ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC vs.
Revision 1.387 by root, Wed Jul 20 01:04:43 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
143#endif 186#endif
187
188EV_CPP(extern "C" {)
144 189
145#ifndef _WIN32 190#ifndef _WIN32
146# include <sys/time.h> 191# include <sys/time.h>
147# include <sys/wait.h> 192# include <sys/wait.h>
148# include <unistd.h> 193# include <unistd.h>
149#else 194#else
195# include <io.h>
150# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 197# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
154# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
155#endif 251# endif
156 252#endif
157/**/
158 253
159#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
160# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 264#endif
166 265
167#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
168# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
169#endif 272#endif
170 273
171#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 276#endif
174 277
175#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
176# ifdef _WIN32 279# ifdef _WIN32
177# define EV_USE_POLL 0 280# define EV_USE_POLL 0
178# else 281# else
179# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 283# endif
181#endif 284#endif
182 285
183#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
184# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
185#endif 292#endif
186 293
187#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
189#endif 296#endif
191#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 299# define EV_USE_PORT 0
193#endif 300#endif
194 301
195#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
196# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
197#endif 308#endif
198 309
199#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 321# else
203# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
204# endif 323# endif
205#endif 324#endif
206 325
207#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 329# else
211# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
212# endif 331# endif
213#endif 332#endif
214 333
215/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
216 373
217#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
220#endif 377#endif
228# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
230#endif 387#endif
231 388
232#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 392# include <sys/select.h>
235# endif 393# endif
236#endif 394#endif
237 395
238#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
239# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
240#endif 404#endif
241 405
242#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 407# include <winsock.h>
244#endif 408#endif
245 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
246/**/ 448/**/
247 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
248/* 456/*
249 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 459 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 462
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 465
262#if __GNUC__ >= 4 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
263# define expect(expr,value) __builtin_expect ((expr),(value)) 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
264# define noinline __attribute__ ((noinline)) 468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
265#else 493#else
266# define expect(expr,value) (expr) 494 #define ecb_inline static
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
271#endif 508 #endif
509#endif
272 510
511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif defined(_WIN32) && defined(MemoryBarrier)
517 #define ECB_MEMORY_FENCE MemoryBarrier ()
518 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520 #endif
521#endif
522
523#ifndef ECB_MEMORY_FENCE
524 #include <pthread.h>
525
526 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
527 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
528 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
529 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
530#endif
531
532#if ECB_GCC_VERSION(3,1)
533 #define ecb_attribute(attrlist) __attribute__(attrlist)
534 #define ecb_is_constant(expr) __builtin_constant_p (expr)
535 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
536 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
537#else
538 #define ecb_attribute(attrlist)
539 #define ecb_is_constant(expr) 0
540 #define ecb_expect(expr,value) (expr)
541 #define ecb_prefetch(addr,rw,locality)
542#endif
543
544#define ecb_noinline ecb_attribute ((__noinline__))
545#define ecb_noreturn ecb_attribute ((__noreturn__))
546#define ecb_unused ecb_attribute ((__unused__))
547#define ecb_const ecb_attribute ((__const__))
548#define ecb_pure ecb_attribute ((__pure__))
549
550#if ECB_GCC_VERSION(4,3)
551 #define ecb_artificial ecb_attribute ((__artificial__))
552 #define ecb_hot ecb_attribute ((__hot__))
553 #define ecb_cold ecb_attribute ((__cold__))
554#else
555 #define ecb_artificial
556 #define ecb_hot
557 #define ecb_cold
558#endif
559
560/* put around conditional expressions if you are very sure that the */
561/* expression is mostly true or mostly false. note that these return */
562/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 563#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 564#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
565/* ecb.h end */
566
567#define expect_false(cond) ecb_expect_false (cond)
568#define expect_true(cond) ecb_expect_true (cond)
569#define noinline ecb_noinline
570
275#define inline_size static inline 571#define inline_size ecb_inline
276 572
277#if EV_MINIMAL 573#if EV_FEATURE_CODE
574# define inline_speed ecb_inline
575#else
278# define inline_speed static noinline 576# define inline_speed static noinline
577#endif
578
579#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
580
581#if EV_MINPRI == EV_MAXPRI
582# define ABSPRI(w) (((W)w), 0)
279#else 583#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 584# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
585#endif
285 586
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 587#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 588#define EMPTY2(a,b) /* used to suppress some warnings */
288 589
289typedef ev_watcher *W; 590typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 591typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 592typedef ev_watcher_time *WT;
292 593
594#define ev_active(w) ((W)(w))->active
595#define ev_at(w) ((WT)(w))->at
596
597#if EV_USE_REALTIME
598/* sig_atomic_t is used to avoid per-thread variables or locking but still */
599/* giving it a reasonably high chance of working on typical architectures */
600static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
601#endif
602
293#if EV_USE_MONOTONIC 603#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 604static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
605#endif
606
607#ifndef EV_FD_TO_WIN32_HANDLE
608# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
609#endif
610#ifndef EV_WIN32_HANDLE_TO_FD
611# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
612#endif
613#ifndef EV_WIN32_CLOSE_FD
614# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 615#endif
298 616
299#ifdef _WIN32 617#ifdef _WIN32
300# include "ev_win32.c" 618# include "ev_win32.c"
301#endif 619#endif
302 620
303/*****************************************************************************/ 621/*****************************************************************************/
304 622
623/* define a suitable floor function (only used by periodics atm) */
624
625#if EV_USE_FLOOR
626# include <math.h>
627# define ev_floor(v) floor (v)
628#else
629
630#include <float.h>
631
632/* a floor() replacement function, should be independent of ev_tstamp type */
633static ev_tstamp noinline
634ev_floor (ev_tstamp v)
635{
636 /* the choice of shift factor is not terribly important */
637#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
638 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
639#else
640 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
641#endif
642
643 /* argument too large for an unsigned long? */
644 if (expect_false (v >= shift))
645 {
646 ev_tstamp f;
647
648 if (v == v - 1.)
649 return v; /* very large number */
650
651 f = shift * ev_floor (v * (1. / shift));
652 return f + ev_floor (v - f);
653 }
654
655 /* special treatment for negative args? */
656 if (expect_false (v < 0.))
657 {
658 ev_tstamp f = -ev_floor (-v);
659
660 return f - (f == v ? 0 : 1);
661 }
662
663 /* fits into an unsigned long */
664 return (unsigned long)v;
665}
666
667#endif
668
669/*****************************************************************************/
670
671#ifdef __linux
672# include <sys/utsname.h>
673#endif
674
675static unsigned int noinline ecb_cold
676ev_linux_version (void)
677{
678#ifdef __linux
679 unsigned int v = 0;
680 struct utsname buf;
681 int i;
682 char *p = buf.release;
683
684 if (uname (&buf))
685 return 0;
686
687 for (i = 3+1; --i; )
688 {
689 unsigned int c = 0;
690
691 for (;;)
692 {
693 if (*p >= '0' && *p <= '9')
694 c = c * 10 + *p++ - '0';
695 else
696 {
697 p += *p == '.';
698 break;
699 }
700 }
701
702 v = (v << 8) | c;
703 }
704
705 return v;
706#else
707 return 0;
708#endif
709}
710
711/*****************************************************************************/
712
713#if EV_AVOID_STDIO
714static void noinline ecb_cold
715ev_printerr (const char *msg)
716{
717 write (STDERR_FILENO, msg, strlen (msg));
718}
719#endif
720
305static void (*syserr_cb)(const char *msg); 721static void (*syserr_cb)(const char *msg);
306 722
307void 723void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 724ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 725{
310 syserr_cb = cb; 726 syserr_cb = cb;
311} 727}
312 728
313static void noinline 729static void noinline ecb_cold
314syserr (const char *msg) 730ev_syserr (const char *msg)
315{ 731{
316 if (!msg) 732 if (!msg)
317 msg = "(libev) system error"; 733 msg = "(libev) system error";
318 734
319 if (syserr_cb) 735 if (syserr_cb)
320 syserr_cb (msg); 736 syserr_cb (msg);
321 else 737 else
322 { 738 {
739#if EV_AVOID_STDIO
740 ev_printerr (msg);
741 ev_printerr (": ");
742 ev_printerr (strerror (errno));
743 ev_printerr ("\n");
744#else
323 perror (msg); 745 perror (msg);
746#endif
324 abort (); 747 abort ();
325 } 748 }
326} 749}
327 750
751static void *
752ev_realloc_emul (void *ptr, long size)
753{
754#if __GLIBC__
755 return realloc (ptr, size);
756#else
757 /* some systems, notably openbsd and darwin, fail to properly
758 * implement realloc (x, 0) (as required by both ansi c-89 and
759 * the single unix specification, so work around them here.
760 */
761
762 if (size)
763 return realloc (ptr, size);
764
765 free (ptr);
766 return 0;
767#endif
768}
769
328static void *(*alloc)(void *ptr, long size); 770static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 771
330void 772void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 773ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 774{
333 alloc = cb; 775 alloc = cb;
334} 776}
335 777
336inline_speed void * 778inline_speed void *
337ev_realloc (void *ptr, long size) 779ev_realloc (void *ptr, long size)
338{ 780{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 781 ptr = alloc (ptr, size);
340 782
341 if (!ptr && size) 783 if (!ptr && size)
342 { 784 {
785#if EV_AVOID_STDIO
786 ev_printerr ("(libev) memory allocation failed, aborting.\n");
787#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 788 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
789#endif
344 abort (); 790 abort ();
345 } 791 }
346 792
347 return ptr; 793 return ptr;
348} 794}
350#define ev_malloc(size) ev_realloc (0, (size)) 796#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 797#define ev_free(ptr) ev_realloc ((ptr), 0)
352 798
353/*****************************************************************************/ 799/*****************************************************************************/
354 800
801/* set in reify when reification needed */
802#define EV_ANFD_REIFY 1
803
804/* file descriptor info structure */
355typedef struct 805typedef struct
356{ 806{
357 WL head; 807 WL head;
358 unsigned char events; 808 unsigned char events; /* the events watched for */
809 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
810 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 811 unsigned char unused;
812#if EV_USE_EPOLL
813 unsigned int egen; /* generation counter to counter epoll bugs */
814#endif
360#if EV_SELECT_IS_WINSOCKET 815#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 816 SOCKET handle;
362#endif 817#endif
818#if EV_USE_IOCP
819 OVERLAPPED or, ow;
820#endif
363} ANFD; 821} ANFD;
364 822
823/* stores the pending event set for a given watcher */
365typedef struct 824typedef struct
366{ 825{
367 W w; 826 W w;
368 int events; 827 int events; /* the pending event set for the given watcher */
369} ANPENDING; 828} ANPENDING;
370 829
371#if EV_USE_INOTIFY 830#if EV_USE_INOTIFY
831/* hash table entry per inotify-id */
372typedef struct 832typedef struct
373{ 833{
374 WL head; 834 WL head;
375} ANFS; 835} ANFS;
836#endif
837
838/* Heap Entry */
839#if EV_HEAP_CACHE_AT
840 /* a heap element */
841 typedef struct {
842 ev_tstamp at;
843 WT w;
844 } ANHE;
845
846 #define ANHE_w(he) (he).w /* access watcher, read-write */
847 #define ANHE_at(he) (he).at /* access cached at, read-only */
848 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
849#else
850 /* a heap element */
851 typedef WT ANHE;
852
853 #define ANHE_w(he) (he)
854 #define ANHE_at(he) (he)->at
855 #define ANHE_at_cache(he)
376#endif 856#endif
377 857
378#if EV_MULTIPLICITY 858#if EV_MULTIPLICITY
379 859
380 struct ev_loop 860 struct ev_loop
399 879
400 static int ev_default_loop_ptr; 880 static int ev_default_loop_ptr;
401 881
402#endif 882#endif
403 883
884#if EV_FEATURE_API
885# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
886# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
887# define EV_INVOKE_PENDING invoke_cb (EV_A)
888#else
889# define EV_RELEASE_CB (void)0
890# define EV_ACQUIRE_CB (void)0
891# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
892#endif
893
894#define EVBREAK_RECURSE 0x80
895
404/*****************************************************************************/ 896/*****************************************************************************/
405 897
898#ifndef EV_HAVE_EV_TIME
406ev_tstamp 899ev_tstamp
407ev_time (void) 900ev_time (void)
408{ 901{
409#if EV_USE_REALTIME 902#if EV_USE_REALTIME
903 if (expect_true (have_realtime))
904 {
410 struct timespec ts; 905 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 906 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 907 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 908 }
909#endif
910
414 struct timeval tv; 911 struct timeval tv;
415 gettimeofday (&tv, 0); 912 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 913 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 914}
915#endif
419 916
420ev_tstamp inline_size 917inline_size ev_tstamp
421get_clock (void) 918get_clock (void)
422{ 919{
423#if EV_USE_MONOTONIC 920#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 921 if (expect_true (have_monotonic))
425 { 922 {
446 if (delay > 0.) 943 if (delay > 0.)
447 { 944 {
448#if EV_USE_NANOSLEEP 945#if EV_USE_NANOSLEEP
449 struct timespec ts; 946 struct timespec ts;
450 947
451 ts.tv_sec = (time_t)delay; 948 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 949 nanosleep (&ts, 0);
455#elif defined(_WIN32) 950#elif defined(_WIN32)
456 Sleep (delay * 1e3); 951 Sleep ((unsigned long)(delay * 1e3));
457#else 952#else
458 struct timeval tv; 953 struct timeval tv;
459 954
460 tv.tv_sec = (time_t)delay; 955 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 956 /* something not guaranteed by newer posix versions, but guaranteed */
462 957 /* by older ones */
958 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 959 select (0, 0, 0, 0, &tv);
464#endif 960#endif
465 } 961 }
466} 962}
467 963
468/*****************************************************************************/ 964/*****************************************************************************/
469 965
470int inline_size 966#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
967
968/* find a suitable new size for the given array, */
969/* hopefully by rounding to a nice-to-malloc size */
970inline_size int
471array_nextsize (int elem, int cur, int cnt) 971array_nextsize (int elem, int cur, int cnt)
472{ 972{
473 int ncur = cur + 1; 973 int ncur = cur + 1;
474 974
475 do 975 do
476 ncur <<= 1; 976 ncur <<= 1;
477 while (cnt > ncur); 977 while (cnt > ncur);
478 978
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 979 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 980 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 981 {
482 ncur *= elem; 982 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 983 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 984 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 985 ncur /= elem;
486 } 986 }
487 987
488 return ncur; 988 return ncur;
489} 989}
490 990
491static noinline void * 991static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 992array_realloc (int elem, void *base, int *cur, int cnt)
493{ 993{
494 *cur = array_nextsize (elem, *cur, cnt); 994 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 995 return ev_realloc (base, elem * *cur);
496} 996}
997
998#define array_init_zero(base,count) \
999 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1000
498#define array_needsize(type,base,cur,cnt,init) \ 1001#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1002 if (expect_false ((cnt) > (cur))) \
500 { \ 1003 { \
501 int ocur_ = (cur); \ 1004 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1005 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1006 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1007 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1008 }
506 1009
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1017 }
515#endif 1018#endif
516 1019
517#define array_free(stem, idx) \ 1020#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1022
520/*****************************************************************************/ 1023/*****************************************************************************/
1024
1025/* dummy callback for pending events */
1026static void noinline
1027pendingcb (EV_P_ ev_prepare *w, int revents)
1028{
1029}
521 1030
522void noinline 1031void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1032ev_feed_event (EV_P_ void *w, int revents)
524{ 1033{
525 W w_ = (W)w; 1034 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1043 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1044 pendings [pri][w_->pending - 1].events = revents;
536 } 1045 }
537} 1046}
538 1047
539void inline_speed 1048inline_speed void
1049feed_reverse (EV_P_ W w)
1050{
1051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1052 rfeeds [rfeedcnt++] = w;
1053}
1054
1055inline_size void
1056feed_reverse_done (EV_P_ int revents)
1057{
1058 do
1059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1060 while (rfeedcnt);
1061}
1062
1063inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1064queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1065{
542 int i; 1066 int i;
543 1067
544 for (i = 0; i < eventcnt; ++i) 1068 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1069 ev_feed_event (EV_A_ events [i], type);
546} 1070}
547 1071
548/*****************************************************************************/ 1072/*****************************************************************************/
549 1073
550void inline_size 1074inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1075fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1076{
566 ANFD *anfd = anfds + fd; 1077 ANFD *anfd = anfds + fd;
567 ev_io *w; 1078 ev_io *w;
568 1079
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1084 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1085 ev_feed_event (EV_A_ (W)w, ev);
575 } 1086 }
576} 1087}
577 1088
1089/* do not submit kernel events for fds that have reify set */
1090/* because that means they changed while we were polling for new events */
1091inline_speed void
1092fd_event (EV_P_ int fd, int revents)
1093{
1094 ANFD *anfd = anfds + fd;
1095
1096 if (expect_true (!anfd->reify))
1097 fd_event_nocheck (EV_A_ fd, revents);
1098}
1099
578void 1100void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1101ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1102{
581 if (fd >= 0 && fd < anfdmax) 1103 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1104 fd_event_nocheck (EV_A_ fd, revents);
583} 1105}
584 1106
585void inline_size 1107/* make sure the external fd watch events are in-sync */
1108/* with the kernel/libev internal state */
1109inline_size void
586fd_reify (EV_P) 1110fd_reify (EV_P)
587{ 1111{
588 int i; 1112 int i;
1113
1114#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1115 for (i = 0; i < fdchangecnt; ++i)
1116 {
1117 int fd = fdchanges [i];
1118 ANFD *anfd = anfds + fd;
1119
1120 if (anfd->reify & EV__IOFDSET && anfd->head)
1121 {
1122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1123
1124 if (handle != anfd->handle)
1125 {
1126 unsigned long arg;
1127
1128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1129
1130 /* handle changed, but fd didn't - we need to do it in two steps */
1131 backend_modify (EV_A_ fd, anfd->events, 0);
1132 anfd->events = 0;
1133 anfd->handle = handle;
1134 }
1135 }
1136 }
1137#endif
589 1138
590 for (i = 0; i < fdchangecnt; ++i) 1139 for (i = 0; i < fdchangecnt; ++i)
591 { 1140 {
592 int fd = fdchanges [i]; 1141 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1142 ANFD *anfd = anfds + fd;
594 ev_io *w; 1143 ev_io *w;
595 1144
596 unsigned char events = 0; 1145 unsigned char o_events = anfd->events;
1146 unsigned char o_reify = anfd->reify;
597 1147
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1148 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1149
601#if EV_SELECT_IS_WINSOCKET 1150 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1151 {
604 unsigned long argp; 1152 anfd->events = 0;
605 anfd->handle = _get_osfhandle (fd); 1153
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1155 anfd->events |= (unsigned char)w->events;
1156
1157 if (o_events != anfd->events)
1158 o_reify = EV__IOFDSET; /* actually |= */
607 } 1159 }
608#endif
609 1160
610 { 1161 if (o_reify & EV__IOFDSET)
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
614 anfd->reify = 0;
615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events); 1162 backend_modify (EV_A_ fd, o_events, anfd->events);
619 }
620 } 1163 }
621 1164
622 fdchangecnt = 0; 1165 fdchangecnt = 0;
623} 1166}
624 1167
625void inline_size 1168/* something about the given fd changed */
1169inline_size void
626fd_change (EV_P_ int fd, int flags) 1170fd_change (EV_P_ int fd, int flags)
627{ 1171{
628 unsigned char reify = anfds [fd].reify; 1172 unsigned char reify = anfds [fd].reify;
629 anfds [fd].reify |= flags; 1173 anfds [fd].reify |= flags;
630 1174
634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1178 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
635 fdchanges [fdchangecnt - 1] = fd; 1179 fdchanges [fdchangecnt - 1] = fd;
636 } 1180 }
637} 1181}
638 1182
639void inline_speed 1183/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1184inline_speed void ecb_cold
640fd_kill (EV_P_ int fd) 1185fd_kill (EV_P_ int fd)
641{ 1186{
642 ev_io *w; 1187 ev_io *w;
643 1188
644 while ((w = (ev_io *)anfds [fd].head)) 1189 while ((w = (ev_io *)anfds [fd].head))
646 ev_io_stop (EV_A_ w); 1191 ev_io_stop (EV_A_ w);
647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1192 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
648 } 1193 }
649} 1194}
650 1195
651int inline_size 1196/* check whether the given fd is actually valid, for error recovery */
1197inline_size int ecb_cold
652fd_valid (int fd) 1198fd_valid (int fd)
653{ 1199{
654#ifdef _WIN32 1200#ifdef _WIN32
655 return _get_osfhandle (fd) != -1; 1201 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
656#else 1202#else
657 return fcntl (fd, F_GETFD) != -1; 1203 return fcntl (fd, F_GETFD) != -1;
658#endif 1204#endif
659} 1205}
660 1206
661/* called on EBADF to verify fds */ 1207/* called on EBADF to verify fds */
662static void noinline 1208static void noinline ecb_cold
663fd_ebadf (EV_P) 1209fd_ebadf (EV_P)
664{ 1210{
665 int fd; 1211 int fd;
666 1212
667 for (fd = 0; fd < anfdmax; ++fd) 1213 for (fd = 0; fd < anfdmax; ++fd)
668 if (anfds [fd].events) 1214 if (anfds [fd].events)
669 if (!fd_valid (fd) == -1 && errno == EBADF) 1215 if (!fd_valid (fd) && errno == EBADF)
670 fd_kill (EV_A_ fd); 1216 fd_kill (EV_A_ fd);
671} 1217}
672 1218
673/* called on ENOMEM in select/poll to kill some fds and retry */ 1219/* called on ENOMEM in select/poll to kill some fds and retry */
674static void noinline 1220static void noinline ecb_cold
675fd_enomem (EV_P) 1221fd_enomem (EV_P)
676{ 1222{
677 int fd; 1223 int fd;
678 1224
679 for (fd = anfdmax; fd--; ) 1225 for (fd = anfdmax; fd--; )
680 if (anfds [fd].events) 1226 if (anfds [fd].events)
681 { 1227 {
682 fd_kill (EV_A_ fd); 1228 fd_kill (EV_A_ fd);
683 return; 1229 break;
684 } 1230 }
685} 1231}
686 1232
687/* usually called after fork if backend needs to re-arm all fds from scratch */ 1233/* usually called after fork if backend needs to re-arm all fds from scratch */
688static void noinline 1234static void noinline
692 1238
693 for (fd = 0; fd < anfdmax; ++fd) 1239 for (fd = 0; fd < anfdmax; ++fd)
694 if (anfds [fd].events) 1240 if (anfds [fd].events)
695 { 1241 {
696 anfds [fd].events = 0; 1242 anfds [fd].events = 0;
1243 anfds [fd].emask = 0;
697 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1244 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
698 } 1245 }
699} 1246}
700 1247
701/*****************************************************************************/ 1248/* used to prepare libev internal fd's */
702 1249/* this is not fork-safe */
703void inline_speed 1250inline_speed void
704upheap (WT *heap, int k)
705{
706 WT w = heap [k];
707
708 while (k)
709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
715 heap [k] = heap [p];
716 ((W)heap [k])->active = k + 1;
717 k = p;
718 }
719
720 heap [k] = w;
721 ((W)heap [k])->active = k + 1;
722}
723
724void inline_speed
725downheap (WT *heap, int N, int k)
726{
727 WT w = heap [k];
728
729 for (;;)
730 {
731 int c = (k << 1) + 1;
732
733 if (c >= N)
734 break;
735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
742 heap [k] = heap [c];
743 ((W)heap [k])->active = k + 1;
744
745 k = c;
746 }
747
748 heap [k] = w;
749 ((W)heap [k])->active = k + 1;
750}
751
752void inline_size
753adjustheap (WT *heap, int N, int k)
754{
755 upheap (heap, k);
756 downheap (heap, N, k);
757}
758
759/*****************************************************************************/
760
761typedef struct
762{
763 WL head;
764 sig_atomic_t volatile gotsig;
765} ANSIG;
766
767static ANSIG *signals;
768static int signalmax;
769
770static int sigpipe [2];
771static sig_atomic_t volatile gotsig;
772static ev_io sigev;
773
774void inline_size
775signals_init (ANSIG *base, int count)
776{
777 while (count--)
778 {
779 base->head = 0;
780 base->gotsig = 0;
781
782 ++base;
783 }
784}
785
786static void
787sighandler (int signum)
788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
793 signals [signum - 1].gotsig = 1;
794
795 if (!gotsig)
796 {
797 int old_errno = errno;
798 gotsig = 1;
799 write (sigpipe [1], &signum, 1);
800 errno = old_errno;
801 }
802}
803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
824static void
825sigcb (EV_P_ ev_io *iow, int revents)
826{
827 int signum;
828
829 read (sigpipe [0], &revents, 1);
830 gotsig = 0;
831
832 for (signum = signalmax; signum--; )
833 if (signals [signum].gotsig)
834 ev_feed_signal_event (EV_A_ signum + 1);
835}
836
837void inline_speed
838fd_intern (int fd) 1251fd_intern (int fd)
839{ 1252{
840#ifdef _WIN32 1253#ifdef _WIN32
841 int arg = 1; 1254 unsigned long arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1255 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
843#else 1256#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC); 1257 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK); 1258 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif 1259#endif
847} 1260}
848 1261
849static void noinline
850siginit (EV_P)
851{
852 fd_intern (sigpipe [0]);
853 fd_intern (sigpipe [1]);
854
855 ev_io_set (&sigev, sigpipe [0], EV_READ);
856 ev_io_start (EV_A_ &sigev);
857 ev_unref (EV_A); /* child watcher should not keep loop alive */
858}
859
860/*****************************************************************************/ 1262/*****************************************************************************/
861 1263
1264/*
1265 * the heap functions want a real array index. array index 0 is guaranteed to not
1266 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1267 * the branching factor of the d-tree.
1268 */
1269
1270/*
1271 * at the moment we allow libev the luxury of two heaps,
1272 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1273 * which is more cache-efficient.
1274 * the difference is about 5% with 50000+ watchers.
1275 */
1276#if EV_USE_4HEAP
1277
1278#define DHEAP 4
1279#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1280#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1281#define UPHEAP_DONE(p,k) ((p) == (k))
1282
1283/* away from the root */
1284inline_speed void
1285downheap (ANHE *heap, int N, int k)
1286{
1287 ANHE he = heap [k];
1288 ANHE *E = heap + N + HEAP0;
1289
1290 for (;;)
1291 {
1292 ev_tstamp minat;
1293 ANHE *minpos;
1294 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1295
1296 /* find minimum child */
1297 if (expect_true (pos + DHEAP - 1 < E))
1298 {
1299 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1300 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1301 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1302 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1303 }
1304 else if (pos < E)
1305 {
1306 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1307 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1308 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1309 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1310 }
1311 else
1312 break;
1313
1314 if (ANHE_at (he) <= minat)
1315 break;
1316
1317 heap [k] = *minpos;
1318 ev_active (ANHE_w (*minpos)) = k;
1319
1320 k = minpos - heap;
1321 }
1322
1323 heap [k] = he;
1324 ev_active (ANHE_w (he)) = k;
1325}
1326
1327#else /* 4HEAP */
1328
1329#define HEAP0 1
1330#define HPARENT(k) ((k) >> 1)
1331#define UPHEAP_DONE(p,k) (!(p))
1332
1333/* away from the root */
1334inline_speed void
1335downheap (ANHE *heap, int N, int k)
1336{
1337 ANHE he = heap [k];
1338
1339 for (;;)
1340 {
1341 int c = k << 1;
1342
1343 if (c >= N + HEAP0)
1344 break;
1345
1346 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1347 ? 1 : 0;
1348
1349 if (ANHE_at (he) <= ANHE_at (heap [c]))
1350 break;
1351
1352 heap [k] = heap [c];
1353 ev_active (ANHE_w (heap [k])) = k;
1354
1355 k = c;
1356 }
1357
1358 heap [k] = he;
1359 ev_active (ANHE_w (he)) = k;
1360}
1361#endif
1362
1363/* towards the root */
1364inline_speed void
1365upheap (ANHE *heap, int k)
1366{
1367 ANHE he = heap [k];
1368
1369 for (;;)
1370 {
1371 int p = HPARENT (k);
1372
1373 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1374 break;
1375
1376 heap [k] = heap [p];
1377 ev_active (ANHE_w (heap [k])) = k;
1378 k = p;
1379 }
1380
1381 heap [k] = he;
1382 ev_active (ANHE_w (he)) = k;
1383}
1384
1385/* move an element suitably so it is in a correct place */
1386inline_size void
1387adjustheap (ANHE *heap, int N, int k)
1388{
1389 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1390 upheap (heap, k);
1391 else
1392 downheap (heap, N, k);
1393}
1394
1395/* rebuild the heap: this function is used only once and executed rarely */
1396inline_size void
1397reheap (ANHE *heap, int N)
1398{
1399 int i;
1400
1401 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1402 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1403 for (i = 0; i < N; ++i)
1404 upheap (heap, i + HEAP0);
1405}
1406
1407/*****************************************************************************/
1408
1409/* associate signal watchers to a signal signal */
1410typedef struct
1411{
1412 EV_ATOMIC_T pending;
1413#if EV_MULTIPLICITY
1414 EV_P;
1415#endif
1416 WL head;
1417} ANSIG;
1418
1419static ANSIG signals [EV_NSIG - 1];
1420
1421/*****************************************************************************/
1422
1423#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1424
1425static void noinline ecb_cold
1426evpipe_init (EV_P)
1427{
1428 if (!ev_is_active (&pipe_w))
1429 {
1430# if EV_USE_EVENTFD
1431 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1432 if (evfd < 0 && errno == EINVAL)
1433 evfd = eventfd (0, 0);
1434
1435 if (evfd >= 0)
1436 {
1437 evpipe [0] = -1;
1438 fd_intern (evfd); /* doing it twice doesn't hurt */
1439 ev_io_set (&pipe_w, evfd, EV_READ);
1440 }
1441 else
1442# endif
1443 {
1444 while (pipe (evpipe))
1445 ev_syserr ("(libev) error creating signal/async pipe");
1446
1447 fd_intern (evpipe [0]);
1448 fd_intern (evpipe [1]);
1449 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1450 }
1451
1452 ev_io_start (EV_A_ &pipe_w);
1453 ev_unref (EV_A); /* watcher should not keep loop alive */
1454 }
1455}
1456
1457inline_speed void
1458evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1459{
1460 if (expect_true (*flag))
1461 return;
1462
1463 *flag = 1;
1464
1465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1466
1467 pipe_write_skipped = 1;
1468
1469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1470
1471 if (pipe_write_wanted)
1472 {
1473 int old_errno;
1474
1475 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1476
1477 old_errno = errno; /* save errno because write will clobber it */
1478
1479#if EV_USE_EVENTFD
1480 if (evfd >= 0)
1481 {
1482 uint64_t counter = 1;
1483 write (evfd, &counter, sizeof (uint64_t));
1484 }
1485 else
1486#endif
1487 {
1488 /* win32 people keep sending patches that change this write() to send() */
1489 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1490 /* so when you think this write should be a send instead, please find out */
1491 /* where your send() is from - it's definitely not the microsoft send, and */
1492 /* tell me. thank you. */
1493 write (evpipe [1], &(evpipe [1]), 1);
1494 }
1495
1496 errno = old_errno;
1497 }
1498}
1499
1500/* called whenever the libev signal pipe */
1501/* got some events (signal, async) */
1502static void
1503pipecb (EV_P_ ev_io *iow, int revents)
1504{
1505 int i;
1506
1507 if (revents & EV_READ)
1508 {
1509#if EV_USE_EVENTFD
1510 if (evfd >= 0)
1511 {
1512 uint64_t counter;
1513 read (evfd, &counter, sizeof (uint64_t));
1514 }
1515 else
1516#endif
1517 {
1518 char dummy;
1519 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1520 read (evpipe [0], &dummy, 1);
1521 }
1522 }
1523
1524 pipe_write_skipped = 0;
1525
1526#if EV_SIGNAL_ENABLE
1527 if (sig_pending)
1528 {
1529 sig_pending = 0;
1530
1531 for (i = EV_NSIG - 1; i--; )
1532 if (expect_false (signals [i].pending))
1533 ev_feed_signal_event (EV_A_ i + 1);
1534 }
1535#endif
1536
1537#if EV_ASYNC_ENABLE
1538 if (async_pending)
1539 {
1540 async_pending = 0;
1541
1542 for (i = asynccnt; i--; )
1543 if (asyncs [i]->sent)
1544 {
1545 asyncs [i]->sent = 0;
1546 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1547 }
1548 }
1549#endif
1550}
1551
1552/*****************************************************************************/
1553
1554void
1555ev_feed_signal (int signum)
1556{
1557#if EV_MULTIPLICITY
1558 EV_P = signals [signum - 1].loop;
1559
1560 if (!EV_A)
1561 return;
1562#endif
1563
1564 if (!ev_active (&pipe_w))
1565 return;
1566
1567 signals [signum - 1].pending = 1;
1568 evpipe_write (EV_A_ &sig_pending);
1569}
1570
1571static void
1572ev_sighandler (int signum)
1573{
1574#ifdef _WIN32
1575 signal (signum, ev_sighandler);
1576#endif
1577
1578 ev_feed_signal (signum);
1579}
1580
1581void noinline
1582ev_feed_signal_event (EV_P_ int signum)
1583{
1584 WL w;
1585
1586 if (expect_false (signum <= 0 || signum > EV_NSIG))
1587 return;
1588
1589 --signum;
1590
1591#if EV_MULTIPLICITY
1592 /* it is permissible to try to feed a signal to the wrong loop */
1593 /* or, likely more useful, feeding a signal nobody is waiting for */
1594
1595 if (expect_false (signals [signum].loop != EV_A))
1596 return;
1597#endif
1598
1599 signals [signum].pending = 0;
1600
1601 for (w = signals [signum].head; w; w = w->next)
1602 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1603}
1604
1605#if EV_USE_SIGNALFD
1606static void
1607sigfdcb (EV_P_ ev_io *iow, int revents)
1608{
1609 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1610
1611 for (;;)
1612 {
1613 ssize_t res = read (sigfd, si, sizeof (si));
1614
1615 /* not ISO-C, as res might be -1, but works with SuS */
1616 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1617 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1618
1619 if (res < (ssize_t)sizeof (si))
1620 break;
1621 }
1622}
1623#endif
1624
1625#endif
1626
1627/*****************************************************************************/
1628
1629#if EV_CHILD_ENABLE
862static WL childs [EV_PID_HASHSIZE]; 1630static WL childs [EV_PID_HASHSIZE];
863 1631
864#ifndef _WIN32
865
866static ev_signal childev; 1632static ev_signal childev;
867 1633
868void inline_speed 1634#ifndef WIFCONTINUED
1635# define WIFCONTINUED(status) 0
1636#endif
1637
1638/* handle a single child status event */
1639inline_speed void
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1640child_reap (EV_P_ int chain, int pid, int status)
870{ 1641{
871 ev_child *w; 1642 ev_child *w;
1643 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
872 1644
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1645 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1646 {
874 if (w->pid == pid || !w->pid) 1647 if ((w->pid == pid || !w->pid)
1648 && (!traced || (w->flags & 1)))
875 { 1649 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1650 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
877 w->rpid = pid; 1651 w->rpid = pid;
878 w->rstatus = status; 1652 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1653 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 } 1654 }
1655 }
881} 1656}
882 1657
883#ifndef WCONTINUED 1658#ifndef WCONTINUED
884# define WCONTINUED 0 1659# define WCONTINUED 0
885#endif 1660#endif
886 1661
1662/* called on sigchld etc., calls waitpid */
887static void 1663static void
888childcb (EV_P_ ev_signal *sw, int revents) 1664childcb (EV_P_ ev_signal *sw, int revents)
889{ 1665{
890 int pid, status; 1666 int pid, status;
891 1667
894 if (!WCONTINUED 1670 if (!WCONTINUED
895 || errno != EINVAL 1671 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1672 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return; 1673 return;
898 1674
899 /* make sure we are called again until all childs have been reaped */ 1675 /* make sure we are called again until all children have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */ 1676 /* we need to do it this way so that the callback gets called before we continue */
901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
902 1678
903 child_reap (EV_A_ sw, pid, pid, status); 1679 child_reap (EV_A_ pid, pid, status);
904 if (EV_PID_HASHSIZE > 1) 1680 if ((EV_PID_HASHSIZE) > 1)
905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1681 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
906} 1682}
907 1683
908#endif 1684#endif
909 1685
910/*****************************************************************************/ 1686/*****************************************************************************/
911 1687
1688#if EV_USE_IOCP
1689# include "ev_iocp.c"
1690#endif
912#if EV_USE_PORT 1691#if EV_USE_PORT
913# include "ev_port.c" 1692# include "ev_port.c"
914#endif 1693#endif
915#if EV_USE_KQUEUE 1694#if EV_USE_KQUEUE
916# include "ev_kqueue.c" 1695# include "ev_kqueue.c"
923#endif 1702#endif
924#if EV_USE_SELECT 1703#if EV_USE_SELECT
925# include "ev_select.c" 1704# include "ev_select.c"
926#endif 1705#endif
927 1706
928int 1707int ecb_cold
929ev_version_major (void) 1708ev_version_major (void)
930{ 1709{
931 return EV_VERSION_MAJOR; 1710 return EV_VERSION_MAJOR;
932} 1711}
933 1712
934int 1713int ecb_cold
935ev_version_minor (void) 1714ev_version_minor (void)
936{ 1715{
937 return EV_VERSION_MINOR; 1716 return EV_VERSION_MINOR;
938} 1717}
939 1718
940/* return true if we are running with elevated privileges and should ignore env variables */ 1719/* return true if we are running with elevated privileges and should ignore env variables */
941int inline_size 1720int inline_size ecb_cold
942enable_secure (void) 1721enable_secure (void)
943{ 1722{
944#ifdef _WIN32 1723#ifdef _WIN32
945 return 0; 1724 return 0;
946#else 1725#else
947 return getuid () != geteuid () 1726 return getuid () != geteuid ()
948 || getgid () != getegid (); 1727 || getgid () != getegid ();
949#endif 1728#endif
950} 1729}
951 1730
952unsigned int 1731unsigned int ecb_cold
953ev_supported_backends (void) 1732ev_supported_backends (void)
954{ 1733{
955 unsigned int flags = 0; 1734 unsigned int flags = 0;
956 1735
957 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1736 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
961 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 1740 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
962 1741
963 return flags; 1742 return flags;
964} 1743}
965 1744
966unsigned int 1745unsigned int ecb_cold
967ev_recommended_backends (void) 1746ev_recommended_backends (void)
968{ 1747{
969 unsigned int flags = ev_supported_backends (); 1748 unsigned int flags = ev_supported_backends ();
970 1749
971#ifndef __NetBSD__ 1750#ifndef __NetBSD__
972 /* kqueue is borked on everything but netbsd apparently */ 1751 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */ 1752 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE; 1753 flags &= ~EVBACKEND_KQUEUE;
975#endif 1754#endif
976#ifdef __APPLE__ 1755#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation 1756 /* only select works correctly on that "unix-certified" platform */
978 flags &= ~EVBACKEND_POLL; 1757 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1758 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1759#endif
1760#ifdef __FreeBSD__
1761 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
979#endif 1762#endif
980 1763
981 return flags; 1764 return flags;
982} 1765}
983 1766
984unsigned int 1767unsigned int ecb_cold
985ev_embeddable_backends (void) 1768ev_embeddable_backends (void)
986{ 1769{
987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1770 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
988 1771
989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1772 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */ 1773 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
991 flags &= ~EVBACKEND_EPOLL; 1774 flags &= ~EVBACKEND_EPOLL;
992 1775
993 return flags; 1776 return flags;
994} 1777}
995 1778
996unsigned int 1779unsigned int
997ev_backend (EV_P) 1780ev_backend (EV_P)
998{ 1781{
999 return backend; 1782 return backend;
1000} 1783}
1001 1784
1785#if EV_FEATURE_API
1002unsigned int 1786unsigned int
1003ev_loop_count (EV_P) 1787ev_iteration (EV_P)
1004{ 1788{
1005 return loop_count; 1789 return loop_count;
1790}
1791
1792unsigned int
1793ev_depth (EV_P)
1794{
1795 return loop_depth;
1006} 1796}
1007 1797
1008void 1798void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1799ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{ 1800{
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1805ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{ 1806{
1017 timeout_blocktime = interval; 1807 timeout_blocktime = interval;
1018} 1808}
1019 1809
1810void
1811ev_set_userdata (EV_P_ void *data)
1812{
1813 userdata = data;
1814}
1815
1816void *
1817ev_userdata (EV_P)
1818{
1819 return userdata;
1820}
1821
1822void
1823ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1824{
1825 invoke_cb = invoke_pending_cb;
1826}
1827
1828void
1829ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1830{
1831 release_cb = release;
1832 acquire_cb = acquire;
1833}
1834#endif
1835
1836/* initialise a loop structure, must be zero-initialised */
1020static void noinline 1837static void noinline ecb_cold
1021loop_init (EV_P_ unsigned int flags) 1838loop_init (EV_P_ unsigned int flags)
1022{ 1839{
1023 if (!backend) 1840 if (!backend)
1024 { 1841 {
1842 origflags = flags;
1843
1844#if EV_USE_REALTIME
1845 if (!have_realtime)
1846 {
1847 struct timespec ts;
1848
1849 if (!clock_gettime (CLOCK_REALTIME, &ts))
1850 have_realtime = 1;
1851 }
1852#endif
1853
1025#if EV_USE_MONOTONIC 1854#if EV_USE_MONOTONIC
1855 if (!have_monotonic)
1026 { 1856 {
1027 struct timespec ts; 1857 struct timespec ts;
1858
1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1859 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1029 have_monotonic = 1; 1860 have_monotonic = 1;
1030 } 1861 }
1031#endif 1862#endif
1032
1033 ev_rt_now = ev_time ();
1034 mn_now = get_clock ();
1035 now_floor = mn_now;
1036 rtmn_diff = ev_rt_now - mn_now;
1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040 1863
1041 /* pid check not overridable via env */ 1864 /* pid check not overridable via env */
1042#ifndef _WIN32 1865#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK) 1866 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid (); 1867 curpid = getpid ();
1047 if (!(flags & EVFLAG_NOENV) 1870 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure () 1871 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS")) 1872 && getenv ("LIBEV_FLAGS"))
1050 flags = atoi (getenv ("LIBEV_FLAGS")); 1873 flags = atoi (getenv ("LIBEV_FLAGS"));
1051 1874
1052 if (!(flags & 0x0000ffffUL)) 1875 ev_rt_now = ev_time ();
1876 mn_now = get_clock ();
1877 now_floor = mn_now;
1878 rtmn_diff = ev_rt_now - mn_now;
1879#if EV_FEATURE_API
1880 invoke_cb = ev_invoke_pending;
1881#endif
1882
1883 io_blocktime = 0.;
1884 timeout_blocktime = 0.;
1885 backend = 0;
1886 backend_fd = -1;
1887 sig_pending = 0;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 0;
1890#endif
1891 pipe_write_skipped = 0;
1892 pipe_write_wanted = 0;
1893#if EV_USE_INOTIFY
1894 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1895#endif
1896#if EV_USE_SIGNALFD
1897 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1898#endif
1899
1900 if (!(flags & EVBACKEND_MASK))
1053 flags |= ev_recommended_backends (); 1901 flags |= ev_recommended_backends ();
1054 1902
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY 1903#if EV_USE_IOCP
1058 fs_fd = -2; 1904 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1059#endif 1905#endif
1060
1061#if EV_USE_PORT 1906#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1907 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif 1908#endif
1064#if EV_USE_KQUEUE 1909#if EV_USE_KQUEUE
1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1910 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1072#endif 1917#endif
1073#if EV_USE_SELECT 1918#if EV_USE_SELECT
1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1919 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1075#endif 1920#endif
1076 1921
1922 ev_prepare_init (&pending_w, pendingcb);
1923
1924#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1077 ev_init (&sigev, sigcb); 1925 ev_init (&pipe_w, pipecb);
1078 ev_set_priority (&sigev, EV_MAXPRI); 1926 ev_set_priority (&pipe_w, EV_MAXPRI);
1927#endif
1079 } 1928 }
1080} 1929}
1081 1930
1082static void noinline 1931/* free up a loop structure */
1932void ecb_cold
1083loop_destroy (EV_P) 1933ev_loop_destroy (EV_P)
1084{ 1934{
1085 int i; 1935 int i;
1936
1937#if EV_MULTIPLICITY
1938 /* mimic free (0) */
1939 if (!EV_A)
1940 return;
1941#endif
1942
1943#if EV_CLEANUP_ENABLE
1944 /* queue cleanup watchers (and execute them) */
1945 if (expect_false (cleanupcnt))
1946 {
1947 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1948 EV_INVOKE_PENDING;
1949 }
1950#endif
1951
1952#if EV_CHILD_ENABLE
1953 if (ev_is_active (&childev))
1954 {
1955 ev_ref (EV_A); /* child watcher */
1956 ev_signal_stop (EV_A_ &childev);
1957 }
1958#endif
1959
1960 if (ev_is_active (&pipe_w))
1961 {
1962 /*ev_ref (EV_A);*/
1963 /*ev_io_stop (EV_A_ &pipe_w);*/
1964
1965#if EV_USE_EVENTFD
1966 if (evfd >= 0)
1967 close (evfd);
1968#endif
1969
1970 if (evpipe [0] >= 0)
1971 {
1972 EV_WIN32_CLOSE_FD (evpipe [0]);
1973 EV_WIN32_CLOSE_FD (evpipe [1]);
1974 }
1975 }
1976
1977#if EV_USE_SIGNALFD
1978 if (ev_is_active (&sigfd_w))
1979 close (sigfd);
1980#endif
1086 1981
1087#if EV_USE_INOTIFY 1982#if EV_USE_INOTIFY
1088 if (fs_fd >= 0) 1983 if (fs_fd >= 0)
1089 close (fs_fd); 1984 close (fs_fd);
1090#endif 1985#endif
1091 1986
1092 if (backend_fd >= 0) 1987 if (backend_fd >= 0)
1093 close (backend_fd); 1988 close (backend_fd);
1094 1989
1990#if EV_USE_IOCP
1991 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1992#endif
1095#if EV_USE_PORT 1993#if EV_USE_PORT
1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1097#endif 1995#endif
1098#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
1099 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1114#if EV_IDLE_ENABLE 2012#if EV_IDLE_ENABLE
1115 array_free (idle, [i]); 2013 array_free (idle, [i]);
1116#endif 2014#endif
1117 } 2015 }
1118 2016
1119 ev_free (anfds); anfdmax = 0; 2017 ev_free (anfds); anfds = 0; anfdmax = 0;
1120 2018
1121 /* have to use the microsoft-never-gets-it-right macro */ 2019 /* have to use the microsoft-never-gets-it-right macro */
2020 array_free (rfeed, EMPTY);
1122 array_free (fdchange, EMPTY); 2021 array_free (fdchange, EMPTY);
1123 array_free (timer, EMPTY); 2022 array_free (timer, EMPTY);
1124#if EV_PERIODIC_ENABLE 2023#if EV_PERIODIC_ENABLE
1125 array_free (periodic, EMPTY); 2024 array_free (periodic, EMPTY);
1126#endif 2025#endif
1127#if EV_FORK_ENABLE 2026#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY); 2027 array_free (fork, EMPTY);
1129#endif 2028#endif
2029#if EV_CLEANUP_ENABLE
2030 array_free (cleanup, EMPTY);
2031#endif
1130 array_free (prepare, EMPTY); 2032 array_free (prepare, EMPTY);
1131 array_free (check, EMPTY); 2033 array_free (check, EMPTY);
2034#if EV_ASYNC_ENABLE
2035 array_free (async, EMPTY);
2036#endif
1132 2037
1133 backend = 0; 2038 backend = 0;
1134}
1135 2039
2040#if EV_MULTIPLICITY
2041 if (ev_is_default_loop (EV_A))
2042#endif
2043 ev_default_loop_ptr = 0;
2044#if EV_MULTIPLICITY
2045 else
2046 ev_free (EV_A);
2047#endif
2048}
2049
2050#if EV_USE_INOTIFY
1136void inline_size infy_fork (EV_P); 2051inline_size void infy_fork (EV_P);
2052#endif
1137 2053
1138void inline_size 2054inline_size void
1139loop_fork (EV_P) 2055loop_fork (EV_P)
1140{ 2056{
1141#if EV_USE_PORT 2057#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2058 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif 2059#endif
1149#endif 2065#endif
1150#if EV_USE_INOTIFY 2066#if EV_USE_INOTIFY
1151 infy_fork (EV_A); 2067 infy_fork (EV_A);
1152#endif 2068#endif
1153 2069
1154 if (ev_is_active (&sigev)) 2070 if (ev_is_active (&pipe_w))
1155 { 2071 {
1156 /* default loop */ 2072 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1157 2073
1158 ev_ref (EV_A); 2074 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev); 2075 ev_io_stop (EV_A_ &pipe_w);
1160 close (sigpipe [0]);
1161 close (sigpipe [1]);
1162 2076
1163 while (pipe (sigpipe)) 2077#if EV_USE_EVENTFD
1164 syserr ("(libev) error creating pipe"); 2078 if (evfd >= 0)
2079 close (evfd);
2080#endif
1165 2081
2082 if (evpipe [0] >= 0)
2083 {
2084 EV_WIN32_CLOSE_FD (evpipe [0]);
2085 EV_WIN32_CLOSE_FD (evpipe [1]);
2086 }
2087
2088#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1166 siginit (EV_A); 2089 evpipe_init (EV_A);
2090 /* now iterate over everything, in case we missed something */
2091 pipecb (EV_A_ &pipe_w, EV_READ);
2092#endif
1167 } 2093 }
1168 2094
1169 postfork = 0; 2095 postfork = 0;
1170} 2096}
1171 2097
1172#if EV_MULTIPLICITY 2098#if EV_MULTIPLICITY
2099
1173struct ev_loop * 2100struct ev_loop * ecb_cold
1174ev_loop_new (unsigned int flags) 2101ev_loop_new (unsigned int flags)
1175{ 2102{
1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1177 2104
1178 memset (loop, 0, sizeof (struct ev_loop)); 2105 memset (EV_A, 0, sizeof (struct ev_loop));
1179
1180 loop_init (EV_A_ flags); 2106 loop_init (EV_A_ flags);
1181 2107
1182 if (ev_backend (EV_A)) 2108 if (ev_backend (EV_A))
1183 return loop; 2109 return EV_A;
1184 2110
2111 ev_free (EV_A);
1185 return 0; 2112 return 0;
1186} 2113}
1187 2114
1188void 2115#endif /* multiplicity */
1189ev_loop_destroy (EV_P)
1190{
1191 loop_destroy (EV_A);
1192 ev_free (loop);
1193}
1194 2116
1195void 2117#if EV_VERIFY
1196ev_loop_fork (EV_P) 2118static void noinline ecb_cold
2119verify_watcher (EV_P_ W w)
1197{ 2120{
1198 postfork = 1; 2121 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1199}
1200 2122
2123 if (w->pending)
2124 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2125}
2126
2127static void noinline ecb_cold
2128verify_heap (EV_P_ ANHE *heap, int N)
2129{
2130 int i;
2131
2132 for (i = HEAP0; i < N + HEAP0; ++i)
2133 {
2134 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2135 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2136 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2137
2138 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2139 }
2140}
2141
2142static void noinline ecb_cold
2143array_verify (EV_P_ W *ws, int cnt)
2144{
2145 while (cnt--)
2146 {
2147 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2148 verify_watcher (EV_A_ ws [cnt]);
2149 }
2150}
2151#endif
2152
2153#if EV_FEATURE_API
2154void ecb_cold
2155ev_verify (EV_P)
2156{
2157#if EV_VERIFY
2158 int i;
2159 WL w;
2160
2161 assert (activecnt >= -1);
2162
2163 assert (fdchangemax >= fdchangecnt);
2164 for (i = 0; i < fdchangecnt; ++i)
2165 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2166
2167 assert (anfdmax >= 0);
2168 for (i = 0; i < anfdmax; ++i)
2169 for (w = anfds [i].head; w; w = w->next)
2170 {
2171 verify_watcher (EV_A_ (W)w);
2172 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2173 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2174 }
2175
2176 assert (timermax >= timercnt);
2177 verify_heap (EV_A_ timers, timercnt);
2178
2179#if EV_PERIODIC_ENABLE
2180 assert (periodicmax >= periodiccnt);
2181 verify_heap (EV_A_ periodics, periodiccnt);
2182#endif
2183
2184 for (i = NUMPRI; i--; )
2185 {
2186 assert (pendingmax [i] >= pendingcnt [i]);
2187#if EV_IDLE_ENABLE
2188 assert (idleall >= 0);
2189 assert (idlemax [i] >= idlecnt [i]);
2190 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2191#endif
2192 }
2193
2194#if EV_FORK_ENABLE
2195 assert (forkmax >= forkcnt);
2196 array_verify (EV_A_ (W *)forks, forkcnt);
2197#endif
2198
2199#if EV_CLEANUP_ENABLE
2200 assert (cleanupmax >= cleanupcnt);
2201 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2202#endif
2203
2204#if EV_ASYNC_ENABLE
2205 assert (asyncmax >= asynccnt);
2206 array_verify (EV_A_ (W *)asyncs, asynccnt);
2207#endif
2208
2209#if EV_PREPARE_ENABLE
2210 assert (preparemax >= preparecnt);
2211 array_verify (EV_A_ (W *)prepares, preparecnt);
2212#endif
2213
2214#if EV_CHECK_ENABLE
2215 assert (checkmax >= checkcnt);
2216 array_verify (EV_A_ (W *)checks, checkcnt);
2217#endif
2218
2219# if 0
2220#if EV_CHILD_ENABLE
2221 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2222 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2223#endif
2224# endif
2225#endif
2226}
1201#endif 2227#endif
1202 2228
1203#if EV_MULTIPLICITY 2229#if EV_MULTIPLICITY
1204struct ev_loop * 2230struct ev_loop * ecb_cold
1205ev_default_loop_init (unsigned int flags)
1206#else 2231#else
1207int 2232int
2233#endif
1208ev_default_loop (unsigned int flags) 2234ev_default_loop (unsigned int flags)
1209#endif
1210{ 2235{
1211 if (sigpipe [0] == sigpipe [1])
1212 if (pipe (sigpipe))
1213 return 0;
1214
1215 if (!ev_default_loop_ptr) 2236 if (!ev_default_loop_ptr)
1216 { 2237 {
1217#if EV_MULTIPLICITY 2238#if EV_MULTIPLICITY
1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2239 EV_P = ev_default_loop_ptr = &default_loop_struct;
1219#else 2240#else
1220 ev_default_loop_ptr = 1; 2241 ev_default_loop_ptr = 1;
1221#endif 2242#endif
1222 2243
1223 loop_init (EV_A_ flags); 2244 loop_init (EV_A_ flags);
1224 2245
1225 if (ev_backend (EV_A)) 2246 if (ev_backend (EV_A))
1226 { 2247 {
1227 siginit (EV_A); 2248#if EV_CHILD_ENABLE
1228
1229#ifndef _WIN32
1230 ev_signal_init (&childev, childcb, SIGCHLD); 2249 ev_signal_init (&childev, childcb, SIGCHLD);
1231 ev_set_priority (&childev, EV_MAXPRI); 2250 ev_set_priority (&childev, EV_MAXPRI);
1232 ev_signal_start (EV_A_ &childev); 2251 ev_signal_start (EV_A_ &childev);
1233 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2252 ev_unref (EV_A); /* child watcher should not keep loop alive */
1234#endif 2253#endif
1239 2258
1240 return ev_default_loop_ptr; 2259 return ev_default_loop_ptr;
1241} 2260}
1242 2261
1243void 2262void
1244ev_default_destroy (void) 2263ev_loop_fork (EV_P)
1245{ 2264{
1246#if EV_MULTIPLICITY 2265 postfork = 1; /* must be in line with ev_default_fork */
1247 struct ev_loop *loop = ev_default_loop_ptr;
1248#endif
1249
1250#ifndef _WIN32
1251 ev_ref (EV_A); /* child watcher */
1252 ev_signal_stop (EV_A_ &childev);
1253#endif
1254
1255 ev_ref (EV_A); /* signal watcher */
1256 ev_io_stop (EV_A_ &sigev);
1257
1258 close (sigpipe [0]); sigpipe [0] = 0;
1259 close (sigpipe [1]); sigpipe [1] = 0;
1260
1261 loop_destroy (EV_A);
1262}
1263
1264void
1265ev_default_fork (void)
1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = ev_default_loop_ptr;
1269#endif
1270
1271 if (backend)
1272 postfork = 1;
1273} 2266}
1274 2267
1275/*****************************************************************************/ 2268/*****************************************************************************/
1276 2269
1277void 2270void
1278ev_invoke (EV_P_ void *w, int revents) 2271ev_invoke (EV_P_ void *w, int revents)
1279{ 2272{
1280 EV_CB_INVOKE ((W)w, revents); 2273 EV_CB_INVOKE ((W)w, revents);
1281} 2274}
1282 2275
1283void inline_speed 2276unsigned int
1284call_pending (EV_P) 2277ev_pending_count (EV_P)
2278{
2279 int pri;
2280 unsigned int count = 0;
2281
2282 for (pri = NUMPRI; pri--; )
2283 count += pendingcnt [pri];
2284
2285 return count;
2286}
2287
2288void noinline
2289ev_invoke_pending (EV_P)
1285{ 2290{
1286 int pri; 2291 int pri;
1287 2292
1288 for (pri = NUMPRI; pri--; ) 2293 for (pri = NUMPRI; pri--; )
1289 while (pendingcnt [pri]) 2294 while (pendingcnt [pri])
1290 { 2295 {
1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1292 2297
1293 if (expect_true (p->w))
1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
1297 p->w->pending = 0; 2298 p->w->pending = 0;
1298 EV_CB_INVOKE (p->w, p->events); 2299 EV_CB_INVOKE (p->w, p->events);
1299 } 2300 EV_FREQUENT_CHECK;
1300 } 2301 }
1301} 2302}
1302 2303
1303void inline_size
1304timers_reify (EV_P)
1305{
1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1307 {
1308 ev_timer *w = (ev_timer *)timers [0];
1309
1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1311
1312 /* first reschedule or stop timer */
1313 if (w->repeat)
1314 {
1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
1321 downheap (timers, timercnt, 0);
1322 }
1323 else
1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1325
1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1327 }
1328}
1329
1330#if EV_PERIODIC_ENABLE
1331void inline_size
1332periodics_reify (EV_P)
1333{
1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1335 {
1336 ev_periodic *w = (ev_periodic *)periodics [0];
1337
1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1339
1340 /* first reschedule or stop timer */
1341 if (w->reschedule_cb)
1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1352 downheap (periodics, periodiccnt, 0);
1353 }
1354 else
1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1356
1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1358 }
1359}
1360
1361static void noinline
1362periodics_reschedule (EV_P)
1363{
1364 int i;
1365
1366 /* adjust periodics after time jump */
1367 for (i = 0; i < periodiccnt; ++i)
1368 {
1369 ev_periodic *w = (ev_periodic *)periodics [i];
1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382
1383#if EV_IDLE_ENABLE 2304#if EV_IDLE_ENABLE
1384void inline_size 2305/* make idle watchers pending. this handles the "call-idle */
2306/* only when higher priorities are idle" logic */
2307inline_size void
1385idle_reify (EV_P) 2308idle_reify (EV_P)
1386{ 2309{
1387 if (expect_false (idleall)) 2310 if (expect_false (idleall))
1388 { 2311 {
1389 int pri; 2312 int pri;
1401 } 2324 }
1402 } 2325 }
1403} 2326}
1404#endif 2327#endif
1405 2328
1406void inline_speed 2329/* make timers pending */
2330inline_size void
2331timers_reify (EV_P)
2332{
2333 EV_FREQUENT_CHECK;
2334
2335 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2336 {
2337 do
2338 {
2339 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2340
2341 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2342
2343 /* first reschedule or stop timer */
2344 if (w->repeat)
2345 {
2346 ev_at (w) += w->repeat;
2347 if (ev_at (w) < mn_now)
2348 ev_at (w) = mn_now;
2349
2350 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2351
2352 ANHE_at_cache (timers [HEAP0]);
2353 downheap (timers, timercnt, HEAP0);
2354 }
2355 else
2356 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2357
2358 EV_FREQUENT_CHECK;
2359 feed_reverse (EV_A_ (W)w);
2360 }
2361 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2362
2363 feed_reverse_done (EV_A_ EV_TIMER);
2364 }
2365}
2366
2367#if EV_PERIODIC_ENABLE
2368
2369static void noinline
2370periodic_recalc (EV_P_ ev_periodic *w)
2371{
2372 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2373 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2374
2375 /* the above almost always errs on the low side */
2376 while (at <= ev_rt_now)
2377 {
2378 ev_tstamp nat = at + w->interval;
2379
2380 /* when resolution fails us, we use ev_rt_now */
2381 if (expect_false (nat == at))
2382 {
2383 at = ev_rt_now;
2384 break;
2385 }
2386
2387 at = nat;
2388 }
2389
2390 ev_at (w) = at;
2391}
2392
2393/* make periodics pending */
2394inline_size void
2395periodics_reify (EV_P)
2396{
2397 EV_FREQUENT_CHECK;
2398
2399 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2400 {
2401 int feed_count = 0;
2402
2403 do
2404 {
2405 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2406
2407 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2408
2409 /* first reschedule or stop timer */
2410 if (w->reschedule_cb)
2411 {
2412 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2413
2414 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2415
2416 ANHE_at_cache (periodics [HEAP0]);
2417 downheap (periodics, periodiccnt, HEAP0);
2418 }
2419 else if (w->interval)
2420 {
2421 periodic_recalc (EV_A_ w);
2422 ANHE_at_cache (periodics [HEAP0]);
2423 downheap (periodics, periodiccnt, HEAP0);
2424 }
2425 else
2426 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2427
2428 EV_FREQUENT_CHECK;
2429 feed_reverse (EV_A_ (W)w);
2430 }
2431 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2432
2433 feed_reverse_done (EV_A_ EV_PERIODIC);
2434 }
2435}
2436
2437/* simply recalculate all periodics */
2438/* TODO: maybe ensure that at least one event happens when jumping forward? */
2439static void noinline ecb_cold
2440periodics_reschedule (EV_P)
2441{
2442 int i;
2443
2444 /* adjust periodics after time jump */
2445 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2446 {
2447 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2448
2449 if (w->reschedule_cb)
2450 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2451 else if (w->interval)
2452 periodic_recalc (EV_A_ w);
2453
2454 ANHE_at_cache (periodics [i]);
2455 }
2456
2457 reheap (periodics, periodiccnt);
2458}
2459#endif
2460
2461/* adjust all timers by a given offset */
2462static void noinline ecb_cold
2463timers_reschedule (EV_P_ ev_tstamp adjust)
2464{
2465 int i;
2466
2467 for (i = 0; i < timercnt; ++i)
2468 {
2469 ANHE *he = timers + i + HEAP0;
2470 ANHE_w (*he)->at += adjust;
2471 ANHE_at_cache (*he);
2472 }
2473}
2474
2475/* fetch new monotonic and realtime times from the kernel */
2476/* also detect if there was a timejump, and act accordingly */
2477inline_speed void
1407time_update (EV_P_ ev_tstamp max_block) 2478time_update (EV_P_ ev_tstamp max_block)
1408{ 2479{
1409 int i;
1410
1411#if EV_USE_MONOTONIC 2480#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic)) 2481 if (expect_true (have_monotonic))
1413 { 2482 {
2483 int i;
1414 ev_tstamp odiff = rtmn_diff; 2484 ev_tstamp odiff = rtmn_diff;
1415 2485
1416 mn_now = get_clock (); 2486 mn_now = get_clock ();
1417 2487
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2488 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1434 * doesn't hurt either as we only do this on time-jumps or 2504 * doesn't hurt either as we only do this on time-jumps or
1435 * in the unlikely event of having been preempted here. 2505 * in the unlikely event of having been preempted here.
1436 */ 2506 */
1437 for (i = 4; --i; ) 2507 for (i = 4; --i; )
1438 { 2508 {
2509 ev_tstamp diff;
1439 rtmn_diff = ev_rt_now - mn_now; 2510 rtmn_diff = ev_rt_now - mn_now;
1440 2511
1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2512 diff = odiff - rtmn_diff;
2513
2514 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1442 return; /* all is well */ 2515 return; /* all is well */
1443 2516
1444 ev_rt_now = ev_time (); 2517 ev_rt_now = ev_time ();
1445 mn_now = get_clock (); 2518 mn_now = get_clock ();
1446 now_floor = mn_now; 2519 now_floor = mn_now;
1447 } 2520 }
1448 2521
2522 /* no timer adjustment, as the monotonic clock doesn't jump */
2523 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449# if EV_PERIODIC_ENABLE 2524# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A); 2525 periodics_reschedule (EV_A);
1451# endif 2526# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 } 2527 }
1455 else 2528 else
1456#endif 2529#endif
1457 { 2530 {
1458 ev_rt_now = ev_time (); 2531 ev_rt_now = ev_time ();
1459 2532
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2533 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 { 2534 {
2535 /* adjust timers. this is easy, as the offset is the same for all of them */
2536 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1462#if EV_PERIODIC_ENABLE 2537#if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2538 periodics_reschedule (EV_A);
1464#endif 2539#endif
1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i)
1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1468 } 2540 }
1469 2541
1470 mn_now = ev_rt_now; 2542 mn_now = ev_rt_now;
1471 } 2543 }
1472} 2544}
1473 2545
1474void 2546void
1475ev_ref (EV_P)
1476{
1477 ++activecnt;
1478}
1479
1480void
1481ev_unref (EV_P)
1482{
1483 --activecnt;
1484}
1485
1486static int loop_done;
1487
1488void
1489ev_loop (EV_P_ int flags) 2547ev_run (EV_P_ int flags)
1490{ 2548{
1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2549#if EV_FEATURE_API
1492 ? EVUNLOOP_ONE 2550 ++loop_depth;
1493 : EVUNLOOP_CANCEL; 2551#endif
1494 2552
2553 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2554
2555 loop_done = EVBREAK_CANCEL;
2556
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2557 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1496 2558
1497 do 2559 do
1498 { 2560 {
2561#if EV_VERIFY >= 2
2562 ev_verify (EV_A);
2563#endif
2564
1499#ifndef _WIN32 2565#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */ 2566 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid)) 2567 if (expect_false (getpid () != curpid))
1502 { 2568 {
1503 curpid = getpid (); 2569 curpid = getpid ();
1509 /* we might have forked, so queue fork handlers */ 2575 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork)) 2576 if (expect_false (postfork))
1511 if (forkcnt) 2577 if (forkcnt)
1512 { 2578 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2579 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A); 2580 EV_INVOKE_PENDING;
1515 } 2581 }
1516#endif 2582#endif
1517 2583
2584#if EV_PREPARE_ENABLE
1518 /* queue prepare watchers (and execute them) */ 2585 /* queue prepare watchers (and execute them) */
1519 if (expect_false (preparecnt)) 2586 if (expect_false (preparecnt))
1520 { 2587 {
1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2588 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1522 call_pending (EV_A); 2589 EV_INVOKE_PENDING;
1523 } 2590 }
2591#endif
1524 2592
1525 if (expect_false (!activecnt)) 2593 if (expect_false (loop_done))
1526 break; 2594 break;
1527 2595
1528 /* we might have forked, so reify kernel state if necessary */ 2596 /* we might have forked, so reify kernel state if necessary */
1529 if (expect_false (postfork)) 2597 if (expect_false (postfork))
1530 loop_fork (EV_A); 2598 loop_fork (EV_A);
1535 /* calculate blocking time */ 2603 /* calculate blocking time */
1536 { 2604 {
1537 ev_tstamp waittime = 0.; 2605 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.; 2606 ev_tstamp sleeptime = 0.;
1539 2607
2608 /* remember old timestamp for io_blocktime calculation */
2609 ev_tstamp prev_mn_now = mn_now;
2610
2611 /* update time to cancel out callback processing overhead */
2612 time_update (EV_A_ 1e100);
2613
2614 /* from now on, we want a pipe-wake-up */
2615 pipe_write_wanted = 1;
2616
2617 ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2618
1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2619 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1541 { 2620 {
1542 /* update time to cancel out callback processing overhead */
1543 time_update (EV_A_ 1e100);
1544
1545 waittime = MAX_BLOCKTIME; 2621 waittime = MAX_BLOCKTIME;
1546 2622
1547 if (timercnt) 2623 if (timercnt)
1548 { 2624 {
1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2625 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1550 if (waittime > to) waittime = to; 2626 if (waittime > to) waittime = to;
1551 } 2627 }
1552 2628
1553#if EV_PERIODIC_ENABLE 2629#if EV_PERIODIC_ENABLE
1554 if (periodiccnt) 2630 if (periodiccnt)
1555 { 2631 {
1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2632 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1557 if (waittime > to) waittime = to; 2633 if (waittime > to) waittime = to;
1558 } 2634 }
1559#endif 2635#endif
1560 2636
2637 /* don't let timeouts decrease the waittime below timeout_blocktime */
1561 if (expect_false (waittime < timeout_blocktime)) 2638 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime; 2639 waittime = timeout_blocktime;
1563 2640
1564 sleeptime = waittime - backend_fudge; 2641 /* at this point, we NEED to wait, so we have to ensure */
2642 /* to pass a minimum nonzero value to the backend */
2643 if (expect_false (waittime < backend_mintime))
2644 waittime = backend_mintime;
1565 2645
2646 /* extra check because io_blocktime is commonly 0 */
1566 if (expect_true (sleeptime > io_blocktime)) 2647 if (expect_false (io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 { 2648 {
2649 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2650
2651 if (sleeptime > waittime - backend_mintime)
2652 sleeptime = waittime - backend_mintime;
2653
2654 if (expect_true (sleeptime > 0.))
2655 {
1571 ev_sleep (sleeptime); 2656 ev_sleep (sleeptime);
1572 waittime -= sleeptime; 2657 waittime -= sleeptime;
2658 }
1573 } 2659 }
1574 } 2660 }
1575 2661
2662#if EV_FEATURE_API
1576 ++loop_count; 2663 ++loop_count;
2664#endif
2665 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1577 backend_poll (EV_A_ waittime); 2666 backend_poll (EV_A_ waittime);
2667 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2668
2669 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2670
2671 if (pipe_write_skipped)
2672 {
2673 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2674 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2675 }
2676
1578 2677
1579 /* update ev_rt_now, do magic */ 2678 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime); 2679 time_update (EV_A_ waittime + sleeptime);
1581 } 2680 }
1582 2681
1589#if EV_IDLE_ENABLE 2688#if EV_IDLE_ENABLE
1590 /* queue idle watchers unless other events are pending */ 2689 /* queue idle watchers unless other events are pending */
1591 idle_reify (EV_A); 2690 idle_reify (EV_A);
1592#endif 2691#endif
1593 2692
2693#if EV_CHECK_ENABLE
1594 /* queue check watchers, to be executed first */ 2694 /* queue check watchers, to be executed first */
1595 if (expect_false (checkcnt)) 2695 if (expect_false (checkcnt))
1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2696 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2697#endif
1597 2698
1598 call_pending (EV_A); 2699 EV_INVOKE_PENDING;
1599
1600 } 2700 }
1601 while (expect_true (activecnt && !loop_done)); 2701 while (expect_true (
2702 activecnt
2703 && !loop_done
2704 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2705 ));
1602 2706
1603 if (loop_done == EVUNLOOP_ONE) 2707 if (loop_done == EVBREAK_ONE)
1604 loop_done = EVUNLOOP_CANCEL; 2708 loop_done = EVBREAK_CANCEL;
2709
2710#if EV_FEATURE_API
2711 --loop_depth;
2712#endif
1605} 2713}
1606 2714
1607void 2715void
1608ev_unloop (EV_P_ int how) 2716ev_break (EV_P_ int how)
1609{ 2717{
1610 loop_done = how; 2718 loop_done = how;
1611} 2719}
1612 2720
2721void
2722ev_ref (EV_P)
2723{
2724 ++activecnt;
2725}
2726
2727void
2728ev_unref (EV_P)
2729{
2730 --activecnt;
2731}
2732
2733void
2734ev_now_update (EV_P)
2735{
2736 time_update (EV_A_ 1e100);
2737}
2738
2739void
2740ev_suspend (EV_P)
2741{
2742 ev_now_update (EV_A);
2743}
2744
2745void
2746ev_resume (EV_P)
2747{
2748 ev_tstamp mn_prev = mn_now;
2749
2750 ev_now_update (EV_A);
2751 timers_reschedule (EV_A_ mn_now - mn_prev);
2752#if EV_PERIODIC_ENABLE
2753 /* TODO: really do this? */
2754 periodics_reschedule (EV_A);
2755#endif
2756}
2757
1613/*****************************************************************************/ 2758/*****************************************************************************/
2759/* singly-linked list management, used when the expected list length is short */
1614 2760
1615void inline_size 2761inline_size void
1616wlist_add (WL *head, WL elem) 2762wlist_add (WL *head, WL elem)
1617{ 2763{
1618 elem->next = *head; 2764 elem->next = *head;
1619 *head = elem; 2765 *head = elem;
1620} 2766}
1621 2767
1622void inline_size 2768inline_size void
1623wlist_del (WL *head, WL elem) 2769wlist_del (WL *head, WL elem)
1624{ 2770{
1625 while (*head) 2771 while (*head)
1626 { 2772 {
1627 if (*head == elem) 2773 if (expect_true (*head == elem))
1628 { 2774 {
1629 *head = elem->next; 2775 *head = elem->next;
1630 return; 2776 break;
1631 } 2777 }
1632 2778
1633 head = &(*head)->next; 2779 head = &(*head)->next;
1634 } 2780 }
1635} 2781}
1636 2782
1637void inline_speed 2783/* internal, faster, version of ev_clear_pending */
2784inline_speed void
1638clear_pending (EV_P_ W w) 2785clear_pending (EV_P_ W w)
1639{ 2786{
1640 if (w->pending) 2787 if (w->pending)
1641 { 2788 {
1642 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2789 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1643 w->pending = 0; 2790 w->pending = 0;
1644 } 2791 }
1645} 2792}
1646 2793
1647int 2794int
1651 int pending = w_->pending; 2798 int pending = w_->pending;
1652 2799
1653 if (expect_true (pending)) 2800 if (expect_true (pending))
1654 { 2801 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2802 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2803 p->w = (W)&pending_w;
1656 w_->pending = 0; 2804 w_->pending = 0;
1657 p->w = 0;
1658 return p->events; 2805 return p->events;
1659 } 2806 }
1660 else 2807 else
1661 return 0; 2808 return 0;
1662} 2809}
1663 2810
1664void inline_size 2811inline_size void
1665pri_adjust (EV_P_ W w) 2812pri_adjust (EV_P_ W w)
1666{ 2813{
1667 int pri = w->priority; 2814 int pri = ev_priority (w);
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2815 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2816 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri; 2817 ev_set_priority (w, pri);
1671} 2818}
1672 2819
1673void inline_speed 2820inline_speed void
1674ev_start (EV_P_ W w, int active) 2821ev_start (EV_P_ W w, int active)
1675{ 2822{
1676 pri_adjust (EV_A_ w); 2823 pri_adjust (EV_A_ w);
1677 w->active = active; 2824 w->active = active;
1678 ev_ref (EV_A); 2825 ev_ref (EV_A);
1679} 2826}
1680 2827
1681void inline_size 2828inline_size void
1682ev_stop (EV_P_ W w) 2829ev_stop (EV_P_ W w)
1683{ 2830{
1684 ev_unref (EV_A); 2831 ev_unref (EV_A);
1685 w->active = 0; 2832 w->active = 0;
1686} 2833}
1693 int fd = w->fd; 2840 int fd = w->fd;
1694 2841
1695 if (expect_false (ev_is_active (w))) 2842 if (expect_false (ev_is_active (w)))
1696 return; 2843 return;
1697 2844
1698 assert (("ev_io_start called with negative fd", fd >= 0)); 2845 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2846 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2847
2848 EV_FREQUENT_CHECK;
1699 2849
1700 ev_start (EV_A_ (W)w, 1); 2850 ev_start (EV_A_ (W)w, 1);
1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2851 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1702 wlist_add (&anfds[fd].head, (WL)w); 2852 wlist_add (&anfds[fd].head, (WL)w);
1703 2853
1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2854 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1705 w->events &= ~EV_IOFDSET; 2855 w->events &= ~EV__IOFDSET;
2856
2857 EV_FREQUENT_CHECK;
1706} 2858}
1707 2859
1708void noinline 2860void noinline
1709ev_io_stop (EV_P_ ev_io *w) 2861ev_io_stop (EV_P_ ev_io *w)
1710{ 2862{
1711 clear_pending (EV_A_ (W)w); 2863 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2864 if (expect_false (!ev_is_active (w)))
1713 return; 2865 return;
1714 2866
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2867 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2868
2869 EV_FREQUENT_CHECK;
1716 2870
1717 wlist_del (&anfds[w->fd].head, (WL)w); 2871 wlist_del (&anfds[w->fd].head, (WL)w);
1718 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
1719 2873
1720 fd_change (EV_A_ w->fd, 1); 2874 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2875
2876 EV_FREQUENT_CHECK;
1721} 2877}
1722 2878
1723void noinline 2879void noinline
1724ev_timer_start (EV_P_ ev_timer *w) 2880ev_timer_start (EV_P_ ev_timer *w)
1725{ 2881{
1726 if (expect_false (ev_is_active (w))) 2882 if (expect_false (ev_is_active (w)))
1727 return; 2883 return;
1728 2884
1729 ((WT)w)->at += mn_now; 2885 ev_at (w) += mn_now;
1730 2886
1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2887 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1732 2888
2889 EV_FREQUENT_CHECK;
2890
2891 ++timercnt;
1733 ev_start (EV_A_ (W)w, ++timercnt); 2892 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2893 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1735 timers [timercnt - 1] = (WT)w; 2894 ANHE_w (timers [ev_active (w)]) = (WT)w;
1736 upheap (timers, timercnt - 1); 2895 ANHE_at_cache (timers [ev_active (w)]);
2896 upheap (timers, ev_active (w));
1737 2897
2898 EV_FREQUENT_CHECK;
2899
1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2900 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1739} 2901}
1740 2902
1741void noinline 2903void noinline
1742ev_timer_stop (EV_P_ ev_timer *w) 2904ev_timer_stop (EV_P_ ev_timer *w)
1743{ 2905{
1744 clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
1745 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
1746 return; 2908 return;
1747 2909
1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2910 EV_FREQUENT_CHECK;
1749 2911
1750 { 2912 {
1751 int active = ((W)w)->active; 2913 int active = ev_active (w);
1752 2914
2915 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2916
2917 --timercnt;
2918
1753 if (expect_true (--active < --timercnt)) 2919 if (expect_true (active < timercnt + HEAP0))
1754 { 2920 {
1755 timers [active] = timers [timercnt]; 2921 timers [active] = timers [timercnt + HEAP0];
1756 adjustheap (timers, timercnt, active); 2922 adjustheap (timers, timercnt, active);
1757 } 2923 }
1758 } 2924 }
1759 2925
1760 ((WT)w)->at -= mn_now; 2926 ev_at (w) -= mn_now;
1761 2927
1762 ev_stop (EV_A_ (W)w); 2928 ev_stop (EV_A_ (W)w);
2929
2930 EV_FREQUENT_CHECK;
1763} 2931}
1764 2932
1765void noinline 2933void noinline
1766ev_timer_again (EV_P_ ev_timer *w) 2934ev_timer_again (EV_P_ ev_timer *w)
1767{ 2935{
2936 EV_FREQUENT_CHECK;
2937
1768 if (ev_is_active (w)) 2938 if (ev_is_active (w))
1769 { 2939 {
1770 if (w->repeat) 2940 if (w->repeat)
1771 { 2941 {
1772 ((WT)w)->at = mn_now + w->repeat; 2942 ev_at (w) = mn_now + w->repeat;
2943 ANHE_at_cache (timers [ev_active (w)]);
1773 adjustheap (timers, timercnt, ((W)w)->active - 1); 2944 adjustheap (timers, timercnt, ev_active (w));
1774 } 2945 }
1775 else 2946 else
1776 ev_timer_stop (EV_A_ w); 2947 ev_timer_stop (EV_A_ w);
1777 } 2948 }
1778 else if (w->repeat) 2949 else if (w->repeat)
1779 { 2950 {
1780 w->at = w->repeat; 2951 ev_at (w) = w->repeat;
1781 ev_timer_start (EV_A_ w); 2952 ev_timer_start (EV_A_ w);
1782 } 2953 }
2954
2955 EV_FREQUENT_CHECK;
2956}
2957
2958ev_tstamp
2959ev_timer_remaining (EV_P_ ev_timer *w)
2960{
2961 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1783} 2962}
1784 2963
1785#if EV_PERIODIC_ENABLE 2964#if EV_PERIODIC_ENABLE
1786void noinline 2965void noinline
1787ev_periodic_start (EV_P_ ev_periodic *w) 2966ev_periodic_start (EV_P_ ev_periodic *w)
1788{ 2967{
1789 if (expect_false (ev_is_active (w))) 2968 if (expect_false (ev_is_active (w)))
1790 return; 2969 return;
1791 2970
1792 if (w->reschedule_cb) 2971 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2972 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval) 2973 else if (w->interval)
1795 { 2974 {
1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2975 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1797 /* this formula differs from the one in periodic_reify because we do not always round up */ 2976 periodic_recalc (EV_A_ w);
1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 } 2977 }
1800 else 2978 else
1801 ((WT)w)->at = w->offset; 2979 ev_at (w) = w->offset;
1802 2980
2981 EV_FREQUENT_CHECK;
2982
2983 ++periodiccnt;
1803 ev_start (EV_A_ (W)w, ++periodiccnt); 2984 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2985 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1805 periodics [periodiccnt - 1] = (WT)w; 2986 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1806 upheap (periodics, periodiccnt - 1); 2987 ANHE_at_cache (periodics [ev_active (w)]);
2988 upheap (periodics, ev_active (w));
1807 2989
2990 EV_FREQUENT_CHECK;
2991
1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2992 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1809} 2993}
1810 2994
1811void noinline 2995void noinline
1812ev_periodic_stop (EV_P_ ev_periodic *w) 2996ev_periodic_stop (EV_P_ ev_periodic *w)
1813{ 2997{
1814 clear_pending (EV_A_ (W)w); 2998 clear_pending (EV_A_ (W)w);
1815 if (expect_false (!ev_is_active (w))) 2999 if (expect_false (!ev_is_active (w)))
1816 return; 3000 return;
1817 3001
1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3002 EV_FREQUENT_CHECK;
1819 3003
1820 { 3004 {
1821 int active = ((W)w)->active; 3005 int active = ev_active (w);
1822 3006
3007 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3008
3009 --periodiccnt;
3010
1823 if (expect_true (--active < --periodiccnt)) 3011 if (expect_true (active < periodiccnt + HEAP0))
1824 { 3012 {
1825 periodics [active] = periodics [periodiccnt]; 3013 periodics [active] = periodics [periodiccnt + HEAP0];
1826 adjustheap (periodics, periodiccnt, active); 3014 adjustheap (periodics, periodiccnt, active);
1827 } 3015 }
1828 } 3016 }
1829 3017
1830 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
3019
3020 EV_FREQUENT_CHECK;
1831} 3021}
1832 3022
1833void noinline 3023void noinline
1834ev_periodic_again (EV_P_ ev_periodic *w) 3024ev_periodic_again (EV_P_ ev_periodic *w)
1835{ 3025{
1841 3031
1842#ifndef SA_RESTART 3032#ifndef SA_RESTART
1843# define SA_RESTART 0 3033# define SA_RESTART 0
1844#endif 3034#endif
1845 3035
3036#if EV_SIGNAL_ENABLE
3037
1846void noinline 3038void noinline
1847ev_signal_start (EV_P_ ev_signal *w) 3039ev_signal_start (EV_P_ ev_signal *w)
1848{ 3040{
1849#if EV_MULTIPLICITY
1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1851#endif
1852 if (expect_false (ev_is_active (w))) 3041 if (expect_false (ev_is_active (w)))
1853 return; 3042 return;
1854 3043
1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3044 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1856 3045
3046#if EV_MULTIPLICITY
3047 assert (("libev: a signal must not be attached to two different loops",
3048 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3049
3050 signals [w->signum - 1].loop = EV_A;
3051#endif
3052
3053 EV_FREQUENT_CHECK;
3054
3055#if EV_USE_SIGNALFD
3056 if (sigfd == -2)
1857 { 3057 {
1858#ifndef _WIN32 3058 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1859 sigset_t full, prev; 3059 if (sigfd < 0 && errno == EINVAL)
1860 sigfillset (&full); 3060 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863 3061
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3062 if (sigfd >= 0)
3063 {
3064 fd_intern (sigfd); /* doing it twice will not hurt */
1865 3065
1866#ifndef _WIN32 3066 sigemptyset (&sigfd_set);
1867 sigprocmask (SIG_SETMASK, &prev, 0); 3067
1868#endif 3068 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3069 ev_set_priority (&sigfd_w, EV_MAXPRI);
3070 ev_io_start (EV_A_ &sigfd_w);
3071 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3072 }
1869 } 3073 }
3074
3075 if (sigfd >= 0)
3076 {
3077 /* TODO: check .head */
3078 sigaddset (&sigfd_set, w->signum);
3079 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3080
3081 signalfd (sigfd, &sigfd_set, 0);
3082 }
3083#endif
1870 3084
1871 ev_start (EV_A_ (W)w, 1); 3085 ev_start (EV_A_ (W)w, 1);
1872 wlist_add (&signals [w->signum - 1].head, (WL)w); 3086 wlist_add (&signals [w->signum - 1].head, (WL)w);
1873 3087
1874 if (!((WL)w)->next) 3088 if (!((WL)w)->next)
3089# if EV_USE_SIGNALFD
3090 if (sigfd < 0) /*TODO*/
3091# endif
1875 { 3092 {
1876#if _WIN32 3093# ifdef _WIN32
3094 evpipe_init (EV_A);
3095
1877 signal (w->signum, sighandler); 3096 signal (w->signum, ev_sighandler);
1878#else 3097# else
1879 struct sigaction sa; 3098 struct sigaction sa;
3099
3100 evpipe_init (EV_A);
3101
1880 sa.sa_handler = sighandler; 3102 sa.sa_handler = ev_sighandler;
1881 sigfillset (&sa.sa_mask); 3103 sigfillset (&sa.sa_mask);
1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3104 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1883 sigaction (w->signum, &sa, 0); 3105 sigaction (w->signum, &sa, 0);
3106
3107 if (origflags & EVFLAG_NOSIGMASK)
3108 {
3109 sigemptyset (&sa.sa_mask);
3110 sigaddset (&sa.sa_mask, w->signum);
3111 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3112 }
1884#endif 3113#endif
1885 } 3114 }
3115
3116 EV_FREQUENT_CHECK;
1886} 3117}
1887 3118
1888void noinline 3119void noinline
1889ev_signal_stop (EV_P_ ev_signal *w) 3120ev_signal_stop (EV_P_ ev_signal *w)
1890{ 3121{
1891 clear_pending (EV_A_ (W)w); 3122 clear_pending (EV_A_ (W)w);
1892 if (expect_false (!ev_is_active (w))) 3123 if (expect_false (!ev_is_active (w)))
1893 return; 3124 return;
1894 3125
3126 EV_FREQUENT_CHECK;
3127
1895 wlist_del (&signals [w->signum - 1].head, (WL)w); 3128 wlist_del (&signals [w->signum - 1].head, (WL)w);
1896 ev_stop (EV_A_ (W)w); 3129 ev_stop (EV_A_ (W)w);
1897 3130
1898 if (!signals [w->signum - 1].head) 3131 if (!signals [w->signum - 1].head)
3132 {
3133#if EV_MULTIPLICITY
3134 signals [w->signum - 1].loop = 0; /* unattach from signal */
3135#endif
3136#if EV_USE_SIGNALFD
3137 if (sigfd >= 0)
3138 {
3139 sigset_t ss;
3140
3141 sigemptyset (&ss);
3142 sigaddset (&ss, w->signum);
3143 sigdelset (&sigfd_set, w->signum);
3144
3145 signalfd (sigfd, &sigfd_set, 0);
3146 sigprocmask (SIG_UNBLOCK, &ss, 0);
3147 }
3148 else
3149#endif
1899 signal (w->signum, SIG_DFL); 3150 signal (w->signum, SIG_DFL);
3151 }
3152
3153 EV_FREQUENT_CHECK;
1900} 3154}
3155
3156#endif
3157
3158#if EV_CHILD_ENABLE
1901 3159
1902void 3160void
1903ev_child_start (EV_P_ ev_child *w) 3161ev_child_start (EV_P_ ev_child *w)
1904{ 3162{
1905#if EV_MULTIPLICITY 3163#if EV_MULTIPLICITY
1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3164 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 3165#endif
1908 if (expect_false (ev_is_active (w))) 3166 if (expect_false (ev_is_active (w)))
1909 return; 3167 return;
1910 3168
3169 EV_FREQUENT_CHECK;
3170
1911 ev_start (EV_A_ (W)w, 1); 3171 ev_start (EV_A_ (W)w, 1);
1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3172 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3173
3174 EV_FREQUENT_CHECK;
1913} 3175}
1914 3176
1915void 3177void
1916ev_child_stop (EV_P_ ev_child *w) 3178ev_child_stop (EV_P_ ev_child *w)
1917{ 3179{
1918 clear_pending (EV_A_ (W)w); 3180 clear_pending (EV_A_ (W)w);
1919 if (expect_false (!ev_is_active (w))) 3181 if (expect_false (!ev_is_active (w)))
1920 return; 3182 return;
1921 3183
3184 EV_FREQUENT_CHECK;
3185
1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3186 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1923 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
1924} 3190}
3191
3192#endif
1925 3193
1926#if EV_STAT_ENABLE 3194#if EV_STAT_ENABLE
1927 3195
1928# ifdef _WIN32 3196# ifdef _WIN32
1929# undef lstat 3197# undef lstat
1930# define lstat(a,b) _stati64 (a,b) 3198# define lstat(a,b) _stati64 (a,b)
1931# endif 3199# endif
1932 3200
1933#define DEF_STAT_INTERVAL 5.0074891 3201#define DEF_STAT_INTERVAL 5.0074891
3202#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1934#define MIN_STAT_INTERVAL 0.1074891 3203#define MIN_STAT_INTERVAL 0.1074891
1935 3204
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3205static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937 3206
1938#if EV_USE_INOTIFY 3207#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192 3208
3209/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3210# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1940 3211
1941static void noinline 3212static void noinline
1942infy_add (EV_P_ ev_stat *w) 3213infy_add (EV_P_ ev_stat *w)
1943{ 3214{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3215 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945 3216
1946 if (w->wd < 0) 3217 if (w->wd >= 0)
3218 {
3219 struct statfs sfs;
3220
3221 /* now local changes will be tracked by inotify, but remote changes won't */
3222 /* unless the filesystem is known to be local, we therefore still poll */
3223 /* also do poll on <2.6.25, but with normal frequency */
3224
3225 if (!fs_2625)
3226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3227 else if (!statfs (w->path, &sfs)
3228 && (sfs.f_type == 0x1373 /* devfs */
3229 || sfs.f_type == 0xEF53 /* ext2/3 */
3230 || sfs.f_type == 0x3153464a /* jfs */
3231 || sfs.f_type == 0x52654973 /* reiser3 */
3232 || sfs.f_type == 0x01021994 /* tempfs */
3233 || sfs.f_type == 0x58465342 /* xfs */))
3234 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3235 else
3236 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1947 { 3237 }
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3238 else
3239 {
3240 /* can't use inotify, continue to stat */
3241 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1949 3242
1950 /* monitor some parent directory for speedup hints */ 3243 /* if path is not there, monitor some parent directory for speedup hints */
3244 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3245 /* but an efficiency issue only */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3246 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 { 3247 {
1953 char path [4096]; 3248 char path [4096];
1954 strcpy (path, w->path); 3249 strcpy (path, w->path);
1955 3250
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3253 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3254 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960 3255
1961 char *pend = strrchr (path, '/'); 3256 char *pend = strrchr (path, '/');
1962 3257
1963 if (!pend) 3258 if (!pend || pend == path)
1964 break; /* whoops, no '/', complain to your admin */ 3259 break;
1965 3260
1966 *pend = 0; 3261 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask); 3262 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 } 3263 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3264 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 } 3265 }
1971 } 3266 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974 3267
1975 if (w->wd >= 0) 3268 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3269 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3270
3271 /* now re-arm timer, if required */
3272 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3273 ev_timer_again (EV_A_ &w->timer);
3274 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1977} 3275}
1978 3276
1979static void noinline 3277static void noinline
1980infy_del (EV_P_ ev_stat *w) 3278infy_del (EV_P_ ev_stat *w)
1981{ 3279{
1984 3282
1985 if (wd < 0) 3283 if (wd < 0)
1986 return; 3284 return;
1987 3285
1988 w->wd = -2; 3286 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3287 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w); 3288 wlist_del (&fs_hash [slot].head, (WL)w);
1991 3289
1992 /* remove this watcher, if others are watching it, they will rearm */ 3290 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd); 3291 inotify_rm_watch (fs_fd, wd);
1994} 3292}
1995 3293
1996static void noinline 3294static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3295infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{ 3296{
1999 if (slot < 0) 3297 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */ 3298 /* overflow, need to check for all hash slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3299 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2002 infy_wd (EV_A_ slot, wd, ev); 3300 infy_wd (EV_A_ slot, wd, ev);
2003 else 3301 else
2004 { 3302 {
2005 WL w_; 3303 WL w_;
2006 3304
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3305 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2008 { 3306 {
2009 ev_stat *w = (ev_stat *)w_; 3307 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */ 3308 w_ = w_->next; /* lets us remove this watcher and all before it */
2011 3309
2012 if (w->wd == wd || wd == -1) 3310 if (w->wd == wd || wd == -1)
2013 { 3311 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3312 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 { 3313 {
3314 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2016 w->wd = -1; 3315 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */ 3316 infy_add (EV_A_ w); /* re-add, no matter what */
2018 } 3317 }
2019 3318
2020 stat_timer_cb (EV_A_ &w->timer, 0); 3319 stat_timer_cb (EV_A_ &w->timer, 0);
2025 3324
2026static void 3325static void
2027infy_cb (EV_P_ ev_io *w, int revents) 3326infy_cb (EV_P_ ev_io *w, int revents)
2028{ 3327{
2029 char buf [EV_INOTIFY_BUFSIZE]; 3328 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs; 3329 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf)); 3330 int len = read (fs_fd, buf, sizeof (buf));
2033 3331
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3332 for (ofs = 0; ofs < len; )
3333 {
3334 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3335 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3336 ofs += sizeof (struct inotify_event) + ev->len;
3337 }
2036} 3338}
2037 3339
2038void inline_size 3340inline_size void ecb_cold
3341ev_check_2625 (EV_P)
3342{
3343 /* kernels < 2.6.25 are borked
3344 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3345 */
3346 if (ev_linux_version () < 0x020619)
3347 return;
3348
3349 fs_2625 = 1;
3350}
3351
3352inline_size int
3353infy_newfd (void)
3354{
3355#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3356 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3357 if (fd >= 0)
3358 return fd;
3359#endif
3360 return inotify_init ();
3361}
3362
3363inline_size void
2039infy_init (EV_P) 3364infy_init (EV_P)
2040{ 3365{
2041 if (fs_fd != -2) 3366 if (fs_fd != -2)
2042 return; 3367 return;
2043 3368
3369 fs_fd = -1;
3370
3371 ev_check_2625 (EV_A);
3372
2044 fs_fd = inotify_init (); 3373 fs_fd = infy_newfd ();
2045 3374
2046 if (fs_fd >= 0) 3375 if (fs_fd >= 0)
2047 { 3376 {
3377 fd_intern (fs_fd);
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3378 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI); 3379 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w); 3380 ev_io_start (EV_A_ &fs_w);
3381 ev_unref (EV_A);
2051 } 3382 }
2052} 3383}
2053 3384
2054void inline_size 3385inline_size void
2055infy_fork (EV_P) 3386infy_fork (EV_P)
2056{ 3387{
2057 int slot; 3388 int slot;
2058 3389
2059 if (fs_fd < 0) 3390 if (fs_fd < 0)
2060 return; 3391 return;
2061 3392
3393 ev_ref (EV_A);
3394 ev_io_stop (EV_A_ &fs_w);
2062 close (fs_fd); 3395 close (fs_fd);
2063 fs_fd = inotify_init (); 3396 fs_fd = infy_newfd ();
2064 3397
3398 if (fs_fd >= 0)
3399 {
3400 fd_intern (fs_fd);
3401 ev_io_set (&fs_w, fs_fd, EV_READ);
3402 ev_io_start (EV_A_ &fs_w);
3403 ev_unref (EV_A);
3404 }
3405
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3406 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2066 { 3407 {
2067 WL w_ = fs_hash [slot].head; 3408 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0; 3409 fs_hash [slot].head = 0;
2069 3410
2070 while (w_) 3411 while (w_)
2075 w->wd = -1; 3416 w->wd = -1;
2076 3417
2077 if (fs_fd >= 0) 3418 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */ 3419 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else 3420 else
3421 {
3422 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3423 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2080 ev_timer_start (EV_A_ &w->timer); 3424 ev_timer_again (EV_A_ &w->timer);
3425 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3426 }
2081 } 3427 }
2082
2083 } 3428 }
2084} 3429}
2085 3430
3431#endif
3432
3433#ifdef _WIN32
3434# define EV_LSTAT(p,b) _stati64 (p, b)
3435#else
3436# define EV_LSTAT(p,b) lstat (p, b)
2086#endif 3437#endif
2087 3438
2088void 3439void
2089ev_stat_stat (EV_P_ ev_stat *w) 3440ev_stat_stat (EV_P_ ev_stat *w)
2090{ 3441{
2097static void noinline 3448static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3449stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{ 3450{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3451 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101 3452
2102 /* we copy this here each the time so that */ 3453 ev_statdata prev = w->attr;
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w); 3454 ev_stat_stat (EV_A_ w);
2106 3455
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3456 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if ( 3457 if (
2109 w->prev.st_dev != w->attr.st_dev 3458 prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino 3459 || prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode 3460 || prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink 3461 || prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid 3462 || prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid 3463 || prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev 3464 || prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size 3465 || prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime 3466 || prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime 3467 || prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime 3468 || prev.st_ctime != w->attr.st_ctime
2120 ) { 3469 ) {
3470 /* we only update w->prev on actual differences */
3471 /* in case we test more often than invoke the callback, */
3472 /* to ensure that prev is always different to attr */
3473 w->prev = prev;
3474
2121 #if EV_USE_INOTIFY 3475 #if EV_USE_INOTIFY
3476 if (fs_fd >= 0)
3477 {
2122 infy_del (EV_A_ w); 3478 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w); 3479 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */ 3480 ev_stat_stat (EV_A_ w); /* avoid race... */
3481 }
2125 #endif 3482 #endif
2126 3483
2127 ev_feed_event (EV_A_ w, EV_STAT); 3484 ev_feed_event (EV_A_ w, EV_STAT);
2128 } 3485 }
2129} 3486}
2132ev_stat_start (EV_P_ ev_stat *w) 3489ev_stat_start (EV_P_ ev_stat *w)
2133{ 3490{
2134 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
2135 return; 3492 return;
2136 3493
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w); 3494 ev_stat_stat (EV_A_ w);
2142 3495
3496 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2143 if (w->interval < MIN_STAT_INTERVAL) 3497 w->interval = MIN_STAT_INTERVAL;
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145 3498
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3499 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2147 ev_set_priority (&w->timer, ev_priority (w)); 3500 ev_set_priority (&w->timer, ev_priority (w));
2148 3501
2149#if EV_USE_INOTIFY 3502#if EV_USE_INOTIFY
2150 infy_init (EV_A); 3503 infy_init (EV_A);
2151 3504
2152 if (fs_fd >= 0) 3505 if (fs_fd >= 0)
2153 infy_add (EV_A_ w); 3506 infy_add (EV_A_ w);
2154 else 3507 else
2155#endif 3508#endif
3509 {
2156 ev_timer_start (EV_A_ &w->timer); 3510 ev_timer_again (EV_A_ &w->timer);
3511 ev_unref (EV_A);
3512 }
2157 3513
2158 ev_start (EV_A_ (W)w, 1); 3514 ev_start (EV_A_ (W)w, 1);
3515
3516 EV_FREQUENT_CHECK;
2159} 3517}
2160 3518
2161void 3519void
2162ev_stat_stop (EV_P_ ev_stat *w) 3520ev_stat_stop (EV_P_ ev_stat *w)
2163{ 3521{
2164 clear_pending (EV_A_ (W)w); 3522 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 3523 if (expect_false (!ev_is_active (w)))
2166 return; 3524 return;
2167 3525
3526 EV_FREQUENT_CHECK;
3527
2168#if EV_USE_INOTIFY 3528#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w); 3529 infy_del (EV_A_ w);
2170#endif 3530#endif
3531
3532 if (ev_is_active (&w->timer))
3533 {
3534 ev_ref (EV_A);
2171 ev_timer_stop (EV_A_ &w->timer); 3535 ev_timer_stop (EV_A_ &w->timer);
3536 }
2172 3537
2173 ev_stop (EV_A_ (W)w); 3538 ev_stop (EV_A_ (W)w);
3539
3540 EV_FREQUENT_CHECK;
2174} 3541}
2175#endif 3542#endif
2176 3543
2177#if EV_IDLE_ENABLE 3544#if EV_IDLE_ENABLE
2178void 3545void
2181 if (expect_false (ev_is_active (w))) 3548 if (expect_false (ev_is_active (w)))
2182 return; 3549 return;
2183 3550
2184 pri_adjust (EV_A_ (W)w); 3551 pri_adjust (EV_A_ (W)w);
2185 3552
3553 EV_FREQUENT_CHECK;
3554
2186 { 3555 {
2187 int active = ++idlecnt [ABSPRI (w)]; 3556 int active = ++idlecnt [ABSPRI (w)];
2188 3557
2189 ++idleall; 3558 ++idleall;
2190 ev_start (EV_A_ (W)w, active); 3559 ev_start (EV_A_ (W)w, active);
2191 3560
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3561 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w; 3562 idles [ABSPRI (w)][active - 1] = w;
2194 } 3563 }
3564
3565 EV_FREQUENT_CHECK;
2195} 3566}
2196 3567
2197void 3568void
2198ev_idle_stop (EV_P_ ev_idle *w) 3569ev_idle_stop (EV_P_ ev_idle *w)
2199{ 3570{
2200 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
2202 return; 3573 return;
2203 3574
3575 EV_FREQUENT_CHECK;
3576
2204 { 3577 {
2205 int active = ((W)w)->active; 3578 int active = ev_active (w);
2206 3579
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3580 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3581 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2209 3582
2210 ev_stop (EV_A_ (W)w); 3583 ev_stop (EV_A_ (W)w);
2211 --idleall; 3584 --idleall;
2212 } 3585 }
2213}
2214#endif
2215 3586
3587 EV_FREQUENT_CHECK;
3588}
3589#endif
3590
3591#if EV_PREPARE_ENABLE
2216void 3592void
2217ev_prepare_start (EV_P_ ev_prepare *w) 3593ev_prepare_start (EV_P_ ev_prepare *w)
2218{ 3594{
2219 if (expect_false (ev_is_active (w))) 3595 if (expect_false (ev_is_active (w)))
2220 return; 3596 return;
3597
3598 EV_FREQUENT_CHECK;
2221 3599
2222 ev_start (EV_A_ (W)w, ++preparecnt); 3600 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3601 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w; 3602 prepares [preparecnt - 1] = w;
3603
3604 EV_FREQUENT_CHECK;
2225} 3605}
2226 3606
2227void 3607void
2228ev_prepare_stop (EV_P_ ev_prepare *w) 3608ev_prepare_stop (EV_P_ ev_prepare *w)
2229{ 3609{
2230 clear_pending (EV_A_ (W)w); 3610 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w))) 3611 if (expect_false (!ev_is_active (w)))
2232 return; 3612 return;
2233 3613
3614 EV_FREQUENT_CHECK;
3615
2234 { 3616 {
2235 int active = ((W)w)->active; 3617 int active = ev_active (w);
3618
2236 prepares [active - 1] = prepares [--preparecnt]; 3619 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active; 3620 ev_active (prepares [active - 1]) = active;
2238 } 3621 }
2239 3622
2240 ev_stop (EV_A_ (W)w); 3623 ev_stop (EV_A_ (W)w);
2241}
2242 3624
3625 EV_FREQUENT_CHECK;
3626}
3627#endif
3628
3629#if EV_CHECK_ENABLE
2243void 3630void
2244ev_check_start (EV_P_ ev_check *w) 3631ev_check_start (EV_P_ ev_check *w)
2245{ 3632{
2246 if (expect_false (ev_is_active (w))) 3633 if (expect_false (ev_is_active (w)))
2247 return; 3634 return;
3635
3636 EV_FREQUENT_CHECK;
2248 3637
2249 ev_start (EV_A_ (W)w, ++checkcnt); 3638 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3639 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w; 3640 checks [checkcnt - 1] = w;
3641
3642 EV_FREQUENT_CHECK;
2252} 3643}
2253 3644
2254void 3645void
2255ev_check_stop (EV_P_ ev_check *w) 3646ev_check_stop (EV_P_ ev_check *w)
2256{ 3647{
2257 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
2259 return; 3650 return;
2260 3651
3652 EV_FREQUENT_CHECK;
3653
2261 { 3654 {
2262 int active = ((W)w)->active; 3655 int active = ev_active (w);
3656
2263 checks [active - 1] = checks [--checkcnt]; 3657 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active; 3658 ev_active (checks [active - 1]) = active;
2265 } 3659 }
2266 3660
2267 ev_stop (EV_A_ (W)w); 3661 ev_stop (EV_A_ (W)w);
3662
3663 EV_FREQUENT_CHECK;
2268} 3664}
3665#endif
2269 3666
2270#if EV_EMBED_ENABLE 3667#if EV_EMBED_ENABLE
2271void noinline 3668void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w) 3669ev_embed_sweep (EV_P_ ev_embed *w)
2273{ 3670{
2274 ev_loop (w->other, EVLOOP_NONBLOCK); 3671 ev_run (w->other, EVRUN_NOWAIT);
2275} 3672}
2276 3673
2277static void 3674static void
2278embed_io_cb (EV_P_ ev_io *io, int revents) 3675embed_io_cb (EV_P_ ev_io *io, int revents)
2279{ 3676{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3677 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281 3678
2282 if (ev_cb (w)) 3679 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3680 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else 3681 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK); 3682 ev_run (w->other, EVRUN_NOWAIT);
2286} 3683}
2287 3684
2288static void 3685static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3686embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{ 3687{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3688 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292 3689
2293 { 3690 {
2294 struct ev_loop *loop = w->other; 3691 EV_P = w->other;
2295 3692
2296 while (fdchangecnt) 3693 while (fdchangecnt)
2297 { 3694 {
2298 fd_reify (EV_A); 3695 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3696 ev_run (EV_A_ EVRUN_NOWAIT);
2300 } 3697 }
2301 } 3698 }
3699}
3700
3701static void
3702embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3703{
3704 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3705
3706 ev_embed_stop (EV_A_ w);
3707
3708 {
3709 EV_P = w->other;
3710
3711 ev_loop_fork (EV_A);
3712 ev_run (EV_A_ EVRUN_NOWAIT);
3713 }
3714
3715 ev_embed_start (EV_A_ w);
2302} 3716}
2303 3717
2304#if 0 3718#if 0
2305static void 3719static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3720embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2314{ 3728{
2315 if (expect_false (ev_is_active (w))) 3729 if (expect_false (ev_is_active (w)))
2316 return; 3730 return;
2317 3731
2318 { 3732 {
2319 struct ev_loop *loop = w->other; 3733 EV_P = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3734 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3735 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 } 3736 }
3737
3738 EV_FREQUENT_CHECK;
2323 3739
2324 ev_set_priority (&w->io, ev_priority (w)); 3740 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io); 3741 ev_io_start (EV_A_ &w->io);
2326 3742
2327 ev_prepare_init (&w->prepare, embed_prepare_cb); 3743 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI); 3744 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare); 3745 ev_prepare_start (EV_A_ &w->prepare);
2330 3746
3747 ev_fork_init (&w->fork, embed_fork_cb);
3748 ev_fork_start (EV_A_ &w->fork);
3749
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3750 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332 3751
2333 ev_start (EV_A_ (W)w, 1); 3752 ev_start (EV_A_ (W)w, 1);
3753
3754 EV_FREQUENT_CHECK;
2334} 3755}
2335 3756
2336void 3757void
2337ev_embed_stop (EV_P_ ev_embed *w) 3758ev_embed_stop (EV_P_ ev_embed *w)
2338{ 3759{
2339 clear_pending (EV_A_ (W)w); 3760 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w))) 3761 if (expect_false (!ev_is_active (w)))
2341 return; 3762 return;
2342 3763
3764 EV_FREQUENT_CHECK;
3765
2343 ev_io_stop (EV_A_ &w->io); 3766 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare); 3767 ev_prepare_stop (EV_A_ &w->prepare);
3768 ev_fork_stop (EV_A_ &w->fork);
2345 3769
2346 ev_stop (EV_A_ (W)w); 3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
2347} 3773}
2348#endif 3774#endif
2349 3775
2350#if EV_FORK_ENABLE 3776#if EV_FORK_ENABLE
2351void 3777void
2352ev_fork_start (EV_P_ ev_fork *w) 3778ev_fork_start (EV_P_ ev_fork *w)
2353{ 3779{
2354 if (expect_false (ev_is_active (w))) 3780 if (expect_false (ev_is_active (w)))
2355 return; 3781 return;
2356 3782
3783 EV_FREQUENT_CHECK;
3784
2357 ev_start (EV_A_ (W)w, ++forkcnt); 3785 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3786 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w; 3787 forks [forkcnt - 1] = w;
3788
3789 EV_FREQUENT_CHECK;
2360} 3790}
2361 3791
2362void 3792void
2363ev_fork_stop (EV_P_ ev_fork *w) 3793ev_fork_stop (EV_P_ ev_fork *w)
2364{ 3794{
2365 clear_pending (EV_A_ (W)w); 3795 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3796 if (expect_false (!ev_is_active (w)))
2367 return; 3797 return;
2368 3798
3799 EV_FREQUENT_CHECK;
3800
2369 { 3801 {
2370 int active = ((W)w)->active; 3802 int active = ev_active (w);
3803
2371 forks [active - 1] = forks [--forkcnt]; 3804 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active; 3805 ev_active (forks [active - 1]) = active;
2373 } 3806 }
2374 3807
2375 ev_stop (EV_A_ (W)w); 3808 ev_stop (EV_A_ (W)w);
3809
3810 EV_FREQUENT_CHECK;
3811}
3812#endif
3813
3814#if EV_CLEANUP_ENABLE
3815void
3816ev_cleanup_start (EV_P_ ev_cleanup *w)
3817{
3818 if (expect_false (ev_is_active (w)))
3819 return;
3820
3821 EV_FREQUENT_CHECK;
3822
3823 ev_start (EV_A_ (W)w, ++cleanupcnt);
3824 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3825 cleanups [cleanupcnt - 1] = w;
3826
3827 /* cleanup watchers should never keep a refcount on the loop */
3828 ev_unref (EV_A);
3829 EV_FREQUENT_CHECK;
3830}
3831
3832void
3833ev_cleanup_stop (EV_P_ ev_cleanup *w)
3834{
3835 clear_pending (EV_A_ (W)w);
3836 if (expect_false (!ev_is_active (w)))
3837 return;
3838
3839 EV_FREQUENT_CHECK;
3840 ev_ref (EV_A);
3841
3842 {
3843 int active = ev_active (w);
3844
3845 cleanups [active - 1] = cleanups [--cleanupcnt];
3846 ev_active (cleanups [active - 1]) = active;
3847 }
3848
3849 ev_stop (EV_A_ (W)w);
3850
3851 EV_FREQUENT_CHECK;
3852}
3853#endif
3854
3855#if EV_ASYNC_ENABLE
3856void
3857ev_async_start (EV_P_ ev_async *w)
3858{
3859 if (expect_false (ev_is_active (w)))
3860 return;
3861
3862 w->sent = 0;
3863
3864 evpipe_init (EV_A);
3865
3866 EV_FREQUENT_CHECK;
3867
3868 ev_start (EV_A_ (W)w, ++asynccnt);
3869 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3870 asyncs [asynccnt - 1] = w;
3871
3872 EV_FREQUENT_CHECK;
3873}
3874
3875void
3876ev_async_stop (EV_P_ ev_async *w)
3877{
3878 clear_pending (EV_A_ (W)w);
3879 if (expect_false (!ev_is_active (w)))
3880 return;
3881
3882 EV_FREQUENT_CHECK;
3883
3884 {
3885 int active = ev_active (w);
3886
3887 asyncs [active - 1] = asyncs [--asynccnt];
3888 ev_active (asyncs [active - 1]) = active;
3889 }
3890
3891 ev_stop (EV_A_ (W)w);
3892
3893 EV_FREQUENT_CHECK;
3894}
3895
3896void
3897ev_async_send (EV_P_ ev_async *w)
3898{
3899 w->sent = 1;
3900 evpipe_write (EV_A_ &async_pending);
2376} 3901}
2377#endif 3902#endif
2378 3903
2379/*****************************************************************************/ 3904/*****************************************************************************/
2380 3905
2390once_cb (EV_P_ struct ev_once *once, int revents) 3915once_cb (EV_P_ struct ev_once *once, int revents)
2391{ 3916{
2392 void (*cb)(int revents, void *arg) = once->cb; 3917 void (*cb)(int revents, void *arg) = once->cb;
2393 void *arg = once->arg; 3918 void *arg = once->arg;
2394 3919
2395 ev_io_stop (EV_A_ &once->io); 3920 ev_io_stop (EV_A_ &once->io);
2396 ev_timer_stop (EV_A_ &once->to); 3921 ev_timer_stop (EV_A_ &once->to);
2397 ev_free (once); 3922 ev_free (once);
2398 3923
2399 cb (revents, arg); 3924 cb (revents, arg);
2400} 3925}
2401 3926
2402static void 3927static void
2403once_cb_io (EV_P_ ev_io *w, int revents) 3928once_cb_io (EV_P_ ev_io *w, int revents)
2404{ 3929{
2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3930 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3931
3932 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2406} 3933}
2407 3934
2408static void 3935static void
2409once_cb_to (EV_P_ ev_timer *w, int revents) 3936once_cb_to (EV_P_ ev_timer *w, int revents)
2410{ 3937{
2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3938 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3939
3940 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2412} 3941}
2413 3942
2414void 3943void
2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3944ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2416{ 3945{
2417 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3946 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2418 3947
2419 if (expect_false (!once)) 3948 if (expect_false (!once))
2420 { 3949 {
2421 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3950 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2422 return; 3951 return;
2423 } 3952 }
2424 3953
2425 once->cb = cb; 3954 once->cb = cb;
2426 once->arg = arg; 3955 once->arg = arg;
2438 ev_timer_set (&once->to, timeout, 0.); 3967 ev_timer_set (&once->to, timeout, 0.);
2439 ev_timer_start (EV_A_ &once->to); 3968 ev_timer_start (EV_A_ &once->to);
2440 } 3969 }
2441} 3970}
2442 3971
3972/*****************************************************************************/
3973
3974#if EV_WALK_ENABLE
3975void ecb_cold
3976ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3977{
3978 int i, j;
3979 ev_watcher_list *wl, *wn;
3980
3981 if (types & (EV_IO | EV_EMBED))
3982 for (i = 0; i < anfdmax; ++i)
3983 for (wl = anfds [i].head; wl; )
3984 {
3985 wn = wl->next;
3986
3987#if EV_EMBED_ENABLE
3988 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3989 {
3990 if (types & EV_EMBED)
3991 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3992 }
3993 else
3994#endif
3995#if EV_USE_INOTIFY
3996 if (ev_cb ((ev_io *)wl) == infy_cb)
3997 ;
3998 else
3999#endif
4000 if ((ev_io *)wl != &pipe_w)
4001 if (types & EV_IO)
4002 cb (EV_A_ EV_IO, wl);
4003
4004 wl = wn;
4005 }
4006
4007 if (types & (EV_TIMER | EV_STAT))
4008 for (i = timercnt + HEAP0; i-- > HEAP0; )
4009#if EV_STAT_ENABLE
4010 /*TODO: timer is not always active*/
4011 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4012 {
4013 if (types & EV_STAT)
4014 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4015 }
4016 else
4017#endif
4018 if (types & EV_TIMER)
4019 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4020
4021#if EV_PERIODIC_ENABLE
4022 if (types & EV_PERIODIC)
4023 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4024 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4025#endif
4026
4027#if EV_IDLE_ENABLE
4028 if (types & EV_IDLE)
4029 for (j = NUMPRI; i--; )
4030 for (i = idlecnt [j]; i--; )
4031 cb (EV_A_ EV_IDLE, idles [j][i]);
4032#endif
4033
4034#if EV_FORK_ENABLE
4035 if (types & EV_FORK)
4036 for (i = forkcnt; i--; )
4037 if (ev_cb (forks [i]) != embed_fork_cb)
4038 cb (EV_A_ EV_FORK, forks [i]);
4039#endif
4040
4041#if EV_ASYNC_ENABLE
4042 if (types & EV_ASYNC)
4043 for (i = asynccnt; i--; )
4044 cb (EV_A_ EV_ASYNC, asyncs [i]);
4045#endif
4046
4047#if EV_PREPARE_ENABLE
4048 if (types & EV_PREPARE)
4049 for (i = preparecnt; i--; )
4050# if EV_EMBED_ENABLE
4051 if (ev_cb (prepares [i]) != embed_prepare_cb)
4052# endif
4053 cb (EV_A_ EV_PREPARE, prepares [i]);
4054#endif
4055
4056#if EV_CHECK_ENABLE
4057 if (types & EV_CHECK)
4058 for (i = checkcnt; i--; )
4059 cb (EV_A_ EV_CHECK, checks [i]);
4060#endif
4061
4062#if EV_SIGNAL_ENABLE
4063 if (types & EV_SIGNAL)
4064 for (i = 0; i < EV_NSIG - 1; ++i)
4065 for (wl = signals [i].head; wl; )
4066 {
4067 wn = wl->next;
4068 cb (EV_A_ EV_SIGNAL, wl);
4069 wl = wn;
4070 }
4071#endif
4072
4073#if EV_CHILD_ENABLE
4074 if (types & EV_CHILD)
4075 for (i = (EV_PID_HASHSIZE); i--; )
4076 for (wl = childs [i]; wl; )
4077 {
4078 wn = wl->next;
4079 cb (EV_A_ EV_CHILD, wl);
4080 wl = wn;
4081 }
4082#endif
4083/* EV_STAT 0x00001000 /* stat data changed */
4084/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4085}
4086#endif
4087
2443#if EV_MULTIPLICITY 4088#if EV_MULTIPLICITY
2444 #include "ev_wrap.h" 4089 #include "ev_wrap.h"
2445#endif 4090#endif
2446 4091
2447#ifdef __cplusplus 4092EV_CPP(})
2448}
2449#endif
2450 4093

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines