ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.149 by root, Tue Nov 27 19:23:31 2007 UTC vs.
Revision 1.200 by root, Wed Dec 26 08:06:09 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 110# else
95# define EV_USE_PORT 0 111# define EV_USE_PORT 0
96# endif 112# endif
97# endif 113# endif
98 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
99#endif 123#endif
100 124
101#include <math.h> 125#include <math.h>
102#include <stdlib.h> 126#include <stdlib.h>
103#include <fcntl.h> 127#include <fcntl.h>
109#include <errno.h> 133#include <errno.h>
110#include <sys/types.h> 134#include <sys/types.h>
111#include <time.h> 135#include <time.h>
112 136
113#include <signal.h> 137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
114 144
115#ifndef _WIN32 145#ifndef _WIN32
116# include <sys/time.h> 146# include <sys/time.h>
117# include <sys/wait.h> 147# include <sys/wait.h>
118# include <unistd.h> 148# include <unistd.h>
132 162
133#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
135#endif 165#endif
136 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
137#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
139#endif 173#endif
140 174
141#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
156 190
157#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 192# define EV_USE_PORT 0
159#endif 193#endif
160 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
161#ifndef EV_PID_HASHSIZE 199#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 200# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 201# define EV_PID_HASHSIZE 1
164# else 202# else
165# define EV_PID_HASHSIZE 16 203# define EV_PID_HASHSIZE 16
166# endif 204# endif
167#endif 205#endif
168 206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
169/**/ 215/**/
170 216
171#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
176#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
179#endif 225#endif
180 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
181#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 243# include <winsock.h>
183#endif 244#endif
184 245
185/**/ 246/**/
186 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 261
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 262#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 265#else
208# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
212#endif 271#endif
213 272
214#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
216 282
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 285
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
222 288
223typedef ev_watcher *W; 289typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
226 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
228 298
229#ifdef _WIN32 299#ifdef _WIN32
230# include "ev_win32.c" 300# include "ev_win32.c"
231#endif 301#endif
232 302
261ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 332{
263 alloc = cb; 333 alloc = cb;
264} 334}
265 335
266static void * 336inline_speed void *
267ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
268{ 338{
269 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
270 340
271 if (!ptr && size) 341 if (!ptr && size)
295typedef struct 365typedef struct
296{ 366{
297 W w; 367 W w;
298 int events; 368 int events;
299} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
300 377
301#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
302 379
303 struct ev_loop 380 struct ev_loop
304 { 381 {
361{ 438{
362 return ev_rt_now; 439 return ev_rt_now;
363} 440}
364#endif 441#endif
365 442
366#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
367 497
368#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
370 { \ 500 { \
371 int newcnt = cur; \ 501 int ocur_ = (cur); \
372 do \ 502 (base) = (type *)array_realloc \
373 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 505 }
382 506
507#if 0
383#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 510 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 514 }
515#endif
390 516
391#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 519
394/*****************************************************************************/ 520/*****************************************************************************/
395 521
396void noinline 522void noinline
397ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
398{ 524{
399 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
400 527
401 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
402 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 536 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 537}
412 538
413void inline_size 539void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 541{
416 int i; 542 int i;
417 543
418 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
450} 576}
451 577
452void 578void
453ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 580{
581 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
456} 583}
457 584
458void inline_size 585void inline_size
459fd_reify (EV_P) 586fd_reify (EV_P)
460{ 587{
464 { 591 {
465 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
467 ev_io *w; 594 ev_io *w;
468 595
469 int events = 0; 596 unsigned char events = 0;
470 597
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 599 events |= (unsigned char)w->events;
473 600
474#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
475 if (events) 602 if (events)
476 { 603 {
477 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
478 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 } 611 }
481#endif 612#endif
482 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
483 anfd->reify = 0; 618 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
487 } 624 }
488 625
489 fdchangecnt = 0; 626 fdchangecnt = 0;
490} 627}
491 628
492void inline_size 629void inline_size
493fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
494{ 631{
495 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
499 634
635 if (expect_true (!reify))
636 {
500 ++fdchangecnt; 637 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
503} 641}
504 642
505void inline_speed 643void inline_speed
506fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
507{ 645{
554static void noinline 692static void noinline
555fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
556{ 694{
557 int fd; 695 int fd;
558 696
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 698 if (anfds [fd].events)
562 { 699 {
563 anfds [fd].events = 0; 700 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 702 }
566} 703}
567 704
568/*****************************************************************************/ 705/*****************************************************************************/
569 706
570void inline_speed 707void inline_speed
571upheap (WT *heap, int k) 708upheap (WT *heap, int k)
572{ 709{
573 WT w = heap [k]; 710 WT w = heap [k];
574 711
575 while (k && heap [k >> 1]->at > w->at) 712 while (k)
576 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
577 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
578 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
579 k >>= 1; 721 k = p;
580 } 722 }
581 723
582 heap [k] = w; 724 heap [k] = w;
583 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
584
585} 726}
586 727
587void inline_speed 728void inline_speed
588downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
589{ 730{
590 WT w = heap [k]; 731 WT w = heap [k];
591 732
592 while (k < (N >> 1)) 733 for (;;)
593 { 734 {
594 int j = k << 1; 735 int c = (k << 1) + 1;
595 736
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 738 break;
601 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
602 heap [k] = heap [j]; 746 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
604 k = j; 749 k = c;
605 } 750 }
606 751
607 heap [k] = w; 752 heap [k] = w;
608 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
609} 754}
691 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
694} 839}
695 840
696void inline_size 841void inline_speed
697fd_intern (int fd) 842fd_intern (int fd)
698{ 843{
699#ifdef _WIN32 844#ifdef _WIN32
700 int arg = 1; 845 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
717} 862}
718 863
719/*****************************************************************************/ 864/*****************************************************************************/
720 865
721static ev_child *childs [EV_PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
722 867
723#ifndef _WIN32 868#ifndef _WIN32
724 869
725static ev_signal childev; 870static ev_signal childev;
726 871
730 ev_child *w; 875 ev_child *w;
731 876
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
733 if (w->pid == pid || !w->pid) 878 if (w->pid == pid || !w->pid)
734 { 879 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
736 w->rpid = pid; 881 w->rpid = pid;
737 w->rstatus = status; 882 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 884 }
740} 885}
741 886
742#ifndef WCONTINUED 887#ifndef WCONTINUED
841} 986}
842 987
843unsigned int 988unsigned int
844ev_embeddable_backends (void) 989ev_embeddable_backends (void)
845{ 990{
846 return EVBACKEND_EPOLL 991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 992
848 | EVBACKEND_PORT; 993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
849} 998}
850 999
851unsigned int 1000unsigned int
852ev_backend (EV_P) 1001ev_backend (EV_P)
853{ 1002{
854 return backend; 1003 return backend;
855} 1004}
856 1005
857static void 1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
858loop_init (EV_P_ unsigned int flags) 1025loop_init (EV_P_ unsigned int flags)
859{ 1026{
860 if (!backend) 1027 if (!backend)
861 { 1028 {
862#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
870 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1038 mn_now = get_clock ();
872 now_floor = mn_now; 1039 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
874 1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
875 if (!(flags & EVFLAG_NOENV) 1051 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1052 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1053 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1055
880 if (!(flags & 0x0000ffffUL)) 1056 if (!(flags & 0x0000ffffUL))
881 flags |= ev_recommended_backends (); 1057 flags |= ev_recommended_backends ();
882 1058
883 backend = 0; 1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064
884#if EV_USE_PORT 1065#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1067#endif
887#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
900 ev_init (&sigev, sigcb); 1081 ev_init (&sigev, sigcb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1082 ev_set_priority (&sigev, EV_MAXPRI);
902 } 1083 }
903} 1084}
904 1085
905static void 1086static void noinline
906loop_destroy (EV_P) 1087loop_destroy (EV_P)
907{ 1088{
908 int i; 1089 int i;
1090
1091#if EV_USE_INOTIFY
1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
909 1098
910#if EV_USE_PORT 1099#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1101#endif
913#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
922#if EV_USE_SELECT 1111#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1113#endif
925 1114
926 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
927 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
928 1124
929 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1126 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1127 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1128#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1129 array_free (periodic, EMPTY);
934#endif 1130#endif
1131#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1132 array_free (fork, EMPTY);
1133#endif
936 array_free (prepare, EMPTY0); 1134 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1135 array_free (check, EMPTY);
938 1136
939 backend = 0; 1137 backend = 0;
940} 1138}
941 1139
942static void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
943loop_fork (EV_P) 1143loop_fork (EV_P)
944{ 1144{
945#if EV_USE_PORT 1145#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1147#endif
948#if EV_USE_KQUEUE 1148#if EV_USE_KQUEUE
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1150#endif
951#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1153#endif
1154#if EV_USE_INOTIFY
1155 infy_fork (EV_A);
953#endif 1156#endif
954 1157
955 if (ev_is_active (&sigev)) 1158 if (ev_is_active (&sigev))
956 { 1159 {
957 /* default loop */ 1160 /* default loop */
1073 postfork = 1; 1276 postfork = 1;
1074} 1277}
1075 1278
1076/*****************************************************************************/ 1279/*****************************************************************************/
1077 1280
1078int inline_size 1281void
1079any_pending (EV_P) 1282ev_invoke (EV_P_ void *w, int revents)
1080{ 1283{
1081 int pri; 1284 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1285}
1089 1286
1090void inline_speed 1287void inline_speed
1091call_pending (EV_P) 1288call_pending (EV_P)
1092{ 1289{
1097 { 1294 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 1296
1100 if (expect_true (p->w)) 1297 if (expect_true (p->w))
1101 { 1298 {
1102 assert (("non-pending watcher on pending list", p->w->pending)); 1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1103 1300
1104 p->w->pending = 0; 1301 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 1302 EV_CB_INVOKE (p->w, p->events);
1106 } 1303 }
1107 } 1304 }
1110void inline_size 1307void inline_size
1111timers_reify (EV_P) 1308timers_reify (EV_P)
1112{ 1309{
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1114 { 1311 {
1115 ev_timer *w = timers [0]; 1312 ev_timer *w = (ev_timer *)timers [0];
1116 1313
1117 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1315
1119 /* first reschedule or stop timer */ 1316 /* first reschedule or stop timer */
1120 if (w->repeat) 1317 if (w->repeat)
1121 { 1318 {
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1320
1124 ((WT)w)->at += w->repeat; 1321 ((WT)w)->at += w->repeat;
1125 if (((WT)w)->at < mn_now) 1322 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now; 1323 ((WT)w)->at = mn_now;
1127 1324
1128 downheap ((WT *)timers, timercnt, 0); 1325 downheap (timers, timercnt, 0);
1129 } 1326 }
1130 else 1327 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1329
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1138void inline_size 1335void inline_size
1139periodics_reify (EV_P) 1336periodics_reify (EV_P)
1140{ 1337{
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1142 { 1339 {
1143 ev_periodic *w = periodics [0]; 1340 ev_periodic *w = (ev_periodic *)periodics [0];
1144 1341
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1343
1147 /* first reschedule or stop timer */ 1344 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1345 if (w->reschedule_cb)
1149 { 1346 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1152 downheap ((WT *)periodics, periodiccnt, 0); 1349 downheap (periodics, periodiccnt, 0);
1153 } 1350 }
1154 else if (w->interval) 1351 else if (w->interval)
1155 { 1352 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0); 1356 downheap (periodics, periodiccnt, 0);
1159 } 1357 }
1160 else 1358 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1360
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1170 int i; 1368 int i;
1171 1369
1172 /* adjust periodics after time jump */ 1370 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1371 for (i = 0; i < periodiccnt; ++i)
1174 { 1372 {
1175 ev_periodic *w = periodics [i]; 1373 ev_periodic *w = (ev_periodic *)periodics [i];
1176 1374
1177 if (w->reschedule_cb) 1375 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1377 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1181 } 1379 }
1182 1380
1183 /* now rebuild the heap */ 1381 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; ) 1382 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i); 1383 downheap (periodics, periodiccnt, i);
1186} 1384}
1187#endif 1385#endif
1188 1386
1387#if EV_IDLE_ENABLE
1189int inline_size 1388void inline_size
1190time_update_monotonic (EV_P) 1389idle_reify (EV_P)
1191{ 1390{
1391 if (expect_false (idleall))
1392 {
1393 int pri;
1394
1395 for (pri = NUMPRI; pri--; )
1396 {
1397 if (pendingcnt [pri])
1398 break;
1399
1400 if (idlecnt [pri])
1401 {
1402 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1403 break;
1404 }
1405 }
1406 }
1407}
1408#endif
1409
1410void inline_speed
1411time_update (EV_P_ ev_tstamp max_block)
1412{
1413 int i;
1414
1415#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic))
1417 {
1418 ev_tstamp odiff = rtmn_diff;
1419
1192 mn_now = get_clock (); 1420 mn_now = get_clock ();
1193 1421
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1423 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1424 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1425 {
1196 ev_rt_now = rtmn_diff + mn_now; 1426 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1427 return;
1198 } 1428 }
1199 else 1429
1200 {
1201 now_floor = mn_now; 1430 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1431 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1432
1207void inline_size 1433 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1434 * on the choice of "4": one iteration isn't enough,
1209{ 1435 * in case we get preempted during the calls to
1210 int i; 1436 * ev_time and get_clock. a second call is almost guaranteed
1211 1437 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1438 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1439 * in the unlikely event of having been preempted here.
1214 { 1440 */
1215 if (time_update_monotonic (EV_A)) 1441 for (i = 4; --i; )
1216 { 1442 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1443 rtmn_diff = ev_rt_now - mn_now;
1230 1444
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1232 return; /* all is well */ 1446 return; /* all is well */
1233 1447
1234 ev_rt_now = ev_time (); 1448 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1449 mn_now = get_clock ();
1236 now_floor = mn_now; 1450 now_floor = mn_now;
1237 } 1451 }
1238 1452
1239# if EV_PERIODIC_ENABLE 1453# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1454 periodics_reschedule (EV_A);
1241# endif 1455# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1458 }
1246 else 1459 else
1247#endif 1460#endif
1248 { 1461 {
1249 ev_rt_now = ev_time (); 1462 ev_rt_now = ev_time ();
1250 1463
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1465 {
1253#if EV_PERIODIC_ENABLE 1466#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1467 periodics_reschedule (EV_A);
1255#endif 1468#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1470 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 1472 }
1261 1473
1262 mn_now = ev_rt_now; 1474 mn_now = ev_rt_now;
1282{ 1494{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1284 ? EVUNLOOP_ONE 1496 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL; 1497 : EVUNLOOP_CANCEL;
1286 1498
1287 while (activecnt) 1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1500
1501 do
1288 { 1502 {
1289 /* we might have forked, so reify kernel state if necessary */ 1503#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid))
1506 {
1507 curpid = getpid ();
1508 postfork = 1;
1509 }
1510#endif
1511
1290 #if EV_FORK_ENABLE 1512#if EV_FORK_ENABLE
1513 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1514 if (expect_false (postfork))
1292 if (forkcnt) 1515 if (forkcnt)
1293 { 1516 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1518 call_pending (EV_A);
1296 } 1519 }
1297 #endif 1520#endif
1298 1521
1299 /* queue check watchers (and execute them) */ 1522 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1523 if (expect_false (preparecnt))
1301 { 1524 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1526 call_pending (EV_A);
1304 } 1527 }
1305 1528
1529 if (expect_false (!activecnt))
1530 break;
1531
1306 /* we might have forked, so reify kernel state if necessary */ 1532 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1533 if (expect_false (postfork))
1308 loop_fork (EV_A); 1534 loop_fork (EV_A);
1309 1535
1310 /* update fd-related kernel structures */ 1536 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1537 fd_reify (EV_A);
1312 1538
1313 /* calculate blocking time */ 1539 /* calculate blocking time */
1314 { 1540 {
1315 double block; 1541 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.;
1316 1543
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1545 {
1321 /* update time to cancel out callback processing overhead */ 1546 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1547 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1548
1332 block = MAX_BLOCKTIME; 1549 waittime = MAX_BLOCKTIME;
1333 1550
1334 if (timercnt) 1551 if (timercnt)
1335 { 1552 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1337 if (block > to) block = to; 1554 if (waittime > to) waittime = to;
1338 } 1555 }
1339 1556
1340#if EV_PERIODIC_ENABLE 1557#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1558 if (periodiccnt)
1342 { 1559 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1561 if (waittime > to) waittime = to;
1345 } 1562 }
1346#endif 1563#endif
1347 1564
1348 if (expect_false (block < 0.)) block = 0.; 1565 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime;
1567
1568 sleeptime = waittime - backend_fudge;
1569
1570 if (expect_true (sleeptime > io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 {
1575 ev_sleep (sleeptime);
1576 waittime -= sleeptime;
1577 }
1349 } 1578 }
1350 1579
1580 ++loop_count;
1351 backend_poll (EV_A_ block); 1581 backend_poll (EV_A_ waittime);
1582
1583 /* update ev_rt_now, do magic */
1584 time_update (EV_A_ waittime + sleeptime);
1352 } 1585 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 1586
1357 /* queue pending timers and reschedule them */ 1587 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 1588 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 1589#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 1590 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 1591#endif
1362 1592
1593#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 1594 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 1595 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1596#endif
1366 1597
1367 /* queue check watchers, to be executed first */ 1598 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 1599 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 1601
1371 call_pending (EV_A); 1602 call_pending (EV_A);
1372 1603
1373 if (expect_false (loop_done))
1374 break;
1375 } 1604 }
1605 while (expect_true (activecnt && !loop_done));
1376 1606
1377 if (loop_done == EVUNLOOP_ONE) 1607 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 1608 loop_done = EVUNLOOP_CANCEL;
1379} 1609}
1380 1610
1407 head = &(*head)->next; 1637 head = &(*head)->next;
1408 } 1638 }
1409} 1639}
1410 1640
1411void inline_speed 1641void inline_speed
1412ev_clear_pending (EV_P_ W w) 1642clear_pending (EV_P_ W w)
1413{ 1643{
1414 if (w->pending) 1644 if (w->pending)
1415 { 1645 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1646 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 1647 w->pending = 0;
1418 } 1648 }
1419} 1649}
1420 1650
1651int
1652ev_clear_pending (EV_P_ void *w)
1653{
1654 W w_ = (W)w;
1655 int pending = w_->pending;
1656
1657 if (expect_true (pending))
1658 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1660 w_->pending = 0;
1661 p->w = 0;
1662 return p->events;
1663 }
1664 else
1665 return 0;
1666}
1667
1668void inline_size
1669pri_adjust (EV_P_ W w)
1670{
1671 int pri = w->priority;
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri;
1675}
1676
1421void inline_speed 1677void inline_speed
1422ev_start (EV_P_ W w, int active) 1678ev_start (EV_P_ W w, int active)
1423{ 1679{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1680 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 1681 w->active = active;
1428 ev_ref (EV_A); 1682 ev_ref (EV_A);
1429} 1683}
1430 1684
1431void inline_size 1685void inline_size
1435 w->active = 0; 1689 w->active = 0;
1436} 1690}
1437 1691
1438/*****************************************************************************/ 1692/*****************************************************************************/
1439 1693
1440void 1694void noinline
1441ev_io_start (EV_P_ ev_io *w) 1695ev_io_start (EV_P_ ev_io *w)
1442{ 1696{
1443 int fd = w->fd; 1697 int fd = w->fd;
1444 1698
1445 if (expect_false (ev_is_active (w))) 1699 if (expect_false (ev_is_active (w)))
1447 1701
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 1702 assert (("ev_io_start called with negative fd", fd >= 0));
1449 1703
1450 ev_start (EV_A_ (W)w, 1); 1704 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1706 wlist_add (&anfds[fd].head, (WL)w);
1453 1707
1454 fd_change (EV_A_ fd); 1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET;
1455} 1710}
1456 1711
1457void 1712void noinline
1458ev_io_stop (EV_P_ ev_io *w) 1713ev_io_stop (EV_P_ ev_io *w)
1459{ 1714{
1460 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 1716 if (expect_false (!ev_is_active (w)))
1462 return; 1717 return;
1463 1718
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 1720
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1721 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 1722 ev_stop (EV_A_ (W)w);
1468 1723
1469 fd_change (EV_A_ w->fd); 1724 fd_change (EV_A_ w->fd, 1);
1470} 1725}
1471 1726
1472void 1727void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 1728ev_timer_start (EV_P_ ev_timer *w)
1474{ 1729{
1475 if (expect_false (ev_is_active (w))) 1730 if (expect_false (ev_is_active (w)))
1476 return; 1731 return;
1477 1732
1478 ((WT)w)->at += mn_now; 1733 ((WT)w)->at += mn_now;
1479 1734
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 1736
1482 ev_start (EV_A_ (W)w, ++timercnt); 1737 ev_start (EV_A_ (W)w, ++timercnt);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1484 timers [timercnt - 1] = w; 1739 timers [timercnt - 1] = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 1740 upheap (timers, timercnt - 1);
1486 1741
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1488} 1743}
1489 1744
1490void 1745void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 1746ev_timer_stop (EV_P_ ev_timer *w)
1492{ 1747{
1493 ev_clear_pending (EV_A_ (W)w); 1748 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 1749 if (expect_false (!ev_is_active (w)))
1495 return; 1750 return;
1496 1751
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1498 1753
1754 {
1755 int active = ((W)w)->active;
1756
1499 if (expect_true (((W)w)->active < timercnt--)) 1757 if (expect_true (--active < --timercnt))
1500 { 1758 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 1759 timers [active] = timers [timercnt];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1760 adjustheap (timers, timercnt, active);
1503 } 1761 }
1762 }
1504 1763
1505 ((WT)w)->at -= mn_now; 1764 ((WT)w)->at -= mn_now;
1506 1765
1507 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1508} 1767}
1509 1768
1510void 1769void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 1770ev_timer_again (EV_P_ ev_timer *w)
1512{ 1771{
1513 if (ev_is_active (w)) 1772 if (ev_is_active (w))
1514 { 1773 {
1515 if (w->repeat) 1774 if (w->repeat)
1516 { 1775 {
1517 ((WT)w)->at = mn_now + w->repeat; 1776 ((WT)w)->at = mn_now + w->repeat;
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1777 adjustheap (timers, timercnt, ((W)w)->active - 1);
1519 } 1778 }
1520 else 1779 else
1521 ev_timer_stop (EV_A_ w); 1780 ev_timer_stop (EV_A_ w);
1522 } 1781 }
1523 else if (w->repeat) 1782 else if (w->repeat)
1526 ev_timer_start (EV_A_ w); 1785 ev_timer_start (EV_A_ w);
1527 } 1786 }
1528} 1787}
1529 1788
1530#if EV_PERIODIC_ENABLE 1789#if EV_PERIODIC_ENABLE
1531void 1790void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 1791ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 1792{
1534 if (expect_false (ev_is_active (w))) 1793 if (expect_false (ev_is_active (w)))
1535 return; 1794 return;
1536 1795
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 1798 else if (w->interval)
1540 { 1799 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 1801 /* this formula differs from the one in periodic_reify because we do not always round up */
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1544 } 1803 }
1804 else
1805 ((WT)w)->at = w->offset;
1545 1806
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 1807 ev_start (EV_A_ (W)w, ++periodiccnt);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 1809 periodics [periodiccnt - 1] = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 1810 upheap (periodics, periodiccnt - 1);
1550 1811
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1552} 1813}
1553 1814
1554void 1815void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 1816ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 1817{
1557 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1559 return; 1820 return;
1560 1821
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1562 1823
1824 {
1825 int active = ((W)w)->active;
1826
1563 if (expect_true (((W)w)->active < periodiccnt--)) 1827 if (expect_true (--active < --periodiccnt))
1564 { 1828 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1829 periodics [active] = periodics [periodiccnt];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1830 adjustheap (periodics, periodiccnt, active);
1567 } 1831 }
1832 }
1568 1833
1569 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1570} 1835}
1571 1836
1572void 1837void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 1838ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 1839{
1575 /* TODO: use adjustheap and recalculation */ 1840 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 1841 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 1842 ev_periodic_start (EV_A_ w);
1580 1845
1581#ifndef SA_RESTART 1846#ifndef SA_RESTART
1582# define SA_RESTART 0 1847# define SA_RESTART 0
1583#endif 1848#endif
1584 1849
1585void 1850void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 1851ev_signal_start (EV_P_ ev_signal *w)
1587{ 1852{
1588#if EV_MULTIPLICITY 1853#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif 1855#endif
1591 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1592 return; 1857 return;
1593 1858
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1595 1860
1861 {
1862#ifndef _WIN32
1863 sigset_t full, prev;
1864 sigfillset (&full);
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1869
1870#ifndef _WIN32
1871 sigprocmask (SIG_SETMASK, &prev, 0);
1872#endif
1873 }
1874
1596 ev_start (EV_A_ (W)w, 1); 1875 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1876 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 1877
1600 if (!((WL)w)->next) 1878 if (!((WL)w)->next)
1601 { 1879 {
1602#if _WIN32 1880#if _WIN32
1603 signal (w->signum, sighandler); 1881 signal (w->signum, sighandler);
1609 sigaction (w->signum, &sa, 0); 1887 sigaction (w->signum, &sa, 0);
1610#endif 1888#endif
1611 } 1889 }
1612} 1890}
1613 1891
1614void 1892void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 1893ev_signal_stop (EV_P_ ev_signal *w)
1616{ 1894{
1617 ev_clear_pending (EV_A_ (W)w); 1895 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 1896 if (expect_false (!ev_is_active (w)))
1619 return; 1897 return;
1620 1898
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1899 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 1900 ev_stop (EV_A_ (W)w);
1623 1901
1624 if (!signals [w->signum - 1].head) 1902 if (!signals [w->signum - 1].head)
1625 signal (w->signum, SIG_DFL); 1903 signal (w->signum, SIG_DFL);
1626} 1904}
1633#endif 1911#endif
1634 if (expect_false (ev_is_active (w))) 1912 if (expect_false (ev_is_active (w)))
1635 return; 1913 return;
1636 1914
1637 ev_start (EV_A_ (W)w, 1); 1915 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1639} 1917}
1640 1918
1641void 1919void
1642ev_child_stop (EV_P_ ev_child *w) 1920ev_child_stop (EV_P_ ev_child *w)
1643{ 1921{
1644 ev_clear_pending (EV_A_ (W)w); 1922 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 1923 if (expect_false (!ev_is_active (w)))
1646 return; 1924 return;
1647 1925
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1650} 1928}
1651 1929
1652#if EV_STAT_ENABLE 1930#if EV_STAT_ENABLE
1653 1931
1657# endif 1935# endif
1658 1936
1659#define DEF_STAT_INTERVAL 5.0074891 1937#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891 1938#define MIN_STAT_INTERVAL 0.1074891
1661 1939
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941
1942#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192
1944
1945static void noinline
1946infy_add (EV_P_ ev_stat *w)
1947{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949
1950 if (w->wd < 0)
1951 {
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953
1954 /* monitor some parent directory for speedup hints */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 {
1957 char path [4096];
1958 strcpy (path, w->path);
1959
1960 do
1961 {
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964
1965 char *pend = strrchr (path, '/');
1966
1967 if (!pend)
1968 break; /* whoops, no '/', complain to your admin */
1969
1970 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 }
1975 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978
1979 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1981}
1982
1983static void noinline
1984infy_del (EV_P_ ev_stat *w)
1985{
1986 int slot;
1987 int wd = w->wd;
1988
1989 if (wd < 0)
1990 return;
1991
1992 w->wd = -2;
1993 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1994 wlist_del (&fs_hash [slot].head, (WL)w);
1995
1996 /* remove this watcher, if others are watching it, they will rearm */
1997 inotify_rm_watch (fs_fd, wd);
1998}
1999
2000static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{
2003 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2006 infy_wd (EV_A_ slot, wd, ev);
2007 else
2008 {
2009 WL w_;
2010
2011 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2012 {
2013 ev_stat *w = (ev_stat *)w_;
2014 w_ = w_->next; /* lets us remove this watcher and all before it */
2015
2016 if (w->wd == wd || wd == -1)
2017 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 {
2020 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */
2022 }
2023
2024 stat_timer_cb (EV_A_ &w->timer, 0);
2025 }
2026 }
2027 }
2028}
2029
2030static void
2031infy_cb (EV_P_ ev_io *w, int revents)
2032{
2033 char buf [EV_INOTIFY_BUFSIZE];
2034 struct inotify_event *ev = (struct inotify_event *)buf;
2035 int ofs;
2036 int len = read (fs_fd, buf, sizeof (buf));
2037
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2040}
2041
2042void inline_size
2043infy_init (EV_P)
2044{
2045 if (fs_fd != -2)
2046 return;
2047
2048 fs_fd = inotify_init ();
2049
2050 if (fs_fd >= 0)
2051 {
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w);
2055 }
2056}
2057
2058void inline_size
2059infy_fork (EV_P)
2060{
2061 int slot;
2062
2063 if (fs_fd < 0)
2064 return;
2065
2066 close (fs_fd);
2067 fs_fd = inotify_init ();
2068
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2070 {
2071 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0;
2073
2074 while (w_)
2075 {
2076 ev_stat *w = (ev_stat *)w_;
2077 w_ = w_->next; /* lets us add this watcher */
2078
2079 w->wd = -1;
2080
2081 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else
2084 ev_timer_start (EV_A_ &w->timer);
2085 }
2086
2087 }
2088}
2089
2090#endif
2091
1662void 2092void
1663ev_stat_stat (EV_P_ ev_stat *w) 2093ev_stat_stat (EV_P_ ev_stat *w)
1664{ 2094{
1665 if (lstat (w->path, &w->attr) < 0) 2095 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 2096 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 2097 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 2098 w->attr.st_nlink = 1;
1669} 2099}
1670 2100
1671static void 2101static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2102stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 2103{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 2105
1676 /* we copy this here each the time so that */ 2106 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */ 2107 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr; 2108 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 2109 ev_stat_stat (EV_A_ w);
1680 2110
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if (
2113 w->prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime
2124 ) {
2125 #if EV_USE_INOTIFY
2126 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */
2129 #endif
2130
1682 ev_feed_event (EV_A_ w, EV_STAT); 2131 ev_feed_event (EV_A_ w, EV_STAT);
2132 }
1683} 2133}
1684 2134
1685void 2135void
1686ev_stat_start (EV_P_ ev_stat *w) 2136ev_stat_start (EV_P_ ev_stat *w)
1687{ 2137{
1697 if (w->interval < MIN_STAT_INTERVAL) 2147 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 2149
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w)); 2151 ev_set_priority (&w->timer, ev_priority (w));
2152
2153#if EV_USE_INOTIFY
2154 infy_init (EV_A);
2155
2156 if (fs_fd >= 0)
2157 infy_add (EV_A_ w);
2158 else
2159#endif
1702 ev_timer_start (EV_A_ &w->timer); 2160 ev_timer_start (EV_A_ &w->timer);
1703 2161
1704 ev_start (EV_A_ (W)w, 1); 2162 ev_start (EV_A_ (W)w, 1);
1705} 2163}
1706 2164
1707void 2165void
1708ev_stat_stop (EV_P_ ev_stat *w) 2166ev_stat_stop (EV_P_ ev_stat *w)
1709{ 2167{
1710 ev_clear_pending (EV_A_ (W)w); 2168 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 2169 if (expect_false (!ev_is_active (w)))
1712 return; 2170 return;
1713 2171
2172#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w);
2174#endif
1714 ev_timer_stop (EV_A_ &w->timer); 2175 ev_timer_stop (EV_A_ &w->timer);
1715 2176
1716 ev_stop (EV_A_ (W)w); 2177 ev_stop (EV_A_ (W)w);
1717} 2178}
1718#endif 2179#endif
1719 2180
2181#if EV_IDLE_ENABLE
1720void 2182void
1721ev_idle_start (EV_P_ ev_idle *w) 2183ev_idle_start (EV_P_ ev_idle *w)
1722{ 2184{
1723 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1724 return; 2186 return;
1725 2187
2188 pri_adjust (EV_A_ (W)w);
2189
2190 {
2191 int active = ++idlecnt [ABSPRI (w)];
2192
2193 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 2194 ev_start (EV_A_ (W)w, active);
2195
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 2197 idles [ABSPRI (w)][active - 1] = w;
2198 }
1729} 2199}
1730 2200
1731void 2201void
1732ev_idle_stop (EV_P_ ev_idle *w) 2202ev_idle_stop (EV_P_ ev_idle *w)
1733{ 2203{
1734 ev_clear_pending (EV_A_ (W)w); 2204 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2205 if (expect_false (!ev_is_active (w)))
1736 return; 2206 return;
1737 2207
1738 { 2208 {
1739 int active = ((W)w)->active; 2209 int active = ((W)w)->active;
1740 idles [active - 1] = idles [--idlecnt]; 2210
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1741 ((W)idles [active - 1])->active = active; 2212 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2213
2214 ev_stop (EV_A_ (W)w);
2215 --idleall;
1742 } 2216 }
1743
1744 ev_stop (EV_A_ (W)w);
1745} 2217}
2218#endif
1746 2219
1747void 2220void
1748ev_prepare_start (EV_P_ ev_prepare *w) 2221ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 2222{
1750 if (expect_false (ev_is_active (w))) 2223 if (expect_false (ev_is_active (w)))
1756} 2229}
1757 2230
1758void 2231void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 2232ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 2233{
1761 ev_clear_pending (EV_A_ (W)w); 2234 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 2235 if (expect_false (!ev_is_active (w)))
1763 return; 2236 return;
1764 2237
1765 { 2238 {
1766 int active = ((W)w)->active; 2239 int active = ((W)w)->active;
1783} 2256}
1784 2257
1785void 2258void
1786ev_check_stop (EV_P_ ev_check *w) 2259ev_check_stop (EV_P_ ev_check *w)
1787{ 2260{
1788 ev_clear_pending (EV_A_ (W)w); 2261 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 2262 if (expect_false (!ev_is_active (w)))
1790 return; 2263 return;
1791 2264
1792 { 2265 {
1793 int active = ((W)w)->active; 2266 int active = ((W)w)->active;
1800 2273
1801#if EV_EMBED_ENABLE 2274#if EV_EMBED_ENABLE
1802void noinline 2275void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 2276ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 2277{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 2278 ev_loop (w->other, EVLOOP_NONBLOCK);
1806} 2279}
1807 2280
1808static void 2281static void
1809embed_cb (EV_P_ ev_io *io, int revents) 2282embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 2283{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 2285
1813 if (ev_cb (w)) 2286 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 2288 else
1816 ev_embed_sweep (loop, w); 2289 ev_loop (w->other, EVLOOP_NONBLOCK);
1817} 2290}
2291
2292static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296
2297 {
2298 struct ev_loop *loop = w->other;
2299
2300 while (fdchangecnt)
2301 {
2302 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 }
2305 }
2306}
2307
2308#if 0
2309static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{
2312 ev_idle_stop (EV_A_ idle);
2313}
2314#endif
1818 2315
1819void 2316void
1820ev_embed_start (EV_P_ ev_embed *w) 2317ev_embed_start (EV_P_ ev_embed *w)
1821{ 2318{
1822 if (expect_false (ev_is_active (w))) 2319 if (expect_false (ev_is_active (w)))
1823 return; 2320 return;
1824 2321
1825 { 2322 {
1826 struct ev_loop *loop = w->loop; 2323 struct ev_loop *loop = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 2326 }
1830 2327
1831 ev_set_priority (&w->io, ev_priority (w)); 2328 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 2329 ev_io_start (EV_A_ &w->io);
1833 2330
2331 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare);
2334
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336
1834 ev_start (EV_A_ (W)w, 1); 2337 ev_start (EV_A_ (W)w, 1);
1835} 2338}
1836 2339
1837void 2340void
1838ev_embed_stop (EV_P_ ev_embed *w) 2341ev_embed_stop (EV_P_ ev_embed *w)
1839{ 2342{
1840 ev_clear_pending (EV_A_ (W)w); 2343 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 2344 if (expect_false (!ev_is_active (w)))
1842 return; 2345 return;
1843 2346
1844 ev_io_stop (EV_A_ &w->io); 2347 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare);
1845 2349
1846 ev_stop (EV_A_ (W)w); 2350 ev_stop (EV_A_ (W)w);
1847} 2351}
1848#endif 2352#endif
1849 2353
1860} 2364}
1861 2365
1862void 2366void
1863ev_fork_stop (EV_P_ ev_fork *w) 2367ev_fork_stop (EV_P_ ev_fork *w)
1864{ 2368{
1865 ev_clear_pending (EV_A_ (W)w); 2369 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2370 if (expect_false (!ev_is_active (w)))
1867 return; 2371 return;
1868 2372
1869 { 2373 {
1870 int active = ((W)w)->active; 2374 int active = ((W)w)->active;
1938 ev_timer_set (&once->to, timeout, 0.); 2442 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 2443 ev_timer_start (EV_A_ &once->to);
1940 } 2444 }
1941} 2445}
1942 2446
2447#if EV_MULTIPLICITY
2448 #include "ev_wrap.h"
2449#endif
2450
1943#ifdef __cplusplus 2451#ifdef __cplusplus
1944} 2452}
1945#endif 2453#endif
1946 2454

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines