ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.20 by root, Wed Oct 31 18:28:00 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
29 133
30#include <math.h> 134#include <math.h>
31#include <stdlib.h> 135#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 136#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 137#include <stddef.h>
36 138
37#include <stdio.h> 139#include <stdio.h>
38 140
39#include <assert.h> 141#include <assert.h>
40#include <errno.h> 142#include <errno.h>
41#include <sys/time.h> 143#include <sys/types.h>
42#include <time.h> 144#include <time.h>
43 145
44#ifndef HAVE_MONOTONIC 146#include <signal.h>
45# ifdef CLOCK_MONOTONIC 147
46# define HAVE_MONOTONIC 1 148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
47# endif 163# endif
48#endif 164#endif
49 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
50#ifndef HAVE_SELECT 180#ifndef EV_USE_SELECT
51# define HAVE_SELECT 1 181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
52#endif 189# endif
190#endif
53 191
54#ifndef HAVE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
55# define HAVE_EPOLL 0 196# define EV_USE_EPOLL 0
56#endif 197# endif
198#endif
57 199
58#ifndef HAVE_REALTIME 200#ifndef EV_USE_KQUEUE
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
60#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249
250#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0
253#endif
254
255#ifndef CLOCK_REALTIME
256# undef EV_USE_REALTIME
257# define EV_USE_REALTIME 0
258#endif
259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
61 302
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
64 306
65#include "ev.h" 307#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline))
310#else
311# define expect(expr,value) (expr)
312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
316#endif
66 317
318#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
330
331#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
333
67typedef struct ev_watcher *W; 334typedef ev_watcher *W;
68typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
70 337
71static ev_tstamp now, diff; /* monotonic clock */ 338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
346
347#ifdef _WIN32
348# include "ev_win32.c"
349#endif
350
351/*****************************************************************************/
352
353static void (*syserr_cb)(const char *msg);
354
355void
356ev_set_syserr_cb (void (*cb)(const char *msg))
357{
358 syserr_cb = cb;
359}
360
361static void noinline
362syserr (const char *msg)
363{
364 if (!msg)
365 msg = "(libev) system error";
366
367 if (syserr_cb)
368 syserr_cb (msg);
369 else
370 {
371 perror (msg);
372 abort ();
373 }
374}
375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392
393void
394ev_set_allocator (void *(*cb)(void *ptr, long size))
395{
396 alloc = cb;
397}
398
399inline_speed void *
400ev_realloc (void *ptr, long size)
401{
402 ptr = alloc (ptr, size);
403
404 if (!ptr && size)
405 {
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
407 abort ();
408 }
409
410 return ptr;
411}
412
413#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0)
415
416/*****************************************************************************/
417
418typedef struct
419{
420 WL head;
421 unsigned char events;
422 unsigned char reify;
423#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle;
425#endif
426} ANFD;
427
428typedef struct
429{
430 W w;
431 int events;
432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
459
460#if EV_MULTIPLICITY
461
462 struct ev_loop
463 {
464 ev_tstamp ev_rt_now;
465 #define ev_rt_now ((loop)->ev_rt_now)
466 #define VAR(name,decl) decl;
467 #include "ev_vars.h"
468 #undef VAR
469 };
470 #include "ev_wrap.h"
471
472 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr;
474
475#else
476
72ev_tstamp ev_now; 477 ev_tstamp ev_rt_now;
73int ev_method; 478 #define VAR(name,decl) static decl;
479 #include "ev_vars.h"
480 #undef VAR
74 481
75static int have_monotonic; /* runtime */ 482 static int ev_default_loop_ptr;
76 483
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 484#endif
78static void (*method_modify)(int fd, int oev, int nev);
79static void (*method_poll)(ev_tstamp timeout);
80 485
81/*****************************************************************************/ 486/*****************************************************************************/
82 487
83ev_tstamp 488ev_tstamp
84ev_time (void) 489ev_time (void)
85{ 490{
86#if HAVE_REALTIME 491#if EV_USE_REALTIME
87 struct timespec ts; 492 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 493 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 494 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 495#else
91 struct timeval tv; 496 struct timeval tv;
92 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 499#endif
95} 500}
96 501
97static ev_tstamp 502ev_tstamp inline_size
98get_clock (void) 503get_clock (void)
99{ 504{
100#if HAVE_MONOTONIC 505#if EV_USE_MONOTONIC
101 if (have_monotonic) 506 if (expect_true (have_monotonic))
102 { 507 {
103 struct timespec ts; 508 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 509 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 510 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 511 }
107#endif 512#endif
108 513
109 return ev_time (); 514 return ev_time ();
110} 515}
111 516
112#define array_needsize(base,cur,cnt,init) \ 517#if EV_MULTIPLICITY
113 if ((cnt) > cur) \ 518ev_tstamp
114 { \ 519ev_now (EV_P)
115 int newcnt = cur ? cur << 1 : 16; \ 520{
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 521 return ev_rt_now;
117 init (base + cur, newcnt - cur); \ 522}
118 cur = newcnt; \ 523#endif
524
525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
119 } 529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
120 549
121/*****************************************************************************/ 550/*****************************************************************************/
122 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
581
582#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \
584 { \
585 int ocur_ = (cur); \
586 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \
589 }
590
591#if 0
592#define array_slim(type,stem) \
593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
594 { \
595 stem ## max = array_roundsize (stem ## cnt >> 1); \
596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 }
599#endif
600
601#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
603
604/*****************************************************************************/
605
606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents)
649{
650 ANFD *anfd = anfds + fd;
651 ev_io *w;
652
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
654 {
655 int ev = w->events & revents;
656
657 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev);
659 }
660}
661
662void
663ev_feed_fd_event (EV_P_ int fd, int revents)
664{
665 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents);
667}
668
669void inline_size
670fd_reify (EV_P)
671{
672 int i;
673
674 for (i = 0; i < fdchangecnt; ++i)
675 {
676 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd;
678 ev_io *w;
679
680 unsigned char events = 0;
681
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 events |= (unsigned char)w->events;
684
685#if EV_SELECT_IS_WINSOCKET
686 if (events)
687 {
688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
695 }
696#endif
697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
708 }
709
710 fdchangecnt = 0;
711}
712
713void inline_size
714fd_change (EV_P_ int fd, int flags)
715{
716 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags;
718
719 if (expect_true (!reify))
720 {
721 ++fdchangecnt;
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd;
724 }
725}
726
727void inline_speed
728fd_kill (EV_P_ int fd)
729{
730 ev_io *w;
731
732 while ((w = (ev_io *)anfds [fd].head))
733 {
734 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 }
737}
738
739int inline_size
740fd_valid (int fd)
741{
742#ifdef _WIN32
743 return _get_osfhandle (fd) != -1;
744#else
745 return fcntl (fd, F_GETFD) != -1;
746#endif
747}
748
749/* called on EBADF to verify fds */
750static void noinline
751fd_ebadf (EV_P)
752{
753 int fd;
754
755 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF)
758 fd_kill (EV_A_ fd);
759}
760
761/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline
763fd_enomem (EV_P)
764{
765 int fd;
766
767 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events)
769 {
770 fd_kill (EV_A_ fd);
771 return;
772 }
773}
774
775/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline
777fd_rearm_all (EV_P)
778{
779 int fd;
780
781 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events)
783 {
784 anfds [fd].events = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
786 }
787}
788
789/*****************************************************************************/
790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829
830/* away from the root */
831void inline_speed
832downheap (ANHE *heap, int N, int k)
833{
834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
930
931void inline_size
932adjustheap (ANHE *heap, int N, int k)
933{
934 upheap (heap, k);
935 downheap (heap, N, k);
936}
937
938/*****************************************************************************/
939
123typedef struct 940typedef struct
124{ 941{
125 struct ev_io *head; 942 WL head;
126 unsigned char wev, rev; /* want, received event set */ 943 EV_ATOMIC_T gotsig;
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void
136anfds_init (ANFD *base, int count)
137{
138 while (count--)
139 {
140 base->head = 0;
141 base->wev = base->rev = EV_NONE;
142 ++base;
143 }
144}
145
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void
156event (W w, int events)
157{
158 if (w->active)
159 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events;
164 }
165}
166
167static void
168fd_event (int fd, int events)
169{
170 ANFD *anfd = anfds + fd;
171 struct ev_io *w;
172
173 for (w = anfd->head; w; w = w->next)
174 {
175 int ev = w->events & events;
176
177 if (ev)
178 event ((W)w, ev);
179 }
180}
181
182static void
183queue_events (W *events, int eventcnt, int type)
184{
185 int i;
186
187 for (i = 0; i < eventcnt; ++i)
188 event (events [i], type);
189}
190
191/* called on EBADF to verify fds */
192static void
193fd_recheck ()
194{
195 int fd;
196
197 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head)
201 evio_stop (anfds [fd].head);
202}
203
204/*****************************************************************************/
205
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void
213upheap (WT *timers, int k)
214{
215 WT w = timers [k];
216
217 while (k && timers [k >> 1]->at > w->at)
218 {
219 timers [k] = timers [k >> 1];
220 timers [k]->active = k + 1;
221 k >>= 1;
222 }
223
224 timers [k] = w;
225 timers [k]->active = k + 1;
226
227}
228
229static void
230downheap (WT *timers, int N, int k)
231{
232 WT w = timers [k];
233
234 while (k < (N >> 1))
235 {
236 int j = k << 1;
237
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
239 ++j;
240
241 if (w->at <= timers [j]->at)
242 break;
243
244 timers [k] = timers [j];
245 timers [k]->active = k + 1;
246 k = j;
247 }
248
249 timers [k] = w;
250 timers [k]->active = k + 1;
251}
252
253/*****************************************************************************/
254
255typedef struct
256{
257 struct ev_signal *head;
258 sig_atomic_t gotsig;
259} ANSIG; 944} ANSIG;
260 945
261static ANSIG *signals; 946static ANSIG *signals;
262static int signalmax; 947static int signalmax;
263 948
264static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
265static sig_atomic_t gotsig;
266static struct ev_io sigev;
267 950
268static void 951void inline_size
269signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
270{ 953{
271 while (count--) 954 while (count--)
272 { 955 {
273 base->head = 0; 956 base->head = 0;
274 base->gotsig = 0; 957 base->gotsig = 0;
958
275 ++base; 959 ++base;
276 } 960 }
277} 961}
278 962
963/*****************************************************************************/
964
965void inline_speed
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976
977static void noinline
978evpipe_init (EV_P)
979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
995 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
1000 ev_io_start (EV_A_ &pipeev);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
279static void 1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
1068}
1069
1070/*****************************************************************************/
1071
1072static void
280sighandler (int signum) 1073ev_sighandler (int signum)
281{ 1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
282 signals [signum - 1].gotsig = 1; 1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
283 1086
284 if (!gotsig) 1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
1109static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112
1113static ev_signal childev;
1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
1119void inline_speed
1120child_reap (EV_P_ int chain, int pid, int status)
1121{
1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
1129 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 w->rpid = pid;
1132 w->rstatus = status;
1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1134 }
1135 }
1136}
1137
1138#ifndef WCONTINUED
1139# define WCONTINUED 0
1140#endif
1141
1142static void
1143childcb (EV_P_ ev_signal *sw, int revents)
1144{
1145 int pid, status;
1146
1147 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1148 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1149 if (!WCONTINUED
1150 || errno != EINVAL
1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1152 return;
1153
1154 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157
1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161}
1162
1163#endif
1164
1165/*****************************************************************************/
1166
1167#if EV_USE_PORT
1168# include "ev_port.c"
1169#endif
1170#if EV_USE_KQUEUE
1171# include "ev_kqueue.c"
1172#endif
1173#if EV_USE_EPOLL
1174# include "ev_epoll.c"
1175#endif
1176#if EV_USE_POLL
1177# include "ev_poll.c"
1178#endif
1179#if EV_USE_SELECT
1180# include "ev_select.c"
1181#endif
1182
1183int
1184ev_version_major (void)
1185{
1186 return EV_VERSION_MAJOR;
1187}
1188
1189int
1190ev_version_minor (void)
1191{
1192 return EV_VERSION_MINOR;
1193}
1194
1195/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size
1197enable_secure (void)
1198{
1199#ifdef _WIN32
1200 return 0;
1201#else
1202 return getuid () != geteuid ()
1203 || getgid () != getegid ();
1204#endif
1205}
1206
1207unsigned int
1208ev_supported_backends (void)
1209{
1210 unsigned int flags = 0;
1211
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217
1218 return flags;
1219}
1220
1221unsigned int
1222ev_recommended_backends (void)
1223{
1224 unsigned int flags = ev_supported_backends ();
1225
1226#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE;
1230#endif
1231#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation
1233 flags &= ~EVBACKEND_POLL;
1234#endif
1235
1236 return flags;
1237}
1238
1239unsigned int
1240ev_embeddable_backends (void)
1241{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249}
1250
1251unsigned int
1252ev_backend (EV_P)
1253{
1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
1273}
1274
1275static void noinline
1276loop_init (EV_P_ unsigned int flags)
1277{
1278 if (!backend)
1279 {
1280#if EV_USE_MONOTONIC
285 { 1281 {
1282 struct timespec ts;
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1;
1285 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312
1313 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends ();
1315
1316#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif
1319#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif
1322#if EV_USE_EPOLL
1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1324#endif
1325#if EV_USE_POLL
1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1327#endif
1328#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif
1331
1332 ev_init (&pipeev, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI);
1334 }
1335}
1336
1337static void noinline
1338loop_destroy (EV_P)
1339{
1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
1359#if EV_USE_INOTIFY
1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
1367#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif
1370#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1372#endif
1373#if EV_USE_EPOLL
1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1375#endif
1376#if EV_USE_POLL
1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1378#endif
1379#if EV_USE_SELECT
1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1381#endif
1382
1383 for (i = NUMPRI; i--; )
1384 {
1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
1392
1393 /* have to use the microsoft-never-gets-it-right macro */
1394 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY);
1398#endif
1399#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY);
1401#endif
1402 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
1407
1408 backend = 0;
1409}
1410
1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
1414
1415void inline_size
1416loop_fork (EV_P)
1417{
1418#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif
1421#if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1423#endif
1424#if EV_USE_EPOLL
1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1426#endif
1427#if EV_USE_INOTIFY
1428 infy_fork (EV_A);
1429#endif
1430
1431 if (ev_is_active (&pipeev))
1432 {
1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
286 gotsig = 1; 1435 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460}
1461
1462#if EV_MULTIPLICITY
1463struct ev_loop *
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else
1496int
1497ev_default_loop (unsigned int flags)
1498#endif
1499{
1500 if (!ev_default_loop_ptr)
288 } 1501 {
289} 1502#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1504#else
1505 ev_default_loop_ptr = 1;
1506#endif
290 1507
291static void 1508 loop_init (EV_A_ flags);
292sigcb (struct ev_io *iow, int revents) 1509
1510 if (ev_backend (EV_A))
1511 {
1512#ifndef _WIN32
1513 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif
1518 }
1519 else
1520 ev_default_loop_ptr = 0;
1521 }
1522
1523 return ev_default_loop_ptr;
1524}
1525
1526void
1527ev_default_destroy (void)
293{ 1528{
294 struct ev_signal *w; 1529#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550}
1551
1552/*****************************************************************************/
1553
1554void
1555ev_invoke (EV_P_ void *w, int revents)
1556{
1557 EV_CB_INVOKE ((W)w, revents);
1558}
1559
1560void inline_speed
1561call_pending (EV_P)
1562{
295 int sig; 1563 int pri;
296 1564
297 gotsig = 0; 1565 for (pri = NUMPRI; pri--; )
298 read (sigpipe [0], &revents, 1); 1566 while (pendingcnt [pri])
299
300 for (sig = signalmax; sig--; )
301 if (signals [sig].gotsig)
302 { 1567 {
303 signals [sig].gotsig = 0; 1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
304 1569
305 for (w = signals [sig].head; w; w = w->next) 1570 if (expect_true (p->w))
306 event ((W)w, EV_SIGNAL); 1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
1574 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events);
1576 }
307 } 1577 }
308} 1578}
309 1579
310static void 1580#if EV_IDLE_ENABLE
311siginit (void) 1581void inline_size
1582idle_reify (EV_P)
312{ 1583{
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 1584 if (expect_false (idleall))
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315
316 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
319
320 evio_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev);
322}
323
324/*****************************************************************************/
325
326static struct ev_idle **idles;
327static int idlemax, idlecnt;
328
329static struct ev_prepare **prepares;
330static int preparemax, preparecnt;
331
332static struct ev_check **checks;
333static int checkmax, checkcnt;
334
335/*****************************************************************************/
336
337#if HAVE_EPOLL
338# include "ev_epoll.c"
339#endif
340#if HAVE_SELECT
341# include "ev_select.c"
342#endif
343
344int ev_init (int flags)
345{
346#if HAVE_MONOTONIC
347 {
348 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1;
351 }
352#endif
353
354 ev_now = ev_time ();
355 now = get_clock ();
356 diff = ev_now - now;
357
358 if (pipe (sigpipe))
359 return 0;
360
361 ev_method = EVMETHOD_NONE;
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 {
371 evw_init (&sigev, sigcb);
372 siginit ();
373 } 1585 {
1586 int pri;
374 1587
375 return ev_method; 1588 for (pri = NUMPRI; pri--; )
376}
377
378/*****************************************************************************/
379
380void ev_prefork (void)
381{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif
396
397 evio_stop (&sigev);
398 close (sigpipe [0]);
399 close (sigpipe [1]);
400 pipe (sigpipe);
401 siginit ();
402}
403
404/*****************************************************************************/
405
406static void
407fd_reify (void)
408{
409 int i;
410
411 for (i = 0; i < fdchangecnt; ++i)
412 {
413 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416
417 int wev = 0;
418
419 for (w = anfd->head; w; w = w->next)
420 wev |= w->events;
421
422 if (anfd->wev != wev)
423 { 1589 {
424 method_modify (fd, anfd->wev, wev); 1590 if (pendingcnt [pri])
425 anfd->wev = wev; 1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
426 } 1598 }
427 } 1599 }
428
429 fdchangecnt = 0;
430} 1600}
1601#endif
431 1602
432static void 1603void inline_size
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt;
438
439 if (p->w)
440 {
441 p->w->pending = 0;
442 p->w->cb (p->w, p->events);
443 }
444 }
445}
446
447static void
448timers_reify () 1604timers_reify (EV_P)
449{ 1605{
450 while (timercnt && timers [0]->at <= now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
451 { 1607 {
452 struct ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
453 1609
454 event ((W)w, EV_TIMEOUT); 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
455 1611
456 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
457 if (w->repeat) 1613 if (w->repeat)
458 { 1614 {
459 w->at = now + w->repeat; 1615 ev_at (w) += w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
461 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
462 } 1623 }
463 else 1624 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 1626
468static void 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
469periodics_reify () 1633periodics_reify (EV_P)
470{ 1634{
471 while (periodiccnt && periodics [0]->at <= ev_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
472 { 1636 {
473 struct ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
474 1640
475 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
476 if (w->interval) 1642 if (w->reschedule_cb)
477 { 1643 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
480 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
481 } 1669 }
482 else 1670 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 1672
485 event ((W)w, EV_TIMEOUT); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
486 } 1674 }
487} 1675}
488 1676
489static void 1677static void noinline
490periodics_reschedule (ev_tstamp diff) 1678periodics_reschedule (EV_P)
491{ 1679{
492 int i; 1680 int i;
493 1681
494 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
495 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
496 { 1698 upheap (periodics, i + HEAP0);
497 struct ev_periodic *w = periodics [i]; 1699}
1700#endif
498 1701
499 if (w->interval) 1702void inline_speed
1703time_update (EV_P_ ev_tstamp max_block)
1704{
1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1709 {
1710 ev_tstamp odiff = rtmn_diff;
1711
1712 mn_now = get_clock ();
1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
500 { 1717 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1718 ev_rt_now = rtmn_diff + mn_now;
1719 return;
1720 }
502 1721
503 if (fabs (diff) >= 1e-4) 1722 now_floor = mn_now;
1723 ev_rt_now = ev_time ();
1724
1725 /* loop a few times, before making important decisions.
1726 * on the choice of "4": one iteration isn't enough,
1727 * in case we get preempted during the calls to
1728 * ev_time and get_clock. a second call is almost guaranteed
1729 * to succeed in that case, though. and looping a few more times
1730 * doesn't hurt either as we only do this on time-jumps or
1731 * in the unlikely event of having been preempted here.
1732 */
1733 for (i = 4; --i; )
1734 {
1735 rtmn_diff = ev_rt_now - mn_now;
1736
1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1738 return; /* all is well */
1739
1740 ev_rt_now = ev_time ();
1741 mn_now = get_clock ();
1742 now_floor = mn_now;
1743 }
1744
1745# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A);
1747# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 }
1751 else
1752#endif
1753 {
1754 ev_rt_now = ev_time ();
1755
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 {
1758#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A);
1760#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
504 { 1763 {
505 evperiodic_stop (w); 1764 ANHE *he = timers + i + HEAP0;
506 evperiodic_start (w); 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
507 1766 ANHE_at_set (*he);
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 } 1767 }
510 } 1768 }
511 }
512}
513 1769
514static void 1770 mn_now = ev_rt_now;
515time_update ()
516{
517 int i;
518
519 ev_now = ev_time ();
520
521 if (have_monotonic)
522 { 1771 }
523 ev_tstamp odiff = diff; 1772}
524 1773
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1774void
1775ev_ref (EV_P)
1776{
1777 ++activecnt;
1778}
1779
1780void
1781ev_unref (EV_P)
1782{
1783 --activecnt;
1784}
1785
1786static int loop_done;
1787
1788void
1789ev_loop (EV_P_ int flags)
1790{
1791 loop_done = EVUNLOOP_CANCEL;
1792
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1794
1795 do
1796 {
1797#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid))
1800 {
1801 curpid = getpid ();
1802 postfork = 1;
1803 }
1804#endif
1805
1806#if EV_FORK_ENABLE
1807 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork))
1809 if (forkcnt)
1810 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A);
1813 }
1814#endif
1815
1816 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt))
526 { 1818 {
527 now = get_clock (); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
528 diff = ev_now - now; 1820 call_pending (EV_A);
529
530 if (fabs (odiff - diff) < MIN_TIMEJUMP)
531 return; /* all is well */
532
533 ev_now = ev_time ();
534 } 1821 }
535 1822
536 periodics_reschedule (diff - odiff); 1823 if (expect_false (!activecnt))
537 /* no timer adjustment, as the monotonic clock doesn't jump */ 1824 break;
538 }
539 else
540 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
542 {
543 periodics_reschedule (ev_now - now);
544 1825
545 /* adjust timers. this is easy, as the offset is the same for all */ 1826 /* we might have forked, so reify kernel state if necessary */
546 for (i = 0; i < timercnt; ++i) 1827 if (expect_false (postfork))
547 timers [i]->at += diff; 1828 loop_fork (EV_A);
548 }
549
550 now = ev_now;
551 }
552}
553
554int ev_loop_done;
555
556void ev_loop (int flags)
557{
558 double block;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
560
561 do
562 {
563 /* queue check watchers (and execute them) */
564 if (checkcnt)
565 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
567 call_pending ();
568 }
569 1829
570 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
571 fd_reify (); 1831 fd_reify (EV_A);
572 1832
573 /* calculate blocking time */ 1833 /* calculate blocking time */
1834 {
1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
574 1837
575 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
576 ev_now = ev_time ();
577
578 if (flags & EVLOOP_NONBLOCK || idlecnt)
579 block = 0.;
580 else
581 { 1839 {
1840 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100);
1842
582 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
583 1844
584 if (timercnt) 1845 if (timercnt)
585 { 1846 {
586 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
587 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
588 } 1849 }
589 1850
1851#if EV_PERIODIC_ENABLE
590 if (periodiccnt) 1852 if (periodiccnt)
591 { 1853 {
592 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
593 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
594 } 1856 }
1857#endif
595 1858
596 if (block < 0.) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
597 } 1872 }
598 1873
599 method_poll (block); 1874 ++loop_count;
1875 backend_poll (EV_A_ waittime);
600 1876
601 /* update ev_now, do magic */ 1877 /* update ev_rt_now, do magic */
602 time_update (); 1878 time_update (EV_A_ waittime + sleeptime);
1879 }
603 1880
604 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
605 timers_reify (); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1883#if EV_PERIODIC_ENABLE
606 periodics_reify (); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1885#endif
607 1886
1887#if EV_IDLE_ENABLE
608 /* queue idle watchers unless io or timers are pending */ 1888 /* queue idle watchers unless other events are pending */
609 if (!pendingcnt) 1889 idle_reify (EV_A);
610 queue_events ((W *)idles, idlecnt, EV_IDLE); 1890#endif
611 1891
612 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
613 if (checkcnt) 1893 if (expect_false (checkcnt))
614 queue_events ((W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
615 1895
616 call_pending (); 1896 call_pending (EV_A);
617 } 1897 }
618 while (!ev_loop_done); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
619 1903
620 if (ev_loop_done != 2) 1904 if (loop_done == EVUNLOOP_ONE)
1905 loop_done = EVUNLOOP_CANCEL;
1906}
1907
1908void
1909ev_unloop (EV_P_ int how)
1910{
621 ev_loop_done = 0; 1911 loop_done = how;
622} 1912}
623 1913
624/*****************************************************************************/ 1914/*****************************************************************************/
625 1915
626static void 1916void inline_size
627wlist_add (WL *head, WL elem) 1917wlist_add (WL *head, WL elem)
628{ 1918{
629 elem->next = *head; 1919 elem->next = *head;
630 *head = elem; 1920 *head = elem;
631} 1921}
632 1922
633static void 1923void inline_size
634wlist_del (WL *head, WL elem) 1924wlist_del (WL *head, WL elem)
635{ 1925{
636 while (*head) 1926 while (*head)
637 { 1927 {
638 if (*head == elem) 1928 if (*head == elem)
643 1933
644 head = &(*head)->next; 1934 head = &(*head)->next;
645 } 1935 }
646} 1936}
647 1937
648static void 1938void inline_speed
649ev_clear (W w) 1939clear_pending (EV_P_ W w)
650{ 1940{
651 if (w->pending) 1941 if (w->pending)
652 { 1942 {
653 pendings [w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
654 w->pending = 0; 1944 w->pending = 0;
655 } 1945 }
656} 1946}
657 1947
658static void 1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1974void inline_speed
659ev_start (W w, int active) 1975ev_start (EV_P_ W w, int active)
660{ 1976{
1977 pri_adjust (EV_A_ w);
661 w->active = active; 1978 w->active = active;
1979 ev_ref (EV_A);
662} 1980}
663 1981
664static void 1982void inline_size
665ev_stop (W w) 1983ev_stop (EV_P_ W w)
666{ 1984{
1985 ev_unref (EV_A);
667 w->active = 0; 1986 w->active = 0;
668} 1987}
669 1988
670/*****************************************************************************/ 1989/*****************************************************************************/
671 1990
672void 1991void noinline
673evio_start (struct ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
674{ 1993{
1994 int fd = w->fd;
1995
675 if (ev_is_active (w)) 1996 if (expect_false (ev_is_active (w)))
676 return; 1997 return;
677 1998
678 int fd = w->fd; 1999 assert (("ev_io_start called with negative fd", fd >= 0));
679 2000
680 ev_start ((W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
681 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
682 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
683 2004
684 ++fdchangecnt; 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
685 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2006 w->events &= ~EV_IOFDSET;
686 fdchanges [fdchangecnt - 1] = fd;
687} 2007}
688 2008
689void 2009void noinline
690evio_stop (struct ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
691{ 2011{
692 ev_clear ((W)w); 2012 clear_pending (EV_A_ (W)w);
693 if (!ev_is_active (w)) 2013 if (expect_false (!ev_is_active (w)))
694 return; 2014 return;
695 2015
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2017
696 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
697 ev_stop ((W)w); 2019 ev_stop (EV_A_ (W)w);
698 2020
699 ++fdchangecnt; 2021 fd_change (EV_A_ w->fd, 1);
700 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
701 fdchanges [fdchangecnt - 1] = w->fd;
702} 2022}
703 2023
704void 2024void noinline
705evtimer_start (struct ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
706{ 2026{
707 if (ev_is_active (w)) 2027 if (expect_false (ev_is_active (w)))
708 return; 2028 return;
709 2029
710 w->at += now; 2030 ev_at (w) += mn_now;
711 2031
712 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
713 2033
714 ev_start ((W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
715 array_needsize (timers, timermax, timercnt, ); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
716 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
717 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
718} 2038 upheap (timers, ev_active (w));
719 2039
720void 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041}
2042
2043void noinline
721evtimer_stop (struct ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
722{ 2045{
723 ev_clear ((W)w); 2046 clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 2047 if (expect_false (!ev_is_active (w)))
725 return; 2048 return;
726 2049
727 if (w->active < timercnt--) 2050 {
2051 int active = ev_active (w);
2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
2055 if (expect_true (active < timercnt + HEAP0 - 1))
728 { 2056 {
729 timers [w->active - 1] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
730 downheap ((WT *)timers, timercnt, w->active - 1); 2058 adjustheap (timers, timercnt, active);
731 } 2059 }
732 2060
733 w->at = w->repeat; 2061 --timercnt;
2062 }
734 2063
2064 ev_at (w) -= mn_now;
2065
735 ev_stop ((W)w); 2066 ev_stop (EV_A_ (W)w);
736} 2067}
737 2068
738void 2069void noinline
739evtimer_again (struct ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
740{ 2071{
741 if (ev_is_active (w)) 2072 if (ev_is_active (w))
742 { 2073 {
743 if (w->repeat) 2074 if (w->repeat)
744 { 2075 {
745 w->at = now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
746 downheap ((WT *)timers, timercnt, w->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
747 } 2079 }
748 else 2080 else
749 evtimer_stop (w); 2081 ev_timer_stop (EV_A_ w);
750 } 2082 }
751 else if (w->repeat) 2083 else if (w->repeat)
2084 {
2085 ev_at (w) = w->repeat;
752 evtimer_start (w); 2086 ev_timer_start (EV_A_ w);
2087 }
753} 2088}
754 2089
755void 2090#if EV_PERIODIC_ENABLE
2091void noinline
756evperiodic_start (struct ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
757{ 2093{
758 if (ev_is_active (w)) 2094 if (expect_false (ev_is_active (w)))
759 return; 2095 return;
760 2096
761 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2097 if (w->reschedule_cb)
762 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval)
2100 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
763 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
764 if (w->interval)
765 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 }
2105 else
2106 ev_at (w) = w->offset;
766 2107
767 ev_start ((W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
768 array_needsize (periodics, periodicmax, periodiccnt, ); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
769 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
770 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
771} 2112 upheap (periodics, ev_active (w));
772 2113
773void 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115}
2116
2117void noinline
774evperiodic_stop (struct ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
775{ 2119{
776 ev_clear ((W)w); 2120 clear_pending (EV_A_ (W)w);
777 if (!ev_is_active (w)) 2121 if (expect_false (!ev_is_active (w)))
778 return; 2122 return;
779 2123
780 if (w->active < periodiccnt--) 2124 {
2125 int active = ev_active (w);
2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
781 { 2130 {
782 periodics [w->active - 1] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
783 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2132 adjustheap (periodics, periodiccnt, active);
784 } 2133 }
785 2134
2135 --periodiccnt;
2136 }
2137
786 ev_stop ((W)w); 2138 ev_stop (EV_A_ (W)w);
787} 2139}
788 2140
789void 2141void noinline
2142ev_periodic_again (EV_P_ ev_periodic *w)
2143{
2144 /* TODO: use adjustheap and recalculation */
2145 ev_periodic_stop (EV_A_ w);
2146 ev_periodic_start (EV_A_ w);
2147}
2148#endif
2149
2150#ifndef SA_RESTART
2151# define SA_RESTART 0
2152#endif
2153
2154void noinline
790evsignal_start (struct ev_signal *w) 2155ev_signal_start (EV_P_ ev_signal *w)
791{ 2156{
2157#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
792 if (ev_is_active (w)) 2160 if (expect_false (ev_is_active (w)))
793 return; 2161 return;
794 2162
795 ev_start ((W)w, 1); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
796 array_needsize (signals, signalmax, w->signum, signals_init); 2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
2181 ev_start (EV_A_ (W)w, 1);
797 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
798 2183
799 if (!w->next) 2184 if (!((WL)w)->next)
800 { 2185 {
2186#if _WIN32
2187 signal (w->signum, ev_sighandler);
2188#else
801 struct sigaction sa; 2189 struct sigaction sa;
802 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
803 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
804 sa.sa_flags = 0; 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
805 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
2194#endif
806 } 2195 }
807} 2196}
808 2197
809void 2198void noinline
810evsignal_stop (struct ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
811{ 2200{
812 ev_clear ((W)w); 2201 clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 2202 if (expect_false (!ev_is_active (w)))
814 return; 2203 return;
815 2204
816 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
817 ev_stop ((W)w); 2206 ev_stop (EV_A_ (W)w);
818 2207
819 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
820 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
821} 2210}
822 2211
823void evidle_start (struct ev_idle *w) 2212void
2213ev_child_start (EV_P_ ev_child *w)
824{ 2214{
2215#if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif
825 if (ev_is_active (w)) 2218 if (expect_false (ev_is_active (w)))
826 return; 2219 return;
827 2220
828 ev_start ((W)w, ++idlecnt); 2221 ev_start (EV_A_ (W)w, 1);
829 array_needsize (idles, idlemax, idlecnt, ); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
830 idles [idlecnt - 1] = w;
831} 2223}
832 2224
833void evidle_stop (struct ev_idle *w) 2225void
2226ev_child_stop (EV_P_ ev_child *w)
834{ 2227{
835 ev_clear ((W)w); 2228 clear_pending (EV_A_ (W)w);
836 if (ev_is_active (w)) 2229 if (expect_false (!ev_is_active (w)))
837 return; 2230 return;
838 2231
839 idles [w->active - 1] = idles [--idlecnt]; 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
840 ev_stop ((W)w); 2233 ev_stop (EV_A_ (W)w);
841} 2234}
842 2235
843void evprepare_start (struct ev_prepare *w) 2236#if EV_STAT_ENABLE
2237
2238# ifdef _WIN32
2239# undef lstat
2240# define lstat(a,b) _stati64 (a,b)
2241# endif
2242
2243#define DEF_STAT_INTERVAL 5.0074891
2244#define MIN_STAT_INTERVAL 0.1074891
2245
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247
2248#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192
2250
2251static void noinline
2252infy_add (EV_P_ ev_stat *w)
844{ 2253{
845 if (ev_is_active (w)) 2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255
2256 if (w->wd < 0)
2257 {
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2259
2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 {
2265 char path [4096];
2266 strcpy (path, w->path);
2267
2268 do
2269 {
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272
2273 char *pend = strrchr (path, '/');
2274
2275 if (!pend)
2276 break; /* whoops, no '/', complain to your admin */
2277
2278 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 }
2283 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286
2287 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2289}
2290
2291static void noinline
2292infy_del (EV_P_ ev_stat *w)
2293{
2294 int slot;
2295 int wd = w->wd;
2296
2297 if (wd < 0)
846 return; 2298 return;
847 2299
2300 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w);
2303
2304 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd);
2306}
2307
2308static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{
2311 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2314 infy_wd (EV_A_ slot, wd, ev);
2315 else
2316 {
2317 WL w_;
2318
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2320 {
2321 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */
2323
2324 if (w->wd == wd || wd == -1)
2325 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 {
2328 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */
2330 }
2331
2332 stat_timer_cb (EV_A_ &w->timer, 0);
2333 }
2334 }
2335 }
2336}
2337
2338static void
2339infy_cb (EV_P_ ev_io *w, int revents)
2340{
2341 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf));
2345
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2348}
2349
2350void inline_size
2351infy_init (EV_P)
2352{
2353 if (fs_fd != -2)
2354 return;
2355
2356 fs_fd = inotify_init ();
2357
2358 if (fs_fd >= 0)
2359 {
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w);
2363 }
2364}
2365
2366void inline_size
2367infy_fork (EV_P)
2368{
2369 int slot;
2370
2371 if (fs_fd < 0)
2372 return;
2373
2374 close (fs_fd);
2375 fs_fd = inotify_init ();
2376
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2378 {
2379 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0;
2381
2382 while (w_)
2383 {
2384 ev_stat *w = (ev_stat *)w_;
2385 w_ = w_->next; /* lets us add this watcher */
2386
2387 w->wd = -1;
2388
2389 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else
2392 ev_timer_start (EV_A_ &w->timer);
2393 }
2394
2395 }
2396}
2397
2398#endif
2399
2400void
2401ev_stat_stat (EV_P_ ev_stat *w)
2402{
2403 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1;
2407}
2408
2409static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413
2414 /* we copy this here each the time so that */
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w);
2418
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if (
2421 w->prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime
2432 ) {
2433 #if EV_USE_INOTIFY
2434 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */
2437 #endif
2438
2439 ev_feed_event (EV_A_ w, EV_STAT);
2440 }
2441}
2442
2443void
2444ev_stat_start (EV_P_ ev_stat *w)
2445{
2446 if (expect_false (ev_is_active (w)))
2447 return;
2448
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w);
2454
2455 if (w->interval < MIN_STAT_INTERVAL)
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2459 ev_set_priority (&w->timer, ev_priority (w));
2460
2461#if EV_USE_INOTIFY
2462 infy_init (EV_A);
2463
2464 if (fs_fd >= 0)
2465 infy_add (EV_A_ w);
2466 else
2467#endif
2468 ev_timer_start (EV_A_ &w->timer);
2469
2470 ev_start (EV_A_ (W)w, 1);
2471}
2472
2473void
2474ev_stat_stop (EV_P_ ev_stat *w)
2475{
2476 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w)))
2478 return;
2479
2480#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w);
2482#endif
2483 ev_timer_stop (EV_A_ &w->timer);
2484
2485 ev_stop (EV_A_ (W)w);
2486}
2487#endif
2488
2489#if EV_IDLE_ENABLE
2490void
2491ev_idle_start (EV_P_ ev_idle *w)
2492{
2493 if (expect_false (ev_is_active (w)))
2494 return;
2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
2502 ev_start (EV_A_ (W)w, active);
2503
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
2507}
2508
2509void
2510ev_idle_stop (EV_P_ ev_idle *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2524 }
2525}
2526#endif
2527
2528void
2529ev_prepare_start (EV_P_ ev_prepare *w)
2530{
2531 if (expect_false (ev_is_active (w)))
2532 return;
2533
848 ev_start ((W)w, ++preparecnt); 2534 ev_start (EV_A_ (W)w, ++preparecnt);
849 array_needsize (prepares, preparemax, preparecnt, ); 2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
850 prepares [preparecnt - 1] = w; 2536 prepares [preparecnt - 1] = w;
851} 2537}
852 2538
2539void
853void evprepare_stop (struct ev_prepare *w) 2540ev_prepare_stop (EV_P_ ev_prepare *w)
854{ 2541{
855 ev_clear ((W)w); 2542 clear_pending (EV_A_ (W)w);
856 if (ev_is_active (w)) 2543 if (expect_false (!ev_is_active (w)))
857 return; 2544 return;
858 2545
2546 {
2547 int active = ev_active (w);
2548
859 prepares [w->active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active;
2551 }
2552
860 ev_stop ((W)w); 2553 ev_stop (EV_A_ (W)w);
861} 2554}
862 2555
2556void
863void evcheck_start (struct ev_check *w) 2557ev_check_start (EV_P_ ev_check *w)
864{ 2558{
865 if (ev_is_active (w)) 2559 if (expect_false (ev_is_active (w)))
866 return; 2560 return;
867 2561
868 ev_start ((W)w, ++checkcnt); 2562 ev_start (EV_A_ (W)w, ++checkcnt);
869 array_needsize (checks, checkmax, checkcnt, ); 2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
870 checks [checkcnt - 1] = w; 2564 checks [checkcnt - 1] = w;
871} 2565}
872 2566
2567void
873void evcheck_stop (struct ev_check *w) 2568ev_check_stop (EV_P_ ev_check *w)
874{ 2569{
875 ev_clear ((W)w); 2570 clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 2571 if (expect_false (!ev_is_active (w)))
877 return; 2572 return;
878 2573
2574 {
2575 int active = ev_active (w);
2576
879 checks [w->active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active;
2579 }
2580
880 ev_stop ((W)w); 2581 ev_stop (EV_A_ (W)w);
881} 2582}
2583
2584#if EV_EMBED_ENABLE
2585void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w)
2587{
2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2589}
2590
2591static void
2592embed_io_cb (EV_P_ ev_io *io, int revents)
2593{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595
2596 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2625
2626void
2627ev_embed_start (EV_P_ ev_embed *w)
2628{
2629 if (expect_false (ev_is_active (w)))
2630 return;
2631
2632 {
2633 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 }
2637
2638 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io);
2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2647 ev_start (EV_A_ (W)w, 1);
2648}
2649
2650void
2651ev_embed_stop (EV_P_ ev_embed *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2659
2660 ev_stop (EV_A_ (W)w);
2661}
2662#endif
2663
2664#if EV_FORK_ENABLE
2665void
2666ev_fork_start (EV_P_ ev_fork *w)
2667{
2668 if (expect_false (ev_is_active (w)))
2669 return;
2670
2671 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w;
2674}
2675
2676void
2677ev_fork_stop (EV_P_ ev_fork *w)
2678{
2679 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w)))
2681 return;
2682
2683 {
2684 int active = ev_active (w);
2685
2686 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active;
2688 }
2689
2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2730}
2731#endif
882 2732
883/*****************************************************************************/ 2733/*****************************************************************************/
884 2734
885struct ev_once 2735struct ev_once
886{ 2736{
887 struct ev_io io; 2737 ev_io io;
888 struct ev_timer to; 2738 ev_timer to;
889 void (*cb)(int revents, void *arg); 2739 void (*cb)(int revents, void *arg);
890 void *arg; 2740 void *arg;
891}; 2741};
892 2742
893static void 2743static void
894once_cb (struct ev_once *once, int revents) 2744once_cb (EV_P_ struct ev_once *once, int revents)
895{ 2745{
896 void (*cb)(int revents, void *arg) = once->cb; 2746 void (*cb)(int revents, void *arg) = once->cb;
897 void *arg = once->arg; 2747 void *arg = once->arg;
898 2748
899 evio_stop (&once->io); 2749 ev_io_stop (EV_A_ &once->io);
900 evtimer_stop (&once->to); 2750 ev_timer_stop (EV_A_ &once->to);
901 free (once); 2751 ev_free (once);
902 2752
903 cb (revents, arg); 2753 cb (revents, arg);
904} 2754}
905 2755
906static void 2756static void
907once_cb_io (struct ev_io *w, int revents) 2757once_cb_io (EV_P_ ev_io *w, int revents)
908{ 2758{
909 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
910} 2760}
911 2761
912static void 2762static void
913once_cb_to (struct ev_timer *w, int revents) 2763once_cb_to (EV_P_ ev_timer *w, int revents)
914{ 2764{
915 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
916} 2766}
917 2767
918void 2768void
919ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
920{ 2770{
921 struct ev_once *once = malloc (sizeof (struct ev_once)); 2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
922 2772
923 if (!once) 2773 if (expect_false (!once))
924 cb (EV_ERROR, arg); 2774 {
925 else 2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2776 return;
926 { 2777 }
2778
927 once->cb = cb; 2779 once->cb = cb;
928 once->arg = arg; 2780 once->arg = arg;
929 2781
930 evw_init (&once->io, once_cb_io); 2782 ev_init (&once->io, once_cb_io);
931
932 if (fd >= 0) 2783 if (fd >= 0)
933 { 2784 {
934 evio_set (&once->io, fd, events); 2785 ev_io_set (&once->io, fd, events);
935 evio_start (&once->io); 2786 ev_io_start (EV_A_ &once->io);
936 } 2787 }
937 2788
938 evw_init (&once->to, once_cb_to); 2789 ev_init (&once->to, once_cb_to);
939
940 if (timeout >= 0.) 2790 if (timeout >= 0.)
941 { 2791 {
942 evtimer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
943 evtimer_start (&once->to); 2793 ev_timer_start (EV_A_ &once->to);
944 }
945 }
946}
947
948/*****************************************************************************/
949
950#if 0
951
952struct ev_io wio;
953
954static void
955sin_cb (struct ev_io *w, int revents)
956{
957 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
958}
959
960static void
961ocb (struct ev_timer *w, int revents)
962{
963 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
964 evtimer_stop (w);
965 evtimer_start (w);
966}
967
968static void
969scb (struct ev_signal *w, int revents)
970{
971 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
972 evio_stop (&wio);
973 evio_start (&wio);
974}
975
976static void
977gcb (struct ev_signal *w, int revents)
978{
979 fprintf (stderr, "generic %x\n", revents);
980
981}
982
983int main (void)
984{
985 ev_init (0);
986
987 evio_init (&wio, sin_cb, 0, EV_READ);
988 evio_start (&wio);
989
990 struct ev_timer t[10000];
991
992#if 0
993 int i;
994 for (i = 0; i < 10000; ++i)
995 { 2794 }
996 struct ev_timer *w = t + i;
997 evw_init (w, ocb, i);
998 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
999 evtimer_start (w);
1000 if (drand48 () < 0.5)
1001 evtimer_stop (w);
1002 }
1003#endif
1004
1005 struct ev_timer t1;
1006 evtimer_init (&t1, ocb, 5, 10);
1007 evtimer_start (&t1);
1008
1009 struct ev_signal sig;
1010 evsignal_init (&sig, scb, SIGQUIT);
1011 evsignal_start (&sig);
1012
1013 struct ev_check cw;
1014 evcheck_init (&cw, gcb);
1015 evcheck_start (&cw);
1016
1017 struct ev_idle iw;
1018 evidle_init (&iw, gcb);
1019 evidle_start (&iw);
1020
1021 ev_loop (0);
1022
1023 return 0;
1024} 2795}
1025 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
1026#endif 2799#endif
1027 2800
2801#ifdef __cplusplus
2802}
2803#endif
1028 2804
1029
1030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines