ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.200 by root, Wed Dec 26 08:06:09 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
31#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
32# include "config.h" 48# include "config.h"
49# endif
33 50
34# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
54# endif
55# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
37# endif 65# endif
38 66
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
41# endif 73# endif
42 74
43# if HAVE_POLL && HAVE_POLL_H 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
45# endif 81# endif
46 82
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
49# endif 89# endif
50 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
53# endif 121# endif
54 122
55#endif 123#endif
56 124
57#include <math.h> 125#include <math.h>
58#include <stdlib.h> 126#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 127#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 128#include <stddef.h>
63 129
64#include <stdio.h> 130#include <stdio.h>
65 131
66#include <assert.h> 132#include <assert.h>
67#include <errno.h> 133#include <errno.h>
68#include <sys/types.h> 134#include <sys/types.h>
135#include <time.h>
136
137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
69#ifndef WIN32 145#ifndef _WIN32
146# include <sys/time.h>
70# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
71#endif 154# endif
72#include <sys/time.h> 155#endif
73#include <time.h>
74 156
75/**/ 157/**/
76 158
77#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
79#endif 169#endif
80 170
81#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
83#endif 173#endif
84 174
85#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
87#endif 181#endif
88 182
89#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
91#endif 185#endif
92 186
93#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
95#endif 189#endif
96 190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
97#ifndef EV_USE_WIN32 195#ifndef EV_USE_INOTIFY
98# ifdef WIN32 196# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
100# else 202# else
101# define EV_USE_WIN32 0 203# define EV_PID_HASHSIZE 16
102# endif 204# endif
103#endif 205#endif
104 206
105#ifndef EV_USE_REALTIME 207#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
107#endif 213#endif
108 214
109/**/ 215/**/
110 216
111#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
119#endif 225#endif
120 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
121/**/ 246/**/
122 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 261
128#include "ev.h"
129
130#if __GNUC__ >= 3 262#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 264# define noinline __attribute__ ((noinline))
133#else 265#else
134# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
135# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
136#endif 271#endif
137 272
138#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
140 282
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
144typedef struct ev_watcher *W; 289typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
147 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 297#endif
298
299#ifdef _WIN32
300# include "ev_win32.c"
301#endif
302
303/*****************************************************************************/
304
305static void (*syserr_cb)(const char *msg);
306
307void
308ev_set_syserr_cb (void (*cb)(const char *msg))
309{
310 syserr_cb = cb;
311}
312
313static void noinline
314syserr (const char *msg)
315{
316 if (!msg)
317 msg = "(libev) system error";
318
319 if (syserr_cb)
320 syserr_cb (msg);
321 else
322 {
323 perror (msg);
324 abort ();
325 }
326}
327
328static void *(*alloc)(void *ptr, long size);
329
330void
331ev_set_allocator (void *(*cb)(void *ptr, long size))
332{
333 alloc = cb;
334}
335
336inline_speed void *
337ev_realloc (void *ptr, long size)
338{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
340
341 if (!ptr && size)
342 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort ();
345 }
346
347 return ptr;
348}
349
350#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0)
155 352
156/*****************************************************************************/ 353/*****************************************************************************/
157 354
158typedef struct 355typedef struct
159{ 356{
160 WL head; 357 WL head;
161 unsigned char events; 358 unsigned char events;
162 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
163} ANFD; 363} ANFD;
164 364
165typedef struct 365typedef struct
166{ 366{
167 W w; 367 W w;
168 int events; 368 int events;
169} ANPENDING; 369} ANPENDING;
170 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
171#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
172 379
173struct ev_loop 380 struct ev_loop
174{ 381 {
382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
176# include "ev_vars.h" 385 #include "ev_vars.h"
177};
178# undef VAR 386 #undef VAR
387 };
179# include "ev_wrap.h" 388 #include "ev_wrap.h"
389
390 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr;
180 392
181#else 393#else
182 394
395 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 397 #include "ev_vars.h"
185# undef VAR 398 #undef VAR
399
400 static int ev_default_loop_ptr;
186 401
187#endif 402#endif
188 403
189/*****************************************************************************/ 404/*****************************************************************************/
190 405
191inline ev_tstamp 406ev_tstamp
192ev_time (void) 407ev_time (void)
193{ 408{
194#if EV_USE_REALTIME 409#if EV_USE_REALTIME
195 struct timespec ts; 410 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 411 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 417#endif
203} 418}
204 419
205inline ev_tstamp 420ev_tstamp inline_size
206get_clock (void) 421get_clock (void)
207{ 422{
208#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
210 { 425 {
215#endif 430#endif
216 431
217 return ev_time (); 432 return ev_time ();
218} 433}
219 434
435#if EV_MULTIPLICITY
220ev_tstamp 436ev_tstamp
221ev_now (EV_P) 437ev_now (EV_P)
222{ 438{
223 return rt_now; 439 return ev_rt_now;
224} 440}
441#endif
225 442
226#define array_roundsize(base,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
227 450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
497
228#define array_needsize(base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
230 { \ 500 { \
231 int newcnt = cur; \ 501 int ocur_ = (cur); \
232 do \ 502 (base) = (type *)array_realloc \
233 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 505 }
242 506
507#if 0
243#define array_slim(stem) \ 508#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 510 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 514 }
515#endif
250 516
251#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 519
254/*****************************************************************************/ 520/*****************************************************************************/
255 521
256static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
257anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
258{ 552{
259 while (count--) 553 while (count--)
260 { 554 {
261 base->head = 0; 555 base->head = 0;
264 558
265 ++base; 559 ++base;
266 } 560 }
267} 561}
268 562
269static void 563void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 564fd_event (EV_P_ int fd, int revents)
295{ 565{
296 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 567 ev_io *w;
298 568
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 570 {
301 int ev = w->events & events; 571 int ev = w->events & revents;
302 572
303 if (ev) 573 if (ev)
304 event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
305 } 575 }
306} 576}
307 577
308/*****************************************************************************/ 578void
579ev_feed_fd_event (EV_P_ int fd, int revents)
580{
581 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents);
583}
309 584
310static void 585void inline_size
311fd_reify (EV_P) 586fd_reify (EV_P)
312{ 587{
313 int i; 588 int i;
314 589
315 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
316 { 591 {
317 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 594 ev_io *w;
320 595
321 int events = 0; 596 unsigned char events = 0;
322 597
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 599 events |= (unsigned char)w->events;
325 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
611 }
612#endif
613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
326 anfd->reify = 0; 618 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
330 } 624 }
331 625
332 fdchangecnt = 0; 626 fdchangecnt = 0;
333} 627}
334 628
335static void 629void inline_size
336fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
337{ 631{
338 if (anfds [fd].reify || fdchangecnt < 0) 632 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
342 634
635 if (expect_true (!reify))
636 {
343 ++fdchangecnt; 637 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
346} 641}
347 642
348static void 643void inline_speed
349fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
350{ 645{
351 struct ev_io *w; 646 ev_io *w;
352 647
353 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
354 { 649 {
355 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 652 }
653}
654
655int inline_size
656fd_valid (int fd)
657{
658#ifdef _WIN32
659 return _get_osfhandle (fd) != -1;
660#else
661 return fcntl (fd, F_GETFD) != -1;
662#endif
358} 663}
359 664
360/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
361static void 666static void noinline
362fd_ebadf (EV_P) 667fd_ebadf (EV_P)
363{ 668{
364 int fd; 669 int fd;
365 670
366 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 672 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
370} 675}
371 676
372/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 678static void noinline
374fd_enomem (EV_P) 679fd_enomem (EV_P)
375{ 680{
376 int fd; 681 int fd;
377 682
378 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
381 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
382 return; 687 return;
383 } 688 }
384} 689}
385 690
386/* susually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
387static void 692static void noinline
388fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
389{ 694{
390 int fd; 695 int fd;
391 696
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events) 698 if (anfds [fd].events)
395 { 699 {
396 anfds [fd].events = 0; 700 anfds [fd].events = 0;
397 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
398 } 702 }
399} 703}
400 704
401/*****************************************************************************/ 705/*****************************************************************************/
402 706
403static void 707void inline_speed
404upheap (WT *heap, int k) 708upheap (WT *heap, int k)
405{ 709{
406 WT w = heap [k]; 710 WT w = heap [k];
407 711
408 while (k && heap [k >> 1]->at > w->at) 712 while (k)
409 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
410 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
411 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
412 k >>= 1; 721 k = p;
413 } 722 }
414 723
415 heap [k] = w; 724 heap [k] = w;
416 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
417
418} 726}
419 727
420static void 728void inline_speed
421downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
422{ 730{
423 WT w = heap [k]; 731 WT w = heap [k];
424 732
425 while (k < (N >> 1)) 733 for (;;)
426 { 734 {
427 int j = k << 1; 735 int c = (k << 1) + 1;
428 736
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
430 ++j;
431
432 if (w->at <= heap [j]->at)
433 break; 738 break;
434 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
435 heap [k] = heap [j]; 746 heap [k] = heap [c];
436 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
437 k = j; 749 k = c;
438 } 750 }
439 751
440 heap [k] = w; 752 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
442} 761}
443 762
444/*****************************************************************************/ 763/*****************************************************************************/
445 764
446typedef struct 765typedef struct
452static ANSIG *signals; 771static ANSIG *signals;
453static int signalmax; 772static int signalmax;
454 773
455static int sigpipe [2]; 774static int sigpipe [2];
456static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
457static struct ev_io sigev; 776static ev_io sigev;
458 777
459static void 778void inline_size
460signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
461{ 780{
462 while (count--) 781 while (count--)
463 { 782 {
464 base->head = 0; 783 base->head = 0;
469} 788}
470 789
471static void 790static void
472sighandler (int signum) 791sighandler (int signum)
473{ 792{
474#if WIN32 793#if _WIN32
475 signal (signum, sighandler); 794 signal (signum, sighandler);
476#endif 795#endif
477 796
478 signals [signum - 1].gotsig = 1; 797 signals [signum - 1].gotsig = 1;
479 798
484 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
485 errno = old_errno; 804 errno = old_errno;
486 } 805 }
487} 806}
488 807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
489static void 828static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
491{ 830{
492 WL w;
493 int signum; 831 int signum;
494 832
495 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
496 gotsig = 0; 834 gotsig = 0;
497 835
498 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
500 { 838 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506} 839}
507 840
508static void 841void inline_speed
842fd_intern (int fd)
843{
844#ifdef _WIN32
845 int arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif
851}
852
853static void noinline
509siginit (EV_P) 854siginit (EV_P)
510{ 855{
511#ifndef WIN32 856 fd_intern (sigpipe [0]);
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 857 fd_intern (sigpipe [1]);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519 858
520 ev_io_set (&sigev, sigpipe [0], EV_READ); 859 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev); 860 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 862}
524 863
525/*****************************************************************************/ 864/*****************************************************************************/
526 865
866static WL childs [EV_PID_HASHSIZE];
867
527#ifndef WIN32 868#ifndef _WIN32
528 869
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 870static ev_signal childev;
871
872void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
874{
875 ev_child *w;
876
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
878 if (w->pid == pid || !w->pid)
879 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
881 w->rpid = pid;
882 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 }
885}
531 886
532#ifndef WCONTINUED 887#ifndef WCONTINUED
533# define WCONTINUED 0 888# define WCONTINUED 0
534#endif 889#endif
535 890
536static void 891static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538{
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 892childcb (EV_P_ ev_signal *sw, int revents)
553{ 893{
554 int pid, status; 894 int pid, status;
555 895
896 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 897 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 898 if (!WCONTINUED
899 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return;
902
558 /* make sure we are called again until all childs have been reaped */ 903 /* make sure we are called again until all childs have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */
559 event (EV_A_ (W)sw, EV_SIGNAL); 905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 906
561 child_reap (EV_A_ sw, pid, pid, status); 907 child_reap (EV_A_ sw, pid, pid, status);
908 if (EV_PID_HASHSIZE > 1)
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
563 }
564} 910}
565 911
566#endif 912#endif
567 913
568/*****************************************************************************/ 914/*****************************************************************************/
569 915
916#if EV_USE_PORT
917# include "ev_port.c"
918#endif
570#if EV_USE_KQUEUE 919#if EV_USE_KQUEUE
571# include "ev_kqueue.c" 920# include "ev_kqueue.c"
572#endif 921#endif
573#if EV_USE_EPOLL 922#if EV_USE_EPOLL
574# include "ev_epoll.c" 923# include "ev_epoll.c"
591{ 940{
592 return EV_VERSION_MINOR; 941 return EV_VERSION_MINOR;
593} 942}
594 943
595/* return true if we are running with elevated privileges and should ignore env variables */ 944/* return true if we are running with elevated privileges and should ignore env variables */
596static int 945int inline_size
597enable_secure (void) 946enable_secure (void)
598{ 947{
599#ifdef WIN32 948#ifdef _WIN32
600 return 0; 949 return 0;
601#else 950#else
602 return getuid () != geteuid () 951 return getuid () != geteuid ()
603 || getgid () != getegid (); 952 || getgid () != getegid ();
604#endif 953#endif
605} 954}
606 955
607int 956unsigned int
608ev_method (EV_P) 957ev_supported_backends (void)
609{ 958{
610 return method; 959 unsigned int flags = 0;
611}
612 960
613static void 961 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
614loop_init (EV_P_ int methods) 962 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
963 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
964 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
965 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
966
967 return flags;
968}
969
970unsigned int
971ev_recommended_backends (void)
615{ 972{
616 if (!method) 973 unsigned int flags = ev_supported_backends ();
974
975#ifndef __NetBSD__
976 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE;
979#endif
980#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation
982 flags &= ~EVBACKEND_POLL;
983#endif
984
985 return flags;
986}
987
988unsigned int
989ev_embeddable_backends (void)
990{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
998}
999
1000unsigned int
1001ev_backend (EV_P)
1002{
1003 return backend;
1004}
1005
1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
1025loop_init (EV_P_ unsigned int flags)
1026{
1027 if (!backend)
617 { 1028 {
618#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
619 { 1030 {
620 struct timespec ts; 1031 struct timespec ts;
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 1033 have_monotonic = 1;
623 } 1034 }
624#endif 1035#endif
625 1036
626 rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 1038 mn_now = get_clock ();
628 now_floor = mn_now; 1039 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
630 1041
631 if (methods == EVMETHOD_AUTO) 1042 io_blocktime = 0.;
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
1051 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
634 else
635 methods = EVMETHOD_ANY;
636 1055
637 method = 0; 1056 if (!(flags & 0x0000ffffUL))
1057 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
638#if EV_USE_WIN32 1061#if EV_USE_INOTIFY
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1062 fs_fd = -2;
1063#endif
1064
1065#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
640#endif 1067#endif
641#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
643#endif 1070#endif
644#if EV_USE_EPOLL 1071#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1072 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
646#endif 1073#endif
647#if EV_USE_POLL 1074#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1075 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
649#endif 1076#endif
650#if EV_USE_SELECT 1077#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
652#endif 1079#endif
653 }
654}
655 1080
656void 1081 ev_init (&sigev, sigcb);
1082 ev_set_priority (&sigev, EV_MAXPRI);
1083 }
1084}
1085
1086static void noinline
657loop_destroy (EV_P) 1087loop_destroy (EV_P)
658{ 1088{
659 int i; 1089 int i;
660 1090
661#if EV_USE_WIN32 1091#if EV_USE_INOTIFY
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
1098
1099#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
663#endif 1101#endif
664#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
666#endif 1104#endif
667#if EV_USE_EPOLL 1105#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1106 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
669#endif 1107#endif
670#if EV_USE_POLL 1108#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1109 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
672#endif 1110#endif
673#if EV_USE_SELECT 1111#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
675#endif 1113#endif
676 1114
677 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
678 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
679 1122
1123 ev_free (anfds); anfdmax = 0;
1124
1125 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 1126 array_free (fdchange, EMPTY);
681 array_free (timer, ); 1127 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE
682 array_free (periodic, ); 1129 array_free (periodic, EMPTY);
683 array_free (idle, ); 1130#endif
1131#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY);
1133#endif
684 array_free (prepare, ); 1134 array_free (prepare, EMPTY);
685 array_free (check, ); 1135 array_free (check, EMPTY);
686 1136
687 method = 0; 1137 backend = 0;
688 /*TODO*/
689} 1138}
690 1139
691void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
692loop_fork (EV_P) 1143loop_fork (EV_P)
693{ 1144{
694 /*TODO*/ 1145#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif
1148#if EV_USE_KQUEUE
1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1150#endif
695#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
697#endif 1153#endif
698#if EV_USE_KQUEUE 1154#if EV_USE_INOTIFY
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1155 infy_fork (EV_A);
700#endif 1156#endif
1157
1158 if (ev_is_active (&sigev))
1159 {
1160 /* default loop */
1161
1162 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev);
1164 close (sigpipe [0]);
1165 close (sigpipe [1]);
1166
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A);
1171 }
1172
1173 postfork = 0;
701} 1174}
702 1175
703#if EV_MULTIPLICITY 1176#if EV_MULTIPLICITY
704struct ev_loop * 1177struct ev_loop *
705ev_loop_new (int methods) 1178ev_loop_new (unsigned int flags)
706{ 1179{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1180 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
708 1181
1182 memset (loop, 0, sizeof (struct ev_loop));
1183
709 loop_init (EV_A_ methods); 1184 loop_init (EV_A_ flags);
710 1185
711 if (ev_method (EV_A)) 1186 if (ev_backend (EV_A))
712 return loop; 1187 return loop;
713 1188
714 return 0; 1189 return 0;
715} 1190}
716 1191
717void 1192void
718ev_loop_destroy (EV_P) 1193ev_loop_destroy (EV_P)
719{ 1194{
720 loop_destroy (EV_A); 1195 loop_destroy (EV_A);
721 free (loop); 1196 ev_free (loop);
722} 1197}
723 1198
724void 1199void
725ev_loop_fork (EV_P) 1200ev_loop_fork (EV_P)
726{ 1201{
727 loop_fork (EV_A); 1202 postfork = 1;
728} 1203}
729 1204
730#endif 1205#endif
731 1206
732#if EV_MULTIPLICITY 1207#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 1208struct ev_loop *
1209ev_default_loop_init (unsigned int flags)
737#else 1210#else
738static int default_loop;
739
740int 1211int
1212ev_default_loop (unsigned int flags)
741#endif 1213#endif
742ev_default_loop (int methods)
743{ 1214{
744 if (sigpipe [0] == sigpipe [1]) 1215 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe)) 1216 if (pipe (sigpipe))
746 return 0; 1217 return 0;
747 1218
748 if (!default_loop) 1219 if (!ev_default_loop_ptr)
749 { 1220 {
750#if EV_MULTIPLICITY 1221#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct; 1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
752#else 1223#else
753 default_loop = 1; 1224 ev_default_loop_ptr = 1;
754#endif 1225#endif
755 1226
756 loop_init (EV_A_ methods); 1227 loop_init (EV_A_ flags);
757 1228
758 if (ev_method (EV_A)) 1229 if (ev_backend (EV_A))
759 { 1230 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 1231 siginit (EV_A);
763 1232
764#ifndef WIN32 1233#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 1234 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 1235 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 1236 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1237 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 1238#endif
770 } 1239 }
771 else 1240 else
772 default_loop = 0; 1241 ev_default_loop_ptr = 0;
773 } 1242 }
774 1243
775 return default_loop; 1244 return ev_default_loop_ptr;
776} 1245}
777 1246
778void 1247void
779ev_default_destroy (void) 1248ev_default_destroy (void)
780{ 1249{
781#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 1251 struct ev_loop *loop = ev_default_loop_ptr;
783#endif 1252#endif
784 1253
1254#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 1255 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 1256 ev_signal_stop (EV_A_ &childev);
1257#endif
787 1258
788 ev_ref (EV_A); /* signal watcher */ 1259 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 1260 ev_io_stop (EV_A_ &sigev);
790 1261
791 close (sigpipe [0]); sigpipe [0] = 0; 1262 close (sigpipe [0]); sigpipe [0] = 0;
796 1267
797void 1268void
798ev_default_fork (void) 1269ev_default_fork (void)
799{ 1270{
800#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 1272 struct ev_loop *loop = ev_default_loop_ptr;
802#endif 1273#endif
803 1274
804 loop_fork (EV_A); 1275 if (backend)
805 1276 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 1277}
814 1278
815/*****************************************************************************/ 1279/*****************************************************************************/
816 1280
817static void 1281void
1282ev_invoke (EV_P_ void *w, int revents)
1283{
1284 EV_CB_INVOKE ((W)w, revents);
1285}
1286
1287void inline_speed
818call_pending (EV_P) 1288call_pending (EV_P)
819{ 1289{
820 int pri; 1290 int pri;
821 1291
822 for (pri = NUMPRI; pri--; ) 1292 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri]) 1293 while (pendingcnt [pri])
824 { 1294 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 1296
827 if (p->w) 1297 if (expect_true (p->w))
828 { 1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1300
829 p->w->pending = 0; 1301 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 1302 EV_CB_INVOKE (p->w, p->events);
831 } 1303 }
832 } 1304 }
833} 1305}
834 1306
835static void 1307void inline_size
836timers_reify (EV_P) 1308timers_reify (EV_P)
837{ 1309{
838 while (timercnt && ((WT)timers [0])->at <= mn_now) 1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
839 { 1311 {
840 struct ev_timer *w = timers [0]; 1312 ev_timer *w = (ev_timer *)timers [0];
841 1313
842 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
843 1315
844 /* first reschedule or stop timer */ 1316 /* first reschedule or stop timer */
845 if (w->repeat) 1317 if (w->repeat)
846 { 1318 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
848 ((WT)w)->at = mn_now + w->repeat; 1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
849 downheap ((WT *)timers, timercnt, 0); 1325 downheap (timers, timercnt, 0);
850 } 1326 }
851 else 1327 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1329
854 event (EV_A_ (W)w, EV_TIMEOUT); 1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1331 }
856} 1332}
857 1333
858static void 1334#if EV_PERIODIC_ENABLE
1335void inline_size
859periodics_reify (EV_P) 1336periodics_reify (EV_P)
860{ 1337{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1339 {
863 struct ev_periodic *w = periodics [0]; 1340 ev_periodic *w = (ev_periodic *)periodics [0];
864 1341
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
866 1343
867 /* first reschedule or stop timer */ 1344 /* first reschedule or stop timer */
868 if (w->interval) 1345 if (w->reschedule_cb)
869 { 1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1356 downheap (periodics, periodiccnt, 0);
873 } 1357 }
874 else 1358 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1360
877 event (EV_A_ (W)w, EV_PERIODIC); 1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1362 }
879} 1363}
880 1364
881static void 1365static void noinline
882periodics_reschedule (EV_P) 1366periodics_reschedule (EV_P)
883{ 1367{
884 int i; 1368 int i;
885 1369
886 /* adjust periodics after time jump */ 1370 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1371 for (i = 0; i < periodiccnt; ++i)
888 { 1372 {
889 struct ev_periodic *w = periodics [i]; 1373 ev_periodic *w = (ev_periodic *)periodics [i];
890 1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386
1387#if EV_IDLE_ENABLE
1388void inline_size
1389idle_reify (EV_P)
1390{
1391 if (expect_false (idleall))
1392 {
1393 int pri;
1394
1395 for (pri = NUMPRI; pri--; )
892 { 1396 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1397 if (pendingcnt [pri])
1398 break;
894 1399
895 if (fabs (diff) >= 1e-4) 1400 if (idlecnt [pri])
896 { 1401 {
897 ev_periodic_stop (EV_A_ w); 1402 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
898 ev_periodic_start (EV_A_ w); 1403 break;
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 } 1404 }
902 } 1405 }
903 } 1406 }
904} 1407}
1408#endif
905 1409
906inline int 1410void inline_speed
907time_update_monotonic (EV_P) 1411time_update (EV_P_ ev_tstamp max_block)
908{
909 mn_now = get_clock ();
910
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 }
916 else
917 {
918 now_floor = mn_now;
919 rt_now = ev_time ();
920 return 1;
921 }
922}
923
924static void
925time_update (EV_P)
926{ 1412{
927 int i; 1413 int i;
928 1414
929#if EV_USE_MONOTONIC 1415#if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic)) 1416 if (expect_true (have_monotonic))
931 { 1417 {
932 if (time_update_monotonic (EV_A)) 1418 ev_tstamp odiff = rtmn_diff;
1419
1420 mn_now = get_clock ();
1421
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1423 /* interpolate in the meantime */
1424 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
933 { 1425 {
934 ev_tstamp odiff = rtmn_diff; 1426 ev_rt_now = rtmn_diff + mn_now;
1427 return;
1428 }
935 1429
1430 now_floor = mn_now;
1431 ev_rt_now = ev_time ();
1432
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1433 /* loop a few times, before making important decisions.
1434 * on the choice of "4": one iteration isn't enough,
1435 * in case we get preempted during the calls to
1436 * ev_time and get_clock. a second call is almost guaranteed
1437 * to succeed in that case, though. and looping a few more times
1438 * doesn't hurt either as we only do this on time-jumps or
1439 * in the unlikely event of having been preempted here.
1440 */
1441 for (i = 4; --i; )
937 { 1442 {
938 rtmn_diff = rt_now - mn_now; 1443 rtmn_diff = ev_rt_now - mn_now;
939 1444
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1446 return; /* all is well */
942 1447
943 rt_now = ev_time (); 1448 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1449 mn_now = get_clock ();
945 now_floor = mn_now; 1450 now_floor = mn_now;
946 } 1451 }
947 1452
1453# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A);
1455# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 }
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 {
1466#if EV_PERIODIC_ENABLE
948 periodics_reschedule (EV_A); 1467 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1468#endif
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i)
1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
951 } 1472 }
952 }
953 else
954#endif
955 {
956 rt_now = ev_time ();
957 1473
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
966
967 mn_now = rt_now; 1474 mn_now = ev_rt_now;
968 } 1475 }
969} 1476}
970 1477
971void 1478void
972ev_ref (EV_P) 1479ev_ref (EV_P)
983static int loop_done; 1490static int loop_done;
984 1491
985void 1492void
986ev_loop (EV_P_ int flags) 1493ev_loop (EV_P_ int flags)
987{ 1494{
988 double block;
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1496 ? EVUNLOOP_ONE
1497 : EVUNLOOP_CANCEL;
1498
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
990 1500
991 do 1501 do
992 { 1502 {
1503#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid))
1506 {
1507 curpid = getpid ();
1508 postfork = 1;
1509 }
1510#endif
1511
1512#if EV_FORK_ENABLE
1513 /* we might have forked, so queue fork handlers */
1514 if (expect_false (postfork))
1515 if (forkcnt)
1516 {
1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1518 call_pending (EV_A);
1519 }
1520#endif
1521
993 /* queue check watchers (and execute them) */ 1522 /* queue prepare watchers (and execute them) */
994 if (expect_false (preparecnt)) 1523 if (expect_false (preparecnt))
995 { 1524 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1526 call_pending (EV_A);
998 } 1527 }
999 1528
1529 if (expect_false (!activecnt))
1530 break;
1531
1532 /* we might have forked, so reify kernel state if necessary */
1533 if (expect_false (postfork))
1534 loop_fork (EV_A);
1535
1000 /* update fd-related kernel structures */ 1536 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1537 fd_reify (EV_A);
1002 1538
1003 /* calculate blocking time */ 1539 /* calculate blocking time */
1540 {
1541 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.;
1004 1543
1005 /* we only need this for !monotonic clockor timers, but as we basically 1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1006 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011#endif
1012 { 1545 {
1013 rt_now = ev_time (); 1546 /* update time to cancel out callback processing overhead */
1014 mn_now = rt_now; 1547 time_update (EV_A_ 1e100);
1015 }
1016 1548
1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.;
1019 else
1020 {
1021 block = MAX_BLOCKTIME; 1549 waittime = MAX_BLOCKTIME;
1022 1550
1023 if (timercnt) 1551 if (timercnt)
1024 { 1552 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1026 if (block > to) block = to; 1554 if (waittime > to) waittime = to;
1027 } 1555 }
1028 1556
1557#if EV_PERIODIC_ENABLE
1029 if (periodiccnt) 1558 if (periodiccnt)
1030 { 1559 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1032 if (block > to) block = to; 1561 if (waittime > to) waittime = to;
1033 } 1562 }
1563#endif
1034 1564
1035 if (block < 0.) block = 0.; 1565 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime;
1567
1568 sleeptime = waittime - backend_fudge;
1569
1570 if (expect_true (sleeptime > io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 {
1575 ev_sleep (sleeptime);
1576 waittime -= sleeptime;
1577 }
1036 } 1578 }
1037 1579
1038 method_poll (EV_A_ block); 1580 ++loop_count;
1581 backend_poll (EV_A_ waittime);
1039 1582
1040 /* update rt_now, do magic */ 1583 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1584 time_update (EV_A_ waittime + sleeptime);
1585 }
1042 1586
1043 /* queue pending timers and reschedule them */ 1587 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1588 timers_reify (EV_A); /* relative timers called last */
1589#if EV_PERIODIC_ENABLE
1045 periodics_reify (EV_A); /* absolute timers called first */ 1590 periodics_reify (EV_A); /* absolute timers called first */
1591#endif
1046 1592
1593#if EV_IDLE_ENABLE
1047 /* queue idle watchers unless io or timers are pending */ 1594 /* queue idle watchers unless other events are pending */
1048 if (!pendingcnt) 1595 idle_reify (EV_A);
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1596#endif
1050 1597
1051 /* queue check watchers, to be executed first */ 1598 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1599 if (expect_false (checkcnt))
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054 1601
1055 call_pending (EV_A); 1602 call_pending (EV_A);
1603
1056 } 1604 }
1057 while (activecnt && !loop_done); 1605 while (expect_true (activecnt && !loop_done));
1058 1606
1059 if (loop_done != 2) 1607 if (loop_done == EVUNLOOP_ONE)
1060 loop_done = 0; 1608 loop_done = EVUNLOOP_CANCEL;
1061} 1609}
1062 1610
1063void 1611void
1064ev_unloop (EV_P_ int how) 1612ev_unloop (EV_P_ int how)
1065{ 1613{
1066 loop_done = how; 1614 loop_done = how;
1067} 1615}
1068 1616
1069/*****************************************************************************/ 1617/*****************************************************************************/
1070 1618
1071inline void 1619void inline_size
1072wlist_add (WL *head, WL elem) 1620wlist_add (WL *head, WL elem)
1073{ 1621{
1074 elem->next = *head; 1622 elem->next = *head;
1075 *head = elem; 1623 *head = elem;
1076} 1624}
1077 1625
1078inline void 1626void inline_size
1079wlist_del (WL *head, WL elem) 1627wlist_del (WL *head, WL elem)
1080{ 1628{
1081 while (*head) 1629 while (*head)
1082 { 1630 {
1083 if (*head == elem) 1631 if (*head == elem)
1088 1636
1089 head = &(*head)->next; 1637 head = &(*head)->next;
1090 } 1638 }
1091} 1639}
1092 1640
1093inline void 1641void inline_speed
1094ev_clear_pending (EV_P_ W w) 1642clear_pending (EV_P_ W w)
1095{ 1643{
1096 if (w->pending) 1644 if (w->pending)
1097 { 1645 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1646 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1099 w->pending = 0; 1647 w->pending = 0;
1100 } 1648 }
1101} 1649}
1102 1650
1103inline void 1651int
1652ev_clear_pending (EV_P_ void *w)
1653{
1654 W w_ = (W)w;
1655 int pending = w_->pending;
1656
1657 if (expect_true (pending))
1658 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1660 w_->pending = 0;
1661 p->w = 0;
1662 return p->events;
1663 }
1664 else
1665 return 0;
1666}
1667
1668void inline_size
1669pri_adjust (EV_P_ W w)
1670{
1671 int pri = w->priority;
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri;
1675}
1676
1677void inline_speed
1104ev_start (EV_P_ W w, int active) 1678ev_start (EV_P_ W w, int active)
1105{ 1679{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1680 pri_adjust (EV_A_ w);
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
1109 w->active = active; 1681 w->active = active;
1110 ev_ref (EV_A); 1682 ev_ref (EV_A);
1111} 1683}
1112 1684
1113inline void 1685void inline_size
1114ev_stop (EV_P_ W w) 1686ev_stop (EV_P_ W w)
1115{ 1687{
1116 ev_unref (EV_A); 1688 ev_unref (EV_A);
1117 w->active = 0; 1689 w->active = 0;
1118} 1690}
1119 1691
1120/*****************************************************************************/ 1692/*****************************************************************************/
1121 1693
1122void 1694void noinline
1123ev_io_start (EV_P_ struct ev_io *w) 1695ev_io_start (EV_P_ ev_io *w)
1124{ 1696{
1125 int fd = w->fd; 1697 int fd = w->fd;
1126 1698
1127 if (ev_is_active (w)) 1699 if (expect_false (ev_is_active (w)))
1128 return; 1700 return;
1129 1701
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1702 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1703
1132 ev_start (EV_A_ (W)w, 1); 1704 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1706 wlist_add (&anfds[fd].head, (WL)w);
1135 1707
1136 fd_change (EV_A_ fd); 1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET;
1137} 1710}
1138 1711
1139void 1712void noinline
1140ev_io_stop (EV_P_ struct ev_io *w) 1713ev_io_stop (EV_P_ ev_io *w)
1141{ 1714{
1142 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1716 if (expect_false (!ev_is_active (w)))
1144 return; 1717 return;
1145 1718
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1720
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1721 wlist_del (&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1722 ev_stop (EV_A_ (W)w);
1148 1723
1149 fd_change (EV_A_ w->fd); 1724 fd_change (EV_A_ w->fd, 1);
1150} 1725}
1151 1726
1152void 1727void noinline
1153ev_timer_start (EV_P_ struct ev_timer *w) 1728ev_timer_start (EV_P_ ev_timer *w)
1154{ 1729{
1155 if (ev_is_active (w)) 1730 if (expect_false (ev_is_active (w)))
1156 return; 1731 return;
1157 1732
1158 ((WT)w)->at += mn_now; 1733 ((WT)w)->at += mn_now;
1159 1734
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1736
1162 ev_start (EV_A_ (W)w, ++timercnt); 1737 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1164 timers [timercnt - 1] = w; 1739 timers [timercnt - 1] = (WT)w;
1165 upheap ((WT *)timers, timercnt - 1); 1740 upheap (timers, timercnt - 1);
1166 1741
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1168} 1743}
1169 1744
1170void 1745void noinline
1171ev_timer_stop (EV_P_ struct ev_timer *w) 1746ev_timer_stop (EV_P_ ev_timer *w)
1172{ 1747{
1173 ev_clear_pending (EV_A_ (W)w); 1748 clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w)) 1749 if (expect_false (!ev_is_active (w)))
1175 return; 1750 return;
1176 1751
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1178 1753
1179 if (((W)w)->active < timercnt--) 1754 {
1755 int active = ((W)w)->active;
1756
1757 if (expect_true (--active < --timercnt))
1180 { 1758 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1759 timers [active] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1760 adjustheap (timers, timercnt, active);
1183 } 1761 }
1762 }
1184 1763
1185 ((WT)w)->at = w->repeat; 1764 ((WT)w)->at -= mn_now;
1186 1765
1187 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1188} 1767}
1189 1768
1190void 1769void noinline
1191ev_timer_again (EV_P_ struct ev_timer *w) 1770ev_timer_again (EV_P_ ev_timer *w)
1192{ 1771{
1193 if (ev_is_active (w)) 1772 if (ev_is_active (w))
1194 { 1773 {
1195 if (w->repeat) 1774 if (w->repeat)
1196 { 1775 {
1197 ((WT)w)->at = mn_now + w->repeat; 1776 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1777 adjustheap (timers, timercnt, ((W)w)->active - 1);
1199 } 1778 }
1200 else 1779 else
1201 ev_timer_stop (EV_A_ w); 1780 ev_timer_stop (EV_A_ w);
1202 } 1781 }
1203 else if (w->repeat) 1782 else if (w->repeat)
1783 {
1784 w->at = w->repeat;
1204 ev_timer_start (EV_A_ w); 1785 ev_timer_start (EV_A_ w);
1786 }
1205} 1787}
1206 1788
1207void 1789#if EV_PERIODIC_ENABLE
1790void noinline
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1791ev_periodic_start (EV_P_ ev_periodic *w)
1209{ 1792{
1210 if (ev_is_active (w)) 1793 if (expect_false (ev_is_active (w)))
1211 return; 1794 return;
1212 1795
1796 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval)
1799 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1801 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 }
1804 else
1805 ((WT)w)->at = w->offset;
1218 1806
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1807 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 1809 periodics [periodiccnt - 1] = (WT)w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1810 upheap (periodics, periodiccnt - 1);
1223 1811
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1225} 1813}
1226 1814
1227void 1815void noinline
1228ev_periodic_stop (EV_P_ struct ev_periodic *w) 1816ev_periodic_stop (EV_P_ ev_periodic *w)
1229{ 1817{
1230 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w)) 1819 if (expect_false (!ev_is_active (w)))
1232 return; 1820 return;
1233 1821
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1235 1823
1236 if (((W)w)->active < periodiccnt--) 1824 {
1825 int active = ((W)w)->active;
1826
1827 if (expect_true (--active < --periodiccnt))
1237 { 1828 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1829 periodics [active] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1830 adjustheap (periodics, periodiccnt, active);
1240 } 1831 }
1832 }
1241 1833
1242 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1243} 1835}
1244 1836
1245void 1837void noinline
1246ev_idle_start (EV_P_ struct ev_idle *w) 1838ev_periodic_again (EV_P_ ev_periodic *w)
1247{ 1839{
1248 if (ev_is_active (w)) 1840 /* TODO: use adjustheap and recalculation */
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 1841 ev_periodic_stop (EV_A_ w);
1842 ev_periodic_start (EV_A_ w);
1265} 1843}
1266 1844#endif
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310 1845
1311#ifndef SA_RESTART 1846#ifndef SA_RESTART
1312# define SA_RESTART 0 1847# define SA_RESTART 0
1313#endif 1848#endif
1314 1849
1315void 1850void noinline
1316ev_signal_start (EV_P_ struct ev_signal *w) 1851ev_signal_start (EV_P_ ev_signal *w)
1317{ 1852{
1318#if EV_MULTIPLICITY 1853#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1320#endif 1855#endif
1321 if (ev_is_active (w)) 1856 if (expect_false (ev_is_active (w)))
1322 return; 1857 return;
1323 1858
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1860
1861 {
1862#ifndef _WIN32
1863 sigset_t full, prev;
1864 sigfillset (&full);
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1869
1870#ifndef _WIN32
1871 sigprocmask (SIG_SETMASK, &prev, 0);
1872#endif
1873 }
1874
1326 ev_start (EV_A_ (W)w, 1); 1875 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1876 wlist_add (&signals [w->signum - 1].head, (WL)w);
1329 1877
1330 if (!((WL)w)->next) 1878 if (!((WL)w)->next)
1331 { 1879 {
1332#if WIN32 1880#if _WIN32
1333 signal (w->signum, sighandler); 1881 signal (w->signum, sighandler);
1334#else 1882#else
1335 struct sigaction sa; 1883 struct sigaction sa;
1336 sa.sa_handler = sighandler; 1884 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask); 1885 sigfillset (&sa.sa_mask);
1339 sigaction (w->signum, &sa, 0); 1887 sigaction (w->signum, &sa, 0);
1340#endif 1888#endif
1341 } 1889 }
1342} 1890}
1343 1891
1344void 1892void noinline
1345ev_signal_stop (EV_P_ struct ev_signal *w) 1893ev_signal_stop (EV_P_ ev_signal *w)
1346{ 1894{
1347 ev_clear_pending (EV_A_ (W)w); 1895 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1896 if (expect_false (!ev_is_active (w)))
1349 return; 1897 return;
1350 1898
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1899 wlist_del (&signals [w->signum - 1].head, (WL)w);
1352 ev_stop (EV_A_ (W)w); 1900 ev_stop (EV_A_ (W)w);
1353 1901
1354 if (!signals [w->signum - 1].head) 1902 if (!signals [w->signum - 1].head)
1355 signal (w->signum, SIG_DFL); 1903 signal (w->signum, SIG_DFL);
1356} 1904}
1357 1905
1358void 1906void
1359ev_child_start (EV_P_ struct ev_child *w) 1907ev_child_start (EV_P_ ev_child *w)
1360{ 1908{
1361#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1363#endif 1911#endif
1364 if (ev_is_active (w)) 1912 if (expect_false (ev_is_active (w)))
1365 return; 1913 return;
1366 1914
1367 ev_start (EV_A_ (W)w, 1); 1915 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1369} 1917}
1370 1918
1371void 1919void
1372ev_child_stop (EV_P_ struct ev_child *w) 1920ev_child_stop (EV_P_ ev_child *w)
1373{ 1921{
1374 ev_clear_pending (EV_A_ (W)w); 1922 clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1923 if (expect_false (!ev_is_active (w)))
1376 return; 1924 return;
1377 1925
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1380} 1928}
1381 1929
1930#if EV_STAT_ENABLE
1931
1932# ifdef _WIN32
1933# undef lstat
1934# define lstat(a,b) _stati64 (a,b)
1935# endif
1936
1937#define DEF_STAT_INTERVAL 5.0074891
1938#define MIN_STAT_INTERVAL 0.1074891
1939
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941
1942#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192
1944
1945static void noinline
1946infy_add (EV_P_ ev_stat *w)
1947{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949
1950 if (w->wd < 0)
1951 {
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953
1954 /* monitor some parent directory for speedup hints */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 {
1957 char path [4096];
1958 strcpy (path, w->path);
1959
1960 do
1961 {
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964
1965 char *pend = strrchr (path, '/');
1966
1967 if (!pend)
1968 break; /* whoops, no '/', complain to your admin */
1969
1970 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 }
1975 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978
1979 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1981}
1982
1983static void noinline
1984infy_del (EV_P_ ev_stat *w)
1985{
1986 int slot;
1987 int wd = w->wd;
1988
1989 if (wd < 0)
1990 return;
1991
1992 w->wd = -2;
1993 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1994 wlist_del (&fs_hash [slot].head, (WL)w);
1995
1996 /* remove this watcher, if others are watching it, they will rearm */
1997 inotify_rm_watch (fs_fd, wd);
1998}
1999
2000static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{
2003 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2006 infy_wd (EV_A_ slot, wd, ev);
2007 else
2008 {
2009 WL w_;
2010
2011 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2012 {
2013 ev_stat *w = (ev_stat *)w_;
2014 w_ = w_->next; /* lets us remove this watcher and all before it */
2015
2016 if (w->wd == wd || wd == -1)
2017 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 {
2020 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */
2022 }
2023
2024 stat_timer_cb (EV_A_ &w->timer, 0);
2025 }
2026 }
2027 }
2028}
2029
2030static void
2031infy_cb (EV_P_ ev_io *w, int revents)
2032{
2033 char buf [EV_INOTIFY_BUFSIZE];
2034 struct inotify_event *ev = (struct inotify_event *)buf;
2035 int ofs;
2036 int len = read (fs_fd, buf, sizeof (buf));
2037
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2040}
2041
2042void inline_size
2043infy_init (EV_P)
2044{
2045 if (fs_fd != -2)
2046 return;
2047
2048 fs_fd = inotify_init ();
2049
2050 if (fs_fd >= 0)
2051 {
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w);
2055 }
2056}
2057
2058void inline_size
2059infy_fork (EV_P)
2060{
2061 int slot;
2062
2063 if (fs_fd < 0)
2064 return;
2065
2066 close (fs_fd);
2067 fs_fd = inotify_init ();
2068
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2070 {
2071 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0;
2073
2074 while (w_)
2075 {
2076 ev_stat *w = (ev_stat *)w_;
2077 w_ = w_->next; /* lets us add this watcher */
2078
2079 w->wd = -1;
2080
2081 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else
2084 ev_timer_start (EV_A_ &w->timer);
2085 }
2086
2087 }
2088}
2089
2090#endif
2091
2092void
2093ev_stat_stat (EV_P_ ev_stat *w)
2094{
2095 if (lstat (w->path, &w->attr) < 0)
2096 w->attr.st_nlink = 0;
2097 else if (!w->attr.st_nlink)
2098 w->attr.st_nlink = 1;
2099}
2100
2101static void noinline
2102stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2103{
2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2105
2106 /* we copy this here each the time so that */
2107 /* prev has the old value when the callback gets invoked */
2108 w->prev = w->attr;
2109 ev_stat_stat (EV_A_ w);
2110
2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if (
2113 w->prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime
2124 ) {
2125 #if EV_USE_INOTIFY
2126 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */
2129 #endif
2130
2131 ev_feed_event (EV_A_ w, EV_STAT);
2132 }
2133}
2134
2135void
2136ev_stat_start (EV_P_ ev_stat *w)
2137{
2138 if (expect_false (ev_is_active (w)))
2139 return;
2140
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w);
2146
2147 if (w->interval < MIN_STAT_INTERVAL)
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2151 ev_set_priority (&w->timer, ev_priority (w));
2152
2153#if EV_USE_INOTIFY
2154 infy_init (EV_A);
2155
2156 if (fs_fd >= 0)
2157 infy_add (EV_A_ w);
2158 else
2159#endif
2160 ev_timer_start (EV_A_ &w->timer);
2161
2162 ev_start (EV_A_ (W)w, 1);
2163}
2164
2165void
2166ev_stat_stop (EV_P_ ev_stat *w)
2167{
2168 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w)))
2170 return;
2171
2172#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w);
2174#endif
2175 ev_timer_stop (EV_A_ &w->timer);
2176
2177 ev_stop (EV_A_ (W)w);
2178}
2179#endif
2180
2181#if EV_IDLE_ENABLE
2182void
2183ev_idle_start (EV_P_ ev_idle *w)
2184{
2185 if (expect_false (ev_is_active (w)))
2186 return;
2187
2188 pri_adjust (EV_A_ (W)w);
2189
2190 {
2191 int active = ++idlecnt [ABSPRI (w)];
2192
2193 ++idleall;
2194 ev_start (EV_A_ (W)w, active);
2195
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w;
2198 }
2199}
2200
2201void
2202ev_idle_stop (EV_P_ ev_idle *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 {
2209 int active = ((W)w)->active;
2210
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2213
2214 ev_stop (EV_A_ (W)w);
2215 --idleall;
2216 }
2217}
2218#endif
2219
2220void
2221ev_prepare_start (EV_P_ ev_prepare *w)
2222{
2223 if (expect_false (ev_is_active (w)))
2224 return;
2225
2226 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w;
2229}
2230
2231void
2232ev_prepare_stop (EV_P_ ev_prepare *w)
2233{
2234 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w)))
2236 return;
2237
2238 {
2239 int active = ((W)w)->active;
2240 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active;
2242 }
2243
2244 ev_stop (EV_A_ (W)w);
2245}
2246
2247void
2248ev_check_start (EV_P_ ev_check *w)
2249{
2250 if (expect_false (ev_is_active (w)))
2251 return;
2252
2253 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w;
2256}
2257
2258void
2259ev_check_stop (EV_P_ ev_check *w)
2260{
2261 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w)))
2263 return;
2264
2265 {
2266 int active = ((W)w)->active;
2267 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active;
2269 }
2270
2271 ev_stop (EV_A_ (W)w);
2272}
2273
2274#if EV_EMBED_ENABLE
2275void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w)
2277{
2278 ev_loop (w->other, EVLOOP_NONBLOCK);
2279}
2280
2281static void
2282embed_io_cb (EV_P_ ev_io *io, int revents)
2283{
2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2285
2286 if (ev_cb (w))
2287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2288 else
2289 ev_loop (w->other, EVLOOP_NONBLOCK);
2290}
2291
2292static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296
2297 {
2298 struct ev_loop *loop = w->other;
2299
2300 while (fdchangecnt)
2301 {
2302 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 }
2305 }
2306}
2307
2308#if 0
2309static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{
2312 ev_idle_stop (EV_A_ idle);
2313}
2314#endif
2315
2316void
2317ev_embed_start (EV_P_ ev_embed *w)
2318{
2319 if (expect_false (ev_is_active (w)))
2320 return;
2321
2322 {
2323 struct ev_loop *loop = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 }
2327
2328 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io);
2330
2331 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare);
2334
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336
2337 ev_start (EV_A_ (W)w, 1);
2338}
2339
2340void
2341ev_embed_stop (EV_P_ ev_embed *w)
2342{
2343 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w)))
2345 return;
2346
2347 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare);
2349
2350 ev_stop (EV_A_ (W)w);
2351}
2352#endif
2353
2354#if EV_FORK_ENABLE
2355void
2356ev_fork_start (EV_P_ ev_fork *w)
2357{
2358 if (expect_false (ev_is_active (w)))
2359 return;
2360
2361 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w;
2364}
2365
2366void
2367ev_fork_stop (EV_P_ ev_fork *w)
2368{
2369 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w)))
2371 return;
2372
2373 {
2374 int active = ((W)w)->active;
2375 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active;
2377 }
2378
2379 ev_stop (EV_A_ (W)w);
2380}
2381#endif
2382
1382/*****************************************************************************/ 2383/*****************************************************************************/
1383 2384
1384struct ev_once 2385struct ev_once
1385{ 2386{
1386 struct ev_io io; 2387 ev_io io;
1387 struct ev_timer to; 2388 ev_timer to;
1388 void (*cb)(int revents, void *arg); 2389 void (*cb)(int revents, void *arg);
1389 void *arg; 2390 void *arg;
1390}; 2391};
1391 2392
1392static void 2393static void
1395 void (*cb)(int revents, void *arg) = once->cb; 2396 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 2397 void *arg = once->arg;
1397 2398
1398 ev_io_stop (EV_A_ &once->io); 2399 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 2400 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 2401 ev_free (once);
1401 2402
1402 cb (revents, arg); 2403 cb (revents, arg);
1403} 2404}
1404 2405
1405static void 2406static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents) 2407once_cb_io (EV_P_ ev_io *w, int revents)
1407{ 2408{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1409} 2410}
1410 2411
1411static void 2412static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents) 2413once_cb_to (EV_P_ ev_timer *w, int revents)
1413{ 2414{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1415} 2416}
1416 2417
1417void 2418void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 2420{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 2421 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 2422
1422 if (!once) 2423 if (expect_false (!once))
2424 {
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2425 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 2426 return;
1425 { 2427 }
2428
1426 once->cb = cb; 2429 once->cb = cb;
1427 once->arg = arg; 2430 once->arg = arg;
1428 2431
1429 ev_watcher_init (&once->io, once_cb_io); 2432 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 2433 if (fd >= 0)
1431 { 2434 {
1432 ev_io_set (&once->io, fd, events); 2435 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 2436 ev_io_start (EV_A_ &once->io);
1434 } 2437 }
1435 2438
1436 ev_watcher_init (&once->to, once_cb_to); 2439 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 2440 if (timeout >= 0.)
1438 { 2441 {
1439 ev_timer_set (&once->to, timeout, 0.); 2442 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 2443 ev_timer_start (EV_A_ &once->to);
1441 }
1442 } 2444 }
1443} 2445}
1444 2446
2447#if EV_MULTIPLICITY
2448 #include "ev_wrap.h"
2449#endif
2450
2451#ifdef __cplusplus
2452}
2453#endif
2454

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines