ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.202 by root, Sat Dec 29 16:19:36 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 249
217#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
220#endif 253#endif
239# include <sys/inotify.h> 272# include <sys/inotify.h>
240#endif 273#endif
241 274
242#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
244#endif 289#endif
245 290
246/**/ 291/**/
247 292
248/* 293/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
265#else 310#else
266# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
267# define noinline 312# define noinline
268# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 314# define inline
270# endif 315# endif
271#endif 316#endif
272 317
273#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
288 333
289typedef ev_watcher *W; 334typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
292 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
293#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 345#endif
298 346
299#ifdef _WIN32 347#ifdef _WIN32
300# include "ev_win32.c" 348# include "ev_win32.c"
301#endif 349#endif
323 perror (msg); 371 perror (msg);
324 abort (); 372 abort ();
325 } 373 }
326} 374}
327 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
328static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 392
330void 393void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 395{
333 alloc = cb; 396 alloc = cb;
334} 397}
335 398
336inline_speed void * 399inline_speed void *
337ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
338{ 401{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
340 403
341 if (!ptr && size) 404 if (!ptr && size)
342 { 405 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 407 abort ();
367 W w; 430 W w;
368 int events; 431 int events;
369} ANPENDING; 432} ANPENDING;
370 433
371#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
372typedef struct 436typedef struct
373{ 437{
374 WL head; 438 WL head;
375} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
376#endif 458#endif
377 459
378#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
379 461
380 struct ev_loop 462 struct ev_loop
451 ts.tv_sec = (time_t)delay; 533 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 535
454 nanosleep (&ts, 0); 536 nanosleep (&ts, 0);
455#elif defined(_WIN32) 537#elif defined(_WIN32)
456 Sleep (delay * 1e3); 538 Sleep ((unsigned long)(delay * 1e3));
457#else 539#else
458 struct timeval tv; 540 struct timeval tv;
459 541
460 tv.tv_sec = (time_t)delay; 542 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 546#endif
465 } 547 }
466} 548}
467 549
468/*****************************************************************************/ 550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 553
470int inline_size 554int inline_size
471array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
472{ 556{
473 int ncur = cur + 1; 557 int ncur = cur + 1;
474 558
475 do 559 do
476 ncur <<= 1; 560 ncur <<= 1;
477 while (cnt > ncur); 561 while (cnt > ncur);
478 562
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 565 {
482 ncur *= elem; 566 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 569 ncur /= elem;
486 } 570 }
487 571
488 return ncur; 572 return ncur;
702 } 786 }
703} 787}
704 788
705/*****************************************************************************/ 789/*****************************************************************************/
706 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
707void inline_speed 810void inline_speed
708upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
709{ 812{
710 WT w = heap [k]; 813 ANHE he = heap [k];
711 814
712 while (k) 815 for (;;)
713 { 816 {
714 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
715 818
716 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
717 break; 820 break;
718 821
719 heap [k] = heap [p]; 822 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 824 k = p;
722 } 825 }
723 826
724 heap [k] = w; 827 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
726} 829}
727 830
831/* away from the root */
728void inline_speed 832void inline_speed
729downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
730{ 834{
731 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
732 837
733 for (;;) 838 for (;;)
734 { 839 {
735 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
736 843
737 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
738 break; 860 break;
739 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
741 ? 1 : 0; 917 ? 1 : 0;
742 918
743 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
744 break; 920 break;
745 921
746 heap [k] = heap [c]; 922 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
748 924
749 k = c; 925 k = c;
750 } 926 }
751 927
752 heap [k] = w; 928 heap [k] = he;
753 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
754} 930}
931#endif
755 932
756void inline_size 933void inline_size
757adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
758{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 937 upheap (heap, k);
938 else
760 downheap (heap, N, k); 939 downheap (heap, N, k);
761} 940}
762 941
763/*****************************************************************************/ 942/*****************************************************************************/
764 943
765typedef struct 944typedef struct
766{ 945{
767 WL head; 946 WL head;
768 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
769} ANSIG; 948} ANSIG;
770 949
771static ANSIG *signals; 950static ANSIG *signals;
772static int signalmax; 951static int signalmax;
773 952
774static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 954
778void inline_size 955void inline_size
779signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
780{ 957{
781 while (count--) 958 while (count--)
785 962
786 ++base; 963 ++base;
787 } 964 }
788} 965}
789 966
790static void 967/*****************************************************************************/
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 968
841void inline_speed 969void inline_speed
842fd_intern (int fd) 970fd_intern (int fd)
843{ 971{
844#ifdef _WIN32 972#ifdef _WIN32
849 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 978#endif
851} 979}
852 980
853static void noinline 981static void noinline
854siginit (EV_P) 982evpipe_init (EV_P)
855{ 983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
856 fd_intern (sigpipe [0]); 999 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
858 1003
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1004 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
1047
1048 if (gotsig && ev_is_default_loop (EV_A))
1049 {
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
862} 1072}
863 1073
864/*****************************************************************************/ 1074/*****************************************************************************/
865 1075
1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
866static WL childs [EV_PID_HASHSIZE]; 1113static WL childs [EV_PID_HASHSIZE];
867 1114
868#ifndef _WIN32 1115#ifndef _WIN32
869 1116
870static ev_signal childev; 1117static ev_signal childev;
871 1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
872void inline_speed 1123void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1124child_reap (EV_P_ int chain, int pid, int status)
874{ 1125{
875 ev_child *w; 1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1128
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
878 if (w->pid == pid || !w->pid) 1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
879 { 1133 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1135 w->rpid = pid;
882 w->rstatus = status; 1136 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1138 }
1139 }
885} 1140}
886 1141
887#ifndef WCONTINUED 1142#ifndef WCONTINUED
888# define WCONTINUED 0 1143# define WCONTINUED 0
889#endif 1144#endif
898 if (!WCONTINUED 1153 if (!WCONTINUED
899 || errno != EINVAL 1154 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1156 return;
902 1157
903 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1159 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1161
907 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1163 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1165}
911 1166
912#endif 1167#endif
913 1168
914/*****************************************************************************/ 1169/*****************************************************************************/
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1288 have_monotonic = 1;
1034 } 1289 }
1035#endif 1290#endif
1036 1291
1037 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1293 mn_now = get_clock ();
1039 now_floor = mn_now; 1294 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
1041 1296
1042 io_blocktime = 0.; 1297 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
1044 1305
1045 /* pid check not overridable via env */ 1306 /* pid check not overridable via env */
1046#ifndef _WIN32 1307#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1308 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1309 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1313 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1316
1056 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1319
1065#if EV_USE_PORT 1320#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1322#endif
1068#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
1076#endif 1331#endif
1077#if EV_USE_SELECT 1332#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1334#endif
1080 1335
1081 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
1083 } 1338 }
1084} 1339}
1085 1340
1086static void noinline 1341static void noinline
1087loop_destroy (EV_P) 1342loop_destroy (EV_P)
1088{ 1343{
1089 int i; 1344 int i;
1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1090 1362
1091#if EV_USE_INOTIFY 1363#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1364 if (fs_fd >= 0)
1093 close (fs_fd); 1365 close (fs_fd);
1094#endif 1366#endif
1131#if EV_FORK_ENABLE 1403#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1404 array_free (fork, EMPTY);
1133#endif 1405#endif
1134 array_free (prepare, EMPTY); 1406 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
1136 1411
1137 backend = 0; 1412 backend = 0;
1138} 1413}
1139 1414
1415#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1141 1418
1142void inline_size 1419void inline_size
1143loop_fork (EV_P) 1420loop_fork (EV_P)
1144{ 1421{
1145#if EV_USE_PORT 1422#if EV_USE_PORT
1153#endif 1430#endif
1154#if EV_USE_INOTIFY 1431#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1432 infy_fork (EV_A);
1156#endif 1433#endif
1157 1434
1158 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
1159 { 1436 {
1160 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
1161 1443
1162 ev_ref (EV_A); 1444 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1164 close (sigpipe [0]); 1454 close (evpipe [0]);
1165 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
1166 1457
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1171 } 1461 }
1172 1462
1173 postfork = 0; 1463 postfork = 0;
1174} 1464}
1175 1465
1197} 1487}
1198 1488
1199void 1489void
1200ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1201{ 1491{
1202 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
1203} 1493}
1204
1205#endif 1494#endif
1206 1495
1207#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1208struct ev_loop * 1497struct ev_loop *
1209ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1210#else 1499#else
1211int 1500int
1212ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
1213#endif 1502#endif
1214{ 1503{
1215 if (sigpipe [0] == sigpipe [1])
1216 if (pipe (sigpipe))
1217 return 0;
1218
1219 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
1220 { 1505 {
1221#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1223#else 1508#else
1226 1511
1227 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
1228 1513
1229 if (ev_backend (EV_A)) 1514 if (ev_backend (EV_A))
1230 { 1515 {
1231 siginit (EV_A);
1232
1233#ifndef _WIN32 1516#ifndef _WIN32
1234 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
1235 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
1236 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
1237 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
1254#ifndef _WIN32 1537#ifndef _WIN32
1255 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
1256 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
1257#endif 1540#endif
1258 1541
1259 ev_ref (EV_A); /* signal watcher */
1260 ev_io_stop (EV_A_ &sigev);
1261
1262 close (sigpipe [0]); sigpipe [0] = 0;
1263 close (sigpipe [1]); sigpipe [1] = 0;
1264
1265 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
1266} 1543}
1267 1544
1268void 1545void
1269ev_default_fork (void) 1546ev_default_fork (void)
1271#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
1272 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
1273#endif 1550#endif
1274 1551
1275 if (backend) 1552 if (backend)
1276 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
1277} 1554}
1278 1555
1279/*****************************************************************************/ 1556/*****************************************************************************/
1280 1557
1281void 1558void
1301 p->w->pending = 0; 1578 p->w->pending = 0;
1302 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1303 } 1580 }
1304 } 1581 }
1305} 1582}
1306
1307void inline_size
1308timers_reify (EV_P)
1309{
1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1311 {
1312 ev_timer *w = (ev_timer *)timers [0];
1313
1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1315
1316 /* first reschedule or stop timer */
1317 if (w->repeat)
1318 {
1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
1325 downheap (timers, timercnt, 0);
1326 }
1327 else
1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1329
1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1331 }
1332}
1333
1334#if EV_PERIODIC_ENABLE
1335void inline_size
1336periodics_reify (EV_P)
1337{
1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1339 {
1340 ev_periodic *w = (ev_periodic *)periodics [0];
1341
1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1343
1344 /* first reschedule or stop timer */
1345 if (w->reschedule_cb)
1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1356 downheap (periodics, periodiccnt, 0);
1357 }
1358 else
1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1360
1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1362 }
1363}
1364
1365static void noinline
1366periodics_reschedule (EV_P)
1367{
1368 int i;
1369
1370 /* adjust periodics after time jump */
1371 for (i = 0; i < periodiccnt; ++i)
1372 {
1373 ev_periodic *w = (ev_periodic *)periodics [i];
1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386 1583
1387#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1388void inline_size 1585void inline_size
1389idle_reify (EV_P) 1586idle_reify (EV_P)
1390{ 1587{
1402 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1403 break; 1600 break;
1404 } 1601 }
1405 } 1602 }
1406 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1407} 1703}
1408#endif 1704#endif
1409 1705
1410void inline_speed 1706void inline_speed
1411time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1440 */ 1736 */
1441 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1442 { 1738 {
1443 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1444 1740
1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1446 return; /* all is well */ 1742 return; /* all is well */
1447 1743
1448 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1449 mn_now = get_clock (); 1745 mn_now = get_clock ();
1450 now_floor = mn_now; 1746 now_floor = mn_now;
1466#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1467 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1468#endif 1764#endif
1469 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1471 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1472 } 1772 }
1473 1773
1474 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1475 } 1775 }
1476} 1776}
1490static int loop_done; 1790static int loop_done;
1491 1791
1492void 1792void
1493ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1494{ 1794{
1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1795 loop_done = EVUNLOOP_CANCEL;
1496 ? EVUNLOOP_ONE
1497 : EVUNLOOP_CANCEL;
1498 1796
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1500 1798
1501 do 1799 do
1502 { 1800 {
1548 1846
1549 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1550 1848
1551 if (timercnt) 1849 if (timercnt)
1552 { 1850 {
1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1554 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1555 } 1853 }
1556 1854
1557#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1558 if (periodiccnt) 1856 if (periodiccnt)
1559 { 1857 {
1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1561 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1562 } 1860 }
1563#endif 1861#endif
1564 1862
1565 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1598 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1599 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1601 1899
1602 call_pending (EV_A); 1900 call_pending (EV_A);
1603
1604 } 1901 }
1605 while (expect_true (activecnt && !loop_done)); 1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1606 1907
1607 if (loop_done == EVUNLOOP_ONE) 1908 if (loop_done == EVUNLOOP_ONE)
1608 loop_done = EVUNLOOP_CANCEL; 1909 loop_done = EVUNLOOP_CANCEL;
1609} 1910}
1610 1911
1714{ 2015{
1715 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1717 return; 2018 return;
1718 2019
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1720 2021
1721 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1722 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1723 2024
1724 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1728ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1729{ 2030{
1730 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1731 return; 2032 return;
1732 2033
1733 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1734 2035
1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1736 2037
1737 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1739 timers [timercnt - 1] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1740 upheap (timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1741 2043
1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1743} 2045}
1744 2046
1745void noinline 2047void noinline
1746ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1747{ 2049{
1748 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1750 return; 2052 return;
1751 2053
1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1753
1754 { 2054 {
1755 int active = ((W)w)->active; 2055 int active = ev_active (w);
1756 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1757 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1758 { 2060 {
1759 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1760 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1761 } 2063 }
2064
2065 --timercnt;
1762 } 2066 }
1763 2067
1764 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1765 2069
1766 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1767} 2071}
1768 2072
1769void noinline 2073void noinline
1771{ 2075{
1772 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1773 { 2077 {
1774 if (w->repeat) 2078 if (w->repeat)
1775 { 2079 {
1776 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1777 adjustheap (timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1778 } 2083 }
1779 else 2084 else
1780 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1781 } 2086 }
1782 else if (w->repeat) 2087 else if (w->repeat)
1783 { 2088 {
1784 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1785 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1786 } 2091 }
1787} 2092}
1788 2093
1789#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1792{ 2097{
1793 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1794 return; 2099 return;
1795 2100
1796 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval) 2103 else if (w->interval)
1799 { 2104 {
1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1801 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 } 2108 }
1804 else 2109 else
1805 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1806 2111
1807 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1809 periodics [periodiccnt - 1] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1810 upheap (periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1811 2117
1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1813} 2119}
1814 2120
1815void noinline 2121void noinline
1816ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1817{ 2123{
1818 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1820 return; 2126 return;
1821 2127
1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1823
1824 { 2128 {
1825 int active = ((W)w)->active; 2129 int active = ev_active (w);
1826 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1827 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1828 { 2134 {
1829 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1830 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1831 } 2137 }
2138
2139 --periodiccnt;
1832 } 2140 }
1833 2141
1834 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1835} 2143}
1836 2144
1855#endif 2163#endif
1856 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1857 return; 2165 return;
1858 2166
1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2168
2169 evpipe_init (EV_A);
1860 2170
1861 { 2171 {
1862#ifndef _WIN32 2172#ifndef _WIN32
1863 sigset_t full, prev; 2173 sigset_t full, prev;
1864 sigfillset (&full); 2174 sigfillset (&full);
1876 wlist_add (&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1877 2187
1878 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1879 { 2189 {
1880#if _WIN32 2190#if _WIN32
1881 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1882#else 2192#else
1883 struct sigaction sa; 2193 struct sigaction sa;
1884 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1885 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1886 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1887 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1888#endif 2198#endif
1889 } 2199 }
1950 if (w->wd < 0) 2260 if (w->wd < 0)
1951 { 2261 {
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953 2263
1954 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 { 2268 {
1957 char path [4096]; 2269 char path [4096];
1958 strcpy (path, w->path); 2270 strcpy (path, w->path);
1959 2271
2204 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2206 return; 2518 return;
2207 2519
2208 { 2520 {
2209 int active = ((W)w)->active; 2521 int active = ev_active (w);
2210 2522
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2213 2525
2214 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2215 --idleall; 2527 --idleall;
2216 } 2528 }
2217} 2529}
2234 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2236 return; 2548 return;
2237 2549
2238 { 2550 {
2239 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2240 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2242 } 2555 }
2243 2556
2244 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2245} 2558}
2246 2559
2261 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2263 return; 2576 return;
2264 2577
2265 { 2578 {
2266 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2267 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2269 } 2583 }
2270 2584
2271 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2272} 2586}
2273 2587
2369 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2371 return; 2685 return;
2372 2686
2373 { 2687 {
2374 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2375 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2377 } 2692 }
2378 2693
2379 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2380} 2734}
2381#endif 2735#endif
2382 2736
2383/*****************************************************************************/ 2737/*****************************************************************************/
2384 2738

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines