ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.20 by root, Wed Oct 31 18:28:00 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
75/**/
76
44#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
45# ifdef CLOCK_MONOTONIC
46# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
47# endif 102# endif
48#endif 103#endif
49 104
50#ifndef HAVE_SELECT
51# define HAVE_SELECT 1
52#endif
53
54#ifndef HAVE_EPOLL
55# define HAVE_EPOLL 0
56#endif
57
58#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
60#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
61 122
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
64 127
65#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
66 143
67typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
68typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
70 147
71static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
72ev_tstamp ev_now;
73int ev_method;
74 149
75static int have_monotonic; /* runtime */ 150#if WIN32
76 151/* note: the comment below could not be substantiated, but what would I care */
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
78static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
79static void (*method_poll)(ev_tstamp timeout); 154#endif
80 155
81/*****************************************************************************/ 156/*****************************************************************************/
82 157
83ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
84ev_time (void) 192ev_time (void)
85{ 193{
86#if HAVE_REALTIME 194#if EV_USE_REALTIME
87 struct timespec ts; 195 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 198#else
91 struct timeval tv; 199 struct timeval tv;
92 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 202#endif
95} 203}
96 204
97static ev_tstamp 205inline ev_tstamp
98get_clock (void) 206get_clock (void)
99{ 207{
100#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
101 if (have_monotonic) 209 if (expect_true (have_monotonic))
102 { 210 {
103 struct timespec ts; 211 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 214 }
107#endif 215#endif
108 216
109 return ev_time (); 217 return ev_time ();
110} 218}
111 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
112#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
113 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
114 { \ 230 { \
115 int newcnt = cur ? cur << 1 : 16; \ 231 int newcnt = cur; \
232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
117 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
118 cur = newcnt; \ 240 cur = newcnt; \
119 } 241 }
120 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
121/*****************************************************************************/ 254/*****************************************************************************/
122 255
123typedef struct
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void 256static void
136anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
137{ 258{
138 while (count--) 259 while (count--)
139 { 260 {
140 base->head = 0; 261 base->head = 0;
141 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
142 ++base; 265 ++base;
143 } 266 }
144} 267}
145 268
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void 269static void
156event (W w, int events) 270event (EV_P_ W w, int events)
157{ 271{
158 if (w->active) 272 if (w->pending)
159 { 273 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
164 } 276 }
165}
166 277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
167static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
168fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
169{ 295{
170 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 297 struct ev_io *w;
172 298
173 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
174 { 300 {
175 int ev = w->events & events; 301 int ev = w->events & events;
176 302
177 if (ev) 303 if (ev)
178 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
179 } 305 }
180} 306}
181 307
308/*****************************************************************************/
309
182static void 310static void
183queue_events (W *events, int eventcnt, int type) 311fd_reify (EV_P)
184{ 312{
185 int i; 313 int i;
186 314
187 for (i = 0; i < eventcnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
188 event (events [i], type); 316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
189} 358}
190 359
191/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
192static void 361static void
193fd_recheck () 362fd_ebadf (EV_P)
194{ 363{
195 int fd; 364 int fd;
196 365
197 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev) 367 if (anfds [fd].events)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
201 evio_stop (anfds [fd].head); 370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 close (fd);
382 fd_kill (EV_A_ fd);
383 return;
384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
202} 400}
203 401
204/*****************************************************************************/ 402/*****************************************************************************/
205 403
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void 404static void
213upheap (WT *timers, int k) 405upheap (WT *heap, int k)
214{ 406{
215 WT w = timers [k]; 407 WT w = heap [k];
216 408
217 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
218 { 410 {
219 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
220 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
221 k >>= 1; 413 k >>= 1;
222 } 414 }
223 415
224 timers [k] = w; 416 heap [k] = w;
225 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
226 418
227} 419}
228 420
229static void 421static void
230downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
231{ 423{
232 WT w = timers [k]; 424 WT w = heap [k];
233 425
234 while (k < (N >> 1)) 426 while (k < (N >> 1))
235 { 427 {
236 int j = k << 1; 428 int j = k << 1;
237 429
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
239 ++j; 431 ++j;
240 432
241 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
242 break; 434 break;
243 435
244 timers [k] = timers [j]; 436 heap [k] = heap [j];
245 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
246 k = j; 438 k = j;
247 } 439 }
248 440
249 timers [k] = w; 441 heap [k] = w;
250 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
251} 443}
252 444
253/*****************************************************************************/ 445/*****************************************************************************/
254 446
255typedef struct 447typedef struct
256{ 448{
257 struct ev_signal *head; 449 struct ev_watcher_list *head;
258 sig_atomic_t gotsig; 450 sig_atomic_t volatile gotsig;
259} ANSIG; 451} ANSIG;
260 452
261static ANSIG *signals; 453static ANSIG *signals;
262static int signalmax; 454static int signalmax;
263 455
264static int sigpipe [2]; 456static int sigpipe [2];
265static sig_atomic_t gotsig; 457static sig_atomic_t volatile gotsig;
266static struct ev_io sigev; 458static struct ev_io sigev;
267 459
268static void 460static void
269signals_init (ANSIG *base, int count) 461signals_init (ANSIG *base, int count)
270{ 462{
271 while (count--) 463 while (count--)
272 { 464 {
273 base->head = 0; 465 base->head = 0;
274 base->gotsig = 0; 466 base->gotsig = 0;
467
275 ++base; 468 ++base;
276 } 469 }
277} 470}
278 471
279static void 472static void
280sighandler (int signum) 473sighandler (int signum)
281{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
282 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
283 480
284 if (!gotsig) 481 if (!gotsig)
285 { 482 {
483 int old_errno = errno;
286 gotsig = 1; 484 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
288 } 487 }
289} 488}
290 489
291static void 490static void
292sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
293{ 492{
294 struct ev_signal *w; 493 struct ev_watcher_list *w;
295 int sig; 494 int signum;
296 495
496 read (sigpipe [0], &revents, 1);
297 gotsig = 0; 497 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299 498
300 for (sig = signalmax; sig--; ) 499 for (signum = signalmax; signum--; )
301 if (signals [sig].gotsig) 500 if (signals [signum].gotsig)
302 { 501 {
303 signals [sig].gotsig = 0; 502 signals [signum].gotsig = 0;
304 503
305 for (w = signals [sig].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
307 } 506 }
308} 507}
309 508
310static void 509static void
311siginit (void) 510siginit (EV_P)
312{ 511{
512#ifndef WIN32
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 515
316 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
319 520
320 evio_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
322} 524}
323 525
324/*****************************************************************************/ 526/*****************************************************************************/
325 527
326static struct ev_idle **idles; 528#ifndef WIN32
327static int idlemax, idlecnt;
328 529
329static struct ev_prepare **prepares; 530static struct ev_child *childs [PID_HASHSIZE];
330static int preparemax, preparecnt; 531static struct ev_signal childev;
331 532
332static struct ev_check **checks; 533#ifndef WCONTINUED
333static int checkmax, checkcnt; 534# define WCONTINUED 0
535#endif
536
537static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
555 int pid, status;
556
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 {
559 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL);
561
562 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
565}
566
567#endif
334 568
335/*****************************************************************************/ 569/*****************************************************************************/
336 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
337#if HAVE_EPOLL 574#if EV_USE_EPOLL
338# include "ev_epoll.c" 575# include "ev_epoll.c"
339#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
340#if HAVE_SELECT 580#if EV_USE_SELECT
341# include "ev_select.c" 581# include "ev_select.c"
342#endif 582#endif
343 583
344int ev_init (int flags) 584int
585ev_version_major (void)
345{ 586{
587 return EV_VERSION_MAJOR;
588}
589
590int
591ev_version_minor (void)
592{
593 return EV_VERSION_MINOR;
594}
595
596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
617 if (!method)
618 {
346#if HAVE_MONOTONIC 619#if EV_USE_MONOTONIC
347 { 620 {
348 struct timespec ts; 621 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1; 623 have_monotonic = 1;
351 } 624 }
352#endif 625#endif
353 626
354 ev_now = ev_time (); 627 rt_now = ev_time ();
355 now = get_clock (); 628 mn_now = get_clock ();
356 diff = ev_now - now; 629 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now;
357 631
632 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
645#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif
651#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif
654 }
655}
656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
358 if (pipe (sigpipe)) 746 if (pipe (sigpipe))
359 return 0; 747 return 0;
360 748
361 ev_method = EVMETHOD_NONE; 749 if (!default_loop)
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 { 750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
759 if (ev_method (EV_A))
760 {
371 evw_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
372 siginit (); 763 siginit (EV_A);
373 }
374 764
375 return ev_method; 765#ifndef WIN32
376} 766 ev_signal_init (&childev, childcb, SIGCHLD);
377 767 ev_set_priority (&childev, EV_MAXPRI);
378/*****************************************************************************/ 768 ev_signal_start (EV_A_ &childev);
379 769 ev_unref (EV_A); /* child watcher should not keep loop alive */
380void ev_prefork (void)
381{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif 770#endif
771 }
772 else
773 default_loop = 0;
774 }
396 775
776 return default_loop;
777}
778
779void
780ev_default_destroy (void)
781{
782#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop;
784#endif
785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
397 evio_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
398 close (sigpipe [0]); 808 close (sigpipe [0]);
399 close (sigpipe [1]); 809 close (sigpipe [1]);
400 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
401 siginit (); 813 siginit (EV_A);
402} 814}
403 815
404/*****************************************************************************/ 816/*****************************************************************************/
405 817
406static void 818static void
407fd_reify (void) 819call_pending (EV_P)
408{ 820{
409 int i; 821 int pri;
410 822
411 for (i = 0; i < fdchangecnt; ++i) 823 for (pri = NUMPRI; pri--; )
412 { 824 while (pendingcnt [pri])
413 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416
417 int wev = 0;
418
419 for (w = anfd->head; w; w = w->next)
420 wev |= w->events;
421
422 if (anfd->wev != wev)
423 { 825 {
424 method_modify (fd, anfd->wev, wev);
425 anfd->wev = wev;
426 }
427 }
428
429 fdchangecnt = 0;
430}
431
432static void
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
438 827
439 if (p->w) 828 if (p->w)
440 { 829 {
441 p->w->pending = 0; 830 p->w->pending = 0;
442 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
443 } 832 }
444 } 833 }
445} 834}
446 835
447static void 836static void
448timers_reify () 837timers_reify (EV_P)
449{ 838{
450 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
451 { 840 {
452 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
453 842
454 event ((W)w, EV_TIMEOUT); 843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
455 844
456 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
457 if (w->repeat) 846 if (w->repeat)
458 { 847 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
459 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now));
461 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
462 } 851 }
463 else 852 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 854
855 event (EV_A_ (W)w, EV_TIMEOUT);
856 }
857}
858
468static void 859static void
469periodics_reify () 860periodics_reify (EV_P)
470{ 861{
471 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
472 { 863 {
473 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
474 867
475 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
476 if (w->interval) 869 if (w->interval)
477 { 870 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
480 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
481 } 874 }
482 else 875 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 877
485 event ((W)w, EV_TIMEOUT); 878 event (EV_A_ (W)w, EV_PERIODIC);
486 } 879 }
487} 880}
488 881
489static void 882static void
490periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
491{ 884{
492 int i; 885 int i;
493 886
494 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
496 { 889 {
497 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
498 891
499 if (w->interval) 892 if (w->interval)
500 { 893 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
502 895
503 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
504 { 897 {
505 evperiodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
506 evperiodic_start (w); 899 ev_periodic_start (EV_A_ w);
507 900
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 } 902 }
510 } 903 }
511 } 904 }
512} 905}
513 906
907inline int
908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
514static void 925static void
515time_update () 926time_update (EV_P)
516{ 927{
517 int i; 928 int i;
518 929
519 ev_now = ev_time (); 930#if EV_USE_MONOTONIC
520
521 if (have_monotonic) 931 if (expect_true (have_monotonic))
522 { 932 {
523 ev_tstamp odiff = diff; 933 if (time_update_monotonic (EV_A))
524
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */
526 { 934 {
527 now = get_clock (); 935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
528 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
529 940
530 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
531 return; /* all is well */ 942 return; /* all is well */
532 943
533 ev_now = ev_time (); 944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
534 } 952 }
535
536 periodics_reschedule (diff - odiff);
537 /* no timer adjustment, as the monotonic clock doesn't jump */
538 } 953 }
539 else 954 else
955#endif
540 { 956 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
542 { 960 {
543 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
544 962
545 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
546 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
547 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
548 } 966 }
549 967
550 now = ev_now; 968 mn_now = rt_now;
551 } 969 }
552} 970}
553 971
554int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
555 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
556void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
557{ 988{
558 double block; 989 double block;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
560 991
561 do 992 do
562 { 993 {
563 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
564 if (checkcnt) 995 if (expect_false (preparecnt))
565 { 996 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
567 call_pending (); 998 call_pending (EV_A);
568 } 999 }
569 1000
570 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
571 fd_reify (); 1002 fd_reify (EV_A);
572 1003
573 /* calculate blocking time */ 1004 /* calculate blocking time */
574 1005
575 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1006 /* we only need this for !monotonic clockor timers, but as we basically
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
576 ev_now = ev_time (); 1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
577 1017
578 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
579 block = 0.; 1019 block = 0.;
580 else 1020 else
581 { 1021 {
582 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
583 1023
584 if (timercnt) 1024 if (timercnt)
585 { 1025 {
586 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
587 if (block > to) block = to; 1027 if (block > to) block = to;
588 } 1028 }
589 1029
590 if (periodiccnt) 1030 if (periodiccnt)
591 { 1031 {
592 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
593 if (block > to) block = to; 1033 if (block > to) block = to;
594 } 1034 }
595 1035
596 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
597 } 1037 }
598 1038
599 method_poll (block); 1039 method_poll (EV_A_ block);
600 1040
601 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
602 time_update (); 1042 time_update (EV_A);
603 1043
604 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
605 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
606 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
607 1047
608 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
609 if (!pendingcnt) 1049 if (!pendingcnt)
610 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
611 1051
612 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
613 if (checkcnt) 1053 if (checkcnt)
614 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
615 1055
616 call_pending (); 1056 call_pending (EV_A);
617 } 1057 }
618 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
619 1059
620 if (ev_loop_done != 2) 1060 if (loop_done != 2)
621 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
622} 1068}
623 1069
624/*****************************************************************************/ 1070/*****************************************************************************/
625 1071
626static void 1072inline void
627wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
628{ 1074{
629 elem->next = *head; 1075 elem->next = *head;
630 *head = elem; 1076 *head = elem;
631} 1077}
632 1078
633static void 1079inline void
634wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
635{ 1081{
636 while (*head) 1082 while (*head)
637 { 1083 {
638 if (*head == elem) 1084 if (*head == elem)
643 1089
644 head = &(*head)->next; 1090 head = &(*head)->next;
645 } 1091 }
646} 1092}
647 1093
648static void 1094inline void
649ev_clear (W w) 1095ev_clear_pending (EV_P_ W w)
650{ 1096{
651 if (w->pending) 1097 if (w->pending)
652 { 1098 {
653 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
654 w->pending = 0; 1100 w->pending = 0;
655 } 1101 }
656} 1102}
657 1103
658static void 1104inline void
659ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
660{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
661 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
662} 1112}
663 1113
664static void 1114inline void
665ev_stop (W w) 1115ev_stop (EV_P_ W w)
666{ 1116{
1117 ev_unref (EV_A);
667 w->active = 0; 1118 w->active = 0;
668} 1119}
669 1120
670/*****************************************************************************/ 1121/*****************************************************************************/
671 1122
672void 1123void
673evio_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
674{ 1125{
1126 int fd = w->fd;
1127
675 if (ev_is_active (w)) 1128 if (ev_is_active (w))
676 return; 1129 return;
677 1130
678 int fd = w->fd; 1131 assert (("ev_io_start called with negative fd", fd >= 0));
679 1132
680 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
681 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
682 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
683 1136
684 ++fdchangecnt; 1137 fd_change (EV_A_ fd);
685 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
686 fdchanges [fdchangecnt - 1] = fd;
687} 1138}
688 1139
689void 1140void
690evio_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
691{ 1142{
692 ev_clear ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
693 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
694 return; 1145 return;
695 1146
696 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
697 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
698 1149
699 ++fdchangecnt; 1150 fd_change (EV_A_ w->fd);
700 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
701 fdchanges [fdchangecnt - 1] = w->fd;
702} 1151}
703 1152
704void 1153void
705evtimer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
706{ 1155{
707 if (ev_is_active (w)) 1156 if (ev_is_active (w))
708 return; 1157 return;
709 1158
710 w->at += now; 1159 ((WT)w)->at += mn_now;
711 1160
712 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
713 1162
714 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
715 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
716 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
717 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
718}
719 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
720void 1171void
721evtimer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
722{ 1173{
723 ev_clear ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
725 return; 1176 return;
726 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
727 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
728 { 1181 {
729 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
730 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
731 } 1184 }
732 1185
733 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
734 1187
735 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
736} 1189}
737 1190
738void 1191void
739evtimer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
740{ 1193{
741 if (ev_is_active (w)) 1194 if (ev_is_active (w))
742 { 1195 {
743 if (w->repeat) 1196 if (w->repeat)
744 { 1197 {
745 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
746 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
747 } 1200 }
748 else 1201 else
749 evtimer_stop (w); 1202 ev_timer_stop (EV_A_ w);
750 } 1203 }
751 else if (w->repeat) 1204 else if (w->repeat)
752 evtimer_start (w); 1205 ev_timer_start (EV_A_ w);
753} 1206}
754 1207
755void 1208void
756evperiodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
757{ 1210{
758 if (ev_is_active (w)) 1211 if (ev_is_active (w))
759 return; 1212 return;
760 1213
761 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
762 1215
763 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
764 if (w->interval) 1217 if (w->interval)
765 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
766 1219
767 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
768 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
769 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
770 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
771}
772 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
773void 1228void
774evperiodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
775{ 1230{
776 ev_clear ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
777 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
778 return; 1233 return;
779 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
780 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
781 { 1238 {
782 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
783 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
784 } 1241 }
785 1242
786 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
787} 1244}
788 1245
789void 1246void
790evsignal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
791{ 1248{
792 if (ev_is_active (w)) 1249 if (ev_is_active (w))
793 return; 1250 return;
794 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
795 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
796 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
797 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
798 1330
799 if (!w->next) 1331 if (!((WL)w)->next)
800 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
801 struct sigaction sa; 1336 struct sigaction sa;
802 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
803 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
804 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
805 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
806 } 1342 }
807} 1343}
808 1344
809void 1345void
810evsignal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
811{ 1347{
812 ev_clear ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
814 return; 1350 return;
815 1351
816 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
817 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
818 1354
819 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
820 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
821} 1357}
822 1358
823void evidle_start (struct ev_idle *w) 1359void
1360ev_child_start (EV_P_ struct ev_child *w)
824{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
825 if (ev_is_active (w)) 1365 if (ev_is_active (w))
826 return; 1366 return;
827 1367
828 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
829 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
830 idles [idlecnt - 1] = w;
831} 1370}
832 1371
833void evidle_stop (struct ev_idle *w) 1372void
1373ev_child_stop (EV_P_ struct ev_child *w)
834{ 1374{
835 ev_clear ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
836 if (ev_is_active (w)) 1376 if (ev_is_active (w))
837 return; 1377 return;
838 1378
839 idles [w->active - 1] = idles [--idlecnt]; 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
840 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
841}
842
843void evprepare_start (struct ev_prepare *w)
844{
845 if (ev_is_active (w))
846 return;
847
848 ev_start ((W)w, ++preparecnt);
849 array_needsize (prepares, preparemax, preparecnt, );
850 prepares [preparecnt - 1] = w;
851}
852
853void evprepare_stop (struct ev_prepare *w)
854{
855 ev_clear ((W)w);
856 if (ev_is_active (w))
857 return;
858
859 prepares [w->active - 1] = prepares [--preparecnt];
860 ev_stop ((W)w);
861}
862
863void evcheck_start (struct ev_check *w)
864{
865 if (ev_is_active (w))
866 return;
867
868 ev_start ((W)w, ++checkcnt);
869 array_needsize (checks, checkmax, checkcnt, );
870 checks [checkcnt - 1] = w;
871}
872
873void evcheck_stop (struct ev_check *w)
874{
875 ev_clear ((W)w);
876 if (ev_is_active (w))
877 return;
878
879 checks [w->active - 1] = checks [--checkcnt];
880 ev_stop ((W)w);
881} 1381}
882 1382
883/*****************************************************************************/ 1383/*****************************************************************************/
884 1384
885struct ev_once 1385struct ev_once
889 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
890 void *arg; 1390 void *arg;
891}; 1391};
892 1392
893static void 1393static void
894once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
895{ 1395{
896 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
897 void *arg = once->arg; 1397 void *arg = once->arg;
898 1398
899 evio_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
900 evtimer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
901 free (once); 1401 free (once);
902 1402
903 cb (revents, arg); 1403 cb (revents, arg);
904} 1404}
905 1405
906static void 1406static void
907once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
908{ 1408{
909 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
910} 1410}
911 1411
912static void 1412static void
913once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
914{ 1414{
915 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
916} 1416}
917 1417
918void 1418void
919ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
920{ 1420{
921 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
922 1422
923 if (!once) 1423 if (!once)
924 cb (EV_ERROR, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
925 else 1425 else
926 { 1426 {
927 once->cb = cb; 1427 once->cb = cb;
928 once->arg = arg; 1428 once->arg = arg;
929 1429
930 evw_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
931
932 if (fd >= 0) 1431 if (fd >= 0)
933 { 1432 {
934 evio_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
935 evio_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
936 } 1435 }
937 1436
938 evw_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
939
940 if (timeout >= 0.) 1438 if (timeout >= 0.)
941 { 1439 {
942 evtimer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
943 evtimer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
944 } 1442 }
945 } 1443 }
946} 1444}
947 1445
948/*****************************************************************************/
949
950#if 0
951
952struct ev_io wio;
953
954static void
955sin_cb (struct ev_io *w, int revents)
956{
957 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
958}
959
960static void
961ocb (struct ev_timer *w, int revents)
962{
963 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
964 evtimer_stop (w);
965 evtimer_start (w);
966}
967
968static void
969scb (struct ev_signal *w, int revents)
970{
971 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
972 evio_stop (&wio);
973 evio_start (&wio);
974}
975
976static void
977gcb (struct ev_signal *w, int revents)
978{
979 fprintf (stderr, "generic %x\n", revents);
980
981}
982
983int main (void)
984{
985 ev_init (0);
986
987 evio_init (&wio, sin_cb, 0, EV_READ);
988 evio_start (&wio);
989
990 struct ev_timer t[10000];
991
992#if 0
993 int i;
994 for (i = 0; i < 10000; ++i)
995 {
996 struct ev_timer *w = t + i;
997 evw_init (w, ocb, i);
998 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
999 evtimer_start (w);
1000 if (drand48 () < 0.5)
1001 evtimer_stop (w);
1002 }
1003#endif
1004
1005 struct ev_timer t1;
1006 evtimer_init (&t1, ocb, 5, 10);
1007 evtimer_start (&t1);
1008
1009 struct ev_signal sig;
1010 evsignal_init (&sig, scb, SIGQUIT);
1011 evsignal_start (&sig);
1012
1013 struct ev_check cw;
1014 evcheck_init (&cw, gcb);
1015 evcheck_start (&cw);
1016
1017 struct ev_idle iw;
1018 evidle_init (&iw, gcb);
1019 evidle_start (&iw);
1020
1021 ev_loop (0);
1022
1023 return 0;
1024}
1025
1026#endif
1027
1028
1029
1030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines