ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.114 by root, Mon Nov 12 20:03:39 2007 UTC vs.
Revision 1.200 by root, Wed Dec 26 08:06:09 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
80#ifndef _WIN32 145#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 146# include <sys/time.h>
83# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
84#else 149#else
85# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 151# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
90#endif 155#endif
91 156
92/**/ 157/**/
93 158
94#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
96#endif 169#endif
97 170
98#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 173#endif
102 174
103#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
104# ifdef _WIN32 176# ifdef _WIN32
105# define EV_USE_POLL 0 177# define EV_USE_POLL 0
114 186
115#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
117#endif 189#endif
118 190
119#ifndef EV_USE_REALTIME 191#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
121#endif 213#endif
122 214
123/**/ 215/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
130 216
131#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
134#endif 220#endif
136#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
139#endif 225#endif
140 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
141#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 243# include <winsock.h>
143#endif 244#endif
144 245
145/**/ 246/**/
146 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 261
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 262#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 264# define noinline __attribute__ ((noinline))
161#else 265#else
162# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
163# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
164#endif 271#endif
165 272
166#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
168 282
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 285
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
174 288
175typedef struct ev_watcher *W; 289typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
178 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
180 298
181#ifdef _WIN32 299#ifdef _WIN32
182# include "ev_win32.c" 300# include "ev_win32.c"
183#endif 301#endif
184 302
185/*****************************************************************************/ 303/*****************************************************************************/
186 304
187static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
188 306
307void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 309{
191 syserr_cb = cb; 310 syserr_cb = cb;
192} 311}
193 312
194static void 313static void noinline
195syserr (const char *msg) 314syserr (const char *msg)
196{ 315{
197 if (!msg) 316 if (!msg)
198 msg = "(libev) system error"; 317 msg = "(libev) system error";
199 318
206 } 325 }
207} 326}
208 327
209static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
210 329
330void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 332{
213 alloc = cb; 333 alloc = cb;
214} 334}
215 335
216static void * 336inline_speed void *
217ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
218{ 338{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220 340
221 if (!ptr && size) 341 if (!ptr && size)
245typedef struct 365typedef struct
246{ 366{
247 W w; 367 W w;
248 int events; 368 int events;
249} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
250 377
251#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
252 379
253 struct ev_loop 380 struct ev_loop
254 { 381 {
258 #include "ev_vars.h" 385 #include "ev_vars.h"
259 #undef VAR 386 #undef VAR
260 }; 387 };
261 #include "ev_wrap.h" 388 #include "ev_wrap.h"
262 389
263 struct ev_loop default_loop_struct; 390 static struct ev_loop default_loop_struct;
264 static struct ev_loop *default_loop; 391 struct ev_loop *ev_default_loop_ptr;
265 392
266#else 393#else
267 394
268 ev_tstamp ev_rt_now; 395 ev_tstamp ev_rt_now;
269 #define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
270 #include "ev_vars.h" 397 #include "ev_vars.h"
271 #undef VAR 398 #undef VAR
272 399
273 static int default_loop; 400 static int ev_default_loop_ptr;
274 401
275#endif 402#endif
276 403
277/*****************************************************************************/ 404/*****************************************************************************/
278 405
288 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif 417#endif
291} 418}
292 419
293inline ev_tstamp 420ev_tstamp inline_size
294get_clock (void) 421get_clock (void)
295{ 422{
296#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
298 { 425 {
311{ 438{
312 return ev_rt_now; 439 return ev_rt_now;
313} 440}
314#endif 441#endif
315 442
316#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
317 497
318#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
320 { \ 500 { \
321 int newcnt = cur; \ 501 int ocur_ = (cur); \
322 do \ 502 (base) = (type *)array_realloc \
323 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 505 }
332 506
507#if 0
333#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 510 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 514 }
515#endif
340 516
341#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
343 519
344/*****************************************************************************/ 520/*****************************************************************************/
345 521
346static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
347anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
348{ 552{
349 while (count--) 553 while (count--)
350 { 554 {
351 base->head = 0; 555 base->head = 0;
354 558
355 ++base; 559 ++base;
356 } 560 }
357} 561}
358 562
359void 563void inline_speed
360ev_feed_event (EV_P_ void *w, int revents)
361{
362 W w_ = (W)w;
363
364 if (w_->pending)
365 {
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
367 return;
368 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374}
375
376static void
377queue_events (EV_P_ W *events, int eventcnt, int type)
378{
379 int i;
380
381 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type);
383}
384
385inline void
386fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
387{ 565{
388 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 567 ev_io *w;
390 568
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 570 {
393 int ev = w->events & revents; 571 int ev = w->events & revents;
394 572
395 if (ev) 573 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
398} 576}
399 577
400void 578void
401ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 580{
581 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
404} 583}
405 584
406/*****************************************************************************/ 585void inline_size
407
408static void
409fd_reify (EV_P) 586fd_reify (EV_P)
410{ 587{
411 int i; 588 int i;
412 589
413 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
414 { 591 {
415 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 594 ev_io *w;
418 595
419 int events = 0; 596 unsigned char events = 0;
420 597
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 599 events |= (unsigned char)w->events;
423 600
424#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
425 if (events) 602 if (events)
426 { 603 {
427 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
428 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 } 611 }
431#endif 612#endif
432 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
433 anfd->reify = 0; 618 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
437 } 624 }
438 625
439 fdchangecnt = 0; 626 fdchangecnt = 0;
440} 627}
441 628
442static void 629void inline_size
443fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
444{ 631{
445 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
449 634
635 if (expect_true (!reify))
636 {
450 ++fdchangecnt; 637 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
453} 641}
454 642
455static void 643void inline_speed
456fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
457{ 645{
458 struct ev_io *w; 646 ev_io *w;
459 647
460 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
461 { 649 {
462 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 652 }
465} 653}
466 654
467static int 655int inline_size
468fd_valid (int fd) 656fd_valid (int fd)
469{ 657{
470#ifdef _WIN32 658#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
472#else 660#else
473 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
474#endif 662#endif
475} 663}
476 664
477/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
478static void 666static void noinline
479fd_ebadf (EV_P) 667fd_ebadf (EV_P)
480{ 668{
481 int fd; 669 int fd;
482 670
483 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
486 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
487} 675}
488 676
489/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 678static void noinline
491fd_enomem (EV_P) 679fd_enomem (EV_P)
492{ 680{
493 int fd; 681 int fd;
494 682
495 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
499 return; 687 return;
500 } 688 }
501} 689}
502 690
503/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 692static void noinline
505fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
506{ 694{
507 int fd; 695 int fd;
508 696
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 698 if (anfds [fd].events)
512 { 699 {
513 anfds [fd].events = 0; 700 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
515 } 702 }
516} 703}
517 704
518/*****************************************************************************/ 705/*****************************************************************************/
519 706
520static void 707void inline_speed
521upheap (WT *heap, int k) 708upheap (WT *heap, int k)
522{ 709{
523 WT w = heap [k]; 710 WT w = heap [k];
524 711
525 while (k && heap [k >> 1]->at > w->at) 712 while (k)
526 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
527 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
528 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
529 k >>= 1; 721 k = p;
530 } 722 }
531 723
532 heap [k] = w; 724 heap [k] = w;
533 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
534
535} 726}
536 727
537static void 728void inline_speed
538downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
539{ 730{
540 WT w = heap [k]; 731 WT w = heap [k];
541 732
542 while (k < (N >> 1)) 733 for (;;)
543 { 734 {
544 int j = k << 1; 735 int c = (k << 1) + 1;
545 736
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
547 ++j;
548
549 if (w->at <= heap [j]->at)
550 break; 738 break;
551 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
552 heap [k] = heap [j]; 746 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
554 k = j; 749 k = c;
555 } 750 }
556 751
557 heap [k] = w; 752 heap [k] = w;
558 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
559} 754}
560 755
561inline void 756void inline_size
562adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
563{ 758{
564 upheap (heap, k); 759 upheap (heap, k);
565 downheap (heap, N, k); 760 downheap (heap, N, k);
566} 761}
576static ANSIG *signals; 771static ANSIG *signals;
577static int signalmax; 772static int signalmax;
578 773
579static int sigpipe [2]; 774static int sigpipe [2];
580static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
581static struct ev_io sigev; 776static ev_io sigev;
582 777
583static void 778void inline_size
584signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
585{ 780{
586 while (count--) 781 while (count--)
587 { 782 {
588 base->head = 0; 783 base->head = 0;
608 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
609 errno = old_errno; 804 errno = old_errno;
610 } 805 }
611} 806}
612 807
613void 808void noinline
614ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
615{ 810{
616 WL w; 811 WL w;
617 812
618#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif 815#endif
621 816
622 --signum; 817 --signum;
623 818
624 if (signum < 0 || signum >= signalmax) 819 if (signum < 0 || signum >= signalmax)
629 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631} 826}
632 827
633static void 828static void
634sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
635{ 830{
636 int signum; 831 int signum;
637 832
638 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
639 gotsig = 0; 834 gotsig = 0;
641 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
644} 839}
645 840
646inline void 841void inline_speed
647fd_intern (int fd) 842fd_intern (int fd)
648{ 843{
649#ifdef _WIN32 844#ifdef _WIN32
650 int arg = 1; 845 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 848 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 849 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 850#endif
656} 851}
657 852
658static void 853static void noinline
659siginit (EV_P) 854siginit (EV_P)
660{ 855{
661 fd_intern (sigpipe [0]); 856 fd_intern (sigpipe [0]);
662 fd_intern (sigpipe [1]); 857 fd_intern (sigpipe [1]);
663 858
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
667} 862}
668 863
669/*****************************************************************************/ 864/*****************************************************************************/
670 865
671static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
672 867
673#ifndef _WIN32 868#ifndef _WIN32
674 869
675static struct ev_signal childev; 870static ev_signal childev;
871
872void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
874{
875 ev_child *w;
876
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
878 if (w->pid == pid || !w->pid)
879 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
881 w->rpid = pid;
882 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 }
885}
676 886
677#ifndef WCONTINUED 887#ifndef WCONTINUED
678# define WCONTINUED 0 888# define WCONTINUED 0
679#endif 889#endif
680 890
681static void 891static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 892childcb (EV_P_ ev_signal *sw, int revents)
698{ 893{
699 int pid, status; 894 int pid, status;
700 895
896 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 897 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 898 if (!WCONTINUED
899 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return;
902
703 /* make sure we are called again until all childs have been reaped */ 903 /* make sure we are called again until all childs have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 906
706 child_reap (EV_A_ sw, pid, pid, status); 907 child_reap (EV_A_ sw, pid, pid, status);
908 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 910}
710 911
711#endif 912#endif
712 913
713/*****************************************************************************/ 914/*****************************************************************************/
714 915
916#if EV_USE_PORT
917# include "ev_port.c"
918#endif
715#if EV_USE_KQUEUE 919#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 920# include "ev_kqueue.c"
717#endif 921#endif
718#if EV_USE_EPOLL 922#if EV_USE_EPOLL
719# include "ev_epoll.c" 923# include "ev_epoll.c"
736{ 940{
737 return EV_VERSION_MINOR; 941 return EV_VERSION_MINOR;
738} 942}
739 943
740/* return true if we are running with elevated privileges and should ignore env variables */ 944/* return true if we are running with elevated privileges and should ignore env variables */
741static int 945int inline_size
742enable_secure (void) 946enable_secure (void)
743{ 947{
744#ifdef _WIN32 948#ifdef _WIN32
745 return 0; 949 return 0;
746#else 950#else
748 || getgid () != getegid (); 952 || getgid () != getegid ();
749#endif 953#endif
750} 954}
751 955
752unsigned int 956unsigned int
753ev_method (EV_P) 957ev_supported_backends (void)
754{ 958{
755 return method; 959 unsigned int flags = 0;
756}
757 960
758static void 961 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
962 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
963 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
964 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
965 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
966
967 return flags;
968}
969
970unsigned int
971ev_recommended_backends (void)
972{
973 unsigned int flags = ev_supported_backends ();
974
975#ifndef __NetBSD__
976 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE;
979#endif
980#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation
982 flags &= ~EVBACKEND_POLL;
983#endif
984
985 return flags;
986}
987
988unsigned int
989ev_embeddable_backends (void)
990{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
998}
999
1000unsigned int
1001ev_backend (EV_P)
1002{
1003 return backend;
1004}
1005
1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
759loop_init (EV_P_ unsigned int flags) 1025loop_init (EV_P_ unsigned int flags)
760{ 1026{
761 if (!method) 1027 if (!backend)
762 { 1028 {
763#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
764 { 1030 {
765 struct timespec ts; 1031 struct timespec ts;
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
771 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
772 mn_now = get_clock (); 1038 mn_now = get_clock ();
773 now_floor = mn_now; 1039 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
775 1041
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
1051 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS"))
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
778 1055
779 if (!(flags & 0x0000ffff)) 1056 if (!(flags & 0x0000ffffUL))
780 flags |= 0x0000ffff; 1057 flags |= ev_recommended_backends ();
781 1058
782 method = 0; 1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064
1065#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif
783#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
785#endif 1070#endif
786#if EV_USE_EPOLL 1071#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1072 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
788#endif 1073#endif
789#if EV_USE_POLL 1074#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1075 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
791#endif 1076#endif
792#if EV_USE_SELECT 1077#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
794#endif 1079#endif
795 1080
796 ev_init (&sigev, sigcb); 1081 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI); 1082 ev_set_priority (&sigev, EV_MAXPRI);
798 } 1083 }
799} 1084}
800 1085
801void 1086static void noinline
802loop_destroy (EV_P) 1087loop_destroy (EV_P)
803{ 1088{
804 int i; 1089 int i;
805 1090
1091#if EV_USE_INOTIFY
1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
1098
1099#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1101#endif
806#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
808#endif 1104#endif
809#if EV_USE_EPOLL 1105#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1106 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
811#endif 1107#endif
812#if EV_USE_POLL 1108#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1109 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
814#endif 1110#endif
815#if EV_USE_SELECT 1111#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
817#endif 1113#endif
818 1114
819 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
820 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
821 1124
822 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0); 1126 array_free (fdchange, EMPTY);
824 array_free (timer, EMPTY0); 1127 array_free (timer, EMPTY);
825#if EV_PERIODICS 1128#if EV_PERIODIC_ENABLE
826 array_free (periodic, EMPTY0); 1129 array_free (periodic, EMPTY);
827#endif 1130#endif
1131#if EV_FORK_ENABLE
828 array_free (idle, EMPTY0); 1132 array_free (fork, EMPTY);
1133#endif
829 array_free (prepare, EMPTY0); 1134 array_free (prepare, EMPTY);
830 array_free (check, EMPTY0); 1135 array_free (check, EMPTY);
831 1136
832 method = 0; 1137 backend = 0;
833} 1138}
834 1139
835static void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
836loop_fork (EV_P) 1143loop_fork (EV_P)
837{ 1144{
1145#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif
1148#if EV_USE_KQUEUE
1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1150#endif
838#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
840#endif 1153#endif
841#if EV_USE_KQUEUE 1154#if EV_USE_INOTIFY
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1155 infy_fork (EV_A);
843#endif 1156#endif
844 1157
845 if (ev_is_active (&sigev)) 1158 if (ev_is_active (&sigev))
846 { 1159 {
847 /* default loop */ 1160 /* default loop */
868 1181
869 memset (loop, 0, sizeof (struct ev_loop)); 1182 memset (loop, 0, sizeof (struct ev_loop));
870 1183
871 loop_init (EV_A_ flags); 1184 loop_init (EV_A_ flags);
872 1185
873 if (ev_method (EV_A)) 1186 if (ev_backend (EV_A))
874 return loop; 1187 return loop;
875 1188
876 return 0; 1189 return 0;
877} 1190}
878 1191
891 1204
892#endif 1205#endif
893 1206
894#if EV_MULTIPLICITY 1207#if EV_MULTIPLICITY
895struct ev_loop * 1208struct ev_loop *
1209ev_default_loop_init (unsigned int flags)
896#else 1210#else
897int 1211int
898#endif
899ev_default_loop (unsigned int flags) 1212ev_default_loop (unsigned int flags)
1213#endif
900{ 1214{
901 if (sigpipe [0] == sigpipe [1]) 1215 if (sigpipe [0] == sigpipe [1])
902 if (pipe (sigpipe)) 1216 if (pipe (sigpipe))
903 return 0; 1217 return 0;
904 1218
905 if (!default_loop) 1219 if (!ev_default_loop_ptr)
906 { 1220 {
907#if EV_MULTIPLICITY 1221#if EV_MULTIPLICITY
908 struct ev_loop *loop = default_loop = &default_loop_struct; 1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
909#else 1223#else
910 default_loop = 1; 1224 ev_default_loop_ptr = 1;
911#endif 1225#endif
912 1226
913 loop_init (EV_A_ flags); 1227 loop_init (EV_A_ flags);
914 1228
915 if (ev_method (EV_A)) 1229 if (ev_backend (EV_A))
916 { 1230 {
917 siginit (EV_A); 1231 siginit (EV_A);
918 1232
919#ifndef _WIN32 1233#ifndef _WIN32
920 ev_signal_init (&childev, childcb, SIGCHLD); 1234 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_signal_start (EV_A_ &childev); 1236 ev_signal_start (EV_A_ &childev);
923 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1237 ev_unref (EV_A); /* child watcher should not keep loop alive */
924#endif 1238#endif
925 } 1239 }
926 else 1240 else
927 default_loop = 0; 1241 ev_default_loop_ptr = 0;
928 } 1242 }
929 1243
930 return default_loop; 1244 return ev_default_loop_ptr;
931} 1245}
932 1246
933void 1247void
934ev_default_destroy (void) 1248ev_default_destroy (void)
935{ 1249{
936#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
937 struct ev_loop *loop = default_loop; 1251 struct ev_loop *loop = ev_default_loop_ptr;
938#endif 1252#endif
939 1253
940#ifndef _WIN32 1254#ifndef _WIN32
941 ev_ref (EV_A); /* child watcher */ 1255 ev_ref (EV_A); /* child watcher */
942 ev_signal_stop (EV_A_ &childev); 1256 ev_signal_stop (EV_A_ &childev);
953 1267
954void 1268void
955ev_default_fork (void) 1269ev_default_fork (void)
956{ 1270{
957#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
958 struct ev_loop *loop = default_loop; 1272 struct ev_loop *loop = ev_default_loop_ptr;
959#endif 1273#endif
960 1274
961 if (method) 1275 if (backend)
962 postfork = 1; 1276 postfork = 1;
963} 1277}
964 1278
965/*****************************************************************************/ 1279/*****************************************************************************/
966 1280
967static int 1281void
968any_pending (EV_P) 1282ev_invoke (EV_P_ void *w, int revents)
969{ 1283{
970 int pri; 1284 EV_CB_INVOKE ((W)w, revents);
971
972 for (pri = NUMPRI; pri--; )
973 if (pendingcnt [pri])
974 return 1;
975
976 return 0;
977} 1285}
978 1286
979static void 1287void inline_speed
980call_pending (EV_P) 1288call_pending (EV_P)
981{ 1289{
982 int pri; 1290 int pri;
983 1291
984 for (pri = NUMPRI; pri--; ) 1292 for (pri = NUMPRI; pri--; )
985 while (pendingcnt [pri]) 1293 while (pendingcnt [pri])
986 { 1294 {
987 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
988 1296
989 if (p->w) 1297 if (expect_true (p->w))
990 { 1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1300
991 p->w->pending = 0; 1301 p->w->pending = 0;
992 EV_CB_INVOKE (p->w, p->events); 1302 EV_CB_INVOKE (p->w, p->events);
993 } 1303 }
994 } 1304 }
995} 1305}
996 1306
997static void 1307void inline_size
998timers_reify (EV_P) 1308timers_reify (EV_P)
999{ 1309{
1000 while (timercnt && ((WT)timers [0])->at <= mn_now) 1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1001 { 1311 {
1002 struct ev_timer *w = timers [0]; 1312 ev_timer *w = (ev_timer *)timers [0];
1003 1313
1004 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1005 1315
1006 /* first reschedule or stop timer */ 1316 /* first reschedule or stop timer */
1007 if (w->repeat) 1317 if (w->repeat)
1008 { 1318 {
1009 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1010 1320
1011 ((WT)w)->at += w->repeat; 1321 ((WT)w)->at += w->repeat;
1012 if (((WT)w)->at < mn_now) 1322 if (((WT)w)->at < mn_now)
1013 ((WT)w)->at = mn_now; 1323 ((WT)w)->at = mn_now;
1014 1324
1015 downheap ((WT *)timers, timercnt, 0); 1325 downheap (timers, timercnt, 0);
1016 } 1326 }
1017 else 1327 else
1018 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1019 1329
1020 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1021 } 1331 }
1022} 1332}
1023 1333
1024#if EV_PERIODICS 1334#if EV_PERIODIC_ENABLE
1025static void 1335void inline_size
1026periodics_reify (EV_P) 1336periodics_reify (EV_P)
1027{ 1337{
1028 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1029 { 1339 {
1030 struct ev_periodic *w = periodics [0]; 1340 ev_periodic *w = (ev_periodic *)periodics [0];
1031 1341
1032 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1033 1343
1034 /* first reschedule or stop timer */ 1344 /* first reschedule or stop timer */
1035 if (w->reschedule_cb) 1345 if (w->reschedule_cb)
1036 { 1346 {
1037 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1349 downheap (periodics, periodiccnt, 0);
1040 } 1350 }
1041 else if (w->interval) 1351 else if (w->interval)
1042 { 1352 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0); 1356 downheap (periodics, periodiccnt, 0);
1046 } 1357 }
1047 else 1358 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 1360
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 } 1362 }
1052} 1363}
1053 1364
1054static void 1365static void noinline
1055periodics_reschedule (EV_P) 1366periodics_reschedule (EV_P)
1056{ 1367{
1057 int i; 1368 int i;
1058 1369
1059 /* adjust periodics after time jump */ 1370 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i) 1371 for (i = 0; i < periodiccnt; ++i)
1061 { 1372 {
1062 struct ev_periodic *w = periodics [i]; 1373 ev_periodic *w = (ev_periodic *)periodics [i];
1063 1374
1064 if (w->reschedule_cb) 1375 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval) 1377 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1068 } 1379 }
1069 1380
1070 /* now rebuild the heap */ 1381 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; ) 1382 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i); 1383 downheap (periodics, periodiccnt, i);
1073} 1384}
1074#endif 1385#endif
1075 1386
1076inline int 1387#if EV_IDLE_ENABLE
1077time_update_monotonic (EV_P) 1388void inline_size
1389idle_reify (EV_P)
1078{ 1390{
1391 if (expect_false (idleall))
1392 {
1393 int pri;
1394
1395 for (pri = NUMPRI; pri--; )
1396 {
1397 if (pendingcnt [pri])
1398 break;
1399
1400 if (idlecnt [pri])
1401 {
1402 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1403 break;
1404 }
1405 }
1406 }
1407}
1408#endif
1409
1410void inline_speed
1411time_update (EV_P_ ev_tstamp max_block)
1412{
1413 int i;
1414
1415#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic))
1417 {
1418 ev_tstamp odiff = rtmn_diff;
1419
1079 mn_now = get_clock (); 1420 mn_now = get_clock ();
1080 1421
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1423 /* interpolate in the meantime */
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1424 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 { 1425 {
1083 ev_rt_now = rtmn_diff + mn_now; 1426 ev_rt_now = rtmn_diff + mn_now;
1084 return 0; 1427 return;
1085 } 1428 }
1086 else 1429
1087 {
1088 now_floor = mn_now; 1430 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 1431 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 1432
1094static void 1433 /* loop a few times, before making important decisions.
1095time_update (EV_P) 1434 * on the choice of "4": one iteration isn't enough,
1096{ 1435 * in case we get preempted during the calls to
1097 int i; 1436 * ev_time and get_clock. a second call is almost guaranteed
1098 1437 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 1438 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 1439 * in the unlikely event of having been preempted here.
1101 { 1440 */
1102 if (time_update_monotonic (EV_A)) 1441 for (i = 4; --i; )
1103 { 1442 {
1104 ev_tstamp odiff = rtmn_diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 1443 rtmn_diff = ev_rt_now - mn_now;
1109 1444
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1111 return; /* all is well */ 1446 return; /* all is well */
1112 1447
1113 ev_rt_now = ev_time (); 1448 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 1449 mn_now = get_clock ();
1115 now_floor = mn_now; 1450 now_floor = mn_now;
1116 } 1451 }
1117 1452
1118# if EV_PERIODICS 1453# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A);
1455# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 }
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 {
1466#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 1467 periodics_reschedule (EV_A);
1120# endif 1468#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */ 1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1137 for (i = 0; i < timercnt; ++i) 1470 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now; 1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 } 1472 }
1140 1473
1141 mn_now = ev_rt_now; 1474 mn_now = ev_rt_now;
1157static int loop_done; 1490static int loop_done;
1158 1491
1159void 1492void
1160ev_loop (EV_P_ int flags) 1493ev_loop (EV_P_ int flags)
1161{ 1494{
1162 double block;
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1496 ? EVUNLOOP_ONE
1497 : EVUNLOOP_CANCEL;
1498
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1164 1500
1165 do 1501 do
1166 { 1502 {
1503#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid))
1506 {
1507 curpid = getpid ();
1508 postfork = 1;
1509 }
1510#endif
1511
1512#if EV_FORK_ENABLE
1513 /* we might have forked, so queue fork handlers */
1514 if (expect_false (postfork))
1515 if (forkcnt)
1516 {
1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1518 call_pending (EV_A);
1519 }
1520#endif
1521
1167 /* queue check watchers (and execute them) */ 1522 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 1523 if (expect_false (preparecnt))
1169 { 1524 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 1526 call_pending (EV_A);
1172 } 1527 }
1173 1528
1529 if (expect_false (!activecnt))
1530 break;
1531
1174 /* we might have forked, so reify kernel state if necessary */ 1532 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 1533 if (expect_false (postfork))
1176 loop_fork (EV_A); 1534 loop_fork (EV_A);
1177 1535
1178 /* update fd-related kernel structures */ 1536 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 1537 fd_reify (EV_A);
1180 1538
1181 /* calculate blocking time */ 1539 /* calculate blocking time */
1540 {
1541 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.;
1182 1543
1183 /* we only need this for !monotonic clock or timers, but as we basically 1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1184 always have timers, we just calculate it always */
1185#if EV_USE_MONOTONIC
1186 if (expect_true (have_monotonic))
1187 time_update_monotonic (EV_A);
1188 else
1189#endif
1190 { 1545 {
1191 ev_rt_now = ev_time (); 1546 /* update time to cancel out callback processing overhead */
1192 mn_now = ev_rt_now; 1547 time_update (EV_A_ 1e100);
1193 }
1194 1548
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 1549 waittime = MAX_BLOCKTIME;
1200 1550
1201 if (timercnt) 1551 if (timercnt)
1202 { 1552 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1204 if (block > to) block = to; 1554 if (waittime > to) waittime = to;
1205 } 1555 }
1206 1556
1207#if EV_PERIODICS 1557#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 1558 if (periodiccnt)
1209 { 1559 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1211 if (block > to) block = to; 1561 if (waittime > to) waittime = to;
1212 } 1562 }
1213#endif 1563#endif
1214 1564
1215 if (block < 0.) block = 0.; 1565 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime;
1567
1568 sleeptime = waittime - backend_fudge;
1569
1570 if (expect_true (sleeptime > io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 {
1575 ev_sleep (sleeptime);
1576 waittime -= sleeptime;
1577 }
1216 } 1578 }
1217 1579
1218 method_poll (EV_A_ block); 1580 ++loop_count;
1581 backend_poll (EV_A_ waittime);
1219 1582
1220 /* update ev_rt_now, do magic */ 1583 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 1584 time_update (EV_A_ waittime + sleeptime);
1585 }
1222 1586
1223 /* queue pending timers and reschedule them */ 1587 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 1588 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 1589#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 1590 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 1591#endif
1228 1592
1593#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 1594 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 1595 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1596#endif
1232 1597
1233 /* queue check watchers, to be executed first */ 1598 /* queue check watchers, to be executed first */
1234 if (checkcnt) 1599 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1236 1601
1237 call_pending (EV_A); 1602 call_pending (EV_A);
1603
1238 } 1604 }
1239 while (activecnt && !loop_done); 1605 while (expect_true (activecnt && !loop_done));
1240 1606
1241 if (loop_done != 2) 1607 if (loop_done == EVUNLOOP_ONE)
1242 loop_done = 0; 1608 loop_done = EVUNLOOP_CANCEL;
1243} 1609}
1244 1610
1245void 1611void
1246ev_unloop (EV_P_ int how) 1612ev_unloop (EV_P_ int how)
1247{ 1613{
1248 loop_done = how; 1614 loop_done = how;
1249} 1615}
1250 1616
1251/*****************************************************************************/ 1617/*****************************************************************************/
1252 1618
1253inline void 1619void inline_size
1254wlist_add (WL *head, WL elem) 1620wlist_add (WL *head, WL elem)
1255{ 1621{
1256 elem->next = *head; 1622 elem->next = *head;
1257 *head = elem; 1623 *head = elem;
1258} 1624}
1259 1625
1260inline void 1626void inline_size
1261wlist_del (WL *head, WL elem) 1627wlist_del (WL *head, WL elem)
1262{ 1628{
1263 while (*head) 1629 while (*head)
1264 { 1630 {
1265 if (*head == elem) 1631 if (*head == elem)
1270 1636
1271 head = &(*head)->next; 1637 head = &(*head)->next;
1272 } 1638 }
1273} 1639}
1274 1640
1275inline void 1641void inline_speed
1276ev_clear_pending (EV_P_ W w) 1642clear_pending (EV_P_ W w)
1277{ 1643{
1278 if (w->pending) 1644 if (w->pending)
1279 { 1645 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1646 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1281 w->pending = 0; 1647 w->pending = 0;
1282 } 1648 }
1283} 1649}
1284 1650
1285inline void 1651int
1652ev_clear_pending (EV_P_ void *w)
1653{
1654 W w_ = (W)w;
1655 int pending = w_->pending;
1656
1657 if (expect_true (pending))
1658 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1660 w_->pending = 0;
1661 p->w = 0;
1662 return p->events;
1663 }
1664 else
1665 return 0;
1666}
1667
1668void inline_size
1669pri_adjust (EV_P_ W w)
1670{
1671 int pri = w->priority;
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri;
1675}
1676
1677void inline_speed
1286ev_start (EV_P_ W w, int active) 1678ev_start (EV_P_ W w, int active)
1287{ 1679{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1680 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 1681 w->active = active;
1292 ev_ref (EV_A); 1682 ev_ref (EV_A);
1293} 1683}
1294 1684
1295inline void 1685void inline_size
1296ev_stop (EV_P_ W w) 1686ev_stop (EV_P_ W w)
1297{ 1687{
1298 ev_unref (EV_A); 1688 ev_unref (EV_A);
1299 w->active = 0; 1689 w->active = 0;
1300} 1690}
1301 1691
1302/*****************************************************************************/ 1692/*****************************************************************************/
1303 1693
1304void 1694void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 1695ev_io_start (EV_P_ ev_io *w)
1306{ 1696{
1307 int fd = w->fd; 1697 int fd = w->fd;
1308 1698
1309 if (ev_is_active (w)) 1699 if (expect_false (ev_is_active (w)))
1310 return; 1700 return;
1311 1701
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 1702 assert (("ev_io_start called with negative fd", fd >= 0));
1313 1703
1314 ev_start (EV_A_ (W)w, 1); 1704 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1706 wlist_add (&anfds[fd].head, (WL)w);
1317 1707
1318 fd_change (EV_A_ fd); 1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET;
1319} 1710}
1320 1711
1321void 1712void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 1713ev_io_stop (EV_P_ ev_io *w)
1323{ 1714{
1324 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 1716 if (expect_false (!ev_is_active (w)))
1326 return; 1717 return;
1327 1718
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 1720
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1721 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 1722 ev_stop (EV_A_ (W)w);
1332 1723
1333 fd_change (EV_A_ w->fd); 1724 fd_change (EV_A_ w->fd, 1);
1334} 1725}
1335 1726
1336void 1727void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 1728ev_timer_start (EV_P_ ev_timer *w)
1338{ 1729{
1339 if (ev_is_active (w)) 1730 if (expect_false (ev_is_active (w)))
1340 return; 1731 return;
1341 1732
1342 ((WT)w)->at += mn_now; 1733 ((WT)w)->at += mn_now;
1343 1734
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 1736
1346 ev_start (EV_A_ (W)w, ++timercnt); 1737 ev_start (EV_A_ (W)w, ++timercnt);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1348 timers [timercnt - 1] = w; 1739 timers [timercnt - 1] = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 1740 upheap (timers, timercnt - 1);
1350 1741
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1352} 1743}
1353 1744
1354void 1745void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 1746ev_timer_stop (EV_P_ ev_timer *w)
1356{ 1747{
1357 ev_clear_pending (EV_A_ (W)w); 1748 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 1749 if (expect_false (!ev_is_active (w)))
1359 return; 1750 return;
1360 1751
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1362 1753
1363 if (((W)w)->active < timercnt--) 1754 {
1755 int active = ((W)w)->active;
1756
1757 if (expect_true (--active < --timercnt))
1364 { 1758 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 1759 timers [active] = timers [timercnt];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1760 adjustheap (timers, timercnt, active);
1367 } 1761 }
1762 }
1368 1763
1369 ((WT)w)->at -= mn_now; 1764 ((WT)w)->at -= mn_now;
1370 1765
1371 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1372} 1767}
1373 1768
1374void 1769void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 1770ev_timer_again (EV_P_ ev_timer *w)
1376{ 1771{
1377 if (ev_is_active (w)) 1772 if (ev_is_active (w))
1378 { 1773 {
1379 if (w->repeat) 1774 if (w->repeat)
1380 { 1775 {
1381 ((WT)w)->at = mn_now + w->repeat; 1776 ((WT)w)->at = mn_now + w->repeat;
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1777 adjustheap (timers, timercnt, ((W)w)->active - 1);
1383 } 1778 }
1384 else 1779 else
1385 ev_timer_stop (EV_A_ w); 1780 ev_timer_stop (EV_A_ w);
1386 } 1781 }
1387 else if (w->repeat) 1782 else if (w->repeat)
1389 w->at = w->repeat; 1784 w->at = w->repeat;
1390 ev_timer_start (EV_A_ w); 1785 ev_timer_start (EV_A_ w);
1391 } 1786 }
1392} 1787}
1393 1788
1394#if EV_PERIODICS 1789#if EV_PERIODIC_ENABLE
1395void 1790void noinline
1396ev_periodic_start (EV_P_ struct ev_periodic *w) 1791ev_periodic_start (EV_P_ ev_periodic *w)
1397{ 1792{
1398 if (ev_is_active (w)) 1793 if (expect_false (ev_is_active (w)))
1399 return; 1794 return;
1400 1795
1401 if (w->reschedule_cb) 1796 if (w->reschedule_cb)
1402 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1403 else if (w->interval) 1798 else if (w->interval)
1404 { 1799 {
1405 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1406 /* this formula differs from the one in periodic_reify because we do not always round up */ 1801 /* this formula differs from the one in periodic_reify because we do not always round up */
1407 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 } 1803 }
1804 else
1805 ((WT)w)->at = w->offset;
1409 1806
1410 ev_start (EV_A_ (W)w, ++periodiccnt); 1807 ev_start (EV_A_ (W)w, ++periodiccnt);
1411 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1412 periodics [periodiccnt - 1] = w; 1809 periodics [periodiccnt - 1] = (WT)w;
1413 upheap ((WT *)periodics, periodiccnt - 1); 1810 upheap (periodics, periodiccnt - 1);
1414 1811
1415 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1416} 1813}
1417 1814
1418void 1815void noinline
1419ev_periodic_stop (EV_P_ struct ev_periodic *w) 1816ev_periodic_stop (EV_P_ ev_periodic *w)
1420{ 1817{
1421 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1422 if (!ev_is_active (w)) 1819 if (expect_false (!ev_is_active (w)))
1423 return; 1820 return;
1424 1821
1425 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1426 1823
1427 if (((W)w)->active < periodiccnt--) 1824 {
1825 int active = ((W)w)->active;
1826
1827 if (expect_true (--active < --periodiccnt))
1428 { 1828 {
1429 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1829 periodics [active] = periodics [periodiccnt];
1430 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1830 adjustheap (periodics, periodiccnt, active);
1431 } 1831 }
1832 }
1432 1833
1433 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1434} 1835}
1435 1836
1436void 1837void noinline
1437ev_periodic_again (EV_P_ struct ev_periodic *w) 1838ev_periodic_again (EV_P_ ev_periodic *w)
1438{ 1839{
1439 /* TODO: use adjustheap and recalculation */ 1840 /* TODO: use adjustheap and recalculation */
1440 ev_periodic_stop (EV_A_ w); 1841 ev_periodic_stop (EV_A_ w);
1441 ev_periodic_start (EV_A_ w); 1842 ev_periodic_start (EV_A_ w);
1442} 1843}
1443#endif 1844#endif
1444 1845
1445void
1446ev_idle_start (EV_P_ struct ev_idle *w)
1447{
1448 if (ev_is_active (w))
1449 return;
1450
1451 ev_start (EV_A_ (W)w, ++idlecnt);
1452 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1453 idles [idlecnt - 1] = w;
1454}
1455
1456void
1457ev_idle_stop (EV_P_ struct ev_idle *w)
1458{
1459 ev_clear_pending (EV_A_ (W)w);
1460 if (!ev_is_active (w))
1461 return;
1462
1463 idles [((W)w)->active - 1] = idles [--idlecnt];
1464 ev_stop (EV_A_ (W)w);
1465}
1466
1467void
1468ev_prepare_start (EV_P_ struct ev_prepare *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++preparecnt);
1474 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1475 prepares [preparecnt - 1] = w;
1476}
1477
1478void
1479ev_prepare_stop (EV_P_ struct ev_prepare *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_check_start (EV_P_ struct ev_check *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++checkcnt);
1496 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1497 checks [checkcnt - 1] = w;
1498}
1499
1500void
1501ev_check_stop (EV_P_ struct ev_check *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 checks [((W)w)->active - 1] = checks [--checkcnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511#ifndef SA_RESTART 1846#ifndef SA_RESTART
1512# define SA_RESTART 0 1847# define SA_RESTART 0
1513#endif 1848#endif
1514 1849
1515void 1850void noinline
1516ev_signal_start (EV_P_ struct ev_signal *w) 1851ev_signal_start (EV_P_ ev_signal *w)
1517{ 1852{
1518#if EV_MULTIPLICITY 1853#if EV_MULTIPLICITY
1519 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1520#endif 1855#endif
1521 if (ev_is_active (w)) 1856 if (expect_false (ev_is_active (w)))
1522 return; 1857 return;
1523 1858
1524 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1525 1860
1861 {
1862#ifndef _WIN32
1863 sigset_t full, prev;
1864 sigfillset (&full);
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1869
1870#ifndef _WIN32
1871 sigprocmask (SIG_SETMASK, &prev, 0);
1872#endif
1873 }
1874
1526 ev_start (EV_A_ (W)w, 1); 1875 ev_start (EV_A_ (W)w, 1);
1527 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1528 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1876 wlist_add (&signals [w->signum - 1].head, (WL)w);
1529 1877
1530 if (!((WL)w)->next) 1878 if (!((WL)w)->next)
1531 { 1879 {
1532#if _WIN32 1880#if _WIN32
1533 signal (w->signum, sighandler); 1881 signal (w->signum, sighandler);
1539 sigaction (w->signum, &sa, 0); 1887 sigaction (w->signum, &sa, 0);
1540#endif 1888#endif
1541 } 1889 }
1542} 1890}
1543 1891
1544void 1892void noinline
1545ev_signal_stop (EV_P_ struct ev_signal *w) 1893ev_signal_stop (EV_P_ ev_signal *w)
1546{ 1894{
1547 ev_clear_pending (EV_A_ (W)w); 1895 clear_pending (EV_A_ (W)w);
1548 if (!ev_is_active (w)) 1896 if (expect_false (!ev_is_active (w)))
1549 return; 1897 return;
1550 1898
1551 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1899 wlist_del (&signals [w->signum - 1].head, (WL)w);
1552 ev_stop (EV_A_ (W)w); 1900 ev_stop (EV_A_ (W)w);
1553 1901
1554 if (!signals [w->signum - 1].head) 1902 if (!signals [w->signum - 1].head)
1555 signal (w->signum, SIG_DFL); 1903 signal (w->signum, SIG_DFL);
1556} 1904}
1557 1905
1558void 1906void
1559ev_child_start (EV_P_ struct ev_child *w) 1907ev_child_start (EV_P_ ev_child *w)
1560{ 1908{
1561#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1562 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1563#endif 1911#endif
1564 if (ev_is_active (w)) 1912 if (expect_false (ev_is_active (w)))
1565 return; 1913 return;
1566 1914
1567 ev_start (EV_A_ (W)w, 1); 1915 ev_start (EV_A_ (W)w, 1);
1568 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1569} 1917}
1570 1918
1571void 1919void
1572ev_child_stop (EV_P_ struct ev_child *w) 1920ev_child_stop (EV_P_ ev_child *w)
1573{ 1921{
1574 ev_clear_pending (EV_A_ (W)w); 1922 clear_pending (EV_A_ (W)w);
1575 if (!ev_is_active (w)) 1923 if (expect_false (!ev_is_active (w)))
1576 return; 1924 return;
1577 1925
1578 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1579 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1580} 1928}
1581 1929
1930#if EV_STAT_ENABLE
1931
1932# ifdef _WIN32
1933# undef lstat
1934# define lstat(a,b) _stati64 (a,b)
1935# endif
1936
1937#define DEF_STAT_INTERVAL 5.0074891
1938#define MIN_STAT_INTERVAL 0.1074891
1939
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941
1942#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192
1944
1945static void noinline
1946infy_add (EV_P_ ev_stat *w)
1947{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949
1950 if (w->wd < 0)
1951 {
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953
1954 /* monitor some parent directory for speedup hints */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 {
1957 char path [4096];
1958 strcpy (path, w->path);
1959
1960 do
1961 {
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964
1965 char *pend = strrchr (path, '/');
1966
1967 if (!pend)
1968 break; /* whoops, no '/', complain to your admin */
1969
1970 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 }
1975 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978
1979 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1981}
1982
1983static void noinline
1984infy_del (EV_P_ ev_stat *w)
1985{
1986 int slot;
1987 int wd = w->wd;
1988
1989 if (wd < 0)
1990 return;
1991
1992 w->wd = -2;
1993 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1994 wlist_del (&fs_hash [slot].head, (WL)w);
1995
1996 /* remove this watcher, if others are watching it, they will rearm */
1997 inotify_rm_watch (fs_fd, wd);
1998}
1999
2000static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{
2003 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2006 infy_wd (EV_A_ slot, wd, ev);
2007 else
2008 {
2009 WL w_;
2010
2011 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2012 {
2013 ev_stat *w = (ev_stat *)w_;
2014 w_ = w_->next; /* lets us remove this watcher and all before it */
2015
2016 if (w->wd == wd || wd == -1)
2017 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 {
2020 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */
2022 }
2023
2024 stat_timer_cb (EV_A_ &w->timer, 0);
2025 }
2026 }
2027 }
2028}
2029
2030static void
2031infy_cb (EV_P_ ev_io *w, int revents)
2032{
2033 char buf [EV_INOTIFY_BUFSIZE];
2034 struct inotify_event *ev = (struct inotify_event *)buf;
2035 int ofs;
2036 int len = read (fs_fd, buf, sizeof (buf));
2037
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2040}
2041
2042void inline_size
2043infy_init (EV_P)
2044{
2045 if (fs_fd != -2)
2046 return;
2047
2048 fs_fd = inotify_init ();
2049
2050 if (fs_fd >= 0)
2051 {
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w);
2055 }
2056}
2057
2058void inline_size
2059infy_fork (EV_P)
2060{
2061 int slot;
2062
2063 if (fs_fd < 0)
2064 return;
2065
2066 close (fs_fd);
2067 fs_fd = inotify_init ();
2068
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2070 {
2071 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0;
2073
2074 while (w_)
2075 {
2076 ev_stat *w = (ev_stat *)w_;
2077 w_ = w_->next; /* lets us add this watcher */
2078
2079 w->wd = -1;
2080
2081 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else
2084 ev_timer_start (EV_A_ &w->timer);
2085 }
2086
2087 }
2088}
2089
2090#endif
2091
2092void
2093ev_stat_stat (EV_P_ ev_stat *w)
2094{
2095 if (lstat (w->path, &w->attr) < 0)
2096 w->attr.st_nlink = 0;
2097 else if (!w->attr.st_nlink)
2098 w->attr.st_nlink = 1;
2099}
2100
2101static void noinline
2102stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2103{
2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2105
2106 /* we copy this here each the time so that */
2107 /* prev has the old value when the callback gets invoked */
2108 w->prev = w->attr;
2109 ev_stat_stat (EV_A_ w);
2110
2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if (
2113 w->prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime
2124 ) {
2125 #if EV_USE_INOTIFY
2126 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */
2129 #endif
2130
2131 ev_feed_event (EV_A_ w, EV_STAT);
2132 }
2133}
2134
2135void
2136ev_stat_start (EV_P_ ev_stat *w)
2137{
2138 if (expect_false (ev_is_active (w)))
2139 return;
2140
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w);
2146
2147 if (w->interval < MIN_STAT_INTERVAL)
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2151 ev_set_priority (&w->timer, ev_priority (w));
2152
2153#if EV_USE_INOTIFY
2154 infy_init (EV_A);
2155
2156 if (fs_fd >= 0)
2157 infy_add (EV_A_ w);
2158 else
2159#endif
2160 ev_timer_start (EV_A_ &w->timer);
2161
2162 ev_start (EV_A_ (W)w, 1);
2163}
2164
2165void
2166ev_stat_stop (EV_P_ ev_stat *w)
2167{
2168 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w)))
2170 return;
2171
2172#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w);
2174#endif
2175 ev_timer_stop (EV_A_ &w->timer);
2176
2177 ev_stop (EV_A_ (W)w);
2178}
2179#endif
2180
2181#if EV_IDLE_ENABLE
2182void
2183ev_idle_start (EV_P_ ev_idle *w)
2184{
2185 if (expect_false (ev_is_active (w)))
2186 return;
2187
2188 pri_adjust (EV_A_ (W)w);
2189
2190 {
2191 int active = ++idlecnt [ABSPRI (w)];
2192
2193 ++idleall;
2194 ev_start (EV_A_ (W)w, active);
2195
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w;
2198 }
2199}
2200
2201void
2202ev_idle_stop (EV_P_ ev_idle *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 {
2209 int active = ((W)w)->active;
2210
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2213
2214 ev_stop (EV_A_ (W)w);
2215 --idleall;
2216 }
2217}
2218#endif
2219
2220void
2221ev_prepare_start (EV_P_ ev_prepare *w)
2222{
2223 if (expect_false (ev_is_active (w)))
2224 return;
2225
2226 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w;
2229}
2230
2231void
2232ev_prepare_stop (EV_P_ ev_prepare *w)
2233{
2234 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w)))
2236 return;
2237
2238 {
2239 int active = ((W)w)->active;
2240 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active;
2242 }
2243
2244 ev_stop (EV_A_ (W)w);
2245}
2246
2247void
2248ev_check_start (EV_P_ ev_check *w)
2249{
2250 if (expect_false (ev_is_active (w)))
2251 return;
2252
2253 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w;
2256}
2257
2258void
2259ev_check_stop (EV_P_ ev_check *w)
2260{
2261 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w)))
2263 return;
2264
2265 {
2266 int active = ((W)w)->active;
2267 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active;
2269 }
2270
2271 ev_stop (EV_A_ (W)w);
2272}
2273
2274#if EV_EMBED_ENABLE
2275void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w)
2277{
2278 ev_loop (w->other, EVLOOP_NONBLOCK);
2279}
2280
2281static void
2282embed_io_cb (EV_P_ ev_io *io, int revents)
2283{
2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2285
2286 if (ev_cb (w))
2287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2288 else
2289 ev_loop (w->other, EVLOOP_NONBLOCK);
2290}
2291
2292static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296
2297 {
2298 struct ev_loop *loop = w->other;
2299
2300 while (fdchangecnt)
2301 {
2302 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 }
2305 }
2306}
2307
2308#if 0
2309static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{
2312 ev_idle_stop (EV_A_ idle);
2313}
2314#endif
2315
2316void
2317ev_embed_start (EV_P_ ev_embed *w)
2318{
2319 if (expect_false (ev_is_active (w)))
2320 return;
2321
2322 {
2323 struct ev_loop *loop = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 }
2327
2328 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io);
2330
2331 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare);
2334
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336
2337 ev_start (EV_A_ (W)w, 1);
2338}
2339
2340void
2341ev_embed_stop (EV_P_ ev_embed *w)
2342{
2343 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w)))
2345 return;
2346
2347 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare);
2349
2350 ev_stop (EV_A_ (W)w);
2351}
2352#endif
2353
2354#if EV_FORK_ENABLE
2355void
2356ev_fork_start (EV_P_ ev_fork *w)
2357{
2358 if (expect_false (ev_is_active (w)))
2359 return;
2360
2361 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w;
2364}
2365
2366void
2367ev_fork_stop (EV_P_ ev_fork *w)
2368{
2369 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w)))
2371 return;
2372
2373 {
2374 int active = ((W)w)->active;
2375 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active;
2377 }
2378
2379 ev_stop (EV_A_ (W)w);
2380}
2381#endif
2382
1582/*****************************************************************************/ 2383/*****************************************************************************/
1583 2384
1584struct ev_once 2385struct ev_once
1585{ 2386{
1586 struct ev_io io; 2387 ev_io io;
1587 struct ev_timer to; 2388 ev_timer to;
1588 void (*cb)(int revents, void *arg); 2389 void (*cb)(int revents, void *arg);
1589 void *arg; 2390 void *arg;
1590}; 2391};
1591 2392
1592static void 2393static void
1601 2402
1602 cb (revents, arg); 2403 cb (revents, arg);
1603} 2404}
1604 2405
1605static void 2406static void
1606once_cb_io (EV_P_ struct ev_io *w, int revents) 2407once_cb_io (EV_P_ ev_io *w, int revents)
1607{ 2408{
1608 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1609} 2410}
1610 2411
1611static void 2412static void
1612once_cb_to (EV_P_ struct ev_timer *w, int revents) 2413once_cb_to (EV_P_ ev_timer *w, int revents)
1613{ 2414{
1614 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1615} 2416}
1616 2417
1617void 2418void
1618ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1619{ 2420{
1620 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2421 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1621 2422
1622 if (!once) 2423 if (expect_false (!once))
2424 {
1623 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2425 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1624 else 2426 return;
1625 { 2427 }
2428
1626 once->cb = cb; 2429 once->cb = cb;
1627 once->arg = arg; 2430 once->arg = arg;
1628 2431
1629 ev_init (&once->io, once_cb_io); 2432 ev_init (&once->io, once_cb_io);
1630 if (fd >= 0) 2433 if (fd >= 0)
1631 { 2434 {
1632 ev_io_set (&once->io, fd, events); 2435 ev_io_set (&once->io, fd, events);
1633 ev_io_start (EV_A_ &once->io); 2436 ev_io_start (EV_A_ &once->io);
1634 } 2437 }
1635 2438
1636 ev_init (&once->to, once_cb_to); 2439 ev_init (&once->to, once_cb_to);
1637 if (timeout >= 0.) 2440 if (timeout >= 0.)
1638 { 2441 {
1639 ev_timer_set (&once->to, timeout, 0.); 2442 ev_timer_set (&once->to, timeout, 0.);
1640 ev_timer_start (EV_A_ &once->to); 2443 ev_timer_start (EV_A_ &once->to);
1641 }
1642 } 2444 }
1643} 2445}
2446
2447#if EV_MULTIPLICITY
2448 #include "ev_wrap.h"
2449#endif
1644 2450
1645#ifdef __cplusplus 2451#ifdef __cplusplus
1646} 2452}
1647#endif 2453#endif
1648 2454

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines