ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
31#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
32# include "config.h" 48# include "config.h"
49# endif
33 50
34# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
54# endif
55# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
37# endif 65# endif
38 66
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
41# endif 73# endif
42 74
43# if HAVE_POLL && HAVE_POLL_H 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
45# endif 81# endif
46 82
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
49# endif 89# endif
50 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
53# endif 121# endif
54 122
55#endif 123#endif
56 124
57#include <math.h> 125#include <math.h>
58#include <stdlib.h> 126#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 127#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 128#include <stddef.h>
63 129
64#include <stdio.h> 130#include <stdio.h>
65 131
66#include <assert.h> 132#include <assert.h>
67#include <errno.h> 133#include <errno.h>
68#include <sys/types.h> 134#include <sys/types.h>
135#include <time.h>
136
137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
69#ifndef WIN32 145#ifndef _WIN32
146# include <sys/time.h>
70# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
71#endif 154# endif
72#include <sys/time.h> 155#endif
73#include <time.h>
74 156
75/**/ 157/**/
76 158
77#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
79#endif 169#endif
80 170
81#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
83#endif 173#endif
84 174
85#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
87#endif 181#endif
88 182
89#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
91#endif 185#endif
92 186
93#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
95#endif 189#endif
96 190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
97#ifndef EV_USE_WIN32 195#ifndef EV_USE_INOTIFY
98# ifdef WIN32 196# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
100# else 202# else
101# define EV_USE_WIN32 0 203# define EV_PID_HASHSIZE 16
102# endif 204# endif
103#endif 205#endif
104 206
105#ifndef EV_USE_REALTIME 207#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
107#endif 213#endif
108 214
109/**/ 215/**/
110 216
111#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
119#endif 225#endif
120 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
121/**/ 246/**/
122 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 261
128#include "ev.h"
129
130#if __GNUC__ >= 3 262#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 264# define noinline __attribute__ ((noinline))
133#else 265#else
134# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
135# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
136#endif 271#endif
137 272
138#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
140 282
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
144typedef struct ev_watcher *W; 289typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
147 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
298
299#ifdef _WIN32
300# include "ev_win32.c"
301#endif
149 302
150/*****************************************************************************/ 303/*****************************************************************************/
151 304
305static void (*syserr_cb)(const char *msg);
306
307void
308ev_set_syserr_cb (void (*cb)(const char *msg))
309{
310 syserr_cb = cb;
311}
312
313static void noinline
314syserr (const char *msg)
315{
316 if (!msg)
317 msg = "(libev) system error";
318
319 if (syserr_cb)
320 syserr_cb (msg);
321 else
322 {
323 perror (msg);
324 abort ();
325 }
326}
327
328static void *(*alloc)(void *ptr, long size);
329
330void
331ev_set_allocator (void *(*cb)(void *ptr, long size))
332{
333 alloc = cb;
334}
335
336inline_speed void *
337ev_realloc (void *ptr, long size)
338{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
340
341 if (!ptr && size)
342 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort ();
345 }
346
347 return ptr;
348}
349
350#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0)
352
353/*****************************************************************************/
354
152typedef struct 355typedef struct
153{ 356{
154 struct ev_watcher_list *head; 357 WL head;
155 unsigned char events; 358 unsigned char events;
156 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
157} ANFD; 363} ANFD;
158 364
159typedef struct 365typedef struct
160{ 366{
161 W w; 367 W w;
162 int events; 368 int events;
163} ANPENDING; 369} ANPENDING;
164 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
165#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
166 379
167struct ev_loop 380 struct ev_loop
168{ 381 {
382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
170# include "ev_vars.h" 385 #include "ev_vars.h"
171};
172# undef VAR 386 #undef VAR
387 };
173# include "ev_wrap.h" 388 #include "ev_wrap.h"
389
390 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr;
174 392
175#else 393#else
176 394
395 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 397 #include "ev_vars.h"
179# undef VAR 398 #undef VAR
399
400 static int ev_default_loop_ptr;
180 401
181#endif 402#endif
182 403
183/*****************************************************************************/ 404/*****************************************************************************/
184 405
185inline ev_tstamp 406ev_tstamp
186ev_time (void) 407ev_time (void)
187{ 408{
188#if EV_USE_REALTIME 409#if EV_USE_REALTIME
189 struct timespec ts; 410 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 411 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 417#endif
197} 418}
198 419
199inline ev_tstamp 420ev_tstamp inline_size
200get_clock (void) 421get_clock (void)
201{ 422{
202#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
204 { 425 {
209#endif 430#endif
210 431
211 return ev_time (); 432 return ev_time ();
212} 433}
213 434
435#if EV_MULTIPLICITY
214ev_tstamp 436ev_tstamp
215ev_now (EV_P) 437ev_now (EV_P)
216{ 438{
217 return rt_now; 439 return ev_rt_now;
218} 440}
441#endif
219 442
220#define array_roundsize(base,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
221 450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
497
222#define array_needsize(base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
224 { \ 500 { \
225 int newcnt = cur; \ 501 int ocur_ = (cur); \
226 do \ 502 (base) = (type *)array_realloc \
227 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 505 }
230 while ((cnt) > newcnt); \ 506
507#if 0
508#define array_slim(type,stem) \
509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 510 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 514 }
515#endif
236 516
237#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 519
240/*****************************************************************************/ 520/*****************************************************************************/
241 521
242static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
243anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
244{ 552{
245 while (count--) 553 while (count--)
246 { 554 {
247 base->head = 0; 555 base->head = 0;
250 558
251 ++base; 559 ++base;
252 } 560 }
253} 561}
254 562
255static void 563void inline_speed
256event (EV_P_ W w, int events)
257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
262 }
263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
280fd_event (EV_P_ int fd, int events) 564fd_event (EV_P_ int fd, int revents)
281{ 565{
282 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 567 ev_io *w;
284 568
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 570 {
287 int ev = w->events & events; 571 int ev = w->events & revents;
288 572
289 if (ev) 573 if (ev)
290 event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
291 } 575 }
292} 576}
293 577
294/*****************************************************************************/ 578void
579ev_feed_fd_event (EV_P_ int fd, int revents)
580{
581 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents);
583}
295 584
296static void 585void inline_size
297fd_reify (EV_P) 586fd_reify (EV_P)
298{ 587{
299 int i; 588 int i;
300 589
301 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
302 { 591 {
303 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 594 ev_io *w;
306 595
307 int events = 0; 596 unsigned char events = 0;
308 597
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
310 events |= w->events; 599 events |= (unsigned char)w->events;
311 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 anfd->handle = _get_osfhandle (fd);
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
607 }
608#endif
609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
312 anfd->reify = 0; 614 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
316 } 620 }
317 621
318 fdchangecnt = 0; 622 fdchangecnt = 0;
319} 623}
320 624
321static void 625void inline_size
322fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
323{ 627{
324 if (anfds [fd].reify || fdchangecnt < 0) 628 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
328 630
631 if (expect_true (!reify))
632 {
329 ++fdchangecnt; 633 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
332} 637}
333 638
334static void 639void inline_speed
335fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
336{ 641{
337 struct ev_io *w; 642 ev_io *w;
338 643
339 while ((w = (struct ev_io *)anfds [fd].head)) 644 while ((w = (ev_io *)anfds [fd].head))
340 { 645 {
341 ev_io_stop (EV_A_ w); 646 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 648 }
649}
650
651int inline_size
652fd_valid (int fd)
653{
654#ifdef _WIN32
655 return _get_osfhandle (fd) != -1;
656#else
657 return fcntl (fd, F_GETFD) != -1;
658#endif
344} 659}
345 660
346/* called on EBADF to verify fds */ 661/* called on EBADF to verify fds */
347static void 662static void noinline
348fd_ebadf (EV_P) 663fd_ebadf (EV_P)
349{ 664{
350 int fd; 665 int fd;
351 666
352 for (fd = 0; fd < anfdmax; ++fd) 667 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 668 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 669 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
356} 671}
357 672
358/* called on ENOMEM in select/poll to kill some fds and retry */ 673/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 674static void noinline
360fd_enomem (EV_P) 675fd_enomem (EV_P)
361{ 676{
362 int fd; 677 int fd;
363 678
364 for (fd = anfdmax; fd--; ) 679 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 680 if (anfds [fd].events)
366 { 681 {
367 close (fd);
368 fd_kill (EV_A_ fd); 682 fd_kill (EV_A_ fd);
369 return; 683 return;
370 } 684 }
371} 685}
372 686
373/* susually called after fork if method needs to re-arm all fds from scratch */ 687/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 688static void noinline
375fd_rearm_all (EV_P) 689fd_rearm_all (EV_P)
376{ 690{
377 int fd; 691 int fd;
378 692
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 694 if (anfds [fd].events)
382 { 695 {
383 anfds [fd].events = 0; 696 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
385 } 698 }
386} 699}
387 700
388/*****************************************************************************/ 701/*****************************************************************************/
389 702
390static void 703void inline_speed
391upheap (WT *heap, int k) 704upheap (WT *heap, int k)
392{ 705{
393 WT w = heap [k]; 706 WT w = heap [k];
394 707
395 while (k && heap [k >> 1]->at > w->at) 708 while (k)
396 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
397 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
398 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
399 k >>= 1; 717 k = p;
400 } 718 }
401 719
402 heap [k] = w; 720 heap [k] = w;
403 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
404
405} 722}
406 723
407static void 724void inline_speed
408downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
409{ 726{
410 WT w = heap [k]; 727 WT w = heap [k];
411 728
412 while (k < (N >> 1)) 729 for (;;)
413 { 730 {
414 int j = k << 1; 731 int c = (k << 1) + 1;
415 732
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
417 ++j;
418
419 if (w->at <= heap [j]->at)
420 break; 734 break;
421 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
422 heap [k] = heap [j]; 742 heap [k] = heap [c];
423 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
424 k = j; 745 k = c;
425 } 746 }
426 747
427 heap [k] = w; 748 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
429} 750}
430 751
752void inline_size
753adjustheap (WT *heap, int N, int k)
754{
755 upheap (heap, k);
756 downheap (heap, N, k);
757}
758
431/*****************************************************************************/ 759/*****************************************************************************/
432 760
433typedef struct 761typedef struct
434{ 762{
435 struct ev_watcher_list *head; 763 WL head;
436 sig_atomic_t volatile gotsig; 764 sig_atomic_t volatile gotsig;
437} ANSIG; 765} ANSIG;
438 766
439static ANSIG *signals; 767static ANSIG *signals;
440static int signalmax; 768static int signalmax;
441 769
442static int sigpipe [2]; 770static int sigpipe [2];
443static sig_atomic_t volatile gotsig; 771static sig_atomic_t volatile gotsig;
444static struct ev_io sigev; 772static ev_io sigev;
445 773
446static void 774void inline_size
447signals_init (ANSIG *base, int count) 775signals_init (ANSIG *base, int count)
448{ 776{
449 while (count--) 777 while (count--)
450 { 778 {
451 base->head = 0; 779 base->head = 0;
456} 784}
457 785
458static void 786static void
459sighandler (int signum) 787sighandler (int signum)
460{ 788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
461 signals [signum - 1].gotsig = 1; 793 signals [signum - 1].gotsig = 1;
462 794
463 if (!gotsig) 795 if (!gotsig)
464 { 796 {
465 int old_errno = errno; 797 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 799 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 800 errno = old_errno;
469 } 801 }
470} 802}
471 803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
472static void 824static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 825sigcb (EV_P_ ev_io *iow, int revents)
474{ 826{
475 struct ev_watcher_list *w;
476 int signum; 827 int signum;
477 828
478 read (sigpipe [0], &revents, 1); 829 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 830 gotsig = 0;
480 831
481 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
483 { 834 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 835}
490 836
491static void 837void inline_speed
838fd_intern (int fd)
839{
840#ifdef _WIN32
841 int arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
843#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif
847}
848
849static void noinline
492siginit (EV_P) 850siginit (EV_P)
493{ 851{
494#ifndef WIN32 852 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 853 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 854
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 855 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 856 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 858}
507 859
508/*****************************************************************************/ 860/*****************************************************************************/
509 861
862static WL childs [EV_PID_HASHSIZE];
863
510#ifndef WIN32 864#ifndef _WIN32
511 865
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 866static ev_signal childev;
867
868void inline_speed
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
870{
871 ev_child *w;
872
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
874 if (w->pid == pid || !w->pid)
875 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
877 w->rpid = pid;
878 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 }
881}
514 882
515#ifndef WCONTINUED 883#ifndef WCONTINUED
516# define WCONTINUED 0 884# define WCONTINUED 0
517#endif 885#endif
518 886
519static void 887static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 888childcb (EV_P_ ev_signal *sw, int revents)
536{ 889{
537 int pid, status; 890 int pid, status;
538 891
892 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 893 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 894 if (!WCONTINUED
895 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return;
898
541 /* make sure we are called again until all childs have been reaped */ 899 /* make sure we are called again until all childs have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 902
544 child_reap (EV_A_ sw, pid, pid, status); 903 child_reap (EV_A_ sw, pid, pid, status);
904 if (EV_PID_HASHSIZE > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 906}
548 907
549#endif 908#endif
550 909
551/*****************************************************************************/ 910/*****************************************************************************/
552 911
912#if EV_USE_PORT
913# include "ev_port.c"
914#endif
553#if EV_USE_KQUEUE 915#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 916# include "ev_kqueue.c"
555#endif 917#endif
556#if EV_USE_EPOLL 918#if EV_USE_EPOLL
557# include "ev_epoll.c" 919# include "ev_epoll.c"
574{ 936{
575 return EV_VERSION_MINOR; 937 return EV_VERSION_MINOR;
576} 938}
577 939
578/* return true if we are running with elevated privileges and should ignore env variables */ 940/* return true if we are running with elevated privileges and should ignore env variables */
579static int 941int inline_size
580enable_secure (void) 942enable_secure (void)
581{ 943{
582#ifdef WIN32 944#ifdef _WIN32
583 return 0; 945 return 0;
584#else 946#else
585 return getuid () != geteuid () 947 return getuid () != geteuid ()
586 || getgid () != getegid (); 948 || getgid () != getegid ();
587#endif 949#endif
588} 950}
589 951
590int 952unsigned int
591ev_method (EV_P) 953ev_supported_backends (void)
592{ 954{
593 return method; 955 unsigned int flags = 0;
594}
595 956
596static void 957 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 958 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
959 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
960 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
961 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
962
963 return flags;
964}
965
966unsigned int
967ev_recommended_backends (void)
598{ 968{
599 if (!method) 969 unsigned int flags = ev_supported_backends ();
970
971#ifndef __NetBSD__
972 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE;
975#endif
976#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation
978 flags &= ~EVBACKEND_POLL;
979#endif
980
981 return flags;
982}
983
984unsigned int
985ev_embeddable_backends (void)
986{
987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
988
989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
994}
995
996unsigned int
997ev_backend (EV_P)
998{
999 return backend;
1000}
1001
1002unsigned int
1003ev_loop_count (EV_P)
1004{
1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
1018}
1019
1020static void noinline
1021loop_init (EV_P_ unsigned int flags)
1022{
1023 if (!backend)
600 { 1024 {
601#if EV_USE_MONOTONIC 1025#if EV_USE_MONOTONIC
602 { 1026 {
603 struct timespec ts; 1027 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 1029 have_monotonic = 1;
606 } 1030 }
607#endif 1031#endif
608 1032
609 rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 1034 mn_now = get_clock ();
611 now_floor = mn_now; 1035 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
613 1037
614 if (methods == EVMETHOD_AUTO) 1038 io_blocktime = 0.;
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1039 timeout_blocktime = 0.;
1040
1041 /* pid check not overridable via env */
1042#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid ();
1045#endif
1046
1047 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 1050 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 1051
620 method = 0; 1052 if (!(flags & 0x0000ffffUL))
1053 flags |= ev_recommended_backends ();
1054
1055 backend = 0;
1056 backend_fd = -1;
621#if EV_USE_WIN32 1057#if EV_USE_INOTIFY
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1058 fs_fd = -2;
1059#endif
1060
1061#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 1063#endif
624#if EV_USE_KQUEUE 1064#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 1066#endif
627#if EV_USE_EPOLL 1067#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1068 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 1069#endif
630#if EV_USE_POLL 1070#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1071 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 1072#endif
633#if EV_USE_SELECT 1073#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 1075#endif
636 }
637}
638 1076
639void 1077 ev_init (&sigev, sigcb);
1078 ev_set_priority (&sigev, EV_MAXPRI);
1079 }
1080}
1081
1082static void noinline
640loop_destroy (EV_P) 1083loop_destroy (EV_P)
641{ 1084{
642 int i; 1085 int i;
643 1086
644#if EV_USE_WIN32 1087#if EV_USE_INOTIFY
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1088 if (fs_fd >= 0)
1089 close (fs_fd);
1090#endif
1091
1092 if (backend_fd >= 0)
1093 close (backend_fd);
1094
1095#if EV_USE_PORT
1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
646#endif 1097#endif
647#if EV_USE_KQUEUE 1098#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1099 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
649#endif 1100#endif
650#if EV_USE_EPOLL 1101#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1102 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
652#endif 1103#endif
653#if EV_USE_POLL 1104#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1105 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
655#endif 1106#endif
656#if EV_USE_SELECT 1107#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
658#endif 1109#endif
659 1110
660 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
661 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
662 1118
1119 ev_free (anfds); anfdmax = 0;
1120
1121 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 1122 array_free (fdchange, EMPTY);
664 array_free (timer, ); 1123 array_free (timer, EMPTY);
1124#if EV_PERIODIC_ENABLE
665 array_free (periodic, ); 1125 array_free (periodic, EMPTY);
666 array_free (idle, ); 1126#endif
1127#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY);
1129#endif
667 array_free (prepare, ); 1130 array_free (prepare, EMPTY);
668 array_free (check, ); 1131 array_free (check, EMPTY);
669 1132
670 method = 0; 1133 backend = 0;
671 /*TODO*/
672} 1134}
673 1135
674void 1136void inline_size infy_fork (EV_P);
1137
1138void inline_size
675loop_fork (EV_P) 1139loop_fork (EV_P)
676{ 1140{
677 /*TODO*/ 1141#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif
1144#if EV_USE_KQUEUE
1145 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1146#endif
678#if EV_USE_EPOLL 1147#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1148 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
680#endif 1149#endif
681#if EV_USE_KQUEUE 1150#if EV_USE_INOTIFY
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1151 infy_fork (EV_A);
683#endif 1152#endif
1153
1154 if (ev_is_active (&sigev))
1155 {
1156 /* default loop */
1157
1158 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev);
1160 close (sigpipe [0]);
1161 close (sigpipe [1]);
1162
1163 while (pipe (sigpipe))
1164 syserr ("(libev) error creating pipe");
1165
1166 siginit (EV_A);
1167 }
1168
1169 postfork = 0;
684} 1170}
685 1171
686#if EV_MULTIPLICITY 1172#if EV_MULTIPLICITY
687struct ev_loop * 1173struct ev_loop *
688ev_loop_new (int methods) 1174ev_loop_new (unsigned int flags)
689{ 1175{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
691 1177
1178 memset (loop, 0, sizeof (struct ev_loop));
1179
692 loop_init (EV_A_ methods); 1180 loop_init (EV_A_ flags);
693 1181
694 if (ev_method (EV_A)) 1182 if (ev_backend (EV_A))
695 return loop; 1183 return loop;
696 1184
697 return 0; 1185 return 0;
698} 1186}
699 1187
700void 1188void
701ev_loop_destroy (EV_P) 1189ev_loop_destroy (EV_P)
702{ 1190{
703 loop_destroy (EV_A); 1191 loop_destroy (EV_A);
704 free (loop); 1192 ev_free (loop);
705} 1193}
706 1194
707void 1195void
708ev_loop_fork (EV_P) 1196ev_loop_fork (EV_P)
709{ 1197{
710 loop_fork (EV_A); 1198 postfork = 1;
711} 1199}
712 1200
713#endif 1201#endif
714 1202
715#if EV_MULTIPLICITY 1203#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 1204struct ev_loop *
1205ev_default_loop_init (unsigned int flags)
720#else 1206#else
721static int default_loop;
722
723int 1207int
1208ev_default_loop (unsigned int flags)
724#endif 1209#endif
725ev_default_loop (int methods)
726{ 1210{
727 if (sigpipe [0] == sigpipe [1]) 1211 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe)) 1212 if (pipe (sigpipe))
729 return 0; 1213 return 0;
730 1214
731 if (!default_loop) 1215 if (!ev_default_loop_ptr)
732 { 1216 {
733#if EV_MULTIPLICITY 1217#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct; 1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
735#else 1219#else
736 default_loop = 1; 1220 ev_default_loop_ptr = 1;
737#endif 1221#endif
738 1222
739 loop_init (EV_A_ methods); 1223 loop_init (EV_A_ flags);
740 1224
741 if (ev_method (EV_A)) 1225 if (ev_backend (EV_A))
742 { 1226 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 1227 siginit (EV_A);
746 1228
747#ifndef WIN32 1229#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 1230 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 1231 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 1232 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1233 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 1234#endif
753 } 1235 }
754 else 1236 else
755 default_loop = 0; 1237 ev_default_loop_ptr = 0;
756 } 1238 }
757 1239
758 return default_loop; 1240 return ev_default_loop_ptr;
759} 1241}
760 1242
761void 1243void
762ev_default_destroy (void) 1244ev_default_destroy (void)
763{ 1245{
764#if EV_MULTIPLICITY 1246#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 1247 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 1248#endif
767 1249
1250#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 1251 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 1252 ev_signal_stop (EV_A_ &childev);
1253#endif
770 1254
771 ev_ref (EV_A); /* signal watcher */ 1255 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 1256 ev_io_stop (EV_A_ &sigev);
773 1257
774 close (sigpipe [0]); sigpipe [0] = 0; 1258 close (sigpipe [0]); sigpipe [0] = 0;
779 1263
780void 1264void
781ev_default_fork (void) 1265ev_default_fork (void)
782{ 1266{
783#if EV_MULTIPLICITY 1267#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 1268 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 1269#endif
786 1270
787 loop_fork (EV_A); 1271 if (backend)
788 1272 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 1273}
797 1274
798/*****************************************************************************/ 1275/*****************************************************************************/
799 1276
800static void 1277void
1278ev_invoke (EV_P_ void *w, int revents)
1279{
1280 EV_CB_INVOKE ((W)w, revents);
1281}
1282
1283void inline_speed
801call_pending (EV_P) 1284call_pending (EV_P)
802{ 1285{
803 int pri; 1286 int pri;
804 1287
805 for (pri = NUMPRI; pri--; ) 1288 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 1289 while (pendingcnt [pri])
807 { 1290 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 1292
810 if (p->w) 1293 if (expect_true (p->w))
811 { 1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
812 p->w->pending = 0; 1297 p->w->pending = 0;
813 p->w->cb (EV_A_ p->w, p->events); 1298 EV_CB_INVOKE (p->w, p->events);
814 } 1299 }
815 } 1300 }
816} 1301}
817 1302
818static void 1303void inline_size
819timers_reify (EV_P) 1304timers_reify (EV_P)
820{ 1305{
821 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
822 { 1307 {
823 struct ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
824 1309
825 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
826 1311
827 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
828 if (w->repeat) 1313 if (w->repeat)
829 { 1314 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
831 ((WT)w)->at = mn_now + w->repeat; 1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
832 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
833 } 1322 }
834 else 1323 else
835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
836 1325
837 event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
838 } 1327 }
839} 1328}
840 1329
841static void 1330#if EV_PERIODIC_ENABLE
1331void inline_size
842periodics_reify (EV_P) 1332periodics_reify (EV_P)
843{ 1333{
844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
845 { 1335 {
846 struct ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
847 1337
848 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
849 1339
850 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
851 if (w->interval) 1341 if (w->reschedule_cb)
852 { 1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
855 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
856 } 1353 }
857 else 1354 else
858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
859 1356
860 event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
861 } 1358 }
862} 1359}
863 1360
864static void 1361static void noinline
865periodics_reschedule (EV_P) 1362periodics_reschedule (EV_P)
866{ 1363{
867 int i; 1364 int i;
868 1365
869 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
870 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
871 { 1368 {
872 struct ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
873 1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
874 if (w->interval) 1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382
1383#if EV_IDLE_ENABLE
1384void inline_size
1385idle_reify (EV_P)
1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
875 { 1392 {
876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1393 if (pendingcnt [pri])
1394 break;
877 1395
878 if (fabs (diff) >= 1e-4) 1396 if (idlecnt [pri])
879 { 1397 {
880 ev_periodic_stop (EV_A_ w); 1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
881 ev_periodic_start (EV_A_ w); 1399 break;
882
883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
884 } 1400 }
885 } 1401 }
886 } 1402 }
887} 1403}
1404#endif
888 1405
889inline int 1406void inline_speed
890time_update_monotonic (EV_P) 1407time_update (EV_P_ ev_tstamp max_block)
891{
892 mn_now = get_clock ();
893
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 }
899 else
900 {
901 now_floor = mn_now;
902 rt_now = ev_time ();
903 return 1;
904 }
905}
906
907static void
908time_update (EV_P)
909{ 1408{
910 int i; 1409 int i;
911 1410
912#if EV_USE_MONOTONIC 1411#if EV_USE_MONOTONIC
913 if (expect_true (have_monotonic)) 1412 if (expect_true (have_monotonic))
914 { 1413 {
915 if (time_update_monotonic (EV_A)) 1414 ev_tstamp odiff = rtmn_diff;
1415
1416 mn_now = get_clock ();
1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
916 { 1421 {
917 ev_tstamp odiff = rtmn_diff; 1422 ev_rt_now = rtmn_diff + mn_now;
1423 return;
1424 }
918 1425
1426 now_floor = mn_now;
1427 ev_rt_now = ev_time ();
1428
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1429 /* loop a few times, before making important decisions.
1430 * on the choice of "4": one iteration isn't enough,
1431 * in case we get preempted during the calls to
1432 * ev_time and get_clock. a second call is almost guaranteed
1433 * to succeed in that case, though. and looping a few more times
1434 * doesn't hurt either as we only do this on time-jumps or
1435 * in the unlikely event of having been preempted here.
1436 */
1437 for (i = 4; --i; )
920 { 1438 {
921 rtmn_diff = rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
922 1440
923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
924 return; /* all is well */ 1442 return; /* all is well */
925 1443
926 rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
927 mn_now = get_clock (); 1445 mn_now = get_clock ();
928 now_floor = mn_now; 1446 now_floor = mn_now;
929 } 1447 }
930 1448
1449# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A);
1451# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 }
1455 else
1456#endif
1457 {
1458 ev_rt_now = ev_time ();
1459
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 {
1462#if EV_PERIODIC_ENABLE
931 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */ 1464#endif
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i)
1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
934 } 1468 }
935 }
936 else
937#endif
938 {
939 rt_now = ev_time ();
940 1469
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 {
943 periodics_reschedule (EV_A);
944
945 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now;
948 }
949
950 mn_now = rt_now; 1470 mn_now = ev_rt_now;
951 } 1471 }
952} 1472}
953 1473
954void 1474void
955ev_ref (EV_P) 1475ev_ref (EV_P)
966static int loop_done; 1486static int loop_done;
967 1487
968void 1488void
969ev_loop (EV_P_ int flags) 1489ev_loop (EV_P_ int flags)
970{ 1490{
971 double block;
972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1492 ? EVUNLOOP_ONE
1493 : EVUNLOOP_CANCEL;
1494
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
973 1496
974 do 1497 do
975 { 1498 {
1499#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid))
1502 {
1503 curpid = getpid ();
1504 postfork = 1;
1505 }
1506#endif
1507
1508#if EV_FORK_ENABLE
1509 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork))
1511 if (forkcnt)
1512 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A);
1515 }
1516#endif
1517
976 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
977 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
978 { 1520 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A); 1522 call_pending (EV_A);
981 } 1523 }
982 1524
1525 if (expect_false (!activecnt))
1526 break;
1527
1528 /* we might have forked, so reify kernel state if necessary */
1529 if (expect_false (postfork))
1530 loop_fork (EV_A);
1531
983 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
984 fd_reify (EV_A); 1533 fd_reify (EV_A);
985 1534
986 /* calculate blocking time */ 1535 /* calculate blocking time */
1536 {
1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
987 1539
988 /* we only need this for !monotonic clockor timers, but as we basically 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
989 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994#endif
995 { 1541 {
996 rt_now = ev_time (); 1542 /* update time to cancel out callback processing overhead */
997 mn_now = rt_now; 1543 time_update (EV_A_ 1e100);
998 }
999 1544
1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
1001 block = 0.;
1002 else
1003 {
1004 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1005 1546
1006 if (timercnt) 1547 if (timercnt)
1007 { 1548 {
1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1009 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1010 } 1551 }
1011 1552
1553#if EV_PERIODIC_ENABLE
1012 if (periodiccnt) 1554 if (periodiccnt)
1013 { 1555 {
1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1015 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1016 } 1558 }
1559#endif
1017 1560
1018 if (block < 0.) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1019 } 1574 }
1020 1575
1021 method_poll (EV_A_ block); 1576 ++loop_count;
1577 backend_poll (EV_A_ waittime);
1022 1578
1023 /* update rt_now, do magic */ 1579 /* update ev_rt_now, do magic */
1024 time_update (EV_A); 1580 time_update (EV_A_ waittime + sleeptime);
1581 }
1025 1582
1026 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1585#if EV_PERIODIC_ENABLE
1028 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1587#endif
1029 1588
1589#if EV_IDLE_ENABLE
1030 /* queue idle watchers unless io or timers are pending */ 1590 /* queue idle watchers unless other events are pending */
1031 if (!pendingcnt) 1591 idle_reify (EV_A);
1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1033 1593
1034 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1035 if (checkcnt) 1595 if (expect_false (checkcnt))
1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1037 1597
1038 call_pending (EV_A); 1598 call_pending (EV_A);
1599
1039 } 1600 }
1040 while (activecnt && !loop_done); 1601 while (expect_true (activecnt && !loop_done));
1041 1602
1042 if (loop_done != 2) 1603 if (loop_done == EVUNLOOP_ONE)
1043 loop_done = 0; 1604 loop_done = EVUNLOOP_CANCEL;
1044} 1605}
1045 1606
1046void 1607void
1047ev_unloop (EV_P_ int how) 1608ev_unloop (EV_P_ int how)
1048{ 1609{
1049 loop_done = how; 1610 loop_done = how;
1050} 1611}
1051 1612
1052/*****************************************************************************/ 1613/*****************************************************************************/
1053 1614
1054inline void 1615void inline_size
1055wlist_add (WL *head, WL elem) 1616wlist_add (WL *head, WL elem)
1056{ 1617{
1057 elem->next = *head; 1618 elem->next = *head;
1058 *head = elem; 1619 *head = elem;
1059} 1620}
1060 1621
1061inline void 1622void inline_size
1062wlist_del (WL *head, WL elem) 1623wlist_del (WL *head, WL elem)
1063{ 1624{
1064 while (*head) 1625 while (*head)
1065 { 1626 {
1066 if (*head == elem) 1627 if (*head == elem)
1071 1632
1072 head = &(*head)->next; 1633 head = &(*head)->next;
1073 } 1634 }
1074} 1635}
1075 1636
1076inline void 1637void inline_speed
1077ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1078{ 1639{
1079 if (w->pending) 1640 if (w->pending)
1080 { 1641 {
1081 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1082 w->pending = 0; 1643 w->pending = 0;
1083 } 1644 }
1084} 1645}
1085 1646
1086inline void 1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1673void inline_speed
1087ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1088{ 1675{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
1092 w->active = active; 1677 w->active = active;
1093 ev_ref (EV_A); 1678 ev_ref (EV_A);
1094} 1679}
1095 1680
1096inline void 1681void inline_size
1097ev_stop (EV_P_ W w) 1682ev_stop (EV_P_ W w)
1098{ 1683{
1099 ev_unref (EV_A); 1684 ev_unref (EV_A);
1100 w->active = 0; 1685 w->active = 0;
1101} 1686}
1102 1687
1103/*****************************************************************************/ 1688/*****************************************************************************/
1104 1689
1105void 1690void noinline
1106ev_io_start (EV_P_ struct ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1107{ 1692{
1108 int fd = w->fd; 1693 int fd = w->fd;
1109 1694
1110 if (ev_is_active (w)) 1695 if (expect_false (ev_is_active (w)))
1111 return; 1696 return;
1112 1697
1113 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1114 1699
1115 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1117 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1118 1703
1119 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1120} 1706}
1121 1707
1122void 1708void noinline
1123ev_io_stop (EV_P_ struct ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1124{ 1710{
1125 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1126 if (!ev_is_active (w)) 1712 if (expect_false (!ev_is_active (w)))
1127 return; 1713 return;
1128 1714
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1716
1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1130 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1131 1719
1132 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1133} 1721}
1134 1722
1135void 1723void noinline
1136ev_timer_start (EV_P_ struct ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1137{ 1725{
1138 if (ev_is_active (w)) 1726 if (expect_false (ev_is_active (w)))
1139 return; 1727 return;
1140 1728
1141 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1142 1730
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144 1732
1145 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1146 array_needsize (timers, timermax, timercnt, ); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1147 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1148 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1149 1737
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1151} 1739}
1152 1740
1153void 1741void noinline
1154ev_timer_stop (EV_P_ struct ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1155{ 1743{
1156 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1157 if (!ev_is_active (w)) 1745 if (expect_false (!ev_is_active (w)))
1158 return; 1746 return;
1159 1747
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1161 1749
1162 if (((W)w)->active < timercnt--) 1750 {
1751 int active = ((W)w)->active;
1752
1753 if (expect_true (--active < --timercnt))
1163 { 1754 {
1164 timers [((W)w)->active - 1] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1756 adjustheap (timers, timercnt, active);
1166 } 1757 }
1758 }
1167 1759
1168 ((WT)w)->at = w->repeat; 1760 ((WT)w)->at -= mn_now;
1169 1761
1170 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1171} 1763}
1172 1764
1173void 1765void noinline
1174ev_timer_again (EV_P_ struct ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1175{ 1767{
1176 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1177 { 1769 {
1178 if (w->repeat) 1770 if (w->repeat)
1179 { 1771 {
1180 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1182 } 1774 }
1183 else 1775 else
1184 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1185 } 1777 }
1186 else if (w->repeat) 1778 else if (w->repeat)
1779 {
1780 w->at = w->repeat;
1187 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1782 }
1188} 1783}
1189 1784
1190void 1785#if EV_PERIODIC_ENABLE
1786void noinline
1191ev_periodic_start (EV_P_ struct ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1192{ 1788{
1193 if (ev_is_active (w)) 1789 if (expect_false (ev_is_active (w)))
1194 return; 1790 return;
1195 1791
1792 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval)
1795 {
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1197
1198 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1199 if (w->interval)
1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1201 1802
1202 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1203 array_needsize (periodics, periodicmax, periodiccnt, ); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1204 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1205 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1206 1807
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1208} 1809}
1209 1810
1210void 1811void noinline
1211ev_periodic_stop (EV_P_ struct ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1212{ 1813{
1213 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1214 if (!ev_is_active (w)) 1815 if (expect_false (!ev_is_active (w)))
1215 return; 1816 return;
1216 1817
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1218 1819
1219 if (((W)w)->active < periodiccnt--) 1820 {
1821 int active = ((W)w)->active;
1822
1823 if (expect_true (--active < --periodiccnt))
1220 { 1824 {
1221 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1826 adjustheap (periodics, periodiccnt, active);
1223 } 1827 }
1828 }
1224 1829
1225 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1226} 1831}
1227 1832
1228void 1833void noinline
1229ev_idle_start (EV_P_ struct ev_idle *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1230{ 1835{
1231 if (ev_is_active (w)) 1836 /* TODO: use adjustheap and recalculation */
1232 return;
1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w); 1837 ev_periodic_stop (EV_A_ w);
1838 ev_periodic_start (EV_A_ w);
1248} 1839}
1249 1840#endif
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293 1841
1294#ifndef SA_RESTART 1842#ifndef SA_RESTART
1295# define SA_RESTART 0 1843# define SA_RESTART 0
1296#endif 1844#endif
1297 1845
1298void 1846void noinline
1299ev_signal_start (EV_P_ struct ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1300{ 1848{
1301#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1303#endif 1851#endif
1304 if (ev_is_active (w)) 1852 if (expect_false (ev_is_active (w)))
1305 return; 1853 return;
1306 1854
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1309 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1310 array_needsize (signals, signalmax, w->signum, signals_init);
1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1312 1873
1313 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1314 { 1875 {
1876#if _WIN32
1877 signal (w->signum, sighandler);
1878#else
1315 struct sigaction sa; 1879 struct sigaction sa;
1316 sa.sa_handler = sighandler; 1880 sa.sa_handler = sighandler;
1317 sigfillset (&sa.sa_mask); 1881 sigfillset (&sa.sa_mask);
1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1319 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1884#endif
1320 } 1885 }
1321} 1886}
1322 1887
1323void 1888void noinline
1324ev_signal_stop (EV_P_ struct ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1325{ 1890{
1326 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1327 if (!ev_is_active (w)) 1892 if (expect_false (!ev_is_active (w)))
1328 return; 1893 return;
1329 1894
1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1332 1897
1333 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1334 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1335} 1900}
1336 1901
1337void 1902void
1338ev_child_start (EV_P_ struct ev_child *w) 1903ev_child_start (EV_P_ ev_child *w)
1339{ 1904{
1340#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1342#endif 1907#endif
1343 if (ev_is_active (w)) 1908 if (expect_false (ev_is_active (w)))
1344 return; 1909 return;
1345 1910
1346 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1348} 1913}
1349 1914
1350void 1915void
1351ev_child_stop (EV_P_ struct ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1352{ 1917{
1353 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1354 if (ev_is_active (w)) 1919 if (expect_false (!ev_is_active (w)))
1355 return; 1920 return;
1356 1921
1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1358 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1359} 1924}
1360 1925
1926#if EV_STAT_ENABLE
1927
1928# ifdef _WIN32
1929# undef lstat
1930# define lstat(a,b) _stati64 (a,b)
1931# endif
1932
1933#define DEF_STAT_INTERVAL 5.0074891
1934#define MIN_STAT_INTERVAL 0.1074891
1935
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937
1938#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192
1940
1941static void noinline
1942infy_add (EV_P_ ev_stat *w)
1943{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945
1946 if (w->wd < 0)
1947 {
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949
1950 /* monitor some parent directory for speedup hints */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 {
1953 char path [4096];
1954 strcpy (path, w->path);
1955
1956 do
1957 {
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960
1961 char *pend = strrchr (path, '/');
1962
1963 if (!pend)
1964 break; /* whoops, no '/', complain to your admin */
1965
1966 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 }
1971 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974
1975 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1977}
1978
1979static void noinline
1980infy_del (EV_P_ ev_stat *w)
1981{
1982 int slot;
1983 int wd = w->wd;
1984
1985 if (wd < 0)
1986 return;
1987
1988 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w);
1991
1992 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd);
1994}
1995
1996static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{
1999 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev);
2003 else
2004 {
2005 WL w_;
2006
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2008 {
2009 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */
2011
2012 if (w->wd == wd || wd == -1)
2013 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 {
2016 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */
2018 }
2019
2020 stat_timer_cb (EV_A_ &w->timer, 0);
2021 }
2022 }
2023 }
2024}
2025
2026static void
2027infy_cb (EV_P_ ev_io *w, int revents)
2028{
2029 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf));
2033
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036}
2037
2038void inline_size
2039infy_init (EV_P)
2040{
2041 if (fs_fd != -2)
2042 return;
2043
2044 fs_fd = inotify_init ();
2045
2046 if (fs_fd >= 0)
2047 {
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w);
2051 }
2052}
2053
2054void inline_size
2055infy_fork (EV_P)
2056{
2057 int slot;
2058
2059 if (fs_fd < 0)
2060 return;
2061
2062 close (fs_fd);
2063 fs_fd = inotify_init ();
2064
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2066 {
2067 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0;
2069
2070 while (w_)
2071 {
2072 ev_stat *w = (ev_stat *)w_;
2073 w_ = w_->next; /* lets us add this watcher */
2074
2075 w->wd = -1;
2076
2077 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else
2080 ev_timer_start (EV_A_ &w->timer);
2081 }
2082
2083 }
2084}
2085
2086#endif
2087
2088void
2089ev_stat_stat (EV_P_ ev_stat *w)
2090{
2091 if (lstat (w->path, &w->attr) < 0)
2092 w->attr.st_nlink = 0;
2093 else if (!w->attr.st_nlink)
2094 w->attr.st_nlink = 1;
2095}
2096
2097static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101
2102 /* we copy this here each the time so that */
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w);
2106
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if (
2109 w->prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime
2120 ) {
2121 #if EV_USE_INOTIFY
2122 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */
2125 #endif
2126
2127 ev_feed_event (EV_A_ w, EV_STAT);
2128 }
2129}
2130
2131void
2132ev_stat_start (EV_P_ ev_stat *w)
2133{
2134 if (expect_false (ev_is_active (w)))
2135 return;
2136
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w);
2142
2143 if (w->interval < MIN_STAT_INTERVAL)
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2147 ev_set_priority (&w->timer, ev_priority (w));
2148
2149#if EV_USE_INOTIFY
2150 infy_init (EV_A);
2151
2152 if (fs_fd >= 0)
2153 infy_add (EV_A_ w);
2154 else
2155#endif
2156 ev_timer_start (EV_A_ &w->timer);
2157
2158 ev_start (EV_A_ (W)w, 1);
2159}
2160
2161void
2162ev_stat_stop (EV_P_ ev_stat *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w);
2170#endif
2171 ev_timer_stop (EV_A_ &w->timer);
2172
2173 ev_stop (EV_A_ (W)w);
2174}
2175#endif
2176
2177#if EV_IDLE_ENABLE
2178void
2179ev_idle_start (EV_P_ ev_idle *w)
2180{
2181 if (expect_false (ev_is_active (w)))
2182 return;
2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
2190 ev_start (EV_A_ (W)w, active);
2191
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
2195}
2196
2197void
2198ev_idle_stop (EV_P_ ev_idle *w)
2199{
2200 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w)))
2202 return;
2203
2204 {
2205 int active = ((W)w)->active;
2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2212 }
2213}
2214#endif
2215
2216void
2217ev_prepare_start (EV_P_ ev_prepare *w)
2218{
2219 if (expect_false (ev_is_active (w)))
2220 return;
2221
2222 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w;
2225}
2226
2227void
2228ev_prepare_stop (EV_P_ ev_prepare *w)
2229{
2230 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w)))
2232 return;
2233
2234 {
2235 int active = ((W)w)->active;
2236 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active;
2238 }
2239
2240 ev_stop (EV_A_ (W)w);
2241}
2242
2243void
2244ev_check_start (EV_P_ ev_check *w)
2245{
2246 if (expect_false (ev_is_active (w)))
2247 return;
2248
2249 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w;
2252}
2253
2254void
2255ev_check_stop (EV_P_ ev_check *w)
2256{
2257 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w)))
2259 return;
2260
2261 {
2262 int active = ((W)w)->active;
2263 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active;
2265 }
2266
2267 ev_stop (EV_A_ (W)w);
2268}
2269
2270#if EV_EMBED_ENABLE
2271void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w)
2273{
2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2275}
2276
2277static void
2278embed_io_cb (EV_P_ ev_io *io, int revents)
2279{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281
2282 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2311
2312void
2313ev_embed_start (EV_P_ ev_embed *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 {
2319 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 }
2323
2324 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io);
2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2333 ev_start (EV_A_ (W)w, 1);
2334}
2335
2336void
2337ev_embed_stop (EV_P_ ev_embed *w)
2338{
2339 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w)))
2341 return;
2342
2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2345
2346 ev_stop (EV_A_ (W)w);
2347}
2348#endif
2349
2350#if EV_FORK_ENABLE
2351void
2352ev_fork_start (EV_P_ ev_fork *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w;
2360}
2361
2362void
2363ev_fork_stop (EV_P_ ev_fork *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377#endif
2378
1361/*****************************************************************************/ 2379/*****************************************************************************/
1362 2380
1363struct ev_once 2381struct ev_once
1364{ 2382{
1365 struct ev_io io; 2383 ev_io io;
1366 struct ev_timer to; 2384 ev_timer to;
1367 void (*cb)(int revents, void *arg); 2385 void (*cb)(int revents, void *arg);
1368 void *arg; 2386 void *arg;
1369}; 2387};
1370 2388
1371static void 2389static void
1374 void (*cb)(int revents, void *arg) = once->cb; 2392 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg; 2393 void *arg = once->arg;
1376 2394
1377 ev_io_stop (EV_A_ &once->io); 2395 ev_io_stop (EV_A_ &once->io);
1378 ev_timer_stop (EV_A_ &once->to); 2396 ev_timer_stop (EV_A_ &once->to);
1379 free (once); 2397 ev_free (once);
1380 2398
1381 cb (revents, arg); 2399 cb (revents, arg);
1382} 2400}
1383 2401
1384static void 2402static void
1385once_cb_io (EV_P_ struct ev_io *w, int revents) 2403once_cb_io (EV_P_ ev_io *w, int revents)
1386{ 2404{
1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1388} 2406}
1389 2407
1390static void 2408static void
1391once_cb_to (EV_P_ struct ev_timer *w, int revents) 2409once_cb_to (EV_P_ ev_timer *w, int revents)
1392{ 2410{
1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1394} 2412}
1395 2413
1396void 2414void
1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398{ 2416{
1399 struct ev_once *once = malloc (sizeof (struct ev_once)); 2417 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1400 2418
1401 if (!once) 2419 if (expect_false (!once))
2420 {
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2421 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else 2422 return;
1404 { 2423 }
2424
1405 once->cb = cb; 2425 once->cb = cb;
1406 once->arg = arg; 2426 once->arg = arg;
1407 2427
1408 ev_watcher_init (&once->io, once_cb_io); 2428 ev_init (&once->io, once_cb_io);
1409 if (fd >= 0) 2429 if (fd >= 0)
1410 { 2430 {
1411 ev_io_set (&once->io, fd, events); 2431 ev_io_set (&once->io, fd, events);
1412 ev_io_start (EV_A_ &once->io); 2432 ev_io_start (EV_A_ &once->io);
1413 } 2433 }
1414 2434
1415 ev_watcher_init (&once->to, once_cb_to); 2435 ev_init (&once->to, once_cb_to);
1416 if (timeout >= 0.) 2436 if (timeout >= 0.)
1417 { 2437 {
1418 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
1419 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
1420 }
1421 } 2440 }
1422} 2441}
1423 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
2447#ifdef __cplusplus
2448}
2449#endif
2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines