ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.201 by root, Thu Dec 27 08:00:18 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 249
217#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
220#endif 253#endif
241 274
242#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 276# include <winsock.h>
244#endif 277#endif
245 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
246/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
247 303
248/* 304/*
249 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
265#else 321#else
266# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
267# define noinline 323# define noinline
268# if __STDC_VERSION__ < 199901L 324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 325# define inline
270# endif 326# endif
271#endif 327#endif
272 328
273#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
288 344
289typedef ev_watcher *W; 345typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
292 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
293#if EV_USE_MONOTONIC 352#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 354/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 356#endif
298 357
299#ifdef _WIN32 358#ifdef _WIN32
300# include "ev_win32.c" 359# include "ev_win32.c"
301#endif 360#endif
323 perror (msg); 382 perror (msg);
324 abort (); 383 abort ();
325 } 384 }
326} 385}
327 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
328static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 403
330void 404void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 406{
333 alloc = cb; 407 alloc = cb;
334} 408}
335 409
336inline_speed void * 410inline_speed void *
337ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
338{ 412{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
340 414
341 if (!ptr && size) 415 if (!ptr && size)
342 { 416 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 418 abort ();
367 W w; 441 W w;
368 int events; 442 int events;
369} ANPENDING; 443} ANPENDING;
370 444
371#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
372typedef struct 447typedef struct
373{ 448{
374 WL head; 449 WL head;
375} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
376#endif 469#endif
377 470
378#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
379 472
380 struct ev_loop 473 struct ev_loop
451 ts.tv_sec = (time_t)delay; 544 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 546
454 nanosleep (&ts, 0); 547 nanosleep (&ts, 0);
455#elif defined(_WIN32) 548#elif defined(_WIN32)
456 Sleep (delay * 1e3); 549 Sleep ((unsigned long)(delay * 1e3));
457#else 550#else
458 struct timeval tv; 551 struct timeval tv;
459 552
460 tv.tv_sec = (time_t)delay; 553 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 557#endif
465 } 558 }
466} 559}
467 560
468/*****************************************************************************/ 561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 564
470int inline_size 565int inline_size
471array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
472{ 567{
473 int ncur = cur + 1; 568 int ncur = cur + 1;
474 569
475 do 570 do
476 ncur <<= 1; 571 ncur <<= 1;
477 while (cnt > ncur); 572 while (cnt > ncur);
478 573
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 576 {
482 ncur *= elem; 577 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 580 ncur /= elem;
486 } 581 }
487 582
488 return ncur; 583 return ncur;
702 } 797 }
703} 798}
704 799
705/*****************************************************************************/ 800/*****************************************************************************/
706 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
707void inline_speed 822void inline_speed
708upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
709{ 824{
710 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
711 827
712 while (k) 828 for (;;)
713 { 829 {
714 int p = (k - 1) >> 1; 830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 833
716 if (heap [p]->at <= w->at) 834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
717 break; 850 break;
718 851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
719 heap [k] = heap [p]; 914 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 916 k = p;
722 } 917 }
723 918
724 heap [k] = w; 919 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 921}
755 922
756void inline_size 923void inline_size
757adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
758{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 927 upheap (heap, k);
928 else
760 downheap (heap, N, k); 929 downheap (heap, N, k);
761} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
762 957
763/*****************************************************************************/ 958/*****************************************************************************/
764 959
765typedef struct 960typedef struct
766{ 961{
767 WL head; 962 WL head;
768 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
769} ANSIG; 964} ANSIG;
770 965
771static ANSIG *signals; 966static ANSIG *signals;
772static int signalmax; 967static int signalmax;
773 968
774static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 970
778void inline_size 971void inline_size
779signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
780{ 973{
781 while (count--) 974 while (count--)
785 978
786 ++base; 979 ++base;
787 } 980 }
788} 981}
789 982
790static void 983/*****************************************************************************/
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 984
841void inline_speed 985void inline_speed
842fd_intern (int fd) 986fd_intern (int fd)
843{ 987{
844#ifdef _WIN32 988#ifdef _WIN32
849 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 994#endif
851} 995}
852 996
853static void noinline 997static void noinline
854siginit (EV_P) 998evpipe_init (EV_P)
855{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
856 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
858 1019
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
862} 1088}
863 1089
864/*****************************************************************************/ 1090/*****************************************************************************/
865 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
866static WL childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
867 1130
868#ifndef _WIN32 1131#ifndef _WIN32
869 1132
870static ev_signal childev; 1133static ev_signal childev;
871 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
872void inline_speed 1139void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
874{ 1141{
875 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1144
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
878 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
879 { 1149 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1151 w->rpid = pid;
882 w->rstatus = status; 1152 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1154 }
1155 }
885} 1156}
886 1157
887#ifndef WCONTINUED 1158#ifndef WCONTINUED
888# define WCONTINUED 0 1159# define WCONTINUED 0
889#endif 1160#endif
898 if (!WCONTINUED 1169 if (!WCONTINUED
899 || errno != EINVAL 1170 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1172 return;
902 1173
903 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1177
907 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1181}
911 1182
912#endif 1183#endif
913 1184
914/*****************************************************************************/ 1185/*****************************************************************************/
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1304 have_monotonic = 1;
1034 } 1305 }
1035#endif 1306#endif
1036 1307
1037 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1309 mn_now = get_clock ();
1039 now_floor = mn_now; 1310 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1041 1312
1042 io_blocktime = 0.; 1313 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1044 1321
1045 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
1046#ifndef _WIN32 1323#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1325 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1329 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1332
1056 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1335
1065#if EV_USE_PORT 1336#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1338#endif
1068#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
1076#endif 1347#endif
1077#if EV_USE_SELECT 1348#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1350#endif
1080 1351
1081 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
1083 } 1354 }
1084} 1355}
1085 1356
1086static void noinline 1357static void noinline
1087loop_destroy (EV_P) 1358loop_destroy (EV_P)
1088{ 1359{
1089 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1090 1378
1091#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
1093 close (fs_fd); 1381 close (fs_fd);
1094#endif 1382#endif
1131#if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1420 array_free (fork, EMPTY);
1133#endif 1421#endif
1134 array_free (prepare, EMPTY); 1422 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1136 1427
1137 backend = 0; 1428 backend = 0;
1138} 1429}
1139 1430
1431#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1141 1434
1142void inline_size 1435void inline_size
1143loop_fork (EV_P) 1436loop_fork (EV_P)
1144{ 1437{
1145#if EV_USE_PORT 1438#if EV_USE_PORT
1153#endif 1446#endif
1154#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1448 infy_fork (EV_A);
1156#endif 1449#endif
1157 1450
1158 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1159 { 1452 {
1160 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1161 1459
1162 ev_ref (EV_A); 1460 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1164 close (sigpipe [0]); 1470 close (evpipe [0]);
1165 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1166 1473
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1171 } 1477 }
1172 1478
1173 postfork = 0; 1479 postfork = 0;
1174} 1480}
1175 1481
1197} 1503}
1198 1504
1199void 1505void
1200ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1201{ 1507{
1202 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1203} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1204 1543
1205#endif 1544#endif
1206 1545
1207#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1208struct ev_loop * 1547struct ev_loop *
1210#else 1549#else
1211int 1550int
1212ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
1213#endif 1552#endif
1214{ 1553{
1215 if (sigpipe [0] == sigpipe [1])
1216 if (pipe (sigpipe))
1217 return 0;
1218
1219 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1220 { 1555 {
1221#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1223#else 1558#else
1226 1561
1227 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1228 1563
1229 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1230 { 1565 {
1231 siginit (EV_A);
1232
1233#ifndef _WIN32 1566#ifndef _WIN32
1234 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1235 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1236 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1237 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1254#ifndef _WIN32 1587#ifndef _WIN32
1255 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1256 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1257#endif 1590#endif
1258 1591
1259 ev_ref (EV_A); /* signal watcher */
1260 ev_io_stop (EV_A_ &sigev);
1261
1262 close (sigpipe [0]); sigpipe [0] = 0;
1263 close (sigpipe [1]); sigpipe [1] = 0;
1264
1265 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1266} 1593}
1267 1594
1268void 1595void
1269ev_default_fork (void) 1596ev_default_fork (void)
1271#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1272 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1273#endif 1600#endif
1274 1601
1275 if (backend) 1602 if (backend)
1276 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1277} 1604}
1278 1605
1279/*****************************************************************************/ 1606/*****************************************************************************/
1280 1607
1281void 1608void
1286 1613
1287void inline_speed 1614void inline_speed
1288call_pending (EV_P) 1615call_pending (EV_P)
1289{ 1616{
1290 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1291 1620
1292 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1293 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1294 { 1623 {
1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1300 1629
1301 p->w->pending = 0; 1630 p->w->pending = 0;
1302 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1303 } 1632 }
1304 } 1633 }
1305}
1306 1634
1307void inline_size 1635 EV_FREQUENT_CHECK;
1308timers_reify (EV_P)
1309{
1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1311 {
1312 ev_timer *w = (ev_timer *)timers [0];
1313
1314 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1315
1316 /* first reschedule or stop timer */
1317 if (w->repeat)
1318 {
1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
1325 downheap (timers, timercnt, 0);
1326 }
1327 else
1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1329
1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1331 }
1332} 1636}
1333
1334#if EV_PERIODIC_ENABLE
1335void inline_size
1336periodics_reify (EV_P)
1337{
1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1339 {
1340 ev_periodic *w = (ev_periodic *)periodics [0];
1341
1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1343
1344 /* first reschedule or stop timer */
1345 if (w->reschedule_cb)
1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1356 downheap (periodics, periodiccnt, 0);
1357 }
1358 else
1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1360
1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1362 }
1363}
1364
1365static void noinline
1366periodics_reschedule (EV_P)
1367{
1368 int i;
1369
1370 /* adjust periodics after time jump */
1371 for (i = 0; i < periodiccnt; ++i)
1372 {
1373 ev_periodic *w = (ev_periodic *)periodics [i];
1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386 1637
1387#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1388void inline_size 1639void inline_size
1389idle_reify (EV_P) 1640idle_reify (EV_P)
1390{ 1641{
1402 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1403 break; 1654 break;
1404 } 1655 }
1405 } 1656 }
1406 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1407} 1760}
1408#endif 1761#endif
1409 1762
1410void inline_speed 1763void inline_speed
1411time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1440 */ 1793 */
1441 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1442 { 1795 {
1443 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1444 1797
1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1446 return; /* all is well */ 1799 return; /* all is well */
1447 1800
1448 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1449 mn_now = get_clock (); 1802 mn_now = get_clock ();
1450 now_floor = mn_now; 1803 now_floor = mn_now;
1466#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1467 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1468#endif 1821#endif
1469 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1471 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1472 } 1829 }
1473 1830
1474 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1475 } 1832 }
1476} 1833}
1490static int loop_done; 1847static int loop_done;
1491 1848
1492void 1849void
1493ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1494{ 1851{
1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1496 ? EVUNLOOP_ONE
1497 : EVUNLOOP_CANCEL;
1498 1853
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1500 1855
1501 do 1856 do
1502 { 1857 {
1548 1903
1549 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1550 1905
1551 if (timercnt) 1906 if (timercnt)
1552 { 1907 {
1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1554 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1555 } 1910 }
1556 1911
1557#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1558 if (periodiccnt) 1913 if (periodiccnt)
1559 { 1914 {
1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1561 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1562 } 1917 }
1563#endif 1918#endif
1564 1919
1565 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1598 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1599 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1601 1956
1602 call_pending (EV_A); 1957 call_pending (EV_A);
1603
1604 } 1958 }
1605 while (expect_true (activecnt && !loop_done)); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1606 1964
1607 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1608 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1609} 1967}
1610 1968
1699 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1700 return; 2058 return;
1701 2059
1702 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1703 2061
2062 EV_FREQUENT_CHECK;
2063
1704 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1706 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1707 2067
1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1710} 2072}
1711 2073
1712void noinline 2074void noinline
1713ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1714{ 2076{
1715 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1717 return; 2079 return;
1718 2080
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1720 2084
1721 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1722 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1723 2087
1724 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1725} 2091}
1726 2092
1727void noinline 2093void noinline
1728ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1729{ 2095{
1730 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1731 return; 2097 return;
1732 2098
1733 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1734 2100
1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1736 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1737 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1739 timers [timercnt - 1] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1740 upheap (timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1741 2111
2112 EV_FREQUENT_CHECK;
2113
1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1743} 2115}
1744 2116
1745void noinline 2117void noinline
1746ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1747{ 2119{
1748 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1750 return; 2122 return;
1751 2123
1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2124 EV_FREQUENT_CHECK;
1753 2125
1754 { 2126 {
1755 int active = ((W)w)->active; 2127 int active = ev_active (w);
1756 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1757 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1758 { 2134 {
1759 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1760 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1761 } 2137 }
1762 } 2138 }
1763 2139
1764 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1765 2143
1766 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1767} 2145}
1768 2146
1769void noinline 2147void noinline
1770ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1771{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1772 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1773 { 2153 {
1774 if (w->repeat) 2154 if (w->repeat)
1775 { 2155 {
1776 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1777 adjustheap (timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1778 } 2159 }
1779 else 2160 else
1780 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1781 } 2162 }
1782 else if (w->repeat) 2163 else if (w->repeat)
1783 { 2164 {
1784 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1785 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1786 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1787} 2170}
1788 2171
1789#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1790void noinline 2173void noinline
1791ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1792{ 2175{
1793 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1794 return; 2177 return;
1795 2178
1796 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval) 2181 else if (w->interval)
1799 { 2182 {
1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1801 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 } 2186 }
1804 else 2187 else
1805 ((WT)w)->at = w->offset; 2188 ev_at (w) = w->offset;
1806 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1807 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1809 periodics [periodiccnt - 1] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1810 upheap (periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1811 2198
2199 EV_FREQUENT_CHECK;
2200
1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1813} 2202}
1814 2203
1815void noinline 2204void noinline
1816ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1817{ 2206{
1818 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1820 return; 2209 return;
1821 2210
1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2211 EV_FREQUENT_CHECK;
1823 2212
1824 { 2213 {
1825 int active = ((W)w)->active; 2214 int active = ev_active (w);
1826 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1827 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1828 { 2221 {
1829 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1830 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1831 } 2224 }
1832 } 2225 }
1833 2226
2227 EV_FREQUENT_CHECK;
2228
1834 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1835} 2230}
1836 2231
1837void noinline 2232void noinline
1838ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1855#endif 2250#endif
1856 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1857 return; 2252 return;
1858 2253
1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
1860 2259
1861 { 2260 {
1862#ifndef _WIN32 2261#ifndef _WIN32
1863 sigset_t full, prev; 2262 sigset_t full, prev;
1864 sigfillset (&full); 2263 sigfillset (&full);
1876 wlist_add (&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1877 2276
1878 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1879 { 2278 {
1880#if _WIN32 2279#if _WIN32
1881 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1882#else 2281#else
1883 struct sigaction sa; 2282 struct sigaction sa;
1884 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1885 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1886 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1887 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1888#endif 2287#endif
1889 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
1890} 2291}
1891 2292
1892void noinline 2293void noinline
1893ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1894{ 2295{
1895 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1896 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1897 return; 2298 return;
1898 2299
2300 EV_FREQUENT_CHECK;
2301
1899 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1900 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1901 2304
1902 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1903 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1904} 2309}
1905 2310
1906void 2311void
1907ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1908{ 2313{
1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1911#endif 2316#endif
1912 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1913 return; 2318 return;
1914 2319
2320 EV_FREQUENT_CHECK;
2321
1915 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1917} 2326}
1918 2327
1919void 2328void
1920ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1921{ 2330{
1922 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1923 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1924 return; 2333 return;
1925 2334
2335 EV_FREQUENT_CHECK;
2336
1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1927 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1928} 2341}
1929 2342
1930#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1931 2344
1932# ifdef _WIN32 2345# ifdef _WIN32
1950 if (w->wd < 0) 2363 if (w->wd < 0)
1951 { 2364 {
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953 2366
1954 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 { 2371 {
1957 char path [4096]; 2372 char path [4096];
1958 strcpy (path, w->path); 2373 strcpy (path, w->path);
1959 2374
2158 else 2573 else
2159#endif 2574#endif
2160 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2161 2576
2162 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2163} 2580}
2164 2581
2165void 2582void
2166ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2167{ 2584{
2168 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2170 return; 2587 return;
2171 2588
2589 EV_FREQUENT_CHECK;
2590
2172#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2174#endif 2593#endif
2175 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2176 2595
2177 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2178} 2599}
2179#endif 2600#endif
2180 2601
2181#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2182void 2603void
2184{ 2605{
2185 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2186 return; 2607 return;
2187 2608
2188 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2189 2612
2190 { 2613 {
2191 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2192 2615
2193 ++idleall; 2616 ++idleall;
2194 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2195 2618
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2198 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2199} 2624}
2200 2625
2201void 2626void
2202ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2203{ 2628{
2204 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2206 return; 2631 return;
2207 2632
2633 EV_FREQUENT_CHECK;
2634
2208 { 2635 {
2209 int active = ((W)w)->active; 2636 int active = ev_active (w);
2210 2637
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2213 2640
2214 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2215 --idleall; 2642 --idleall;
2216 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2217} 2646}
2218#endif 2647#endif
2219 2648
2220void 2649void
2221ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2222{ 2651{
2223 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2224 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2225 2656
2226 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2229} 2662}
2230 2663
2231void 2664void
2232ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2233{ 2666{
2234 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2236 return; 2669 return;
2237 2670
2671 EV_FREQUENT_CHECK;
2672
2238 { 2673 {
2239 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2240 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2242 } 2678 }
2243 2679
2244 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2245} 2683}
2246 2684
2247void 2685void
2248ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2249{ 2687{
2250 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2251 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2252 2692
2253 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2256} 2698}
2257 2699
2258void 2700void
2259ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2260{ 2702{
2261 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2263 return; 2705 return;
2264 2706
2707 EV_FREQUENT_CHECK;
2708
2265 { 2709 {
2266 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2267 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2269 } 2714 }
2270 2715
2271 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2272} 2719}
2273 2720
2274#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2275void noinline 2722void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2323 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 } 2773 }
2327 2774
2775 EV_FREQUENT_CHECK;
2776
2328 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2330 2779
2331 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2334 2783
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336 2785
2337 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2338} 2789}
2339 2790
2340void 2791void
2341ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2342{ 2793{
2343 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2345 return; 2796 return;
2346 2797
2798 EV_FREQUENT_CHECK;
2799
2347 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2349 2802
2350 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2351} 2806}
2352#endif 2807#endif
2353 2808
2354#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2355void 2810void
2356ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2357{ 2812{
2358 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2359 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2360 2817
2361 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2364} 2823}
2365 2824
2366void 2825void
2367ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2368{ 2827{
2369 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2371 return; 2830 return;
2372 2831
2832 EV_FREQUENT_CHECK;
2833
2373 { 2834 {
2374 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2375 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2377 } 2839 }
2378 2840
2379 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2380} 2891}
2381#endif 2892#endif
2382 2893
2383/*****************************************************************************/ 2894/*****************************************************************************/
2384 2895

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines