_A_ &w->io);
2326 3527
2327 ev_prepare_init (&w->prepare, embed_prepare_cb); 3528 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI); 3529 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare); 3530 ev_prepare_start (EV_A_ &w->prepare);
2330 3531
3532 ev_fork_init (&w->fork, embed_fork_cb);
3533 ev_fork_start (EV_A_ &w->fork);
3534
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3535 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332 3536
2333 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
3538
3539 EV_FREQUENT_CHECK;
2334} 3540}
2335 3541
2336void 3542void
2337ev_embed_stop (EV_P_ ev_embed *w) 3543ev_embed_stop (EV_P_ ev_embed *w)
2338{ 3544{
2339 clear_pending (EV_A_ (W)w); 3545 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w))) 3546 if (expect_false (!ev_is_active (w)))
2341 return; 3547 return;
2342 3548
3549 EV_FREQUENT_CHECK;
3550
2343 ev_io_stop (EV_A_ &w->io); 3551 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare); 3552 ev_prepare_stop (EV_A_ &w->prepare);
3553 ev_fork_stop (EV_A_ &w->fork);
2345 3554
2346 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2347} 3558}
2348#endif 3559#endif
2349 3560
2350#if EV_FORK_ENABLE 3561#if EV_FORK_ENABLE
2351void 3562void
2352ev_fork_start (EV_P_ ev_fork *w) 3563ev_fork_start (EV_P_ ev_fork *w)
2353{ 3564{
2354 if (expect_false (ev_is_active (w))) 3565 if (expect_false (ev_is_active (w)))
2355 return; 3566 return;
3567
3568 EV_FREQUENT_CHECK;
2356 3569
2357 ev_start (EV_A_ (W)w, ++forkcnt); 3570 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3571 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w; 3572 forks [forkcnt - 1] = w;
3573
3574 EV_FREQUENT_CHECK;
2360} 3575}
2361 3576
2362void 3577void
2363ev_fork_stop (EV_P_ ev_fork *w) 3578ev_fork_stop (EV_P_ ev_fork *w)
2364{ 3579{
2365 clear_pending (EV_A_ (W)w); 3580 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3581 if (expect_false (!ev_is_active (w)))
2367 return; 3582 return;
2368 3583
3584 EV_FREQUENT_CHECK;
3585
2369 { 3586 {
2370 int active = ((W)w)->active; 3587 int active = ev_active (w);
3588
2371 forks [active - 1] = forks [--forkcnt]; 3589 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active; 3590 ev_active (forks [active - 1]) = active;
2373 } 3591 }
2374 3592
2375 ev_stop (EV_A_ (W)w); 3593 ev_stop (EV_A_ (W)w);
3594
3595 EV_FREQUENT_CHECK;
3596}
3597#endif
3598
3599#if EV_CLEANUP_ENABLE
3600void
3601ev_cleanup_start (EV_P_ ev_cleanup *w)
3602{
3603 if (expect_false (ev_is_active (w)))
3604 return;
3605
3606 EV_FREQUENT_CHECK;
3607
3608 ev_start (EV_A_ (W)w, ++cleanupcnt);
3609 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3610 cleanups [cleanupcnt - 1] = w;
3611
3612 /* cleanup watchers should never keep a refcount on the loop */
3613 ev_unref (EV_A);
3614 EV_FREQUENT_CHECK;
3615}
3616
3617void
3618ev_cleanup_stop (EV_P_ ev_cleanup *w)
3619{
3620 clear_pending (EV_A_ (W)w);
3621 if (expect_false (!ev_is_active (w)))
3622 return;
3623
3624 EV_FREQUENT_CHECK;
3625 ev_ref (EV_A);
3626
3627 {
3628 int active = ev_active (w);
3629
3630 cleanups [active - 1] = cleanups [--cleanupcnt];
3631 ev_active (cleanups [active - 1]) = active;
3632 }
3633
3634 ev_stop (EV_A_ (W)w);
3635
3636 EV_FREQUENT_CHECK;
3637}
3638#endif
3639
3640#if EV_ASYNC_ENABLE
3641void
3642ev_async_start (EV_P_ ev_async *w)
3643{
3644 if (expect_false (ev_is_active (w)))
3645 return;
3646
3647 w->sent = 0;
3648
3649 evpipe_init (EV_A);
3650
3651 EV_FREQUENT_CHECK;
3652
3653 ev_start (EV_A_ (W)w, ++asynccnt);
3654 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3655 asyncs [asynccnt - 1] = w;
3656
3657 EV_FREQUENT_CHECK;
3658}
3659
3660void
3661ev_async_stop (EV_P_ ev_async *w)
3662{
3663 clear_pending (EV_A_ (W)w);
3664 if (expect_false (!ev_is_active (w)))
3665 return;
3666
3667 EV_FREQUENT_CHECK;
3668
3669 {
3670 int active = ev_active (w);
3671
3672 asyncs [active - 1] = asyncs [--asynccnt];
3673 ev_active (asyncs [active - 1]) = active;
3674 }
3675
3676 ev_stop (EV_A_ (W)w);
3677
3678 EV_FREQUENT_CHECK;
3679}
3680
3681void
3682ev_async_send (EV_P_ ev_async *w)
3683{
3684 w->sent = 1;
3685 evpipe_write (EV_A_ &async_pending);
2376} 3686}
2377#endif 3687#endif
2378 3688
2379/*****************************************************************************/ 3689/*****************************************************************************/
2380 3690
2390once_cb (EV_P_ struct ev_once *once, int revents) 3700once_cb (EV_P_ struct ev_once *once, int revents)
2391{ 3701{
2392 void (*cb)(int revents, void *arg) = once->cb; 3702 void (*cb)(int revents, void *arg) = once->cb;
2393 void *arg = once->arg; 3703 void *arg = once->arg;
2394 3704
2395 ev_io_stop (EV_A_ &once->io); 3705 ev_io_stop (EV_A_ &once->io);
2396 ev_timer_stop (EV_A_ &once->to); 3706 ev_timer_stop (EV_A_ &once->to);
2397 ev_free (once); 3707 ev_free (once);
2398 3708
2399 cb (revents, arg); 3709 cb (revents, arg);
2400} 3710}
2401 3711
2402static void 3712static void
2403once_cb_io (EV_P_ ev_io *w, int revents) 3713once_cb_io (EV_P_ ev_io *w, int revents)
2404{ 3714{
2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3715 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3716
3717 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2406} 3718}
2407 3719
2408static void 3720static void
2409once_cb_to (EV_P_ ev_timer *w, int revents) 3721once_cb_to (EV_P_ ev_timer *w, int revents)
2410{ 3722{
2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2412} 3726}
2413 3727
2414void 3728void
2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3729ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2416{ 3730{
2417 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3731 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2418 3732
2419 if (expect_false (!once)) 3733 if (expect_false (!once))
2420 { 3734 {
2421 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3735 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2422 return; 3736 return;
2423 } 3737 }
2424 3738
2425 once->cb = cb; 3739 once->cb = cb;
2426 once->arg = arg; 3740 once->arg = arg;
2438 ev_timer_set (&once->to, timeout, 0.); 3752 ev_timer_set (&once->to, timeout, 0.);
2439 ev_timer_start (EV_A_ &once->to); 3753 ev_timer_start (EV_A_ &once->to);
2440 } 3754 }
2441} 3755}
2442 3756
3757/*****************************************************************************/
3758
3759#if EV_WALK_ENABLE
3760void
3761ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3762{
3763 int i, j;
3764 ev_watcher_list *wl, *wn;
3765
3766 if (types & (EV_IO | EV_EMBED))
3767 for (i = 0; i < anfdmax; ++i)
3768 for (wl = anfds [i].head; wl; )
3769 {
3770 wn = wl->next;
3771
3772#if EV_EMBED_ENABLE
3773 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3774 {
3775 if (types & EV_EMBED)
3776 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3777 }
3778 else
3779#endif
3780#if EV_USE_INOTIFY
3781 if (ev_cb ((ev_io *)wl) == infy_cb)
3782 ;
3783 else
3784#endif
3785 if ((ev_io *)wl != &pipe_w)
3786 if (types & EV_IO)
3787 cb (EV_A_ EV_IO, wl);
3788
3789 wl = wn;
3790 }
3791
3792 if (types & (EV_TIMER | EV_STAT))
3793 for (i = timercnt + HEAP0; i-- > HEAP0; )
3794#if EV_STAT_ENABLE
3795 /*TODO: timer is not always active*/
3796 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3797 {
3798 if (types & EV_STAT)
3799 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3800 }
3801 else
3802#endif
3803 if (types & EV_TIMER)
3804 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3805
3806#if EV_PERIODIC_ENABLE
3807 if (types & EV_PERIODIC)
3808 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3809 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3810#endif
3811
3812#if EV_IDLE_ENABLE
3813 if (types & EV_IDLE)
3814 for (j = NUMPRI; i--; )
3815 for (i = idlecnt [j]; i--; )
3816 cb (EV_A_ EV_IDLE, idles [j][i]);
3817#endif
3818
3819#if EV_FORK_ENABLE
3820 if (types & EV_FORK)
3821 for (i = forkcnt; i--; )
3822 if (ev_cb (forks [i]) != embed_fork_cb)
3823 cb (EV_A_ EV_FORK, forks [i]);
3824#endif
3825
3826#if EV_ASYNC_ENABLE
3827 if (types & EV_ASYNC)
3828 for (i = asynccnt; i--; )
3829 cb (EV_A_ EV_ASYNC, asyncs [i]);
3830#endif
3831
3832#if EV_PREPARE_ENABLE
3833 if (types & EV_PREPARE)
3834 for (i = preparecnt; i--; )
3835# if EV_EMBED_ENABLE
3836 if (ev_cb (prepares [i]) != embed_prepare_cb)
3837# endif
3838 cb (EV_A_ EV_PREPARE, prepares [i]);
3839#endif
3840
3841#if EV_CHECK_ENABLE
3842 if (types & EV_CHECK)
3843 for (i = checkcnt; i--; )
3844 cb (EV_A_ EV_CHECK, checks [i]);
3845#endif
3846
3847#if EV_SIGNAL_ENABLE
3848 if (types & EV_SIGNAL)
3849 for (i = 0; i < EV_NSIG - 1; ++i)
3850 for (wl = signals [i].head; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_SIGNAL, wl);
3854 wl = wn;
3855 }
3856#endif
3857
3858#if EV_CHILD_ENABLE
3859 if (types & EV_CHILD)
3860 for (i = (EV_PID_HASHSIZE); i--; )
3861 for (wl = childs [i]; wl; )
3862 {
3863 wn = wl->next;
3864 cb (EV_A_ EV_CHILD, wl);
3865 wl = wn;
3866 }
3867#endif
3868/* EV_STAT 0x00001000 /* stat data changed */
3869/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3870}
3871#endif
3872
2443#if EV_MULTIPLICITY 3873#if EV_MULTIPLICITY
2444 #include "ev_wrap.h" 3874 #include "ev_wrap.h"
2445#endif 3875#endif
2446 3876
2447#ifdef __cplusplus 3877EV_CPP(})
2448}
2449#endif
2450 3878

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines