ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.201 by root, Thu Dec 27 08:00:18 2007 UTC vs.
Revision 1.373 by root, Sun Feb 20 02:56:23 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
143#endif 186#endif
187
188EV_CPP(extern "C" {)
144 189
145#ifndef _WIN32 190#ifndef _WIN32
146# include <sys/time.h> 191# include <sys/time.h>
147# include <sys/wait.h> 192# include <sys/wait.h>
148# include <unistd.h> 193# include <unistd.h>
149#else 194#else
195# include <io.h>
150# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 197# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
154# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
155#endif 251# endif
156 252#endif
157/**/
158 253
159#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
160# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 264#endif
166 265
167#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
168# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
169#endif 272#endif
170 273
171#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 276#endif
174 277
175#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
176# ifdef _WIN32 279# ifdef _WIN32
177# define EV_USE_POLL 0 280# define EV_USE_POLL 0
178# else 281# else
179# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 283# endif
181#endif 284#endif
182 285
183#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
184# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
185#endif 292#endif
186 293
187#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
189#endif 296#endif
191#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 299# define EV_USE_PORT 0
193#endif 300#endif
194 301
195#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
196# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
197#endif 308#endif
198 309
199#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 321# else
203# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
204# endif 323# endif
205#endif 324#endif
206 325
207#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 329# else
211# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
212# endif 331# endif
213#endif 332#endif
214 333
215/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
216 373
217#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
220#endif 377#endif
228# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
230#endif 387#endif
231 388
232#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 392# include <sys/select.h>
235# endif 393# endif
236#endif 394#endif
237 395
238#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
239# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
240#endif 404#endif
241 405
242#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 407# include <winsock.h>
244#endif 408#endif
245 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
246/**/ 448/**/
247 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
248/* 456/*
249 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 459 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 462
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
261 468
262#if __GNUC__ >= 4 469#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
265#else 472#else
266# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
267# define noinline 474# define noinline
268# if __STDC_VERSION__ < 199901L 475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 476# define inline
270# endif 477# endif
271#endif 478#endif
272 479
273#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 482#define inline_size static inline
276 483
277#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
278# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
279#else 494#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
285 497
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
288 500
289typedef ev_watcher *W; 501typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
292 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
293#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 526#endif
298 527
299#ifdef _WIN32 528#ifdef _WIN32
300# include "ev_win32.c" 529# include "ev_win32.c"
301#endif 530#endif
302 531
303/*****************************************************************************/ 532/*****************************************************************************/
304 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
305static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
306 633
307void 634void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 636{
310 syserr_cb = cb; 637 syserr_cb = cb;
311} 638}
312 639
313static void noinline 640static void noinline
314syserr (const char *msg) 641ev_syserr (const char *msg)
315{ 642{
316 if (!msg) 643 if (!msg)
317 msg = "(libev) system error"; 644 msg = "(libev) system error";
318 645
319 if (syserr_cb) 646 if (syserr_cb)
320 syserr_cb (msg); 647 syserr_cb (msg);
321 else 648 else
322 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
323 perror (msg); 656 perror (msg);
657#endif
324 abort (); 658 abort ();
325 } 659 }
326} 660}
327 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
328static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 682
330void 683void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 685{
333 alloc = cb; 686 alloc = cb;
334} 687}
335 688
336inline_speed void * 689inline_speed void *
337ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
338{ 691{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
340 693
341 if (!ptr && size) 694 if (!ptr && size)
342 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
344 abort (); 701 abort ();
345 } 702 }
346 703
347 return ptr; 704 return ptr;
348} 705}
350#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
352 709
353/*****************************************************************************/ 710/*****************************************************************************/
354 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
355typedef struct 716typedef struct
356{ 717{
357 WL head; 718 WL head;
358 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
360#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 727 SOCKET handle;
362#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
363} ANFD; 732} ANFD;
364 733
734/* stores the pending event set for a given watcher */
365typedef struct 735typedef struct
366{ 736{
367 W w; 737 W w;
368 int events; 738 int events; /* the pending event set for the given watcher */
369} ANPENDING; 739} ANPENDING;
370 740
371#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
372typedef struct 743typedef struct
373{ 744{
374 WL head; 745 WL head;
375} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
376#endif 767#endif
377 768
378#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
379 770
380 struct ev_loop 771 struct ev_loop
399 790
400 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
401 792
402#endif 793#endif
403 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
404/*****************************************************************************/ 807/*****************************************************************************/
405 808
809#ifndef EV_HAVE_EV_TIME
406ev_tstamp 810ev_tstamp
407ev_time (void) 811ev_time (void)
408{ 812{
409#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
410 struct timespec ts; 816 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 819 }
820#endif
821
414 struct timeval tv; 822 struct timeval tv;
415 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 825}
826#endif
419 827
420ev_tstamp inline_size 828inline_size ev_tstamp
421get_clock (void) 829get_clock (void)
422{ 830{
423#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
425 { 833 {
446 if (delay > 0.) 854 if (delay > 0.)
447 { 855 {
448#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
449 struct timespec ts; 857 struct timespec ts;
450 858
451 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
455#elif defined(_WIN32) 861#elif defined(_WIN32)
456 Sleep (delay * 1e3); 862 Sleep ((unsigned long)(delay * 1e3));
457#else 863#else
458 struct timeval tv; 864 struct timeval tv;
459 865
460 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
462 868 /* by older ones */
869 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
464#endif 871#endif
465 } 872 }
466} 873}
467 874
875inline_speed int
876ev_timeout_to_ms (ev_tstamp timeout)
877{
878 int ms = timeout * 1000. + .999999;
879
880 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
881}
882
468/*****************************************************************************/ 883/*****************************************************************************/
469 884
470int inline_size 885#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
886
887/* find a suitable new size for the given array, */
888/* hopefully by rounding to a nice-to-malloc size */
889inline_size int
471array_nextsize (int elem, int cur, int cnt) 890array_nextsize (int elem, int cur, int cnt)
472{ 891{
473 int ncur = cur + 1; 892 int ncur = cur + 1;
474 893
475 do 894 do
476 ncur <<= 1; 895 ncur <<= 1;
477 while (cnt > ncur); 896 while (cnt > ncur);
478 897
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 898 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 899 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 900 {
482 ncur *= elem; 901 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 902 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 903 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 904 ncur /= elem;
486 } 905 }
487 906
488 return ncur; 907 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 911array_realloc (int elem, void *base, int *cur, int cnt)
493{ 912{
494 *cur = array_nextsize (elem, *cur, cnt); 913 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 914 return ev_realloc (base, elem * *cur);
496} 915}
916
917#define array_init_zero(base,count) \
918 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 919
498#define array_needsize(type,base,cur,cnt,init) \ 920#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 921 if (expect_false ((cnt) > (cur))) \
500 { \ 922 { \
501 int ocur_ = (cur); \ 923 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 935 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 936 }
515#endif 937#endif
516 938
517#define array_free(stem, idx) \ 939#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 940 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 941
520/*****************************************************************************/ 942/*****************************************************************************/
943
944/* dummy callback for pending events */
945static void noinline
946pendingcb (EV_P_ ev_prepare *w, int revents)
947{
948}
521 949
522void noinline 950void noinline
523ev_feed_event (EV_P_ void *w, int revents) 951ev_feed_event (EV_P_ void *w, int revents)
524{ 952{
525 W w_ = (W)w; 953 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 962 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 963 pendings [pri][w_->pending - 1].events = revents;
536 } 964 }
537} 965}
538 966
539void inline_speed 967inline_speed void
968feed_reverse (EV_P_ W w)
969{
970 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
971 rfeeds [rfeedcnt++] = w;
972}
973
974inline_size void
975feed_reverse_done (EV_P_ int revents)
976{
977 do
978 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
979 while (rfeedcnt);
980}
981
982inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 983queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 984{
542 int i; 985 int i;
543 986
544 for (i = 0; i < eventcnt; ++i) 987 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 988 ev_feed_event (EV_A_ events [i], type);
546} 989}
547 990
548/*****************************************************************************/ 991/*****************************************************************************/
549 992
550void inline_size 993inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 994fd_event_nocheck (EV_P_ int fd, int revents)
565{ 995{
566 ANFD *anfd = anfds + fd; 996 ANFD *anfd = anfds + fd;
567 ev_io *w; 997 ev_io *w;
568 998
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 999 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1003 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1004 ev_feed_event (EV_A_ (W)w, ev);
575 } 1005 }
576} 1006}
577 1007
1008/* do not submit kernel events for fds that have reify set */
1009/* because that means they changed while we were polling for new events */
1010inline_speed void
1011fd_event (EV_P_ int fd, int revents)
1012{
1013 ANFD *anfd = anfds + fd;
1014
1015 if (expect_true (!anfd->reify))
1016 fd_event_nocheck (EV_A_ fd, revents);
1017}
1018
578void 1019void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1020ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1021{
581 if (fd >= 0 && fd < anfdmax) 1022 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1023 fd_event_nocheck (EV_A_ fd, revents);
583} 1024}
584 1025
585void inline_size 1026/* make sure the external fd watch events are in-sync */
1027/* with the kernel/libev internal state */
1028inline_size void
586fd_reify (EV_P) 1029fd_reify (EV_P)
587{ 1030{
588 int i; 1031 int i;
1032
1033#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1034 for (i = 0; i < fdchangecnt; ++i)
1035 {
1036 int fd = fdchanges [i];
1037 ANFD *anfd = anfds + fd;
1038
1039 if (anfd->reify & EV__IOFDSET)
1040 {
1041 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1042
1043 if (handle != anfd->handle)
1044 {
1045 unsigned long arg;
1046
1047 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1048
1049 /* handle changed, but fd didn't - we need to do it in two steps */
1050 backend_modify (EV_A_ fd, anfd->events, 0);
1051 anfd->events = 0;
1052 anfd->handle = handle;
1053 }
1054 }
1055 }
1056#endif
589 1057
590 for (i = 0; i < fdchangecnt; ++i) 1058 for (i = 0; i < fdchangecnt; ++i)
591 { 1059 {
592 int fd = fdchanges [i]; 1060 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1061 ANFD *anfd = anfds + fd;
594 ev_io *w; 1062 ev_io *w;
595 1063
596 unsigned char events = 0; 1064 unsigned char o_events = anfd->events;
1065 unsigned char o_reify = anfd->reify;
597 1066
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1067 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1068
601#if EV_SELECT_IS_WINSOCKET 1069 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1070 {
604 unsigned long argp; 1071 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1072
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1073 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1074 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1075
609 #endif 1076 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1077 o_reify = EV__IOFDSET; /* actually |= */
611 } 1078 }
612#endif
613 1079
614 { 1080 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1081 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1082 }
625 1083
626 fdchangecnt = 0; 1084 fdchangecnt = 0;
627} 1085}
628 1086
629void inline_size 1087/* something about the given fd changed */
1088inline_size void
630fd_change (EV_P_ int fd, int flags) 1089fd_change (EV_P_ int fd, int flags)
631{ 1090{
632 unsigned char reify = anfds [fd].reify; 1091 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1092 anfds [fd].reify |= flags;
634 1093
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1097 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1098 fdchanges [fdchangecnt - 1] = fd;
640 } 1099 }
641} 1100}
642 1101
643void inline_speed 1102/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1103inline_speed void
644fd_kill (EV_P_ int fd) 1104fd_kill (EV_P_ int fd)
645{ 1105{
646 ev_io *w; 1106 ev_io *w;
647 1107
648 while ((w = (ev_io *)anfds [fd].head)) 1108 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1110 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1111 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1112 }
653} 1113}
654 1114
655int inline_size 1115/* check whether the given fd is actually valid, for error recovery */
1116inline_size int
656fd_valid (int fd) 1117fd_valid (int fd)
657{ 1118{
658#ifdef _WIN32 1119#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1120 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1121#else
661 return fcntl (fd, F_GETFD) != -1; 1122 return fcntl (fd, F_GETFD) != -1;
662#endif 1123#endif
663} 1124}
664 1125
668{ 1129{
669 int fd; 1130 int fd;
670 1131
671 for (fd = 0; fd < anfdmax; ++fd) 1132 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1133 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1134 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1135 fd_kill (EV_A_ fd);
675} 1136}
676 1137
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1138/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1139static void noinline
682 1143
683 for (fd = anfdmax; fd--; ) 1144 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1145 if (anfds [fd].events)
685 { 1146 {
686 fd_kill (EV_A_ fd); 1147 fd_kill (EV_A_ fd);
687 return; 1148 break;
688 } 1149 }
689} 1150}
690 1151
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1152/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1153static void noinline
696 1157
697 for (fd = 0; fd < anfdmax; ++fd) 1158 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1159 if (anfds [fd].events)
699 { 1160 {
700 anfds [fd].events = 0; 1161 anfds [fd].events = 0;
1162 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1163 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1164 }
703} 1165}
704 1166
705/*****************************************************************************/ 1167/* used to prepare libev internal fd's */
706 1168/* this is not fork-safe */
707void inline_speed 1169inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static int sigpipe [2];
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777
778void inline_size
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1170fd_intern (int fd)
843{ 1171{
844#ifdef _WIN32 1172#ifdef _WIN32
845 int arg = 1; 1173 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1174 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 1175#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1176 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1177 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1178#endif
851} 1179}
852 1180
1181/*****************************************************************************/
1182
1183/*
1184 * the heap functions want a real array index. array index 0 is guaranteed to not
1185 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1186 * the branching factor of the d-tree.
1187 */
1188
1189/*
1190 * at the moment we allow libev the luxury of two heaps,
1191 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1192 * which is more cache-efficient.
1193 * the difference is about 5% with 50000+ watchers.
1194 */
1195#if EV_USE_4HEAP
1196
1197#define DHEAP 4
1198#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1199#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1200#define UPHEAP_DONE(p,k) ((p) == (k))
1201
1202/* away from the root */
1203inline_speed void
1204downheap (ANHE *heap, int N, int k)
1205{
1206 ANHE he = heap [k];
1207 ANHE *E = heap + N + HEAP0;
1208
1209 for (;;)
1210 {
1211 ev_tstamp minat;
1212 ANHE *minpos;
1213 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1214
1215 /* find minimum child */
1216 if (expect_true (pos + DHEAP - 1 < E))
1217 {
1218 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1219 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1220 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1221 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1222 }
1223 else if (pos < E)
1224 {
1225 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1226 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1227 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1228 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1229 }
1230 else
1231 break;
1232
1233 if (ANHE_at (he) <= minat)
1234 break;
1235
1236 heap [k] = *minpos;
1237 ev_active (ANHE_w (*minpos)) = k;
1238
1239 k = minpos - heap;
1240 }
1241
1242 heap [k] = he;
1243 ev_active (ANHE_w (he)) = k;
1244}
1245
1246#else /* 4HEAP */
1247
1248#define HEAP0 1
1249#define HPARENT(k) ((k) >> 1)
1250#define UPHEAP_DONE(p,k) (!(p))
1251
1252/* away from the root */
1253inline_speed void
1254downheap (ANHE *heap, int N, int k)
1255{
1256 ANHE he = heap [k];
1257
1258 for (;;)
1259 {
1260 int c = k << 1;
1261
1262 if (c >= N + HEAP0)
1263 break;
1264
1265 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1266 ? 1 : 0;
1267
1268 if (ANHE_at (he) <= ANHE_at (heap [c]))
1269 break;
1270
1271 heap [k] = heap [c];
1272 ev_active (ANHE_w (heap [k])) = k;
1273
1274 k = c;
1275 }
1276
1277 heap [k] = he;
1278 ev_active (ANHE_w (he)) = k;
1279}
1280#endif
1281
1282/* towards the root */
1283inline_speed void
1284upheap (ANHE *heap, int k)
1285{
1286 ANHE he = heap [k];
1287
1288 for (;;)
1289 {
1290 int p = HPARENT (k);
1291
1292 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1293 break;
1294
1295 heap [k] = heap [p];
1296 ev_active (ANHE_w (heap [k])) = k;
1297 k = p;
1298 }
1299
1300 heap [k] = he;
1301 ev_active (ANHE_w (he)) = k;
1302}
1303
1304/* move an element suitably so it is in a correct place */
1305inline_size void
1306adjustheap (ANHE *heap, int N, int k)
1307{
1308 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1309 upheap (heap, k);
1310 else
1311 downheap (heap, N, k);
1312}
1313
1314/* rebuild the heap: this function is used only once and executed rarely */
1315inline_size void
1316reheap (ANHE *heap, int N)
1317{
1318 int i;
1319
1320 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1321 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1322 for (i = 0; i < N; ++i)
1323 upheap (heap, i + HEAP0);
1324}
1325
1326/*****************************************************************************/
1327
1328/* associate signal watchers to a signal signal */
1329typedef struct
1330{
1331 EV_ATOMIC_T pending;
1332#if EV_MULTIPLICITY
1333 EV_P;
1334#endif
1335 WL head;
1336} ANSIG;
1337
1338static ANSIG signals [EV_NSIG - 1];
1339
1340/*****************************************************************************/
1341
1342#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343
853static void noinline 1344static void noinline
854siginit (EV_P) 1345evpipe_init (EV_P)
855{ 1346{
1347 if (!ev_is_active (&pipe_w))
1348 {
1349# if EV_USE_EVENTFD
1350 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1351 if (evfd < 0 && errno == EINVAL)
1352 evfd = eventfd (0, 0);
1353
1354 if (evfd >= 0)
1355 {
1356 evpipe [0] = -1;
1357 fd_intern (evfd); /* doing it twice doesn't hurt */
1358 ev_io_set (&pipe_w, evfd, EV_READ);
1359 }
1360 else
1361# endif
1362 {
1363 while (pipe (evpipe))
1364 ev_syserr ("(libev) error creating signal/async pipe");
1365
856 fd_intern (sigpipe [0]); 1366 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1367 fd_intern (evpipe [1]);
1368 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1369 }
858 1370
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1371 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1372 ev_unref (EV_A); /* watcher should not keep loop alive */
1373 }
1374}
1375
1376inline_size void
1377evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1378{
1379 if (!*flag)
1380 {
1381 int old_errno = errno; /* save errno because write might clobber it */
1382 char dummy;
1383
1384 *flag = 1;
1385
1386#if EV_USE_EVENTFD
1387 if (evfd >= 0)
1388 {
1389 uint64_t counter = 1;
1390 write (evfd, &counter, sizeof (uint64_t));
1391 }
1392 else
1393#endif
1394 /* win32 people keep sending patches that change this write() to send() */
1395 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1396 /* so when you think this write should be a send instead, please find out */
1397 /* where your send() is from - it's definitely not the microsoft send, and */
1398 /* tell me. thank you. */
1399 write (evpipe [1], &dummy, 1);
1400
1401 errno = old_errno;
1402 }
1403}
1404
1405/* called whenever the libev signal pipe */
1406/* got some events (signal, async) */
1407static void
1408pipecb (EV_P_ ev_io *iow, int revents)
1409{
1410 int i;
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 {
1415 uint64_t counter;
1416 read (evfd, &counter, sizeof (uint64_t));
1417 }
1418 else
1419#endif
1420 {
1421 char dummy;
1422 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1423 read (evpipe [0], &dummy, 1);
1424 }
1425
1426#if EV_SIGNAL_ENABLE
1427 if (sig_pending)
1428 {
1429 sig_pending = 0;
1430
1431 for (i = EV_NSIG - 1; i--; )
1432 if (expect_false (signals [i].pending))
1433 ev_feed_signal_event (EV_A_ i + 1);
1434 }
1435#endif
1436
1437#if EV_ASYNC_ENABLE
1438 if (async_pending)
1439 {
1440 async_pending = 0;
1441
1442 for (i = asynccnt; i--; )
1443 if (asyncs [i]->sent)
1444 {
1445 asyncs [i]->sent = 0;
1446 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1447 }
1448 }
1449#endif
862} 1450}
863 1451
864/*****************************************************************************/ 1452/*****************************************************************************/
865 1453
1454void
1455ev_feed_signal (int signum)
1456{
1457#if EV_MULTIPLICITY
1458 EV_P = signals [signum - 1].loop;
1459
1460 if (!EV_A)
1461 return;
1462#endif
1463
1464 signals [signum - 1].pending = 1;
1465 evpipe_write (EV_A_ &sig_pending);
1466}
1467
1468static void
1469ev_sighandler (int signum)
1470{
1471#ifdef _WIN32
1472 signal (signum, ev_sighandler);
1473#endif
1474
1475 ev_feed_signal (signum);
1476}
1477
1478void noinline
1479ev_feed_signal_event (EV_P_ int signum)
1480{
1481 WL w;
1482
1483 if (expect_false (signum <= 0 || signum > EV_NSIG))
1484 return;
1485
1486 --signum;
1487
1488#if EV_MULTIPLICITY
1489 /* it is permissible to try to feed a signal to the wrong loop */
1490 /* or, likely more useful, feeding a signal nobody is waiting for */
1491
1492 if (expect_false (signals [signum].loop != EV_A))
1493 return;
1494#endif
1495
1496 signals [signum].pending = 0;
1497
1498 for (w = signals [signum].head; w; w = w->next)
1499 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1500}
1501
1502#if EV_USE_SIGNALFD
1503static void
1504sigfdcb (EV_P_ ev_io *iow, int revents)
1505{
1506 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1507
1508 for (;;)
1509 {
1510 ssize_t res = read (sigfd, si, sizeof (si));
1511
1512 /* not ISO-C, as res might be -1, but works with SuS */
1513 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1514 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1515
1516 if (res < (ssize_t)sizeof (si))
1517 break;
1518 }
1519}
1520#endif
1521
1522#endif
1523
1524/*****************************************************************************/
1525
1526#if EV_CHILD_ENABLE
866static WL childs [EV_PID_HASHSIZE]; 1527static WL childs [EV_PID_HASHSIZE];
867 1528
868#ifndef _WIN32
869
870static ev_signal childev; 1529static ev_signal childev;
871 1530
872void inline_speed 1531#ifndef WIFCONTINUED
1532# define WIFCONTINUED(status) 0
1533#endif
1534
1535/* handle a single child status event */
1536inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1537child_reap (EV_P_ int chain, int pid, int status)
874{ 1538{
875 ev_child *w; 1539 ev_child *w;
1540 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1541
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1542 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1543 {
878 if (w->pid == pid || !w->pid) 1544 if ((w->pid == pid || !w->pid)
1545 && (!traced || (w->flags & 1)))
879 { 1546 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1547 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1548 w->rpid = pid;
882 w->rstatus = status; 1549 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1550 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1551 }
1552 }
885} 1553}
886 1554
887#ifndef WCONTINUED 1555#ifndef WCONTINUED
888# define WCONTINUED 0 1556# define WCONTINUED 0
889#endif 1557#endif
890 1558
1559/* called on sigchld etc., calls waitpid */
891static void 1560static void
892childcb (EV_P_ ev_signal *sw, int revents) 1561childcb (EV_P_ ev_signal *sw, int revents)
893{ 1562{
894 int pid, status; 1563 int pid, status;
895 1564
898 if (!WCONTINUED 1567 if (!WCONTINUED
899 || errno != EINVAL 1568 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1569 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1570 return;
902 1571
903 /* make sure we are called again until all childs have been reaped */ 1572 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1573 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1574 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1575
907 child_reap (EV_A_ sw, pid, pid, status); 1576 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1577 if ((EV_PID_HASHSIZE) > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1578 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1579}
911 1580
912#endif 1581#endif
913 1582
914/*****************************************************************************/ 1583/*****************************************************************************/
915 1584
1585#if EV_USE_IOCP
1586# include "ev_iocp.c"
1587#endif
916#if EV_USE_PORT 1588#if EV_USE_PORT
917# include "ev_port.c" 1589# include "ev_port.c"
918#endif 1590#endif
919#if EV_USE_KQUEUE 1591#if EV_USE_KQUEUE
920# include "ev_kqueue.c" 1592# include "ev_kqueue.c"
976 /* kqueue is borked on everything but netbsd apparently */ 1648 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1649 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1650 flags &= ~EVBACKEND_KQUEUE;
979#endif 1651#endif
980#ifdef __APPLE__ 1652#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1653 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1654 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1655 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1656#endif
1657#ifdef __FreeBSD__
1658 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
983#endif 1659#endif
984 1660
985 return flags; 1661 return flags;
986} 1662}
987 1663
989ev_embeddable_backends (void) 1665ev_embeddable_backends (void)
990{ 1666{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1667 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992 1668
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1669 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */ 1670 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
995 flags &= ~EVBACKEND_EPOLL; 1671 flags &= ~EVBACKEND_EPOLL;
996 1672
997 return flags; 1673 return flags;
998} 1674}
999 1675
1000unsigned int 1676unsigned int
1001ev_backend (EV_P) 1677ev_backend (EV_P)
1002{ 1678{
1003 return backend; 1679 return backend;
1004} 1680}
1005 1681
1682#if EV_FEATURE_API
1006unsigned int 1683unsigned int
1007ev_loop_count (EV_P) 1684ev_iteration (EV_P)
1008{ 1685{
1009 return loop_count; 1686 return loop_count;
1010} 1687}
1011 1688
1689unsigned int
1690ev_depth (EV_P)
1691{
1692 return loop_depth;
1693}
1694
1012void 1695void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1696ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 1697{
1015 io_blocktime = interval; 1698 io_blocktime = interval;
1016} 1699}
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1702ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1703{
1021 timeout_blocktime = interval; 1704 timeout_blocktime = interval;
1022} 1705}
1023 1706
1707void
1708ev_set_userdata (EV_P_ void *data)
1709{
1710 userdata = data;
1711}
1712
1713void *
1714ev_userdata (EV_P)
1715{
1716 return userdata;
1717}
1718
1719void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1720{
1721 invoke_cb = invoke_pending_cb;
1722}
1723
1724void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1725{
1726 release_cb = release;
1727 acquire_cb = acquire;
1728}
1729#endif
1730
1731/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1732static void noinline
1025loop_init (EV_P_ unsigned int flags) 1733loop_init (EV_P_ unsigned int flags)
1026{ 1734{
1027 if (!backend) 1735 if (!backend)
1028 { 1736 {
1737 origflags = flags;
1738
1739#if EV_USE_REALTIME
1740 if (!have_realtime)
1741 {
1742 struct timespec ts;
1743
1744 if (!clock_gettime (CLOCK_REALTIME, &ts))
1745 have_realtime = 1;
1746 }
1747#endif
1748
1029#if EV_USE_MONOTONIC 1749#if EV_USE_MONOTONIC
1750 if (!have_monotonic)
1030 { 1751 {
1031 struct timespec ts; 1752 struct timespec ts;
1753
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1755 have_monotonic = 1;
1034 } 1756 }
1035#endif 1757#endif
1036
1037 ev_rt_now = ev_time ();
1038 mn_now = get_clock ();
1039 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now;
1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044 1758
1045 /* pid check not overridable via env */ 1759 /* pid check not overridable via env */
1046#ifndef _WIN32 1760#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1761 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1762 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1765 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1766 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1767 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1768 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1769
1056 if (!(flags & 0x0000ffffUL)) 1770 ev_rt_now = ev_time ();
1771 mn_now = get_clock ();
1772 now_floor = mn_now;
1773 rtmn_diff = ev_rt_now - mn_now;
1774#if EV_FEATURE_API
1775 invoke_cb = ev_invoke_pending;
1776#endif
1777
1778 io_blocktime = 0.;
1779 timeout_blocktime = 0.;
1780 backend = 0;
1781 backend_fd = -1;
1782 sig_pending = 0;
1783#if EV_ASYNC_ENABLE
1784 async_pending = 0;
1785#endif
1786#if EV_USE_INOTIFY
1787 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1788#endif
1789#if EV_USE_SIGNALFD
1790 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1791#endif
1792
1793 if (!(flags & EVBACKEND_MASK))
1057 flags |= ev_recommended_backends (); 1794 flags |= ev_recommended_backends ();
1058 1795
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY 1796#if EV_USE_IOCP
1062 fs_fd = -2; 1797 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1063#endif 1798#endif
1064
1065#if EV_USE_PORT 1799#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1800 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1801#endif
1068#if EV_USE_KQUEUE 1802#if EV_USE_KQUEUE
1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1803 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1076#endif 1810#endif
1077#if EV_USE_SELECT 1811#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1812 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1813#endif
1080 1814
1815 ev_prepare_init (&pending_w, pendingcb);
1816
1817#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1081 ev_init (&sigev, sigcb); 1818 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1819 ev_set_priority (&pipe_w, EV_MAXPRI);
1820#endif
1083 } 1821 }
1084} 1822}
1085 1823
1086static void noinline 1824/* free up a loop structure */
1825void
1087loop_destroy (EV_P) 1826ev_loop_destroy (EV_P)
1088{ 1827{
1089 int i; 1828 int i;
1829
1830#if EV_MULTIPLICITY
1831 /* mimic free (0) */
1832 if (!EV_A)
1833 return;
1834#endif
1835
1836#if EV_CLEANUP_ENABLE
1837 /* queue cleanup watchers (and execute them) */
1838 if (expect_false (cleanupcnt))
1839 {
1840 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1841 EV_INVOKE_PENDING;
1842 }
1843#endif
1844
1845#if EV_CHILD_ENABLE
1846 if (ev_is_active (&childev))
1847 {
1848 ev_ref (EV_A); /* child watcher */
1849 ev_signal_stop (EV_A_ &childev);
1850 }
1851#endif
1852
1853 if (ev_is_active (&pipe_w))
1854 {
1855 /*ev_ref (EV_A);*/
1856 /*ev_io_stop (EV_A_ &pipe_w);*/
1857
1858#if EV_USE_EVENTFD
1859 if (evfd >= 0)
1860 close (evfd);
1861#endif
1862
1863 if (evpipe [0] >= 0)
1864 {
1865 EV_WIN32_CLOSE_FD (evpipe [0]);
1866 EV_WIN32_CLOSE_FD (evpipe [1]);
1867 }
1868 }
1869
1870#if EV_USE_SIGNALFD
1871 if (ev_is_active (&sigfd_w))
1872 close (sigfd);
1873#endif
1090 1874
1091#if EV_USE_INOTIFY 1875#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1876 if (fs_fd >= 0)
1093 close (fs_fd); 1877 close (fs_fd);
1094#endif 1878#endif
1095 1879
1096 if (backend_fd >= 0) 1880 if (backend_fd >= 0)
1097 close (backend_fd); 1881 close (backend_fd);
1098 1882
1883#if EV_USE_IOCP
1884 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1885#endif
1099#if EV_USE_PORT 1886#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1887 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1101#endif 1888#endif
1102#if EV_USE_KQUEUE 1889#if EV_USE_KQUEUE
1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1890 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1118#if EV_IDLE_ENABLE 1905#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 1906 array_free (idle, [i]);
1120#endif 1907#endif
1121 } 1908 }
1122 1909
1123 ev_free (anfds); anfdmax = 0; 1910 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 1911
1125 /* have to use the microsoft-never-gets-it-right macro */ 1912 /* have to use the microsoft-never-gets-it-right macro */
1913 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1914 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1915 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1916#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1917 array_free (periodic, EMPTY);
1130#endif 1918#endif
1131#if EV_FORK_ENABLE 1919#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1920 array_free (fork, EMPTY);
1133#endif 1921#endif
1922#if EV_CLEANUP_ENABLE
1923 array_free (cleanup, EMPTY);
1924#endif
1134 array_free (prepare, EMPTY); 1925 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1926 array_free (check, EMPTY);
1927#if EV_ASYNC_ENABLE
1928 array_free (async, EMPTY);
1929#endif
1136 1930
1137 backend = 0; 1931 backend = 0;
1138}
1139 1932
1933#if EV_MULTIPLICITY
1934 if (ev_is_default_loop (EV_A))
1935#endif
1936 ev_default_loop_ptr = 0;
1937#if EV_MULTIPLICITY
1938 else
1939 ev_free (EV_A);
1940#endif
1941}
1942
1943#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1944inline_size void infy_fork (EV_P);
1945#endif
1141 1946
1142void inline_size 1947inline_size void
1143loop_fork (EV_P) 1948loop_fork (EV_P)
1144{ 1949{
1145#if EV_USE_PORT 1950#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1951 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1952#endif
1153#endif 1958#endif
1154#if EV_USE_INOTIFY 1959#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1960 infy_fork (EV_A);
1156#endif 1961#endif
1157 1962
1158 if (ev_is_active (&sigev)) 1963 if (ev_is_active (&pipe_w))
1159 { 1964 {
1160 /* default loop */ 1965 /* this "locks" the handlers against writing to the pipe */
1966 /* while we modify the fd vars */
1967 sig_pending = 1;
1968#if EV_ASYNC_ENABLE
1969 async_pending = 1;
1970#endif
1161 1971
1162 ev_ref (EV_A); 1972 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1973 ev_io_stop (EV_A_ &pipe_w);
1164 close (sigpipe [0]);
1165 close (sigpipe [1]);
1166 1974
1167 while (pipe (sigpipe)) 1975#if EV_USE_EVENTFD
1168 syserr ("(libev) error creating pipe"); 1976 if (evfd >= 0)
1977 close (evfd);
1978#endif
1169 1979
1980 if (evpipe [0] >= 0)
1981 {
1982 EV_WIN32_CLOSE_FD (evpipe [0]);
1983 EV_WIN32_CLOSE_FD (evpipe [1]);
1984 }
1985
1986#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1170 siginit (EV_A); 1987 evpipe_init (EV_A);
1988 /* now iterate over everything, in case we missed something */
1989 pipecb (EV_A_ &pipe_w, EV_READ);
1990#endif
1171 } 1991 }
1172 1992
1173 postfork = 0; 1993 postfork = 0;
1174} 1994}
1995
1996#if EV_MULTIPLICITY
1997
1998struct ev_loop *
1999ev_loop_new (unsigned int flags)
2000{
2001 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2002
2003 memset (EV_A, 0, sizeof (struct ev_loop));
2004 loop_init (EV_A_ flags);
2005
2006 if (ev_backend (EV_A))
2007 return EV_A;
2008
2009 ev_free (EV_A);
2010 return 0;
2011}
2012
2013#endif /* multiplicity */
2014
2015#if EV_VERIFY
2016static void noinline
2017verify_watcher (EV_P_ W w)
2018{
2019 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2020
2021 if (w->pending)
2022 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2023}
2024
2025static void noinline
2026verify_heap (EV_P_ ANHE *heap, int N)
2027{
2028 int i;
2029
2030 for (i = HEAP0; i < N + HEAP0; ++i)
2031 {
2032 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2033 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2034 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2035
2036 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2037 }
2038}
2039
2040static void noinline
2041array_verify (EV_P_ W *ws, int cnt)
2042{
2043 while (cnt--)
2044 {
2045 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2046 verify_watcher (EV_A_ ws [cnt]);
2047 }
2048}
2049#endif
2050
2051#if EV_FEATURE_API
2052void
2053ev_verify (EV_P)
2054{
2055#if EV_VERIFY
2056 int i;
2057 WL w;
2058
2059 assert (activecnt >= -1);
2060
2061 assert (fdchangemax >= fdchangecnt);
2062 for (i = 0; i < fdchangecnt; ++i)
2063 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2064
2065 assert (anfdmax >= 0);
2066 for (i = 0; i < anfdmax; ++i)
2067 for (w = anfds [i].head; w; w = w->next)
2068 {
2069 verify_watcher (EV_A_ (W)w);
2070 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2071 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2072 }
2073
2074 assert (timermax >= timercnt);
2075 verify_heap (EV_A_ timers, timercnt);
2076
2077#if EV_PERIODIC_ENABLE
2078 assert (periodicmax >= periodiccnt);
2079 verify_heap (EV_A_ periodics, periodiccnt);
2080#endif
2081
2082 for (i = NUMPRI; i--; )
2083 {
2084 assert (pendingmax [i] >= pendingcnt [i]);
2085#if EV_IDLE_ENABLE
2086 assert (idleall >= 0);
2087 assert (idlemax [i] >= idlecnt [i]);
2088 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2089#endif
2090 }
2091
2092#if EV_FORK_ENABLE
2093 assert (forkmax >= forkcnt);
2094 array_verify (EV_A_ (W *)forks, forkcnt);
2095#endif
2096
2097#if EV_CLEANUP_ENABLE
2098 assert (cleanupmax >= cleanupcnt);
2099 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2100#endif
2101
2102#if EV_ASYNC_ENABLE
2103 assert (asyncmax >= asynccnt);
2104 array_verify (EV_A_ (W *)asyncs, asynccnt);
2105#endif
2106
2107#if EV_PREPARE_ENABLE
2108 assert (preparemax >= preparecnt);
2109 array_verify (EV_A_ (W *)prepares, preparecnt);
2110#endif
2111
2112#if EV_CHECK_ENABLE
2113 assert (checkmax >= checkcnt);
2114 array_verify (EV_A_ (W *)checks, checkcnt);
2115#endif
2116
2117# if 0
2118#if EV_CHILD_ENABLE
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2121#endif
2122# endif
2123#endif
2124}
2125#endif
1175 2126
1176#if EV_MULTIPLICITY 2127#if EV_MULTIPLICITY
1177struct ev_loop * 2128struct ev_loop *
1178ev_loop_new (unsigned int flags)
1179{
1180 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1181
1182 memset (loop, 0, sizeof (struct ev_loop));
1183
1184 loop_init (EV_A_ flags);
1185
1186 if (ev_backend (EV_A))
1187 return loop;
1188
1189 return 0;
1190}
1191
1192void
1193ev_loop_destroy (EV_P)
1194{
1195 loop_destroy (EV_A);
1196 ev_free (loop);
1197}
1198
1199void
1200ev_loop_fork (EV_P)
1201{
1202 postfork = 1;
1203}
1204
1205#endif
1206
1207#if EV_MULTIPLICITY
1208struct ev_loop *
1209ev_default_loop_init (unsigned int flags)
1210#else 2129#else
1211int 2130int
2131#endif
1212ev_default_loop (unsigned int flags) 2132ev_default_loop (unsigned int flags)
1213#endif
1214{ 2133{
1215 if (sigpipe [0] == sigpipe [1])
1216 if (pipe (sigpipe))
1217 return 0;
1218
1219 if (!ev_default_loop_ptr) 2134 if (!ev_default_loop_ptr)
1220 { 2135 {
1221#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2137 EV_P = ev_default_loop_ptr = &default_loop_struct;
1223#else 2138#else
1224 ev_default_loop_ptr = 1; 2139 ev_default_loop_ptr = 1;
1225#endif 2140#endif
1226 2141
1227 loop_init (EV_A_ flags); 2142 loop_init (EV_A_ flags);
1228 2143
1229 if (ev_backend (EV_A)) 2144 if (ev_backend (EV_A))
1230 { 2145 {
1231 siginit (EV_A); 2146#if EV_CHILD_ENABLE
1232
1233#ifndef _WIN32
1234 ev_signal_init (&childev, childcb, SIGCHLD); 2147 ev_signal_init (&childev, childcb, SIGCHLD);
1235 ev_set_priority (&childev, EV_MAXPRI); 2148 ev_set_priority (&childev, EV_MAXPRI);
1236 ev_signal_start (EV_A_ &childev); 2149 ev_signal_start (EV_A_ &childev);
1237 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2150 ev_unref (EV_A); /* child watcher should not keep loop alive */
1238#endif 2151#endif
1243 2156
1244 return ev_default_loop_ptr; 2157 return ev_default_loop_ptr;
1245} 2158}
1246 2159
1247void 2160void
1248ev_default_destroy (void) 2161ev_loop_fork (EV_P)
1249{ 2162{
1250#if EV_MULTIPLICITY 2163 postfork = 1; /* must be in line with ev_default_fork */
1251 struct ev_loop *loop = ev_default_loop_ptr;
1252#endif
1253
1254#ifndef _WIN32
1255 ev_ref (EV_A); /* child watcher */
1256 ev_signal_stop (EV_A_ &childev);
1257#endif
1258
1259 ev_ref (EV_A); /* signal watcher */
1260 ev_io_stop (EV_A_ &sigev);
1261
1262 close (sigpipe [0]); sigpipe [0] = 0;
1263 close (sigpipe [1]); sigpipe [1] = 0;
1264
1265 loop_destroy (EV_A);
1266}
1267
1268void
1269ev_default_fork (void)
1270{
1271#if EV_MULTIPLICITY
1272 struct ev_loop *loop = ev_default_loop_ptr;
1273#endif
1274
1275 if (backend)
1276 postfork = 1;
1277} 2164}
1278 2165
1279/*****************************************************************************/ 2166/*****************************************************************************/
1280 2167
1281void 2168void
1282ev_invoke (EV_P_ void *w, int revents) 2169ev_invoke (EV_P_ void *w, int revents)
1283{ 2170{
1284 EV_CB_INVOKE ((W)w, revents); 2171 EV_CB_INVOKE ((W)w, revents);
1285} 2172}
1286 2173
1287void inline_speed 2174unsigned int
1288call_pending (EV_P) 2175ev_pending_count (EV_P)
2176{
2177 int pri;
2178 unsigned int count = 0;
2179
2180 for (pri = NUMPRI; pri--; )
2181 count += pendingcnt [pri];
2182
2183 return count;
2184}
2185
2186void noinline
2187ev_invoke_pending (EV_P)
1289{ 2188{
1290 int pri; 2189 int pri;
1291 2190
1292 for (pri = NUMPRI; pri--; ) 2191 for (pri = NUMPRI; pri--; )
1293 while (pendingcnt [pri]) 2192 while (pendingcnt [pri])
1294 { 2193 {
1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1296 2195
1297 if (expect_true (p->w))
1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1300
1301 p->w->pending = 0; 2196 p->w->pending = 0;
1302 EV_CB_INVOKE (p->w, p->events); 2197 EV_CB_INVOKE (p->w, p->events);
1303 } 2198 EV_FREQUENT_CHECK;
1304 } 2199 }
1305} 2200}
1306 2201
1307void inline_size
1308timers_reify (EV_P)
1309{
1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1311 {
1312 ev_timer *w = (ev_timer *)timers [0];
1313
1314 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1315
1316 /* first reschedule or stop timer */
1317 if (w->repeat)
1318 {
1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
1325 downheap (timers, timercnt, 0);
1326 }
1327 else
1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1329
1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1331 }
1332}
1333
1334#if EV_PERIODIC_ENABLE
1335void inline_size
1336periodics_reify (EV_P)
1337{
1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1339 {
1340 ev_periodic *w = (ev_periodic *)periodics [0];
1341
1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1343
1344 /* first reschedule or stop timer */
1345 if (w->reschedule_cb)
1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1356 downheap (periodics, periodiccnt, 0);
1357 }
1358 else
1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1360
1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1362 }
1363}
1364
1365static void noinline
1366periodics_reschedule (EV_P)
1367{
1368 int i;
1369
1370 /* adjust periodics after time jump */
1371 for (i = 0; i < periodiccnt; ++i)
1372 {
1373 ev_periodic *w = (ev_periodic *)periodics [i];
1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386
1387#if EV_IDLE_ENABLE 2202#if EV_IDLE_ENABLE
1388void inline_size 2203/* make idle watchers pending. this handles the "call-idle */
2204/* only when higher priorities are idle" logic */
2205inline_size void
1389idle_reify (EV_P) 2206idle_reify (EV_P)
1390{ 2207{
1391 if (expect_false (idleall)) 2208 if (expect_false (idleall))
1392 { 2209 {
1393 int pri; 2210 int pri;
1405 } 2222 }
1406 } 2223 }
1407} 2224}
1408#endif 2225#endif
1409 2226
1410void inline_speed 2227/* make timers pending */
2228inline_size void
2229timers_reify (EV_P)
2230{
2231 EV_FREQUENT_CHECK;
2232
2233 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2234 {
2235 do
2236 {
2237 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2238
2239 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2240
2241 /* first reschedule or stop timer */
2242 if (w->repeat)
2243 {
2244 ev_at (w) += w->repeat;
2245 if (ev_at (w) < mn_now)
2246 ev_at (w) = mn_now;
2247
2248 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2249
2250 ANHE_at_cache (timers [HEAP0]);
2251 downheap (timers, timercnt, HEAP0);
2252 }
2253 else
2254 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2255
2256 EV_FREQUENT_CHECK;
2257 feed_reverse (EV_A_ (W)w);
2258 }
2259 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2260
2261 feed_reverse_done (EV_A_ EV_TIMER);
2262 }
2263}
2264
2265#if EV_PERIODIC_ENABLE
2266
2267static void noinline
2268periodic_recalc (EV_P_ ev_periodic *w)
2269{
2270 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2271 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2272
2273 /* the above almost always errs on the low side */
2274 while (at <= ev_rt_now)
2275 {
2276 ev_tstamp nat = at + w->interval;
2277
2278 /* when resolution fails us, we use ev_rt_now */
2279 if (expect_false (nat == at))
2280 {
2281 at = ev_rt_now;
2282 break;
2283 }
2284
2285 at = nat;
2286 }
2287
2288 ev_at (w) = at;
2289}
2290
2291/* make periodics pending */
2292inline_size void
2293periodics_reify (EV_P)
2294{
2295 EV_FREQUENT_CHECK;
2296
2297 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2298 {
2299 int feed_count = 0;
2300
2301 do
2302 {
2303 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2304
2305 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2306
2307 /* first reschedule or stop timer */
2308 if (w->reschedule_cb)
2309 {
2310 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2311
2312 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2313
2314 ANHE_at_cache (periodics [HEAP0]);
2315 downheap (periodics, periodiccnt, HEAP0);
2316 }
2317 else if (w->interval)
2318 {
2319 periodic_recalc (EV_A_ w);
2320 ANHE_at_cache (periodics [HEAP0]);
2321 downheap (periodics, periodiccnt, HEAP0);
2322 }
2323 else
2324 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2325
2326 EV_FREQUENT_CHECK;
2327 feed_reverse (EV_A_ (W)w);
2328 }
2329 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2330
2331 feed_reverse_done (EV_A_ EV_PERIODIC);
2332 }
2333}
2334
2335/* simply recalculate all periodics */
2336/* TODO: maybe ensure that at least one event happens when jumping forward? */
2337static void noinline
2338periodics_reschedule (EV_P)
2339{
2340 int i;
2341
2342 /* adjust periodics after time jump */
2343 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2344 {
2345 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2346
2347 if (w->reschedule_cb)
2348 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2349 else if (w->interval)
2350 periodic_recalc (EV_A_ w);
2351
2352 ANHE_at_cache (periodics [i]);
2353 }
2354
2355 reheap (periodics, periodiccnt);
2356}
2357#endif
2358
2359/* adjust all timers by a given offset */
2360static void noinline
2361timers_reschedule (EV_P_ ev_tstamp adjust)
2362{
2363 int i;
2364
2365 for (i = 0; i < timercnt; ++i)
2366 {
2367 ANHE *he = timers + i + HEAP0;
2368 ANHE_w (*he)->at += adjust;
2369 ANHE_at_cache (*he);
2370 }
2371}
2372
2373/* fetch new monotonic and realtime times from the kernel */
2374/* also detect if there was a timejump, and act accordingly */
2375inline_speed void
1411time_update (EV_P_ ev_tstamp max_block) 2376time_update (EV_P_ ev_tstamp max_block)
1412{ 2377{
1413 int i;
1414
1415#if EV_USE_MONOTONIC 2378#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic)) 2379 if (expect_true (have_monotonic))
1417 { 2380 {
2381 int i;
1418 ev_tstamp odiff = rtmn_diff; 2382 ev_tstamp odiff = rtmn_diff;
1419 2383
1420 mn_now = get_clock (); 2384 mn_now = get_clock ();
1421 2385
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2386 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1438 * doesn't hurt either as we only do this on time-jumps or 2402 * doesn't hurt either as we only do this on time-jumps or
1439 * in the unlikely event of having been preempted here. 2403 * in the unlikely event of having been preempted here.
1440 */ 2404 */
1441 for (i = 4; --i; ) 2405 for (i = 4; --i; )
1442 { 2406 {
2407 ev_tstamp diff;
1443 rtmn_diff = ev_rt_now - mn_now; 2408 rtmn_diff = ev_rt_now - mn_now;
1444 2409
1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2410 diff = odiff - rtmn_diff;
2411
2412 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1446 return; /* all is well */ 2413 return; /* all is well */
1447 2414
1448 ev_rt_now = ev_time (); 2415 ev_rt_now = ev_time ();
1449 mn_now = get_clock (); 2416 mn_now = get_clock ();
1450 now_floor = mn_now; 2417 now_floor = mn_now;
1451 } 2418 }
1452 2419
2420 /* no timer adjustment, as the monotonic clock doesn't jump */
2421 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1453# if EV_PERIODIC_ENABLE 2422# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A); 2423 periodics_reschedule (EV_A);
1455# endif 2424# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 } 2425 }
1459 else 2426 else
1460#endif 2427#endif
1461 { 2428 {
1462 ev_rt_now = ev_time (); 2429 ev_rt_now = ev_time ();
1463 2430
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2431 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 { 2432 {
2433 /* adjust timers. this is easy, as the offset is the same for all of them */
2434 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1466#if EV_PERIODIC_ENABLE 2435#if EV_PERIODIC_ENABLE
1467 periodics_reschedule (EV_A); 2436 periodics_reschedule (EV_A);
1468#endif 2437#endif
1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i)
1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1472 } 2438 }
1473 2439
1474 mn_now = ev_rt_now; 2440 mn_now = ev_rt_now;
1475 } 2441 }
1476} 2442}
1477 2443
1478void 2444void
1479ev_ref (EV_P)
1480{
1481 ++activecnt;
1482}
1483
1484void
1485ev_unref (EV_P)
1486{
1487 --activecnt;
1488}
1489
1490static int loop_done;
1491
1492void
1493ev_loop (EV_P_ int flags) 2445ev_run (EV_P_ int flags)
1494{ 2446{
1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2447#if EV_FEATURE_API
1496 ? EVUNLOOP_ONE 2448 ++loop_depth;
1497 : EVUNLOOP_CANCEL; 2449#endif
1498 2450
2451 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2452
2453 loop_done = EVBREAK_CANCEL;
2454
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2455 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1500 2456
1501 do 2457 do
1502 { 2458 {
2459#if EV_VERIFY >= 2
2460 ev_verify (EV_A);
2461#endif
2462
1503#ifndef _WIN32 2463#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */ 2464 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid)) 2465 if (expect_false (getpid () != curpid))
1506 { 2466 {
1507 curpid = getpid (); 2467 curpid = getpid ();
1513 /* we might have forked, so queue fork handlers */ 2473 /* we might have forked, so queue fork handlers */
1514 if (expect_false (postfork)) 2474 if (expect_false (postfork))
1515 if (forkcnt) 2475 if (forkcnt)
1516 { 2476 {
1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2477 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1518 call_pending (EV_A); 2478 EV_INVOKE_PENDING;
1519 } 2479 }
1520#endif 2480#endif
1521 2481
2482#if EV_PREPARE_ENABLE
1522 /* queue prepare watchers (and execute them) */ 2483 /* queue prepare watchers (and execute them) */
1523 if (expect_false (preparecnt)) 2484 if (expect_false (preparecnt))
1524 { 2485 {
1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2486 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1526 call_pending (EV_A); 2487 EV_INVOKE_PENDING;
1527 } 2488 }
2489#endif
1528 2490
1529 if (expect_false (!activecnt)) 2491 if (expect_false (loop_done))
1530 break; 2492 break;
1531 2493
1532 /* we might have forked, so reify kernel state if necessary */ 2494 /* we might have forked, so reify kernel state if necessary */
1533 if (expect_false (postfork)) 2495 if (expect_false (postfork))
1534 loop_fork (EV_A); 2496 loop_fork (EV_A);
1539 /* calculate blocking time */ 2501 /* calculate blocking time */
1540 { 2502 {
1541 ev_tstamp waittime = 0.; 2503 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.; 2504 ev_tstamp sleeptime = 0.;
1543 2505
2506 /* remember old timestamp for io_blocktime calculation */
2507 ev_tstamp prev_mn_now = mn_now;
2508
2509 /* update time to cancel out callback processing overhead */
2510 time_update (EV_A_ 1e100);
2511
1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2512 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1545 { 2513 {
1546 /* update time to cancel out callback processing overhead */
1547 time_update (EV_A_ 1e100);
1548
1549 waittime = MAX_BLOCKTIME; 2514 waittime = MAX_BLOCKTIME;
1550 2515
1551 if (timercnt) 2516 if (timercnt)
1552 { 2517 {
1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2518 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1554 if (waittime > to) waittime = to; 2519 if (waittime > to) waittime = to;
1555 } 2520 }
1556 2521
1557#if EV_PERIODIC_ENABLE 2522#if EV_PERIODIC_ENABLE
1558 if (periodiccnt) 2523 if (periodiccnt)
1559 { 2524 {
1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2525 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1561 if (waittime > to) waittime = to; 2526 if (waittime > to) waittime = to;
1562 } 2527 }
1563#endif 2528#endif
1564 2529
2530 /* don't let timeouts decrease the waittime below timeout_blocktime */
1565 if (expect_false (waittime < timeout_blocktime)) 2531 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime; 2532 waittime = timeout_blocktime;
1567 2533
1568 sleeptime = waittime - backend_fudge; 2534 /* extra check because io_blocktime is commonly 0 */
1569
1570 if (expect_true (sleeptime > io_blocktime)) 2535 if (expect_false (io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 { 2536 {
2537 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2538
2539 if (sleeptime > waittime - backend_fudge)
2540 sleeptime = waittime - backend_fudge;
2541
2542 if (expect_true (sleeptime > 0.))
2543 {
1575 ev_sleep (sleeptime); 2544 ev_sleep (sleeptime);
1576 waittime -= sleeptime; 2545 waittime -= sleeptime;
2546 }
1577 } 2547 }
1578 } 2548 }
1579 2549
2550#if EV_FEATURE_API
1580 ++loop_count; 2551 ++loop_count;
2552#endif
2553 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1581 backend_poll (EV_A_ waittime); 2554 backend_poll (EV_A_ waittime);
2555 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1582 2556
1583 /* update ev_rt_now, do magic */ 2557 /* update ev_rt_now, do magic */
1584 time_update (EV_A_ waittime + sleeptime); 2558 time_update (EV_A_ waittime + sleeptime);
1585 } 2559 }
1586 2560
1593#if EV_IDLE_ENABLE 2567#if EV_IDLE_ENABLE
1594 /* queue idle watchers unless other events are pending */ 2568 /* queue idle watchers unless other events are pending */
1595 idle_reify (EV_A); 2569 idle_reify (EV_A);
1596#endif 2570#endif
1597 2571
2572#if EV_CHECK_ENABLE
1598 /* queue check watchers, to be executed first */ 2573 /* queue check watchers, to be executed first */
1599 if (expect_false (checkcnt)) 2574 if (expect_false (checkcnt))
1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2575 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2576#endif
1601 2577
1602 call_pending (EV_A); 2578 EV_INVOKE_PENDING;
1603
1604 } 2579 }
1605 while (expect_true (activecnt && !loop_done)); 2580 while (expect_true (
2581 activecnt
2582 && !loop_done
2583 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2584 ));
1606 2585
1607 if (loop_done == EVUNLOOP_ONE) 2586 if (loop_done == EVBREAK_ONE)
1608 loop_done = EVUNLOOP_CANCEL; 2587 loop_done = EVBREAK_CANCEL;
1609}
1610 2588
2589#if EV_FEATURE_API
2590 --loop_depth;
2591#endif
2592}
2593
1611void 2594void
1612ev_unloop (EV_P_ int how) 2595ev_break (EV_P_ int how)
1613{ 2596{
1614 loop_done = how; 2597 loop_done = how;
1615} 2598}
1616 2599
2600void
2601ev_ref (EV_P)
2602{
2603 ++activecnt;
2604}
2605
2606void
2607ev_unref (EV_P)
2608{
2609 --activecnt;
2610}
2611
2612void
2613ev_now_update (EV_P)
2614{
2615 time_update (EV_A_ 1e100);
2616}
2617
2618void
2619ev_suspend (EV_P)
2620{
2621 ev_now_update (EV_A);
2622}
2623
2624void
2625ev_resume (EV_P)
2626{
2627 ev_tstamp mn_prev = mn_now;
2628
2629 ev_now_update (EV_A);
2630 timers_reschedule (EV_A_ mn_now - mn_prev);
2631#if EV_PERIODIC_ENABLE
2632 /* TODO: really do this? */
2633 periodics_reschedule (EV_A);
2634#endif
2635}
2636
1617/*****************************************************************************/ 2637/*****************************************************************************/
2638/* singly-linked list management, used when the expected list length is short */
1618 2639
1619void inline_size 2640inline_size void
1620wlist_add (WL *head, WL elem) 2641wlist_add (WL *head, WL elem)
1621{ 2642{
1622 elem->next = *head; 2643 elem->next = *head;
1623 *head = elem; 2644 *head = elem;
1624} 2645}
1625 2646
1626void inline_size 2647inline_size void
1627wlist_del (WL *head, WL elem) 2648wlist_del (WL *head, WL elem)
1628{ 2649{
1629 while (*head) 2650 while (*head)
1630 { 2651 {
1631 if (*head == elem) 2652 if (expect_true (*head == elem))
1632 { 2653 {
1633 *head = elem->next; 2654 *head = elem->next;
1634 return; 2655 break;
1635 } 2656 }
1636 2657
1637 head = &(*head)->next; 2658 head = &(*head)->next;
1638 } 2659 }
1639} 2660}
1640 2661
1641void inline_speed 2662/* internal, faster, version of ev_clear_pending */
2663inline_speed void
1642clear_pending (EV_P_ W w) 2664clear_pending (EV_P_ W w)
1643{ 2665{
1644 if (w->pending) 2666 if (w->pending)
1645 { 2667 {
1646 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2668 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1647 w->pending = 0; 2669 w->pending = 0;
1648 } 2670 }
1649} 2671}
1650 2672
1651int 2673int
1655 int pending = w_->pending; 2677 int pending = w_->pending;
1656 2678
1657 if (expect_true (pending)) 2679 if (expect_true (pending))
1658 { 2680 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2681 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2682 p->w = (W)&pending_w;
1660 w_->pending = 0; 2683 w_->pending = 0;
1661 p->w = 0;
1662 return p->events; 2684 return p->events;
1663 } 2685 }
1664 else 2686 else
1665 return 0; 2687 return 0;
1666} 2688}
1667 2689
1668void inline_size 2690inline_size void
1669pri_adjust (EV_P_ W w) 2691pri_adjust (EV_P_ W w)
1670{ 2692{
1671 int pri = w->priority; 2693 int pri = ev_priority (w);
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2694 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2695 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri; 2696 ev_set_priority (w, pri);
1675} 2697}
1676 2698
1677void inline_speed 2699inline_speed void
1678ev_start (EV_P_ W w, int active) 2700ev_start (EV_P_ W w, int active)
1679{ 2701{
1680 pri_adjust (EV_A_ w); 2702 pri_adjust (EV_A_ w);
1681 w->active = active; 2703 w->active = active;
1682 ev_ref (EV_A); 2704 ev_ref (EV_A);
1683} 2705}
1684 2706
1685void inline_size 2707inline_size void
1686ev_stop (EV_P_ W w) 2708ev_stop (EV_P_ W w)
1687{ 2709{
1688 ev_unref (EV_A); 2710 ev_unref (EV_A);
1689 w->active = 0; 2711 w->active = 0;
1690} 2712}
1697 int fd = w->fd; 2719 int fd = w->fd;
1698 2720
1699 if (expect_false (ev_is_active (w))) 2721 if (expect_false (ev_is_active (w)))
1700 return; 2722 return;
1701 2723
1702 assert (("ev_io_start called with negative fd", fd >= 0)); 2724 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2725 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2726
2727 EV_FREQUENT_CHECK;
1703 2728
1704 ev_start (EV_A_ (W)w, 1); 2729 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2730 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1706 wlist_add (&anfds[fd].head, (WL)w); 2731 wlist_add (&anfds[fd].head, (WL)w);
1707 2732
1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2733 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1709 w->events &= ~EV_IOFDSET; 2734 w->events &= ~EV__IOFDSET;
2735
2736 EV_FREQUENT_CHECK;
1710} 2737}
1711 2738
1712void noinline 2739void noinline
1713ev_io_stop (EV_P_ ev_io *w) 2740ev_io_stop (EV_P_ ev_io *w)
1714{ 2741{
1715 clear_pending (EV_A_ (W)w); 2742 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2743 if (expect_false (!ev_is_active (w)))
1717 return; 2744 return;
1718 2745
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2746 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2747
2748 EV_FREQUENT_CHECK;
1720 2749
1721 wlist_del (&anfds[w->fd].head, (WL)w); 2750 wlist_del (&anfds[w->fd].head, (WL)w);
1722 ev_stop (EV_A_ (W)w); 2751 ev_stop (EV_A_ (W)w);
1723 2752
1724 fd_change (EV_A_ w->fd, 1); 2753 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2754
2755 EV_FREQUENT_CHECK;
1725} 2756}
1726 2757
1727void noinline 2758void noinline
1728ev_timer_start (EV_P_ ev_timer *w) 2759ev_timer_start (EV_P_ ev_timer *w)
1729{ 2760{
1730 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
1731 return; 2762 return;
1732 2763
1733 ((WT)w)->at += mn_now; 2764 ev_at (w) += mn_now;
1734 2765
1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2766 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1736 2767
2768 EV_FREQUENT_CHECK;
2769
2770 ++timercnt;
1737 ev_start (EV_A_ (W)w, ++timercnt); 2771 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2772 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1739 timers [timercnt - 1] = (WT)w; 2773 ANHE_w (timers [ev_active (w)]) = (WT)w;
1740 upheap (timers, timercnt - 1); 2774 ANHE_at_cache (timers [ev_active (w)]);
2775 upheap (timers, ev_active (w));
1741 2776
2777 EV_FREQUENT_CHECK;
2778
1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2779 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1743} 2780}
1744 2781
1745void noinline 2782void noinline
1746ev_timer_stop (EV_P_ ev_timer *w) 2783ev_timer_stop (EV_P_ ev_timer *w)
1747{ 2784{
1748 clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
1750 return; 2787 return;
1751 2788
1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2789 EV_FREQUENT_CHECK;
1753 2790
1754 { 2791 {
1755 int active = ((W)w)->active; 2792 int active = ev_active (w);
1756 2793
2794 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2795
2796 --timercnt;
2797
1757 if (expect_true (--active < --timercnt)) 2798 if (expect_true (active < timercnt + HEAP0))
1758 { 2799 {
1759 timers [active] = timers [timercnt]; 2800 timers [active] = timers [timercnt + HEAP0];
1760 adjustheap (timers, timercnt, active); 2801 adjustheap (timers, timercnt, active);
1761 } 2802 }
1762 } 2803 }
1763 2804
1764 ((WT)w)->at -= mn_now; 2805 ev_at (w) -= mn_now;
1765 2806
1766 ev_stop (EV_A_ (W)w); 2807 ev_stop (EV_A_ (W)w);
2808
2809 EV_FREQUENT_CHECK;
1767} 2810}
1768 2811
1769void noinline 2812void noinline
1770ev_timer_again (EV_P_ ev_timer *w) 2813ev_timer_again (EV_P_ ev_timer *w)
1771{ 2814{
2815 EV_FREQUENT_CHECK;
2816
1772 if (ev_is_active (w)) 2817 if (ev_is_active (w))
1773 { 2818 {
1774 if (w->repeat) 2819 if (w->repeat)
1775 { 2820 {
1776 ((WT)w)->at = mn_now + w->repeat; 2821 ev_at (w) = mn_now + w->repeat;
2822 ANHE_at_cache (timers [ev_active (w)]);
1777 adjustheap (timers, timercnt, ((W)w)->active - 1); 2823 adjustheap (timers, timercnt, ev_active (w));
1778 } 2824 }
1779 else 2825 else
1780 ev_timer_stop (EV_A_ w); 2826 ev_timer_stop (EV_A_ w);
1781 } 2827 }
1782 else if (w->repeat) 2828 else if (w->repeat)
1783 { 2829 {
1784 w->at = w->repeat; 2830 ev_at (w) = w->repeat;
1785 ev_timer_start (EV_A_ w); 2831 ev_timer_start (EV_A_ w);
1786 } 2832 }
2833
2834 EV_FREQUENT_CHECK;
2835}
2836
2837ev_tstamp
2838ev_timer_remaining (EV_P_ ev_timer *w)
2839{
2840 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1787} 2841}
1788 2842
1789#if EV_PERIODIC_ENABLE 2843#if EV_PERIODIC_ENABLE
1790void noinline 2844void noinline
1791ev_periodic_start (EV_P_ ev_periodic *w) 2845ev_periodic_start (EV_P_ ev_periodic *w)
1792{ 2846{
1793 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1794 return; 2848 return;
1795 2849
1796 if (w->reschedule_cb) 2850 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2851 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval) 2852 else if (w->interval)
1799 { 2853 {
1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2854 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1801 /* this formula differs from the one in periodic_reify because we do not always round up */ 2855 periodic_recalc (EV_A_ w);
1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 } 2856 }
1804 else 2857 else
1805 ((WT)w)->at = w->offset; 2858 ev_at (w) = w->offset;
1806 2859
2860 EV_FREQUENT_CHECK;
2861
2862 ++periodiccnt;
1807 ev_start (EV_A_ (W)w, ++periodiccnt); 2863 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2864 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1809 periodics [periodiccnt - 1] = (WT)w; 2865 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1810 upheap (periodics, periodiccnt - 1); 2866 ANHE_at_cache (periodics [ev_active (w)]);
2867 upheap (periodics, ev_active (w));
1811 2868
2869 EV_FREQUENT_CHECK;
2870
1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2871 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1813} 2872}
1814 2873
1815void noinline 2874void noinline
1816ev_periodic_stop (EV_P_ ev_periodic *w) 2875ev_periodic_stop (EV_P_ ev_periodic *w)
1817{ 2876{
1818 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
1820 return; 2879 return;
1821 2880
1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2881 EV_FREQUENT_CHECK;
1823 2882
1824 { 2883 {
1825 int active = ((W)w)->active; 2884 int active = ev_active (w);
1826 2885
2886 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2887
2888 --periodiccnt;
2889
1827 if (expect_true (--active < --periodiccnt)) 2890 if (expect_true (active < periodiccnt + HEAP0))
1828 { 2891 {
1829 periodics [active] = periodics [periodiccnt]; 2892 periodics [active] = periodics [periodiccnt + HEAP0];
1830 adjustheap (periodics, periodiccnt, active); 2893 adjustheap (periodics, periodiccnt, active);
1831 } 2894 }
1832 } 2895 }
1833 2896
1834 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
2898
2899 EV_FREQUENT_CHECK;
1835} 2900}
1836 2901
1837void noinline 2902void noinline
1838ev_periodic_again (EV_P_ ev_periodic *w) 2903ev_periodic_again (EV_P_ ev_periodic *w)
1839{ 2904{
1845 2910
1846#ifndef SA_RESTART 2911#ifndef SA_RESTART
1847# define SA_RESTART 0 2912# define SA_RESTART 0
1848#endif 2913#endif
1849 2914
2915#if EV_SIGNAL_ENABLE
2916
1850void noinline 2917void noinline
1851ev_signal_start (EV_P_ ev_signal *w) 2918ev_signal_start (EV_P_ ev_signal *w)
1852{ 2919{
1853#if EV_MULTIPLICITY
1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1855#endif
1856 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
1857 return; 2921 return;
1858 2922
1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2923 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1860 2924
2925#if EV_MULTIPLICITY
2926 assert (("libev: a signal must not be attached to two different loops",
2927 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2928
2929 signals [w->signum - 1].loop = EV_A;
2930#endif
2931
2932 EV_FREQUENT_CHECK;
2933
2934#if EV_USE_SIGNALFD
2935 if (sigfd == -2)
1861 { 2936 {
1862#ifndef _WIN32 2937 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1863 sigset_t full, prev; 2938 if (sigfd < 0 && errno == EINVAL)
1864 sigfillset (&full); 2939 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867 2940
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2941 if (sigfd >= 0)
2942 {
2943 fd_intern (sigfd); /* doing it twice will not hurt */
1869 2944
1870#ifndef _WIN32 2945 sigemptyset (&sigfd_set);
1871 sigprocmask (SIG_SETMASK, &prev, 0); 2946
1872#endif 2947 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2948 ev_set_priority (&sigfd_w, EV_MAXPRI);
2949 ev_io_start (EV_A_ &sigfd_w);
2950 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2951 }
1873 } 2952 }
2953
2954 if (sigfd >= 0)
2955 {
2956 /* TODO: check .head */
2957 sigaddset (&sigfd_set, w->signum);
2958 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2959
2960 signalfd (sigfd, &sigfd_set, 0);
2961 }
2962#endif
1874 2963
1875 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
1876 wlist_add (&signals [w->signum - 1].head, (WL)w); 2965 wlist_add (&signals [w->signum - 1].head, (WL)w);
1877 2966
1878 if (!((WL)w)->next) 2967 if (!((WL)w)->next)
2968# if EV_USE_SIGNALFD
2969 if (sigfd < 0) /*TODO*/
2970# endif
1879 { 2971 {
1880#if _WIN32 2972# ifdef _WIN32
2973 evpipe_init (EV_A);
2974
1881 signal (w->signum, sighandler); 2975 signal (w->signum, ev_sighandler);
1882#else 2976# else
1883 struct sigaction sa; 2977 struct sigaction sa;
2978
2979 evpipe_init (EV_A);
2980
1884 sa.sa_handler = sighandler; 2981 sa.sa_handler = ev_sighandler;
1885 sigfillset (&sa.sa_mask); 2982 sigfillset (&sa.sa_mask);
1886 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2983 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1887 sigaction (w->signum, &sa, 0); 2984 sigaction (w->signum, &sa, 0);
2985
2986 if (origflags & EVFLAG_NOSIGMASK)
2987 {
2988 sigemptyset (&sa.sa_mask);
2989 sigaddset (&sa.sa_mask, w->signum);
2990 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2991 }
1888#endif 2992#endif
1889 } 2993 }
2994
2995 EV_FREQUENT_CHECK;
1890} 2996}
1891 2997
1892void noinline 2998void noinline
1893ev_signal_stop (EV_P_ ev_signal *w) 2999ev_signal_stop (EV_P_ ev_signal *w)
1894{ 3000{
1895 clear_pending (EV_A_ (W)w); 3001 clear_pending (EV_A_ (W)w);
1896 if (expect_false (!ev_is_active (w))) 3002 if (expect_false (!ev_is_active (w)))
1897 return; 3003 return;
1898 3004
3005 EV_FREQUENT_CHECK;
3006
1899 wlist_del (&signals [w->signum - 1].head, (WL)w); 3007 wlist_del (&signals [w->signum - 1].head, (WL)w);
1900 ev_stop (EV_A_ (W)w); 3008 ev_stop (EV_A_ (W)w);
1901 3009
1902 if (!signals [w->signum - 1].head) 3010 if (!signals [w->signum - 1].head)
3011 {
3012#if EV_MULTIPLICITY
3013 signals [w->signum - 1].loop = 0; /* unattach from signal */
3014#endif
3015#if EV_USE_SIGNALFD
3016 if (sigfd >= 0)
3017 {
3018 sigset_t ss;
3019
3020 sigemptyset (&ss);
3021 sigaddset (&ss, w->signum);
3022 sigdelset (&sigfd_set, w->signum);
3023
3024 signalfd (sigfd, &sigfd_set, 0);
3025 sigprocmask (SIG_UNBLOCK, &ss, 0);
3026 }
3027 else
3028#endif
1903 signal (w->signum, SIG_DFL); 3029 signal (w->signum, SIG_DFL);
3030 }
3031
3032 EV_FREQUENT_CHECK;
1904} 3033}
3034
3035#endif
3036
3037#if EV_CHILD_ENABLE
1905 3038
1906void 3039void
1907ev_child_start (EV_P_ ev_child *w) 3040ev_child_start (EV_P_ ev_child *w)
1908{ 3041{
1909#if EV_MULTIPLICITY 3042#if EV_MULTIPLICITY
1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3043 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1911#endif 3044#endif
1912 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
1913 return; 3046 return;
1914 3047
3048 EV_FREQUENT_CHECK;
3049
1915 ev_start (EV_A_ (W)w, 1); 3050 ev_start (EV_A_ (W)w, 1);
1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3051 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3052
3053 EV_FREQUENT_CHECK;
1917} 3054}
1918 3055
1919void 3056void
1920ev_child_stop (EV_P_ ev_child *w) 3057ev_child_stop (EV_P_ ev_child *w)
1921{ 3058{
1922 clear_pending (EV_A_ (W)w); 3059 clear_pending (EV_A_ (W)w);
1923 if (expect_false (!ev_is_active (w))) 3060 if (expect_false (!ev_is_active (w)))
1924 return; 3061 return;
1925 3062
3063 EV_FREQUENT_CHECK;
3064
1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3065 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1927 ev_stop (EV_A_ (W)w); 3066 ev_stop (EV_A_ (W)w);
3067
3068 EV_FREQUENT_CHECK;
1928} 3069}
3070
3071#endif
1929 3072
1930#if EV_STAT_ENABLE 3073#if EV_STAT_ENABLE
1931 3074
1932# ifdef _WIN32 3075# ifdef _WIN32
1933# undef lstat 3076# undef lstat
1934# define lstat(a,b) _stati64 (a,b) 3077# define lstat(a,b) _stati64 (a,b)
1935# endif 3078# endif
1936 3079
1937#define DEF_STAT_INTERVAL 5.0074891 3080#define DEF_STAT_INTERVAL 5.0074891
3081#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1938#define MIN_STAT_INTERVAL 0.1074891 3082#define MIN_STAT_INTERVAL 0.1074891
1939 3083
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3084static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941 3085
1942#if EV_USE_INOTIFY 3086#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192 3087
3088/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3089# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1944 3090
1945static void noinline 3091static void noinline
1946infy_add (EV_P_ ev_stat *w) 3092infy_add (EV_P_ ev_stat *w)
1947{ 3093{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3094 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949 3095
1950 if (w->wd < 0) 3096 if (w->wd >= 0)
3097 {
3098 struct statfs sfs;
3099
3100 /* now local changes will be tracked by inotify, but remote changes won't */
3101 /* unless the filesystem is known to be local, we therefore still poll */
3102 /* also do poll on <2.6.25, but with normal frequency */
3103
3104 if (!fs_2625)
3105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3106 else if (!statfs (w->path, &sfs)
3107 && (sfs.f_type == 0x1373 /* devfs */
3108 || sfs.f_type == 0xEF53 /* ext2/3 */
3109 || sfs.f_type == 0x3153464a /* jfs */
3110 || sfs.f_type == 0x52654973 /* reiser3 */
3111 || sfs.f_type == 0x01021994 /* tempfs */
3112 || sfs.f_type == 0x58465342 /* xfs */))
3113 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3114 else
3115 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1951 { 3116 }
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3117 else
3118 {
3119 /* can't use inotify, continue to stat */
3120 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1953 3121
1954 /* monitor some parent directory for speedup hints */ 3122 /* if path is not there, monitor some parent directory for speedup hints */
3123 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3124 /* but an efficiency issue only */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3125 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 { 3126 {
1957 char path [4096]; 3127 char path [4096];
1958 strcpy (path, w->path); 3128 strcpy (path, w->path);
1959 3129
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3132 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3133 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964 3134
1965 char *pend = strrchr (path, '/'); 3135 char *pend = strrchr (path, '/');
1966 3136
1967 if (!pend) 3137 if (!pend || pend == path)
1968 break; /* whoops, no '/', complain to your admin */ 3138 break;
1969 3139
1970 *pend = 0; 3140 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask); 3141 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 } 3142 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3143 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 } 3144 }
1975 } 3145 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978 3146
1979 if (w->wd >= 0) 3147 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3148 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3149
3150 /* now re-arm timer, if required */
3151 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3152 ev_timer_again (EV_A_ &w->timer);
3153 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1981} 3154}
1982 3155
1983static void noinline 3156static void noinline
1984infy_del (EV_P_ ev_stat *w) 3157infy_del (EV_P_ ev_stat *w)
1985{ 3158{
1988 3161
1989 if (wd < 0) 3162 if (wd < 0)
1990 return; 3163 return;
1991 3164
1992 w->wd = -2; 3165 w->wd = -2;
1993 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3166 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1994 wlist_del (&fs_hash [slot].head, (WL)w); 3167 wlist_del (&fs_hash [slot].head, (WL)w);
1995 3168
1996 /* remove this watcher, if others are watching it, they will rearm */ 3169 /* remove this watcher, if others are watching it, they will rearm */
1997 inotify_rm_watch (fs_fd, wd); 3170 inotify_rm_watch (fs_fd, wd);
1998} 3171}
1999 3172
2000static void noinline 3173static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3174infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{ 3175{
2003 if (slot < 0) 3176 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */ 3177 /* overflow, need to check for all hash slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3178 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2006 infy_wd (EV_A_ slot, wd, ev); 3179 infy_wd (EV_A_ slot, wd, ev);
2007 else 3180 else
2008 { 3181 {
2009 WL w_; 3182 WL w_;
2010 3183
2011 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3184 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2012 { 3185 {
2013 ev_stat *w = (ev_stat *)w_; 3186 ev_stat *w = (ev_stat *)w_;
2014 w_ = w_->next; /* lets us remove this watcher and all before it */ 3187 w_ = w_->next; /* lets us remove this watcher and all before it */
2015 3188
2016 if (w->wd == wd || wd == -1) 3189 if (w->wd == wd || wd == -1)
2017 { 3190 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3191 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 { 3192 {
3193 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2020 w->wd = -1; 3194 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
2022 } 3196 }
2023 3197
2024 stat_timer_cb (EV_A_ &w->timer, 0); 3198 stat_timer_cb (EV_A_ &w->timer, 0);
2029 3203
2030static void 3204static void
2031infy_cb (EV_P_ ev_io *w, int revents) 3205infy_cb (EV_P_ ev_io *w, int revents)
2032{ 3206{
2033 char buf [EV_INOTIFY_BUFSIZE]; 3207 char buf [EV_INOTIFY_BUFSIZE];
2034 struct inotify_event *ev = (struct inotify_event *)buf;
2035 int ofs; 3208 int ofs;
2036 int len = read (fs_fd, buf, sizeof (buf)); 3209 int len = read (fs_fd, buf, sizeof (buf));
2037 3210
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3211 for (ofs = 0; ofs < len; )
3212 {
3213 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3214 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3215 ofs += sizeof (struct inotify_event) + ev->len;
3216 }
2040} 3217}
2041 3218
2042void inline_size 3219inline_size void
3220ev_check_2625 (EV_P)
3221{
3222 /* kernels < 2.6.25 are borked
3223 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3224 */
3225 if (ev_linux_version () < 0x020619)
3226 return;
3227
3228 fs_2625 = 1;
3229}
3230
3231inline_size int
3232infy_newfd (void)
3233{
3234#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3235 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3236 if (fd >= 0)
3237 return fd;
3238#endif
3239 return inotify_init ();
3240}
3241
3242inline_size void
2043infy_init (EV_P) 3243infy_init (EV_P)
2044{ 3244{
2045 if (fs_fd != -2) 3245 if (fs_fd != -2)
2046 return; 3246 return;
2047 3247
3248 fs_fd = -1;
3249
3250 ev_check_2625 (EV_A);
3251
2048 fs_fd = inotify_init (); 3252 fs_fd = infy_newfd ();
2049 3253
2050 if (fs_fd >= 0) 3254 if (fs_fd >= 0)
2051 { 3255 {
3256 fd_intern (fs_fd);
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3257 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI); 3258 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w); 3259 ev_io_start (EV_A_ &fs_w);
3260 ev_unref (EV_A);
2055 } 3261 }
2056} 3262}
2057 3263
2058void inline_size 3264inline_size void
2059infy_fork (EV_P) 3265infy_fork (EV_P)
2060{ 3266{
2061 int slot; 3267 int slot;
2062 3268
2063 if (fs_fd < 0) 3269 if (fs_fd < 0)
2064 return; 3270 return;
2065 3271
3272 ev_ref (EV_A);
3273 ev_io_stop (EV_A_ &fs_w);
2066 close (fs_fd); 3274 close (fs_fd);
2067 fs_fd = inotify_init (); 3275 fs_fd = infy_newfd ();
2068 3276
3277 if (fs_fd >= 0)
3278 {
3279 fd_intern (fs_fd);
3280 ev_io_set (&fs_w, fs_fd, EV_READ);
3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
3283 }
3284
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3285 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2070 { 3286 {
2071 WL w_ = fs_hash [slot].head; 3287 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0; 3288 fs_hash [slot].head = 0;
2073 3289
2074 while (w_) 3290 while (w_)
2079 w->wd = -1; 3295 w->wd = -1;
2080 3296
2081 if (fs_fd >= 0) 3297 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */ 3298 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else 3299 else
3300 {
3301 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3302 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2084 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3305 }
2085 } 3306 }
2086
2087 } 3307 }
2088} 3308}
2089 3309
3310#endif
3311
3312#ifdef _WIN32
3313# define EV_LSTAT(p,b) _stati64 (p, b)
3314#else
3315# define EV_LSTAT(p,b) lstat (p, b)
2090#endif 3316#endif
2091 3317
2092void 3318void
2093ev_stat_stat (EV_P_ ev_stat *w) 3319ev_stat_stat (EV_P_ ev_stat *w)
2094{ 3320{
2101static void noinline 3327static void noinline
2102stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3328stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2103{ 3329{
2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3330 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2105 3331
2106 /* we copy this here each the time so that */ 3332 ev_statdata prev = w->attr;
2107 /* prev has the old value when the callback gets invoked */
2108 w->prev = w->attr;
2109 ev_stat_stat (EV_A_ w); 3333 ev_stat_stat (EV_A_ w);
2110 3334
2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3335 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if ( 3336 if (
2113 w->prev.st_dev != w->attr.st_dev 3337 prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino 3338 || prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode 3339 || prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink 3340 || prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid 3341 || prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid 3342 || prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev 3343 || prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size 3344 || prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime 3345 || prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime 3346 || prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime 3347 || prev.st_ctime != w->attr.st_ctime
2124 ) { 3348 ) {
3349 /* we only update w->prev on actual differences */
3350 /* in case we test more often than invoke the callback, */
3351 /* to ensure that prev is always different to attr */
3352 w->prev = prev;
3353
2125 #if EV_USE_INOTIFY 3354 #if EV_USE_INOTIFY
3355 if (fs_fd >= 0)
3356 {
2126 infy_del (EV_A_ w); 3357 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w); 3358 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */ 3359 ev_stat_stat (EV_A_ w); /* avoid race... */
3360 }
2129 #endif 3361 #endif
2130 3362
2131 ev_feed_event (EV_A_ w, EV_STAT); 3363 ev_feed_event (EV_A_ w, EV_STAT);
2132 } 3364 }
2133} 3365}
2136ev_stat_start (EV_P_ ev_stat *w) 3368ev_stat_start (EV_P_ ev_stat *w)
2137{ 3369{
2138 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
2139 return; 3371 return;
2140 3372
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w); 3373 ev_stat_stat (EV_A_ w);
2146 3374
3375 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2147 if (w->interval < MIN_STAT_INTERVAL) 3376 w->interval = MIN_STAT_INTERVAL;
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149 3377
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3378 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2151 ev_set_priority (&w->timer, ev_priority (w)); 3379 ev_set_priority (&w->timer, ev_priority (w));
2152 3380
2153#if EV_USE_INOTIFY 3381#if EV_USE_INOTIFY
2154 infy_init (EV_A); 3382 infy_init (EV_A);
2155 3383
2156 if (fs_fd >= 0) 3384 if (fs_fd >= 0)
2157 infy_add (EV_A_ w); 3385 infy_add (EV_A_ w);
2158 else 3386 else
2159#endif 3387#endif
3388 {
2160 ev_timer_start (EV_A_ &w->timer); 3389 ev_timer_again (EV_A_ &w->timer);
3390 ev_unref (EV_A);
3391 }
2161 3392
2162 ev_start (EV_A_ (W)w, 1); 3393 ev_start (EV_A_ (W)w, 1);
3394
3395 EV_FREQUENT_CHECK;
2163} 3396}
2164 3397
2165void 3398void
2166ev_stat_stop (EV_P_ ev_stat *w) 3399ev_stat_stop (EV_P_ ev_stat *w)
2167{ 3400{
2168 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2170 return; 3403 return;
2171 3404
3405 EV_FREQUENT_CHECK;
3406
2172#if EV_USE_INOTIFY 3407#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w); 3408 infy_del (EV_A_ w);
2174#endif 3409#endif
3410
3411 if (ev_is_active (&w->timer))
3412 {
3413 ev_ref (EV_A);
2175 ev_timer_stop (EV_A_ &w->timer); 3414 ev_timer_stop (EV_A_ &w->timer);
3415 }
2176 3416
2177 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2178} 3420}
2179#endif 3421#endif
2180 3422
2181#if EV_IDLE_ENABLE 3423#if EV_IDLE_ENABLE
2182void 3424void
2184{ 3426{
2185 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2186 return; 3428 return;
2187 3429
2188 pri_adjust (EV_A_ (W)w); 3430 pri_adjust (EV_A_ (W)w);
3431
3432 EV_FREQUENT_CHECK;
2189 3433
2190 { 3434 {
2191 int active = ++idlecnt [ABSPRI (w)]; 3435 int active = ++idlecnt [ABSPRI (w)];
2192 3436
2193 ++idleall; 3437 ++idleall;
2194 ev_start (EV_A_ (W)w, active); 3438 ev_start (EV_A_ (W)w, active);
2195 3439
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3440 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w; 3441 idles [ABSPRI (w)][active - 1] = w;
2198 } 3442 }
3443
3444 EV_FREQUENT_CHECK;
2199} 3445}
2200 3446
2201void 3447void
2202ev_idle_stop (EV_P_ ev_idle *w) 3448ev_idle_stop (EV_P_ ev_idle *w)
2203{ 3449{
2204 clear_pending (EV_A_ (W)w); 3450 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3451 if (expect_false (!ev_is_active (w)))
2206 return; 3452 return;
2207 3453
3454 EV_FREQUENT_CHECK;
3455
2208 { 3456 {
2209 int active = ((W)w)->active; 3457 int active = ev_active (w);
2210 3458
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3459 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3460 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2213 3461
2214 ev_stop (EV_A_ (W)w); 3462 ev_stop (EV_A_ (W)w);
2215 --idleall; 3463 --idleall;
2216 } 3464 }
2217}
2218#endif
2219 3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_PREPARE_ENABLE
2220void 3471void
2221ev_prepare_start (EV_P_ ev_prepare *w) 3472ev_prepare_start (EV_P_ ev_prepare *w)
2222{ 3473{
2223 if (expect_false (ev_is_active (w))) 3474 if (expect_false (ev_is_active (w)))
2224 return; 3475 return;
3476
3477 EV_FREQUENT_CHECK;
2225 3478
2226 ev_start (EV_A_ (W)w, ++preparecnt); 3479 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w; 3481 prepares [preparecnt - 1] = w;
3482
3483 EV_FREQUENT_CHECK;
2229} 3484}
2230 3485
2231void 3486void
2232ev_prepare_stop (EV_P_ ev_prepare *w) 3487ev_prepare_stop (EV_P_ ev_prepare *w)
2233{ 3488{
2234 clear_pending (EV_A_ (W)w); 3489 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3490 if (expect_false (!ev_is_active (w)))
2236 return; 3491 return;
2237 3492
3493 EV_FREQUENT_CHECK;
3494
2238 { 3495 {
2239 int active = ((W)w)->active; 3496 int active = ev_active (w);
3497
2240 prepares [active - 1] = prepares [--preparecnt]; 3498 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active; 3499 ev_active (prepares [active - 1]) = active;
2242 } 3500 }
2243 3501
2244 ev_stop (EV_A_ (W)w); 3502 ev_stop (EV_A_ (W)w);
2245}
2246 3503
3504 EV_FREQUENT_CHECK;
3505}
3506#endif
3507
3508#if EV_CHECK_ENABLE
2247void 3509void
2248ev_check_start (EV_P_ ev_check *w) 3510ev_check_start (EV_P_ ev_check *w)
2249{ 3511{
2250 if (expect_false (ev_is_active (w))) 3512 if (expect_false (ev_is_active (w)))
2251 return; 3513 return;
3514
3515 EV_FREQUENT_CHECK;
2252 3516
2253 ev_start (EV_A_ (W)w, ++checkcnt); 3517 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3518 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w; 3519 checks [checkcnt - 1] = w;
3520
3521 EV_FREQUENT_CHECK;
2256} 3522}
2257 3523
2258void 3524void
2259ev_check_stop (EV_P_ ev_check *w) 3525ev_check_stop (EV_P_ ev_check *w)
2260{ 3526{
2261 clear_pending (EV_A_ (W)w); 3527 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w))) 3528 if (expect_false (!ev_is_active (w)))
2263 return; 3529 return;
2264 3530
3531 EV_FREQUENT_CHECK;
3532
2265 { 3533 {
2266 int active = ((W)w)->active; 3534 int active = ev_active (w);
3535
2267 checks [active - 1] = checks [--checkcnt]; 3536 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active; 3537 ev_active (checks [active - 1]) = active;
2269 } 3538 }
2270 3539
2271 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
2272} 3543}
3544#endif
2273 3545
2274#if EV_EMBED_ENABLE 3546#if EV_EMBED_ENABLE
2275void noinline 3547void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w) 3548ev_embed_sweep (EV_P_ ev_embed *w)
2277{ 3549{
2278 ev_loop (w->other, EVLOOP_NONBLOCK); 3550 ev_run (w->other, EVRUN_NOWAIT);
2279} 3551}
2280 3552
2281static void 3553static void
2282embed_io_cb (EV_P_ ev_io *io, int revents) 3554embed_io_cb (EV_P_ ev_io *io, int revents)
2283{ 3555{
2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3556 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2285 3557
2286 if (ev_cb (w)) 3558 if (ev_cb (w))
2287 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3559 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2288 else 3560 else
2289 ev_loop (w->other, EVLOOP_NONBLOCK); 3561 ev_run (w->other, EVRUN_NOWAIT);
2290} 3562}
2291 3563
2292static void 3564static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3565embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{ 3566{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3567 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296 3568
2297 { 3569 {
2298 struct ev_loop *loop = w->other; 3570 EV_P = w->other;
2299 3571
2300 while (fdchangecnt) 3572 while (fdchangecnt)
2301 { 3573 {
2302 fd_reify (EV_A); 3574 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3575 ev_run (EV_A_ EVRUN_NOWAIT);
2304 } 3576 }
2305 } 3577 }
3578}
3579
3580static void
3581embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3582{
3583 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3584
3585 ev_embed_stop (EV_A_ w);
3586
3587 {
3588 EV_P = w->other;
3589
3590 ev_loop_fork (EV_A);
3591 ev_run (EV_A_ EVRUN_NOWAIT);
3592 }
3593
3594 ev_embed_start (EV_A_ w);
2306} 3595}
2307 3596
2308#if 0 3597#if 0
2309static void 3598static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2318{ 3607{
2319 if (expect_false (ev_is_active (w))) 3608 if (expect_false (ev_is_active (w)))
2320 return; 3609 return;
2321 3610
2322 { 3611 {
2323 struct ev_loop *loop = w->other; 3612 EV_P = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3613 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 } 3615 }
3616
3617 EV_FREQUENT_CHECK;
2327 3618
2328 ev_set_priority (&w->io, ev_priority (w)); 3619 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io); 3620 ev_io_start (EV_A_ &w->io);
2330 3621
2331 ev_prepare_init (&w->prepare, embed_prepare_cb); 3622 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI); 3623 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare); 3624 ev_prepare_start (EV_A_ &w->prepare);
2334 3625
3626 ev_fork_init (&w->fork, embed_fork_cb);
3627 ev_fork_start (EV_A_ &w->fork);
3628
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3629 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336 3630
2337 ev_start (EV_A_ (W)w, 1); 3631 ev_start (EV_A_ (W)w, 1);
3632
3633 EV_FREQUENT_CHECK;
2338} 3634}
2339 3635
2340void 3636void
2341ev_embed_stop (EV_P_ ev_embed *w) 3637ev_embed_stop (EV_P_ ev_embed *w)
2342{ 3638{
2343 clear_pending (EV_A_ (W)w); 3639 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w))) 3640 if (expect_false (!ev_is_active (w)))
2345 return; 3641 return;
2346 3642
3643 EV_FREQUENT_CHECK;
3644
2347 ev_io_stop (EV_A_ &w->io); 3645 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare); 3646 ev_prepare_stop (EV_A_ &w->prepare);
3647 ev_fork_stop (EV_A_ &w->fork);
2349 3648
2350 ev_stop (EV_A_ (W)w); 3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
2351} 3652}
2352#endif 3653#endif
2353 3654
2354#if EV_FORK_ENABLE 3655#if EV_FORK_ENABLE
2355void 3656void
2356ev_fork_start (EV_P_ ev_fork *w) 3657ev_fork_start (EV_P_ ev_fork *w)
2357{ 3658{
2358 if (expect_false (ev_is_active (w))) 3659 if (expect_false (ev_is_active (w)))
2359 return; 3660 return;
3661
3662 EV_FREQUENT_CHECK;
2360 3663
2361 ev_start (EV_A_ (W)w, ++forkcnt); 3664 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3665 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w; 3666 forks [forkcnt - 1] = w;
3667
3668 EV_FREQUENT_CHECK;
2364} 3669}
2365 3670
2366void 3671void
2367ev_fork_stop (EV_P_ ev_fork *w) 3672ev_fork_stop (EV_P_ ev_fork *w)
2368{ 3673{
2369 clear_pending (EV_A_ (W)w); 3674 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w))) 3675 if (expect_false (!ev_is_active (w)))
2371 return; 3676 return;
2372 3677
3678 EV_FREQUENT_CHECK;
3679
2373 { 3680 {
2374 int active = ((W)w)->active; 3681 int active = ev_active (w);
3682
2375 forks [active - 1] = forks [--forkcnt]; 3683 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active; 3684 ev_active (forks [active - 1]) = active;
2377 } 3685 }
2378 3686
2379 ev_stop (EV_A_ (W)w); 3687 ev_stop (EV_A_ (W)w);
3688
3689 EV_FREQUENT_CHECK;
3690}
3691#endif
3692
3693#if EV_CLEANUP_ENABLE
3694void
3695ev_cleanup_start (EV_P_ ev_cleanup *w)
3696{
3697 if (expect_false (ev_is_active (w)))
3698 return;
3699
3700 EV_FREQUENT_CHECK;
3701
3702 ev_start (EV_A_ (W)w, ++cleanupcnt);
3703 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3704 cleanups [cleanupcnt - 1] = w;
3705
3706 /* cleanup watchers should never keep a refcount on the loop */
3707 ev_unref (EV_A);
3708 EV_FREQUENT_CHECK;
3709}
3710
3711void
3712ev_cleanup_stop (EV_P_ ev_cleanup *w)
3713{
3714 clear_pending (EV_A_ (W)w);
3715 if (expect_false (!ev_is_active (w)))
3716 return;
3717
3718 EV_FREQUENT_CHECK;
3719 ev_ref (EV_A);
3720
3721 {
3722 int active = ev_active (w);
3723
3724 cleanups [active - 1] = cleanups [--cleanupcnt];
3725 ev_active (cleanups [active - 1]) = active;
3726 }
3727
3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
3731}
3732#endif
3733
3734#if EV_ASYNC_ENABLE
3735void
3736ev_async_start (EV_P_ ev_async *w)
3737{
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 w->sent = 0;
3742
3743 evpipe_init (EV_A);
3744
3745 EV_FREQUENT_CHECK;
3746
3747 ev_start (EV_A_ (W)w, ++asynccnt);
3748 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3749 asyncs [asynccnt - 1] = w;
3750
3751 EV_FREQUENT_CHECK;
3752}
3753
3754void
3755ev_async_stop (EV_P_ ev_async *w)
3756{
3757 clear_pending (EV_A_ (W)w);
3758 if (expect_false (!ev_is_active (w)))
3759 return;
3760
3761 EV_FREQUENT_CHECK;
3762
3763 {
3764 int active = ev_active (w);
3765
3766 asyncs [active - 1] = asyncs [--asynccnt];
3767 ev_active (asyncs [active - 1]) = active;
3768 }
3769
3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
3773}
3774
3775void
3776ev_async_send (EV_P_ ev_async *w)
3777{
3778 w->sent = 1;
3779 evpipe_write (EV_A_ &async_pending);
2380} 3780}
2381#endif 3781#endif
2382 3782
2383/*****************************************************************************/ 3783/*****************************************************************************/
2384 3784
2394once_cb (EV_P_ struct ev_once *once, int revents) 3794once_cb (EV_P_ struct ev_once *once, int revents)
2395{ 3795{
2396 void (*cb)(int revents, void *arg) = once->cb; 3796 void (*cb)(int revents, void *arg) = once->cb;
2397 void *arg = once->arg; 3797 void *arg = once->arg;
2398 3798
2399 ev_io_stop (EV_A_ &once->io); 3799 ev_io_stop (EV_A_ &once->io);
2400 ev_timer_stop (EV_A_ &once->to); 3800 ev_timer_stop (EV_A_ &once->to);
2401 ev_free (once); 3801 ev_free (once);
2402 3802
2403 cb (revents, arg); 3803 cb (revents, arg);
2404} 3804}
2405 3805
2406static void 3806static void
2407once_cb_io (EV_P_ ev_io *w, int revents) 3807once_cb_io (EV_P_ ev_io *w, int revents)
2408{ 3808{
2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2410} 3812}
2411 3813
2412static void 3814static void
2413once_cb_to (EV_P_ ev_timer *w, int revents) 3815once_cb_to (EV_P_ ev_timer *w, int revents)
2414{ 3816{
2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3817 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3818
3819 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2416} 3820}
2417 3821
2418void 3822void
2419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3823ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2420{ 3824{
2421 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3825 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2422 3826
2423 if (expect_false (!once)) 3827 if (expect_false (!once))
2424 { 3828 {
2425 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3829 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2426 return; 3830 return;
2427 } 3831 }
2428 3832
2429 once->cb = cb; 3833 once->cb = cb;
2430 once->arg = arg; 3834 once->arg = arg;
2442 ev_timer_set (&once->to, timeout, 0.); 3846 ev_timer_set (&once->to, timeout, 0.);
2443 ev_timer_start (EV_A_ &once->to); 3847 ev_timer_start (EV_A_ &once->to);
2444 } 3848 }
2445} 3849}
2446 3850
3851/*****************************************************************************/
3852
3853#if EV_WALK_ENABLE
3854void
3855ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3856{
3857 int i, j;
3858 ev_watcher_list *wl, *wn;
3859
3860 if (types & (EV_IO | EV_EMBED))
3861 for (i = 0; i < anfdmax; ++i)
3862 for (wl = anfds [i].head; wl; )
3863 {
3864 wn = wl->next;
3865
3866#if EV_EMBED_ENABLE
3867 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3868 {
3869 if (types & EV_EMBED)
3870 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3871 }
3872 else
3873#endif
3874#if EV_USE_INOTIFY
3875 if (ev_cb ((ev_io *)wl) == infy_cb)
3876 ;
3877 else
3878#endif
3879 if ((ev_io *)wl != &pipe_w)
3880 if (types & EV_IO)
3881 cb (EV_A_ EV_IO, wl);
3882
3883 wl = wn;
3884 }
3885
3886 if (types & (EV_TIMER | EV_STAT))
3887 for (i = timercnt + HEAP0; i-- > HEAP0; )
3888#if EV_STAT_ENABLE
3889 /*TODO: timer is not always active*/
3890 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3891 {
3892 if (types & EV_STAT)
3893 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3894 }
3895 else
3896#endif
3897 if (types & EV_TIMER)
3898 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3899
3900#if EV_PERIODIC_ENABLE
3901 if (types & EV_PERIODIC)
3902 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3903 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3904#endif
3905
3906#if EV_IDLE_ENABLE
3907 if (types & EV_IDLE)
3908 for (j = NUMPRI; i--; )
3909 for (i = idlecnt [j]; i--; )
3910 cb (EV_A_ EV_IDLE, idles [j][i]);
3911#endif
3912
3913#if EV_FORK_ENABLE
3914 if (types & EV_FORK)
3915 for (i = forkcnt; i--; )
3916 if (ev_cb (forks [i]) != embed_fork_cb)
3917 cb (EV_A_ EV_FORK, forks [i]);
3918#endif
3919
3920#if EV_ASYNC_ENABLE
3921 if (types & EV_ASYNC)
3922 for (i = asynccnt; i--; )
3923 cb (EV_A_ EV_ASYNC, asyncs [i]);
3924#endif
3925
3926#if EV_PREPARE_ENABLE
3927 if (types & EV_PREPARE)
3928 for (i = preparecnt; i--; )
3929# if EV_EMBED_ENABLE
3930 if (ev_cb (prepares [i]) != embed_prepare_cb)
3931# endif
3932 cb (EV_A_ EV_PREPARE, prepares [i]);
3933#endif
3934
3935#if EV_CHECK_ENABLE
3936 if (types & EV_CHECK)
3937 for (i = checkcnt; i--; )
3938 cb (EV_A_ EV_CHECK, checks [i]);
3939#endif
3940
3941#if EV_SIGNAL_ENABLE
3942 if (types & EV_SIGNAL)
3943 for (i = 0; i < EV_NSIG - 1; ++i)
3944 for (wl = signals [i].head; wl; )
3945 {
3946 wn = wl->next;
3947 cb (EV_A_ EV_SIGNAL, wl);
3948 wl = wn;
3949 }
3950#endif
3951
3952#if EV_CHILD_ENABLE
3953 if (types & EV_CHILD)
3954 for (i = (EV_PID_HASHSIZE); i--; )
3955 for (wl = childs [i]; wl; )
3956 {
3957 wn = wl->next;
3958 cb (EV_A_ EV_CHILD, wl);
3959 wl = wn;
3960 }
3961#endif
3962/* EV_STAT 0x00001000 /* stat data changed */
3963/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3964}
3965#endif
3966
2447#if EV_MULTIPLICITY 3967#if EV_MULTIPLICITY
2448 #include "ev_wrap.h" 3968 #include "ev_wrap.h"
2449#endif 3969#endif
2450 3970
2451#ifdef __cplusplus 3971EV_CPP(})
2452}
2453#endif
2454 3972

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines