ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.202 by root, Sat Dec 29 16:19:36 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
47# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
49# endif 61# endif
50# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
52# endif 72# endif
53# endif 73# endif
54 74
55# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 110# else
91# define EV_USE_PORT 0 111# define EV_USE_PORT 0
92# endif 112# endif
93# endif 113# endif
94 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
95#endif 123#endif
96 124
97#include <math.h> 125#include <math.h>
98#include <stdlib.h> 126#include <stdlib.h>
99#include <fcntl.h> 127#include <fcntl.h>
106#include <sys/types.h> 134#include <sys/types.h>
107#include <time.h> 135#include <time.h>
108 136
109#include <signal.h> 137#include <signal.h>
110 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
111#ifndef _WIN32 145#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 146# include <sys/time.h>
114# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
115#else 149#else
116# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 151# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
128 162
129#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
131#endif 165#endif
132 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
133#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
135#endif 173#endif
136 174
137#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
152 190
153#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 192# define EV_USE_PORT 0
155#endif 193#endif
156 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
157/**/ 215/**/
158 216
159#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
167#endif 225#endif
168 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
169#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 243# include <winsock.h>
171#endif 244#endif
172 245
173/**/ 246/**/
174 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 261
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 262#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 264# define noinline __attribute__ ((noinline))
189#else 265#else
190# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
191# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
192#endif 271#endif
193 272
194#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
196 282
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 285
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
202 288
203typedef struct ev_watcher *W; 289typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
206 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
208 298
209#ifdef _WIN32 299#ifdef _WIN32
210# include "ev_win32.c" 300# include "ev_win32.c"
211#endif 301#endif
212 302
213/*****************************************************************************/ 303/*****************************************************************************/
214 304
215static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
216 306
307void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 309{
219 syserr_cb = cb; 310 syserr_cb = cb;
220} 311}
221 312
222static void 313static void noinline
223syserr (const char *msg) 314syserr (const char *msg)
224{ 315{
225 if (!msg) 316 if (!msg)
226 msg = "(libev) system error"; 317 msg = "(libev) system error";
227 318
234 } 325 }
235} 326}
236 327
237static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
238 329
330void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 332{
241 alloc = cb; 333 alloc = cb;
242} 334}
243 335
244static void * 336inline_speed void *
245ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
246{ 338{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 340
249 if (!ptr && size) 341 if (!ptr && size)
273typedef struct 365typedef struct
274{ 366{
275 W w; 367 W w;
276 int events; 368 int events;
277} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
278 377
279#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
280 379
281 struct ev_loop 380 struct ev_loop
282 { 381 {
316 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 417#endif
319} 418}
320 419
321inline ev_tstamp 420ev_tstamp inline_size
322get_clock (void) 421get_clock (void)
323{ 422{
324#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
326 { 425 {
339{ 438{
340 return ev_rt_now; 439 return ev_rt_now;
341} 440}
342#endif 441#endif
343 442
344#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
345 497
346#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
348 { \ 500 { \
349 int newcnt = cur; \ 501 int ocur_ = (cur); \
350 do \ 502 (base) = (type *)array_realloc \
351 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 505 }
360 506
507#if 0
361#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 510 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 514 }
515#endif
368 516
369#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 519
372/*****************************************************************************/ 520/*****************************************************************************/
373 521
374static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
375anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
376{ 552{
377 while (count--) 553 while (count--)
378 { 554 {
379 base->head = 0; 555 base->head = 0;
382 558
383 ++base; 559 ++base;
384 } 560 }
385} 561}
386 562
387void 563void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
415{ 565{
416 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 567 ev_io *w;
418 568
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 570 {
421 int ev = w->events & revents; 571 int ev = w->events & revents;
422 572
423 if (ev) 573 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
426} 576}
427 577
428void 578void
429ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 580{
581 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
432} 583}
433 584
434/*****************************************************************************/ 585void inline_size
435
436inline void
437fd_reify (EV_P) 586fd_reify (EV_P)
438{ 587{
439 int i; 588 int i;
440 589
441 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
442 { 591 {
443 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 594 ev_io *w;
446 595
447 int events = 0; 596 unsigned char events = 0;
448 597
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 599 events |= (unsigned char)w->events;
451 600
452#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
453 if (events) 602 if (events)
454 { 603 {
455 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
456 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 611 }
459#endif 612#endif
460 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
461 anfd->reify = 0; 618 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
465 } 624 }
466 625
467 fdchangecnt = 0; 626 fdchangecnt = 0;
468} 627}
469 628
470static void 629void inline_size
471fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
472{ 631{
473 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
477 634
635 if (expect_true (!reify))
636 {
478 ++fdchangecnt; 637 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
481} 641}
482 642
483static void 643void inline_speed
484fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
485{ 645{
486 struct ev_io *w; 646 ev_io *w;
487 647
488 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
489 { 649 {
490 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 652 }
493} 653}
494 654
495inline int 655int inline_size
496fd_valid (int fd) 656fd_valid (int fd)
497{ 657{
498#ifdef _WIN32 658#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
500#else 660#else
501 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
502#endif 662#endif
503} 663}
504 664
505/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
506static void 666static void noinline
507fd_ebadf (EV_P) 667fd_ebadf (EV_P)
508{ 668{
509 int fd; 669 int fd;
510 670
511 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
515} 675}
516 676
517/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 678static void noinline
519fd_enomem (EV_P) 679fd_enomem (EV_P)
520{ 680{
521 int fd; 681 int fd;
522 682
523 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
527 return; 687 return;
528 } 688 }
529} 689}
530 690
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 692static void noinline
533fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
534{ 694{
535 int fd; 695 int fd;
536 696
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 698 if (anfds [fd].events)
540 { 699 {
541 anfds [fd].events = 0; 700 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 702 }
544} 703}
545 704
546/*****************************************************************************/ 705/*****************************************************************************/
547 706
548static void 707void inline_speed
549upheap (WT *heap, int k) 708upheap (WT *heap, int k)
550{ 709{
551 WT w = heap [k]; 710 WT w = heap [k];
552 711
553 while (k && heap [k >> 1]->at > w->at) 712 while (k)
554 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
555 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
557 k >>= 1; 721 k = p;
558 } 722 }
559 723
560 heap [k] = w; 724 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
562
563} 726}
564 727
565static void 728void inline_speed
566downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
567{ 730{
568 WT w = heap [k]; 731 WT w = heap [k];
569 732
570 while (k < (N >> 1)) 733 for (;;)
571 { 734 {
572 int j = k << 1; 735 int c = (k << 1) + 1;
573 736
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 738 break;
579 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
580 heap [k] = heap [j]; 746 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
582 k = j; 749 k = c;
583 } 750 }
584 751
585 heap [k] = w; 752 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
587} 754}
588 755
589inline void 756void inline_size
590adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
591{ 758{
592 upheap (heap, k); 759 upheap (heap, k);
593 downheap (heap, N, k); 760 downheap (heap, N, k);
594} 761}
604static ANSIG *signals; 771static ANSIG *signals;
605static int signalmax; 772static int signalmax;
606 773
607static int sigpipe [2]; 774static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 776static ev_io sigev;
610 777
611static void 778void inline_size
612signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
613{ 780{
614 while (count--) 781 while (count--)
615 { 782 {
616 base->head = 0; 783 base->head = 0;
636 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 804 errno = old_errno;
638 } 805 }
639} 806}
640 807
641void 808void noinline
642ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
643{ 810{
644 WL w; 811 WL w;
645 812
646#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 826}
660 827
661static void 828static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
663{ 830{
664 int signum; 831 int signum;
665 832
666 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 834 gotsig = 0;
669 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
672} 839}
673 840
674static void 841void inline_speed
675fd_intern (int fd) 842fd_intern (int fd)
676{ 843{
677#ifdef _WIN32 844#ifdef _WIN32
678 int arg = 1; 845 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 848 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 849 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 850#endif
684} 851}
685 852
686static void 853static void noinline
687siginit (EV_P) 854siginit (EV_P)
688{ 855{
689 fd_intern (sigpipe [0]); 856 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 857 fd_intern (sigpipe [1]);
691 858
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 862}
696 863
697/*****************************************************************************/ 864/*****************************************************************************/
698 865
699static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
700 867
701#ifndef _WIN32 868#ifndef _WIN32
702 869
703static struct ev_signal childev; 870static ev_signal childev;
871
872void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
874{
875 ev_child *w;
876
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
878 if (w->pid == pid || !w->pid)
879 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
881 w->rpid = pid;
882 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 }
885}
704 886
705#ifndef WCONTINUED 887#ifndef WCONTINUED
706# define WCONTINUED 0 888# define WCONTINUED 0
707#endif 889#endif
708 890
709static void 891static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 892childcb (EV_P_ ev_signal *sw, int revents)
726{ 893{
727 int pid, status; 894 int pid, status;
728 895
896 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 897 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 898 if (!WCONTINUED
899 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return;
902
731 /* make sure we are called again until all childs have been reaped */ 903 /* make sure we are called again until all childs have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 906
734 child_reap (EV_A_ sw, pid, pid, status); 907 child_reap (EV_A_ sw, pid, pid, status);
908 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 910}
738 911
739#endif 912#endif
740 913
741/*****************************************************************************/ 914/*****************************************************************************/
767{ 940{
768 return EV_VERSION_MINOR; 941 return EV_VERSION_MINOR;
769} 942}
770 943
771/* return true if we are running with elevated privileges and should ignore env variables */ 944/* return true if we are running with elevated privileges and should ignore env variables */
772static int 945int inline_size
773enable_secure (void) 946enable_secure (void)
774{ 947{
775#ifdef _WIN32 948#ifdef _WIN32
776 return 0; 949 return 0;
777#else 950#else
811 984
812 return flags; 985 return flags;
813} 986}
814 987
815unsigned int 988unsigned int
989ev_embeddable_backends (void)
990{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
998}
999
1000unsigned int
816ev_backend (EV_P) 1001ev_backend (EV_P)
817{ 1002{
818 return backend; 1003 return backend;
819} 1004}
820 1005
821static void 1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
822loop_init (EV_P_ unsigned int flags) 1025loop_init (EV_P_ unsigned int flags)
823{ 1026{
824 if (!backend) 1027 if (!backend)
825 { 1028 {
826#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1038 mn_now = get_clock ();
836 now_floor = mn_now; 1039 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
838 1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
839 if (!(flags & EVFLAG_NOENV) 1051 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1052 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1053 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1055
844 if (!(flags & 0x0000ffffUL)) 1056 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 1057 flags |= ev_recommended_backends ();
846 1058
847 backend = 0; 1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064
848#if EV_USE_PORT 1065#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1067#endif
851#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 1081 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1082 ev_set_priority (&sigev, EV_MAXPRI);
866 } 1083 }
867} 1084}
868 1085
869static void 1086static void noinline
870loop_destroy (EV_P) 1087loop_destroy (EV_P)
871{ 1088{
872 int i; 1089 int i;
1090
1091#if EV_USE_INOTIFY
1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
873 1098
874#if EV_USE_PORT 1099#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1101#endif
877#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1111#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1113#endif
889 1114
890 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
891 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
892 1124
893 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1126 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1127 array_free (timer, EMPTY);
896#if EV_PERIODICS 1128#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1129 array_free (periodic, EMPTY);
898#endif 1130#endif
1131#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1132 array_free (fork, EMPTY);
1133#endif
900 array_free (prepare, EMPTY0); 1134 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1135 array_free (check, EMPTY);
902 1136
903 backend = 0; 1137 backend = 0;
904} 1138}
905 1139
906static void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
907loop_fork (EV_P) 1143loop_fork (EV_P)
908{ 1144{
909#if EV_USE_PORT 1145#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1147#endif
912#if EV_USE_KQUEUE 1148#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1150#endif
915#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1153#endif
1154#if EV_USE_INOTIFY
1155 infy_fork (EV_A);
917#endif 1156#endif
918 1157
919 if (ev_is_active (&sigev)) 1158 if (ev_is_active (&sigev))
920 { 1159 {
921 /* default loop */ 1160 /* default loop */
1037 postfork = 1; 1276 postfork = 1;
1038} 1277}
1039 1278
1040/*****************************************************************************/ 1279/*****************************************************************************/
1041 1280
1042static int 1281void
1043any_pending (EV_P) 1282ev_invoke (EV_P_ void *w, int revents)
1044{ 1283{
1045 int pri; 1284 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1285}
1053 1286
1054inline void 1287void inline_speed
1055call_pending (EV_P) 1288call_pending (EV_P)
1056{ 1289{
1057 int pri; 1290 int pri;
1058 1291
1059 for (pri = NUMPRI; pri--; ) 1292 for (pri = NUMPRI; pri--; )
1061 { 1294 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1296
1064 if (expect_true (p->w)) 1297 if (expect_true (p->w))
1065 { 1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1300
1066 p->w->pending = 0; 1301 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1302 EV_CB_INVOKE (p->w, p->events);
1068 } 1303 }
1069 } 1304 }
1070} 1305}
1071 1306
1072inline void 1307void inline_size
1073timers_reify (EV_P) 1308timers_reify (EV_P)
1074{ 1309{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1311 {
1077 struct ev_timer *w = timers [0]; 1312 ev_timer *w = (ev_timer *)timers [0];
1078 1313
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1315
1081 /* first reschedule or stop timer */ 1316 /* first reschedule or stop timer */
1082 if (w->repeat) 1317 if (w->repeat)
1083 { 1318 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1320
1086 ((WT)w)->at += w->repeat; 1321 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now) 1322 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now; 1323 ((WT)w)->at = mn_now;
1089 1324
1090 downheap ((WT *)timers, timercnt, 0); 1325 downheap (timers, timercnt, 0);
1091 } 1326 }
1092 else 1327 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1329
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1331 }
1097} 1332}
1098 1333
1099#if EV_PERIODICS 1334#if EV_PERIODIC_ENABLE
1100inline void 1335void inline_size
1101periodics_reify (EV_P) 1336periodics_reify (EV_P)
1102{ 1337{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1339 {
1105 struct ev_periodic *w = periodics [0]; 1340 ev_periodic *w = (ev_periodic *)periodics [0];
1106 1341
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1343
1109 /* first reschedule or stop timer */ 1344 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1345 if (w->reschedule_cb)
1111 { 1346 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1349 downheap (periodics, periodiccnt, 0);
1115 } 1350 }
1116 else if (w->interval) 1351 else if (w->interval)
1117 { 1352 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1356 downheap (periodics, periodiccnt, 0);
1121 } 1357 }
1122 else 1358 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1360
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1362 }
1127} 1363}
1128 1364
1129static void 1365static void noinline
1130periodics_reschedule (EV_P) 1366periodics_reschedule (EV_P)
1131{ 1367{
1132 int i; 1368 int i;
1133 1369
1134 /* adjust periodics after time jump */ 1370 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1371 for (i = 0; i < periodiccnt; ++i)
1136 { 1372 {
1137 struct ev_periodic *w = periodics [i]; 1373 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1374
1139 if (w->reschedule_cb) 1375 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1377 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1379 }
1144 1380
1145 /* now rebuild the heap */ 1381 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1382 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1383 downheap (periodics, periodiccnt, i);
1148} 1384}
1149#endif 1385#endif
1150 1386
1151inline int 1387#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1388void inline_size
1389idle_reify (EV_P)
1153{ 1390{
1391 if (expect_false (idleall))
1392 {
1393 int pri;
1394
1395 for (pri = NUMPRI; pri--; )
1396 {
1397 if (pendingcnt [pri])
1398 break;
1399
1400 if (idlecnt [pri])
1401 {
1402 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1403 break;
1404 }
1405 }
1406 }
1407}
1408#endif
1409
1410void inline_speed
1411time_update (EV_P_ ev_tstamp max_block)
1412{
1413 int i;
1414
1415#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic))
1417 {
1418 ev_tstamp odiff = rtmn_diff;
1419
1154 mn_now = get_clock (); 1420 mn_now = get_clock ();
1155 1421
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1423 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1424 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1425 {
1158 ev_rt_now = rtmn_diff + mn_now; 1426 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1427 return;
1160 } 1428 }
1161 else 1429
1162 {
1163 now_floor = mn_now; 1430 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1431 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1432
1169inline void 1433 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1434 * on the choice of "4": one iteration isn't enough,
1171{ 1435 * in case we get preempted during the calls to
1172 int i; 1436 * ev_time and get_clock. a second call is almost guaranteed
1173 1437 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1438 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1439 * in the unlikely event of having been preempted here.
1176 { 1440 */
1177 if (time_update_monotonic (EV_A)) 1441 for (i = 4; --i; )
1178 { 1442 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1443 rtmn_diff = ev_rt_now - mn_now;
1184 1444
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1446 return; /* all is well */
1187 1447
1188 ev_rt_now = ev_time (); 1448 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1449 mn_now = get_clock ();
1190 now_floor = mn_now; 1450 now_floor = mn_now;
1191 } 1451 }
1192 1452
1193# if EV_PERIODICS 1453# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A);
1455# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 }
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 {
1466#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1467 periodics_reschedule (EV_A);
1195# endif 1468#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1470 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1472 }
1215 1473
1216 mn_now = ev_rt_now; 1474 mn_now = ev_rt_now;
1232static int loop_done; 1490static int loop_done;
1233 1491
1234void 1492void
1235ev_loop (EV_P_ int flags) 1493ev_loop (EV_P_ int flags)
1236{ 1494{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1496 ? EVUNLOOP_ONE
1497 : EVUNLOOP_CANCEL;
1239 1498
1240 while (activecnt) 1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1500
1501 do
1241 { 1502 {
1503#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid))
1506 {
1507 curpid = getpid ();
1508 postfork = 1;
1509 }
1510#endif
1511
1512#if EV_FORK_ENABLE
1513 /* we might have forked, so queue fork handlers */
1514 if (expect_false (postfork))
1515 if (forkcnt)
1516 {
1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1518 call_pending (EV_A);
1519 }
1520#endif
1521
1242 /* queue check watchers (and execute them) */ 1522 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1523 if (expect_false (preparecnt))
1244 { 1524 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1526 call_pending (EV_A);
1247 } 1527 }
1248 1528
1529 if (expect_false (!activecnt))
1530 break;
1531
1249 /* we might have forked, so reify kernel state if necessary */ 1532 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1533 if (expect_false (postfork))
1251 loop_fork (EV_A); 1534 loop_fork (EV_A);
1252 1535
1253 /* update fd-related kernel structures */ 1536 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1537 fd_reify (EV_A);
1255 1538
1256 /* calculate blocking time */ 1539 /* calculate blocking time */
1540 {
1541 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.;
1257 1543
1258 /* we only need this for !monotonic clock or timers, but as we basically 1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1545 {
1266 ev_rt_now = ev_time (); 1546 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1547 time_update (EV_A_ 1e100);
1268 }
1269 1548
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1549 waittime = MAX_BLOCKTIME;
1275 1550
1276 if (timercnt) 1551 if (timercnt)
1277 { 1552 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1554 if (waittime > to) waittime = to;
1280 } 1555 }
1281 1556
1282#if EV_PERIODICS 1557#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1558 if (periodiccnt)
1284 { 1559 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1561 if (waittime > to) waittime = to;
1287 } 1562 }
1288#endif 1563#endif
1289 1564
1290 if (expect_false (block < 0.)) block = 0.; 1565 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime;
1567
1568 sleeptime = waittime - backend_fudge;
1569
1570 if (expect_true (sleeptime > io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 {
1575 ev_sleep (sleeptime);
1576 waittime -= sleeptime;
1577 }
1291 } 1578 }
1292 1579
1580 ++loop_count;
1293 backend_poll (EV_A_ block); 1581 backend_poll (EV_A_ waittime);
1294 1582
1295 /* update ev_rt_now, do magic */ 1583 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1584 time_update (EV_A_ waittime + sleeptime);
1585 }
1297 1586
1298 /* queue pending timers and reschedule them */ 1587 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1588 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1589#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1590 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1591#endif
1303 1592
1593#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1594 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1595 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1596#endif
1307 1597
1308 /* queue check watchers, to be executed first */ 1598 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1599 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1601
1312 call_pending (EV_A); 1602 call_pending (EV_A);
1313 1603
1314 if (expect_false (loop_done))
1315 break;
1316 } 1604 }
1605 while (expect_true (activecnt && !loop_done));
1317 1606
1318 if (loop_done != 2) 1607 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1608 loop_done = EVUNLOOP_CANCEL;
1320} 1609}
1321 1610
1322void 1611void
1323ev_unloop (EV_P_ int how) 1612ev_unloop (EV_P_ int how)
1324{ 1613{
1325 loop_done = how; 1614 loop_done = how;
1326} 1615}
1327 1616
1328/*****************************************************************************/ 1617/*****************************************************************************/
1329 1618
1330inline void 1619void inline_size
1331wlist_add (WL *head, WL elem) 1620wlist_add (WL *head, WL elem)
1332{ 1621{
1333 elem->next = *head; 1622 elem->next = *head;
1334 *head = elem; 1623 *head = elem;
1335} 1624}
1336 1625
1337inline void 1626void inline_size
1338wlist_del (WL *head, WL elem) 1627wlist_del (WL *head, WL elem)
1339{ 1628{
1340 while (*head) 1629 while (*head)
1341 { 1630 {
1342 if (*head == elem) 1631 if (*head == elem)
1347 1636
1348 head = &(*head)->next; 1637 head = &(*head)->next;
1349 } 1638 }
1350} 1639}
1351 1640
1352inline void 1641void inline_speed
1353ev_clear_pending (EV_P_ W w) 1642clear_pending (EV_P_ W w)
1354{ 1643{
1355 if (w->pending) 1644 if (w->pending)
1356 { 1645 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1646 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1647 w->pending = 0;
1359 } 1648 }
1360} 1649}
1361 1650
1362inline void 1651int
1652ev_clear_pending (EV_P_ void *w)
1653{
1654 W w_ = (W)w;
1655 int pending = w_->pending;
1656
1657 if (expect_true (pending))
1658 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1660 w_->pending = 0;
1661 p->w = 0;
1662 return p->events;
1663 }
1664 else
1665 return 0;
1666}
1667
1668void inline_size
1669pri_adjust (EV_P_ W w)
1670{
1671 int pri = w->priority;
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri;
1675}
1676
1677void inline_speed
1363ev_start (EV_P_ W w, int active) 1678ev_start (EV_P_ W w, int active)
1364{ 1679{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1680 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1681 w->active = active;
1369 ev_ref (EV_A); 1682 ev_ref (EV_A);
1370} 1683}
1371 1684
1372inline void 1685void inline_size
1373ev_stop (EV_P_ W w) 1686ev_stop (EV_P_ W w)
1374{ 1687{
1375 ev_unref (EV_A); 1688 ev_unref (EV_A);
1376 w->active = 0; 1689 w->active = 0;
1377} 1690}
1378 1691
1379/*****************************************************************************/ 1692/*****************************************************************************/
1380 1693
1381void 1694void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1695ev_io_start (EV_P_ ev_io *w)
1383{ 1696{
1384 int fd = w->fd; 1697 int fd = w->fd;
1385 1698
1386 if (expect_false (ev_is_active (w))) 1699 if (expect_false (ev_is_active (w)))
1387 return; 1700 return;
1388 1701
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1702 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1703
1391 ev_start (EV_A_ (W)w, 1); 1704 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1706 wlist_add (&anfds[fd].head, (WL)w);
1394 1707
1395 fd_change (EV_A_ fd); 1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET;
1396} 1710}
1397 1711
1398void 1712void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1713ev_io_stop (EV_P_ ev_io *w)
1400{ 1714{
1401 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1716 if (expect_false (!ev_is_active (w)))
1403 return; 1717 return;
1404 1718
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1720
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1721 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1722 ev_stop (EV_A_ (W)w);
1409 1723
1410 fd_change (EV_A_ w->fd); 1724 fd_change (EV_A_ w->fd, 1);
1411} 1725}
1412 1726
1413void 1727void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1728ev_timer_start (EV_P_ ev_timer *w)
1415{ 1729{
1416 if (expect_false (ev_is_active (w))) 1730 if (expect_false (ev_is_active (w)))
1417 return; 1731 return;
1418 1732
1419 ((WT)w)->at += mn_now; 1733 ((WT)w)->at += mn_now;
1420 1734
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1736
1423 ev_start (EV_A_ (W)w, ++timercnt); 1737 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1739 timers [timercnt - 1] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1740 upheap (timers, timercnt - 1);
1427 1741
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1743}
1430 1744
1431void 1745void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1746ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1747{
1434 ev_clear_pending (EV_A_ (W)w); 1748 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1749 if (expect_false (!ev_is_active (w)))
1436 return; 1750 return;
1437 1751
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1439 1753
1754 {
1755 int active = ((W)w)->active;
1756
1440 if (expect_true (((W)w)->active < timercnt--)) 1757 if (expect_true (--active < --timercnt))
1441 { 1758 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1759 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1760 adjustheap (timers, timercnt, active);
1444 } 1761 }
1762 }
1445 1763
1446 ((WT)w)->at -= mn_now; 1764 ((WT)w)->at -= mn_now;
1447 1765
1448 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1449} 1767}
1450 1768
1451void 1769void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1770ev_timer_again (EV_P_ ev_timer *w)
1453{ 1771{
1454 if (ev_is_active (w)) 1772 if (ev_is_active (w))
1455 { 1773 {
1456 if (w->repeat) 1774 if (w->repeat)
1457 { 1775 {
1458 ((WT)w)->at = mn_now + w->repeat; 1776 ((WT)w)->at = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1777 adjustheap (timers, timercnt, ((W)w)->active - 1);
1460 } 1778 }
1461 else 1779 else
1462 ev_timer_stop (EV_A_ w); 1780 ev_timer_stop (EV_A_ w);
1463 } 1781 }
1464 else if (w->repeat) 1782 else if (w->repeat)
1466 w->at = w->repeat; 1784 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1785 ev_timer_start (EV_A_ w);
1468 } 1786 }
1469} 1787}
1470 1788
1471#if EV_PERIODICS 1789#if EV_PERIODIC_ENABLE
1472void 1790void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1791ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1792{
1475 if (expect_false (ev_is_active (w))) 1793 if (expect_false (ev_is_active (w)))
1476 return; 1794 return;
1477 1795
1478 if (w->reschedule_cb) 1796 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1798 else if (w->interval)
1481 { 1799 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1801 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1803 }
1804 else
1805 ((WT)w)->at = w->offset;
1486 1806
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1807 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1809 periodics [periodiccnt - 1] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1810 upheap (periodics, periodiccnt - 1);
1491 1811
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1813}
1494 1814
1495void 1815void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1816ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1817{
1498 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1500 return; 1820 return;
1501 1821
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1503 1823
1824 {
1825 int active = ((W)w)->active;
1826
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1827 if (expect_true (--active < --periodiccnt))
1505 { 1828 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1829 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1830 adjustheap (periodics, periodiccnt, active);
1508 } 1831 }
1832 }
1509 1833
1510 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1511} 1835}
1512 1836
1513void 1837void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1838ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1839{
1516 /* TODO: use adjustheap and recalculation */ 1840 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1841 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1842 ev_periodic_start (EV_A_ w);
1519} 1843}
1520#endif 1844#endif
1521 1845
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1846#ifndef SA_RESTART
1589# define SA_RESTART 0 1847# define SA_RESTART 0
1590#endif 1848#endif
1591 1849
1592void 1850void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1851ev_signal_start (EV_P_ ev_signal *w)
1594{ 1852{
1595#if EV_MULTIPLICITY 1853#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1855#endif
1598 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1599 return; 1857 return;
1600 1858
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 1860
1861 {
1862#ifndef _WIN32
1863 sigset_t full, prev;
1864 sigfillset (&full);
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1869
1870#ifndef _WIN32
1871 sigprocmask (SIG_SETMASK, &prev, 0);
1872#endif
1873 }
1874
1603 ev_start (EV_A_ (W)w, 1); 1875 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1876 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 1877
1607 if (!((WL)w)->next) 1878 if (!((WL)w)->next)
1608 { 1879 {
1609#if _WIN32 1880#if _WIN32
1610 signal (w->signum, sighandler); 1881 signal (w->signum, sighandler);
1616 sigaction (w->signum, &sa, 0); 1887 sigaction (w->signum, &sa, 0);
1617#endif 1888#endif
1618 } 1889 }
1619} 1890}
1620 1891
1621void 1892void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1893ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1894{
1624 ev_clear_pending (EV_A_ (W)w); 1895 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1896 if (expect_false (!ev_is_active (w)))
1626 return; 1897 return;
1627 1898
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1899 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1900 ev_stop (EV_A_ (W)w);
1630 1901
1631 if (!signals [w->signum - 1].head) 1902 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1903 signal (w->signum, SIG_DFL);
1633} 1904}
1634 1905
1635void 1906void
1636ev_child_start (EV_P_ struct ev_child *w) 1907ev_child_start (EV_P_ ev_child *w)
1637{ 1908{
1638#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1911#endif
1641 if (expect_false (ev_is_active (w))) 1912 if (expect_false (ev_is_active (w)))
1642 return; 1913 return;
1643 1914
1644 ev_start (EV_A_ (W)w, 1); 1915 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1917}
1647 1918
1648void 1919void
1649ev_child_stop (EV_P_ struct ev_child *w) 1920ev_child_stop (EV_P_ ev_child *w)
1650{ 1921{
1651 ev_clear_pending (EV_A_ (W)w); 1922 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1923 if (expect_false (!ev_is_active (w)))
1653 return; 1924 return;
1654 1925
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1657} 1928}
1658 1929
1930#if EV_STAT_ENABLE
1931
1932# ifdef _WIN32
1933# undef lstat
1934# define lstat(a,b) _stati64 (a,b)
1935# endif
1936
1937#define DEF_STAT_INTERVAL 5.0074891
1938#define MIN_STAT_INTERVAL 0.1074891
1939
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941
1942#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192
1944
1945static void noinline
1946infy_add (EV_P_ ev_stat *w)
1947{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949
1950 if (w->wd < 0)
1951 {
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953
1954 /* monitor some parent directory for speedup hints */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 {
1957 char path [4096];
1958 strcpy (path, w->path);
1959
1960 do
1961 {
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964
1965 char *pend = strrchr (path, '/');
1966
1967 if (!pend)
1968 break; /* whoops, no '/', complain to your admin */
1969
1970 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 }
1975 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978
1979 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1981}
1982
1983static void noinline
1984infy_del (EV_P_ ev_stat *w)
1985{
1986 int slot;
1987 int wd = w->wd;
1988
1989 if (wd < 0)
1990 return;
1991
1992 w->wd = -2;
1993 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1994 wlist_del (&fs_hash [slot].head, (WL)w);
1995
1996 /* remove this watcher, if others are watching it, they will rearm */
1997 inotify_rm_watch (fs_fd, wd);
1998}
1999
2000static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{
2003 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2006 infy_wd (EV_A_ slot, wd, ev);
2007 else
2008 {
2009 WL w_;
2010
2011 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2012 {
2013 ev_stat *w = (ev_stat *)w_;
2014 w_ = w_->next; /* lets us remove this watcher and all before it */
2015
2016 if (w->wd == wd || wd == -1)
2017 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 {
2020 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */
2022 }
2023
2024 stat_timer_cb (EV_A_ &w->timer, 0);
2025 }
2026 }
2027 }
2028}
2029
2030static void
2031infy_cb (EV_P_ ev_io *w, int revents)
2032{
2033 char buf [EV_INOTIFY_BUFSIZE];
2034 struct inotify_event *ev = (struct inotify_event *)buf;
2035 int ofs;
2036 int len = read (fs_fd, buf, sizeof (buf));
2037
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2040}
2041
2042void inline_size
2043infy_init (EV_P)
2044{
2045 if (fs_fd != -2)
2046 return;
2047
2048 fs_fd = inotify_init ();
2049
2050 if (fs_fd >= 0)
2051 {
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w);
2055 }
2056}
2057
2058void inline_size
2059infy_fork (EV_P)
2060{
2061 int slot;
2062
2063 if (fs_fd < 0)
2064 return;
2065
2066 close (fs_fd);
2067 fs_fd = inotify_init ();
2068
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2070 {
2071 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0;
2073
2074 while (w_)
2075 {
2076 ev_stat *w = (ev_stat *)w_;
2077 w_ = w_->next; /* lets us add this watcher */
2078
2079 w->wd = -1;
2080
2081 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else
2084 ev_timer_start (EV_A_ &w->timer);
2085 }
2086
2087 }
2088}
2089
2090#endif
2091
2092void
2093ev_stat_stat (EV_P_ ev_stat *w)
2094{
2095 if (lstat (w->path, &w->attr) < 0)
2096 w->attr.st_nlink = 0;
2097 else if (!w->attr.st_nlink)
2098 w->attr.st_nlink = 1;
2099}
2100
2101static void noinline
2102stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2103{
2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2105
2106 /* we copy this here each the time so that */
2107 /* prev has the old value when the callback gets invoked */
2108 w->prev = w->attr;
2109 ev_stat_stat (EV_A_ w);
2110
2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if (
2113 w->prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime
2124 ) {
2125 #if EV_USE_INOTIFY
2126 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */
2129 #endif
2130
2131 ev_feed_event (EV_A_ w, EV_STAT);
2132 }
2133}
2134
2135void
2136ev_stat_start (EV_P_ ev_stat *w)
2137{
2138 if (expect_false (ev_is_active (w)))
2139 return;
2140
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w);
2146
2147 if (w->interval < MIN_STAT_INTERVAL)
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2151 ev_set_priority (&w->timer, ev_priority (w));
2152
2153#if EV_USE_INOTIFY
2154 infy_init (EV_A);
2155
2156 if (fs_fd >= 0)
2157 infy_add (EV_A_ w);
2158 else
2159#endif
2160 ev_timer_start (EV_A_ &w->timer);
2161
2162 ev_start (EV_A_ (W)w, 1);
2163}
2164
2165void
2166ev_stat_stop (EV_P_ ev_stat *w)
2167{
2168 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w)))
2170 return;
2171
2172#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w);
2174#endif
2175 ev_timer_stop (EV_A_ &w->timer);
2176
2177 ev_stop (EV_A_ (W)w);
2178}
2179#endif
2180
2181#if EV_IDLE_ENABLE
2182void
2183ev_idle_start (EV_P_ ev_idle *w)
2184{
2185 if (expect_false (ev_is_active (w)))
2186 return;
2187
2188 pri_adjust (EV_A_ (W)w);
2189
2190 {
2191 int active = ++idlecnt [ABSPRI (w)];
2192
2193 ++idleall;
2194 ev_start (EV_A_ (W)w, active);
2195
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w;
2198 }
2199}
2200
2201void
2202ev_idle_stop (EV_P_ ev_idle *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 {
2209 int active = ((W)w)->active;
2210
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2213
2214 ev_stop (EV_A_ (W)w);
2215 --idleall;
2216 }
2217}
2218#endif
2219
2220void
2221ev_prepare_start (EV_P_ ev_prepare *w)
2222{
2223 if (expect_false (ev_is_active (w)))
2224 return;
2225
2226 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w;
2229}
2230
2231void
2232ev_prepare_stop (EV_P_ ev_prepare *w)
2233{
2234 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w)))
2236 return;
2237
2238 {
2239 int active = ((W)w)->active;
2240 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active;
2242 }
2243
2244 ev_stop (EV_A_ (W)w);
2245}
2246
2247void
2248ev_check_start (EV_P_ ev_check *w)
2249{
2250 if (expect_false (ev_is_active (w)))
2251 return;
2252
2253 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w;
2256}
2257
2258void
2259ev_check_stop (EV_P_ ev_check *w)
2260{
2261 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w)))
2263 return;
2264
2265 {
2266 int active = ((W)w)->active;
2267 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active;
2269 }
2270
2271 ev_stop (EV_A_ (W)w);
2272}
2273
2274#if EV_EMBED_ENABLE
2275void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w)
2277{
2278 ev_loop (w->other, EVLOOP_NONBLOCK);
2279}
2280
2281static void
2282embed_io_cb (EV_P_ ev_io *io, int revents)
2283{
2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2285
2286 if (ev_cb (w))
2287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2288 else
2289 ev_loop (w->other, EVLOOP_NONBLOCK);
2290}
2291
2292static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296
2297 {
2298 struct ev_loop *loop = w->other;
2299
2300 while (fdchangecnt)
2301 {
2302 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 }
2305 }
2306}
2307
2308#if 0
2309static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{
2312 ev_idle_stop (EV_A_ idle);
2313}
2314#endif
2315
2316void
2317ev_embed_start (EV_P_ ev_embed *w)
2318{
2319 if (expect_false (ev_is_active (w)))
2320 return;
2321
2322 {
2323 struct ev_loop *loop = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 }
2327
2328 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io);
2330
2331 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare);
2334
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336
2337 ev_start (EV_A_ (W)w, 1);
2338}
2339
2340void
2341ev_embed_stop (EV_P_ ev_embed *w)
2342{
2343 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w)))
2345 return;
2346
2347 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare);
2349
2350 ev_stop (EV_A_ (W)w);
2351}
2352#endif
2353
2354#if EV_FORK_ENABLE
2355void
2356ev_fork_start (EV_P_ ev_fork *w)
2357{
2358 if (expect_false (ev_is_active (w)))
2359 return;
2360
2361 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w;
2364}
2365
2366void
2367ev_fork_stop (EV_P_ ev_fork *w)
2368{
2369 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w)))
2371 return;
2372
2373 {
2374 int active = ((W)w)->active;
2375 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active;
2377 }
2378
2379 ev_stop (EV_A_ (W)w);
2380}
2381#endif
2382
1659/*****************************************************************************/ 2383/*****************************************************************************/
1660 2384
1661struct ev_once 2385struct ev_once
1662{ 2386{
1663 struct ev_io io; 2387 ev_io io;
1664 struct ev_timer to; 2388 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2389 void (*cb)(int revents, void *arg);
1666 void *arg; 2390 void *arg;
1667}; 2391};
1668 2392
1669static void 2393static void
1678 2402
1679 cb (revents, arg); 2403 cb (revents, arg);
1680} 2404}
1681 2405
1682static void 2406static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2407once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2408{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2410}
1687 2411
1688static void 2412static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2413once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2414{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2416}
1693 2417
1694void 2418void
1718 ev_timer_set (&once->to, timeout, 0.); 2442 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 2443 ev_timer_start (EV_A_ &once->to);
1720 } 2444 }
1721} 2445}
1722 2446
2447#if EV_MULTIPLICITY
2448 #include "ev_wrap.h"
2449#endif
2450
1723#ifdef __cplusplus 2451#ifdef __cplusplus
1724} 2452}
1725#endif 2453#endif
1726 2454

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines