ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.201 by root, Thu Dec 27 08:00:18 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif 244#endif
218 245
219/**/ 246/**/
220 247
221/* 248/*
222 * This is used to avoid floating point rounding problems. 249 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 250 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 251 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 252 * errors are against us.
226 * This value is good at least till the year 4000 253 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 254 * Better solutions welcome.
229 */ 255 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 257
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 261
236#if __GNUC__ >= 3 262#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
239#else 265#else
240# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
241# define noinline 267# define noinline
262 288
263typedef ev_watcher *W; 289typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
266 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
268 298
269#ifdef _WIN32 299#ifdef _WIN32
270# include "ev_win32.c" 300# include "ev_win32.c"
271#endif 301#endif
272 302
408{ 438{
409 return ev_rt_now; 439 return ev_rt_now;
410} 440}
411#endif 441#endif
412 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
413int inline_size 470int inline_size
414array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
415{ 472{
416 int ncur = cur + 1; 473 int ncur = cur + 1;
417 474
477 pendings [pri][w_->pending - 1].w = w_; 534 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 535 pendings [pri][w_->pending - 1].events = revents;
479 } 536 }
480} 537}
481 538
482void inline_size 539void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 541{
485 int i; 542 int i;
486 543
487 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
534 { 591 {
535 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
537 ev_io *w; 594 ev_io *w;
538 595
539 int events = 0; 596 unsigned char events = 0;
540 597
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 599 events |= (unsigned char)w->events;
543 600
544#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
545 if (events) 602 if (events)
546 { 603 {
547 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
548 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 611 }
551#endif 612#endif
552 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
553 anfd->reify = 0; 618 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
557 } 624 }
558 625
559 fdchangecnt = 0; 626 fdchangecnt = 0;
560} 627}
561 628
562void inline_size 629void inline_size
563fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
564{ 631{
565 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
569 634
635 if (expect_true (!reify))
636 {
570 ++fdchangecnt; 637 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
573} 641}
574 642
575void inline_speed 643void inline_speed
576fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
577{ 645{
628 696
629 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 698 if (anfds [fd].events)
631 { 699 {
632 anfds [fd].events = 0; 700 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 702 }
635} 703}
636 704
637/*****************************************************************************/ 705/*****************************************************************************/
638 706
639void inline_speed 707void inline_speed
640upheap (WT *heap, int k) 708upheap (WT *heap, int k)
641{ 709{
642 WT w = heap [k]; 710 WT w = heap [k];
643 711
644 while (k && heap [k >> 1]->at > w->at) 712 while (k)
645 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
646 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
648 k >>= 1; 721 k = p;
649 } 722 }
650 723
651 heap [k] = w; 724 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
653
654} 726}
655 727
656void inline_speed 728void inline_speed
657downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
658{ 730{
659 WT w = heap [k]; 731 WT w = heap [k];
660 732
661 while (k < (N >> 1)) 733 for (;;)
662 { 734 {
663 int j = k << 1; 735 int c = (k << 1) + 1;
664 736
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 738 break;
670 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
671 heap [k] = heap [j]; 746 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
673 k = j; 749 k = c;
674 } 750 }
675 751
676 heap [k] = w; 752 heap [k] = w;
677 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
678} 754}
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
786} 862}
787 863
788/*****************************************************************************/ 864/*****************************************************************************/
789 865
790static ev_child *childs [EV_PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
791 867
792#ifndef _WIN32 868#ifndef _WIN32
793 869
794static ev_signal childev; 870static ev_signal childev;
795 871
910} 986}
911 987
912unsigned int 988unsigned int
913ev_embeddable_backends (void) 989ev_embeddable_backends (void)
914{ 990{
915 return EVBACKEND_EPOLL 991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 992
917 | EVBACKEND_PORT; 993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
918} 998}
919 999
920unsigned int 1000unsigned int
921ev_backend (EV_P) 1001ev_backend (EV_P)
922{ 1002{
925 1005
926unsigned int 1006unsigned int
927ev_loop_count (EV_P) 1007ev_loop_count (EV_P)
928{ 1008{
929 return loop_count; 1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
930} 1022}
931 1023
932static void noinline 1024static void noinline
933loop_init (EV_P_ unsigned int flags) 1025loop_init (EV_P_ unsigned int flags)
934{ 1026{
945 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1038 mn_now = get_clock ();
947 now_floor = mn_now; 1039 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
949 1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044
950 /* pid check not overridable via env */ 1045 /* pid check not overridable via env */
951#ifndef _WIN32 1046#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1047 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1048 curpid = getpid ();
954#endif 1049#endif
1022 array_free (pending, [i]); 1117 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1118#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1119 array_free (idle, [i]);
1025#endif 1120#endif
1026 } 1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
1027 1124
1028 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1126 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1127 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1128#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1129 array_free (periodic, EMPTY);
1130#endif
1131#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY);
1033#endif 1133#endif
1034 array_free (prepare, EMPTY); 1134 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1135 array_free (check, EMPTY);
1036 1136
1037 backend = 0; 1137 backend = 0;
1207void inline_size 1307void inline_size
1208timers_reify (EV_P) 1308timers_reify (EV_P)
1209{ 1309{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now) 1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 { 1311 {
1212 ev_timer *w = timers [0]; 1312 ev_timer *w = (ev_timer *)timers [0];
1213 1313
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1314 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1215 1315
1216 /* first reschedule or stop timer */ 1316 /* first reschedule or stop timer */
1217 if (w->repeat) 1317 if (w->repeat)
1218 { 1318 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220 1320
1221 ((WT)w)->at += w->repeat; 1321 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now) 1322 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now; 1323 ((WT)w)->at = mn_now;
1224 1324
1225 downheap ((WT *)timers, timercnt, 0); 1325 downheap (timers, timercnt, 0);
1226 } 1326 }
1227 else 1327 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229 1329
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1235void inline_size 1335void inline_size
1236periodics_reify (EV_P) 1336periodics_reify (EV_P)
1237{ 1337{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 { 1339 {
1240 ev_periodic *w = periodics [0]; 1340 ev_periodic *w = (ev_periodic *)periodics [0];
1241 1341
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243 1343
1244 /* first reschedule or stop timer */ 1344 /* first reschedule or stop timer */
1245 if (w->reschedule_cb) 1345 if (w->reschedule_cb)
1246 { 1346 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0); 1349 downheap (periodics, periodiccnt, 0);
1250 } 1350 }
1251 else if (w->interval) 1351 else if (w->interval)
1252 { 1352 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval; 1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1356 downheap (periodics, periodiccnt, 0);
1256 } 1357 }
1257 else 1358 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1360
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1368 int i;
1268 1369
1269 /* adjust periodics after time jump */ 1370 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1371 for (i = 0; i < periodiccnt; ++i)
1271 { 1372 {
1272 ev_periodic *w = periodics [i]; 1373 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1374
1274 if (w->reschedule_cb) 1375 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1377 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1379 }
1279 1380
1280 /* now rebuild the heap */ 1381 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1382 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1383 downheap (periodics, periodiccnt, i);
1283} 1384}
1284#endif 1385#endif
1285 1386
1286#if EV_IDLE_ENABLE 1387#if EV_IDLE_ENABLE
1287void inline_size 1388void inline_size
1304 } 1405 }
1305 } 1406 }
1306} 1407}
1307#endif 1408#endif
1308 1409
1309int inline_size 1410void inline_speed
1310time_update_monotonic (EV_P) 1411time_update (EV_P_ ev_tstamp max_block)
1311{ 1412{
1413 int i;
1414
1415#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic))
1417 {
1418 ev_tstamp odiff = rtmn_diff;
1419
1312 mn_now = get_clock (); 1420 mn_now = get_clock ();
1313 1421
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1423 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1424 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1425 {
1316 ev_rt_now = rtmn_diff + mn_now; 1426 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1427 return;
1318 } 1428 }
1319 else 1429
1320 {
1321 now_floor = mn_now; 1430 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1431 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1432
1327void inline_size 1433 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1434 * on the choice of "4": one iteration isn't enough,
1329{ 1435 * in case we get preempted during the calls to
1330 int i; 1436 * ev_time and get_clock. a second call is almost guaranteed
1331 1437 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1438 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1439 * in the unlikely event of having been preempted here.
1334 { 1440 */
1335 if (time_update_monotonic (EV_A)) 1441 for (i = 4; --i; )
1336 { 1442 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1443 rtmn_diff = ev_rt_now - mn_now;
1350 1444
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1446 return; /* all is well */
1353 1447
1354 ev_rt_now = ev_time (); 1448 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1449 mn_now = get_clock ();
1356 now_floor = mn_now; 1450 now_floor = mn_now;
1357 } 1451 }
1358 1452
1359# if EV_PERIODIC_ENABLE 1453# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1454 periodics_reschedule (EV_A);
1361# endif 1455# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1458 }
1366 else 1459 else
1367#endif 1460#endif
1368 { 1461 {
1369 ev_rt_now = ev_time (); 1462 ev_rt_now = ev_time ();
1370 1463
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1465 {
1373#if EV_PERIODIC_ENABLE 1466#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1467 periodics_reschedule (EV_A);
1375#endif 1468#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1470 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1472 }
1381 1473
1444 /* update fd-related kernel structures */ 1536 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1537 fd_reify (EV_A);
1446 1538
1447 /* calculate blocking time */ 1539 /* calculate blocking time */
1448 { 1540 {
1449 ev_tstamp block; 1541 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.;
1450 1543
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1545 {
1455 /* update time to cancel out callback processing overhead */ 1546 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1547 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1548
1466 block = MAX_BLOCKTIME; 1549 waittime = MAX_BLOCKTIME;
1467 1550
1468 if (timercnt) 1551 if (timercnt)
1469 { 1552 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1471 if (block > to) block = to; 1554 if (waittime > to) waittime = to;
1472 } 1555 }
1473 1556
1474#if EV_PERIODIC_ENABLE 1557#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1558 if (periodiccnt)
1476 { 1559 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1561 if (waittime > to) waittime = to;
1479 } 1562 }
1480#endif 1563#endif
1481 1564
1482 if (expect_false (block < 0.)) block = 0.; 1565 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime;
1567
1568 sleeptime = waittime - backend_fudge;
1569
1570 if (expect_true (sleeptime > io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 {
1575 ev_sleep (sleeptime);
1576 waittime -= sleeptime;
1577 }
1483 } 1578 }
1484 1579
1485 ++loop_count; 1580 ++loop_count;
1486 backend_poll (EV_A_ block); 1581 backend_poll (EV_A_ waittime);
1582
1583 /* update ev_rt_now, do magic */
1584 time_update (EV_A_ waittime + sleeptime);
1487 } 1585 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1586
1492 /* queue pending timers and reschedule them */ 1587 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1588 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1589#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1590 periodics_reify (EV_A); /* absolute timers called first */
1606 1701
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1702 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1703
1609 ev_start (EV_A_ (W)w, 1); 1704 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1706 wlist_add (&anfds[fd].head, (WL)w);
1612 1707
1613 fd_change (EV_A_ fd); 1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET;
1614} 1710}
1615 1711
1616void noinline 1712void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1713ev_io_stop (EV_P_ ev_io *w)
1618{ 1714{
1620 if (expect_false (!ev_is_active (w))) 1716 if (expect_false (!ev_is_active (w)))
1621 return; 1717 return;
1622 1718
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1720
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1721 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1722 ev_stop (EV_A_ (W)w);
1627 1723
1628 fd_change (EV_A_ w->fd); 1724 fd_change (EV_A_ w->fd, 1);
1629} 1725}
1630 1726
1631void noinline 1727void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 1728ev_timer_start (EV_P_ ev_timer *w)
1633{ 1729{
1637 ((WT)w)->at += mn_now; 1733 ((WT)w)->at += mn_now;
1638 1734
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 1736
1641 ev_start (EV_A_ (W)w, ++timercnt); 1737 ev_start (EV_A_ (W)w, ++timercnt);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1643 timers [timercnt - 1] = w; 1739 timers [timercnt - 1] = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 1740 upheap (timers, timercnt - 1);
1645 1741
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647} 1743}
1648 1744
1649void noinline 1745void noinline
1651{ 1747{
1652 clear_pending (EV_A_ (W)w); 1748 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1749 if (expect_false (!ev_is_active (w)))
1654 return; 1750 return;
1655 1751
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1657 1753
1658 { 1754 {
1659 int active = ((W)w)->active; 1755 int active = ((W)w)->active;
1660 1756
1661 if (expect_true (--active < --timercnt)) 1757 if (expect_true (--active < --timercnt))
1662 { 1758 {
1663 timers [active] = timers [timercnt]; 1759 timers [active] = timers [timercnt];
1664 adjustheap ((WT *)timers, timercnt, active); 1760 adjustheap (timers, timercnt, active);
1665 } 1761 }
1666 } 1762 }
1667 1763
1668 ((WT)w)->at -= mn_now; 1764 ((WT)w)->at -= mn_now;
1669 1765
1676 if (ev_is_active (w)) 1772 if (ev_is_active (w))
1677 { 1773 {
1678 if (w->repeat) 1774 if (w->repeat)
1679 { 1775 {
1680 ((WT)w)->at = mn_now + w->repeat; 1776 ((WT)w)->at = mn_now + w->repeat;
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1777 adjustheap (timers, timercnt, ((W)w)->active - 1);
1682 } 1778 }
1683 else 1779 else
1684 ev_timer_stop (EV_A_ w); 1780 ev_timer_stop (EV_A_ w);
1685 } 1781 }
1686 else if (w->repeat) 1782 else if (w->repeat)
1707 } 1803 }
1708 else 1804 else
1709 ((WT)w)->at = w->offset; 1805 ((WT)w)->at = w->offset;
1710 1806
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 1807 ev_start (EV_A_ (W)w, ++periodiccnt);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 1809 periodics [periodiccnt - 1] = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 1810 upheap (periodics, periodiccnt - 1);
1715 1811
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717} 1813}
1718 1814
1719void noinline 1815void noinline
1721{ 1817{
1722 clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1724 return; 1820 return;
1725 1821
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1727 1823
1728 { 1824 {
1729 int active = ((W)w)->active; 1825 int active = ((W)w)->active;
1730 1826
1731 if (expect_true (--active < --periodiccnt)) 1827 if (expect_true (--active < --periodiccnt))
1732 { 1828 {
1733 periodics [active] = periodics [periodiccnt]; 1829 periodics [active] = periodics [periodiccnt];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 1830 adjustheap (periodics, periodiccnt, active);
1735 } 1831 }
1736 } 1832 }
1737 1833
1738 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1739} 1835}
1760 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1761 return; 1857 return;
1762 1858
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 1860
1861 {
1862#ifndef _WIN32
1863 sigset_t full, prev;
1864 sigfillset (&full);
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1869
1870#ifndef _WIN32
1871 sigprocmask (SIG_SETMASK, &prev, 0);
1872#endif
1873 }
1874
1765 ev_start (EV_A_ (W)w, 1); 1875 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1876 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 1877
1769 if (!((WL)w)->next) 1878 if (!((WL)w)->next)
1770 { 1879 {
1771#if _WIN32 1880#if _WIN32
1772 signal (w->signum, sighandler); 1881 signal (w->signum, sighandler);
1785{ 1894{
1786 clear_pending (EV_A_ (W)w); 1895 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 1896 if (expect_false (!ev_is_active (w)))
1788 return; 1897 return;
1789 1898
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1899 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 1900 ev_stop (EV_A_ (W)w);
1792 1901
1793 if (!signals [w->signum - 1].head) 1902 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 1903 signal (w->signum, SIG_DFL);
1795} 1904}
1802#endif 1911#endif
1803 if (expect_false (ev_is_active (w))) 1912 if (expect_false (ev_is_active (w)))
1804 return; 1913 return;
1805 1914
1806 ev_start (EV_A_ (W)w, 1); 1915 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 1917}
1809 1918
1810void 1919void
1811ev_child_stop (EV_P_ ev_child *w) 1920ev_child_stop (EV_P_ ev_child *w)
1812{ 1921{
1813 clear_pending (EV_A_ (W)w); 1922 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 1923 if (expect_false (!ev_is_active (w)))
1815 return; 1924 return;
1816 1925
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1819} 1928}
1820 1929
1821#if EV_STAT_ENABLE 1930#if EV_STAT_ENABLE
1822 1931
2164 2273
2165#if EV_EMBED_ENABLE 2274#if EV_EMBED_ENABLE
2166void noinline 2275void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2276ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2277{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2278 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2279}
2171 2280
2172static void 2281static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2282embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2283{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2285
2177 if (ev_cb (w)) 2286 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2288 else
2180 ev_embed_sweep (loop, w); 2289 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2290}
2291
2292static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296
2297 {
2298 struct ev_loop *loop = w->other;
2299
2300 while (fdchangecnt)
2301 {
2302 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 }
2305 }
2306}
2307
2308#if 0
2309static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{
2312 ev_idle_stop (EV_A_ idle);
2313}
2314#endif
2182 2315
2183void 2316void
2184ev_embed_start (EV_P_ ev_embed *w) 2317ev_embed_start (EV_P_ ev_embed *w)
2185{ 2318{
2186 if (expect_false (ev_is_active (w))) 2319 if (expect_false (ev_is_active (w)))
2187 return; 2320 return;
2188 2321
2189 { 2322 {
2190 struct ev_loop *loop = w->loop; 2323 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2326 }
2194 2327
2195 ev_set_priority (&w->io, ev_priority (w)); 2328 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2329 ev_io_start (EV_A_ &w->io);
2197 2330
2331 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare);
2334
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336
2198 ev_start (EV_A_ (W)w, 1); 2337 ev_start (EV_A_ (W)w, 1);
2199} 2338}
2200 2339
2201void 2340void
2202ev_embed_stop (EV_P_ ev_embed *w) 2341ev_embed_stop (EV_P_ ev_embed *w)
2204 clear_pending (EV_A_ (W)w); 2343 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2344 if (expect_false (!ev_is_active (w)))
2206 return; 2345 return;
2207 2346
2208 ev_io_stop (EV_A_ &w->io); 2347 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare);
2209 2349
2210 ev_stop (EV_A_ (W)w); 2350 ev_stop (EV_A_ (W)w);
2211} 2351}
2212#endif 2352#endif
2213 2353
2302 ev_timer_set (&once->to, timeout, 0.); 2442 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2443 ev_timer_start (EV_A_ &once->to);
2304 } 2444 }
2305} 2445}
2306 2446
2447#if EV_MULTIPLICITY
2448 #include "ev_wrap.h"
2449#endif
2450
2307#ifdef __cplusplus 2451#ifdef __cplusplus
2308} 2452}
2309#endif 2453#endif
2310 2454

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines