ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.204 by root, Fri Jan 18 13:45:55 2008 UTC vs.
Revision 1.262 by root, Wed Oct 1 04:25:25 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
145#ifndef _WIN32 154#ifndef _WIN32
146# include <sys/time.h> 155# include <sys/time.h>
147# include <sys/wait.h> 156# include <sys/wait.h>
148# include <unistd.h> 157# include <unistd.h>
149#else 158#else
159# include <io.h>
150# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 161# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
154# endif 164# endif
155#endif 165#endif
156 166
157/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
158 168
159#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
160# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
161#endif 175#endif
162 176
163#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
165#endif 179#endif
166 180
167#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
168# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
169#endif 187#endif
170 188
171#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
173#endif 191#endif
179# define EV_USE_POLL 1 197# define EV_USE_POLL 1
180# endif 198# endif
181#endif 199#endif
182 200
183#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
184# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
185#endif 207#endif
186 208
187#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
189#endif 211#endif
191#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 214# define EV_USE_PORT 0
193#endif 215#endif
194 216
195#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
196# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
197#endif 223#endif
198 224
199#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 226# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
210# else 236# else
211# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
212# endif 238# endif
213#endif 239#endif
214 240
215/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 268
217#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
220#endif 272#endif
241 293
242#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 295# include <winsock.h>
244#endif 296#endif
245 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
246/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
247 317
248/* 318/*
249 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
265#else 335#else
266# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
267# define noinline 337# define noinline
268# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 339# define inline
270# endif 340# endif
271#endif 341#endif
272 342
273#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
288 358
289typedef ev_watcher *W; 359typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
292 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
293#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 370#endif
298 371
299#ifdef _WIN32 372#ifdef _WIN32
300# include "ev_win32.c" 373# include "ev_win32.c"
301#endif 374#endif
323 perror (msg); 396 perror (msg);
324 abort (); 397 abort ();
325 } 398 }
326} 399}
327 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
328static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 417
330void 418void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 420{
333 alloc = cb; 421 alloc = cb;
334} 422}
335 423
336inline_speed void * 424inline_speed void *
337ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
338{ 426{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
340 428
341 if (!ptr && size) 429 if (!ptr && size)
342 { 430 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 432 abort ();
367 W w; 455 W w;
368 int events; 456 int events;
369} ANPENDING; 457} ANPENDING;
370 458
371#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
372typedef struct 461typedef struct
373{ 462{
374 WL head; 463 WL head;
375} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
376#endif 483#endif
377 484
378#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
379 486
380 struct ev_loop 487 struct ev_loop
451 ts.tv_sec = (time_t)delay; 558 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 560
454 nanosleep (&ts, 0); 561 nanosleep (&ts, 0);
455#elif defined(_WIN32) 562#elif defined(_WIN32)
456 Sleep (delay * 1e3); 563 Sleep ((unsigned long)(delay * 1e3));
457#else 564#else
458 struct timeval tv; 565 struct timeval tv;
459 566
460 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
463 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
464#endif 574#endif
465 } 575 }
466} 576}
467 577
468/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 581
470int inline_size 582int inline_size
471array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
472{ 584{
473 int ncur = cur + 1; 585 int ncur = cur + 1;
474 586
475 do 587 do
476 ncur <<= 1; 588 ncur <<= 1;
477 while (cnt > ncur); 589 while (cnt > ncur);
478 590
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 593 {
482 ncur *= elem; 594 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 597 ncur /= elem;
486 } 598 }
487 599
488 return ncur; 600 return ncur;
599 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
600 712
601#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
602 if (events) 714 if (events)
603 { 715 {
604 unsigned long argp; 716 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 719 #else
608 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
609 #endif 721 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 723 }
612#endif 724#endif
613 725
614 { 726 {
615 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
668{ 780{
669 int fd; 781 int fd;
670 782
671 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 784 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
675} 787}
676 788
677/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 790static void noinline
702 } 814 }
703} 815}
704 816
705/*****************************************************************************/ 817/*****************************************************************************/
706 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
707void inline_speed 839void inline_speed
708upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
709{ 841{
710 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
711 844
712 while (k) 845 for (;;)
713 { 846 {
714 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 850
716 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
717 break; 867 break;
718 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
719 heap [k] = heap [p]; 931 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 933 k = p;
722 } 934 }
723 935
724 heap [k] = w; 936 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 938}
755 939
756void inline_size 940void inline_size
757adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
758{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 944 upheap (heap, k);
945 else
760 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
761} 959}
762 960
763/*****************************************************************************/ 961/*****************************************************************************/
764 962
765typedef struct 963typedef struct
766{ 964{
767 WL head; 965 WL head;
768 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
769} ANSIG; 967} ANSIG;
770 968
771static ANSIG *signals; 969static ANSIG *signals;
772static int signalmax; 970static int signalmax;
773 971
774static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 973
778void inline_size 974void inline_size
779signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
780{ 976{
781 while (count--) 977 while (count--)
785 981
786 ++base; 982 ++base;
787 } 983 }
788} 984}
789 985
790static void 986/*****************************************************************************/
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 987
841void inline_speed 988void inline_speed
842fd_intern (int fd) 989fd_intern (int fd)
843{ 990{
844#ifdef _WIN32 991#ifdef _WIN32
845 int arg = 1; 992 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 994#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 997#endif
851} 998}
852 999
853static void noinline 1000static void noinline
854siginit (EV_P) 1001evpipe_init (EV_P)
855{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
856 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
858 1022
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
862} 1091}
863 1092
864/*****************************************************************************/ 1093/*****************************************************************************/
865 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
866static WL childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
867 1133
868#ifndef _WIN32 1134#ifndef _WIN32
869 1135
870static ev_signal childev; 1136static ev_signal childev;
871 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
872void inline_speed 1142void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
874{ 1144{
875 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1147
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
878 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
879 { 1152 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1154 w->rpid = pid;
882 w->rstatus = status; 1155 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1157 }
1158 }
885} 1159}
886 1160
887#ifndef WCONTINUED 1161#ifndef WCONTINUED
888# define WCONTINUED 0 1162# define WCONTINUED 0
889#endif 1163#endif
898 if (!WCONTINUED 1172 if (!WCONTINUED
899 || errno != EINVAL 1173 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1175 return;
902 1176
903 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1180
907 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1184}
911 1185
912#endif 1186#endif
913 1187
914/*****************************************************************************/ 1188/*****************************************************************************/
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1307 have_monotonic = 1;
1034 } 1308 }
1035#endif 1309#endif
1036 1310
1037 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1312 mn_now = get_clock ();
1039 now_floor = mn_now; 1313 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1041 1315
1042 io_blocktime = 0.; 1316 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
1044 1324
1045 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
1046#ifndef _WIN32 1326#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1328 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1332 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1335
1056 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1338
1065#if EV_USE_PORT 1339#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1341#endif
1068#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
1076#endif 1350#endif
1077#if EV_USE_SELECT 1351#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1353#endif
1080 1354
1081 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
1083 } 1357 }
1084} 1358}
1085 1359
1086static void noinline 1360static void noinline
1087loop_destroy (EV_P) 1361loop_destroy (EV_P)
1088{ 1362{
1089 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1090 1381
1091#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
1093 close (fs_fd); 1384 close (fs_fd);
1094#endif 1385#endif
1131#if EV_FORK_ENABLE 1422#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1423 array_free (fork, EMPTY);
1133#endif 1424#endif
1134 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1136 1430
1137 backend = 0; 1431 backend = 0;
1138} 1432}
1139 1433
1434#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1141 1437
1142void inline_size 1438void inline_size
1143loop_fork (EV_P) 1439loop_fork (EV_P)
1144{ 1440{
1145#if EV_USE_PORT 1441#if EV_USE_PORT
1153#endif 1449#endif
1154#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1451 infy_fork (EV_A);
1156#endif 1452#endif
1157 1453
1158 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1159 { 1455 {
1160 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1161 1462
1162 ev_ref (EV_A); 1463 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1164 close (sigpipe [0]); 1473 close (evpipe [0]);
1165 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1166 1476
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1479 pipecb (EV_A_ &pipeev, EV_READ);
1172 } 1480 }
1173 1481
1174 postfork = 0; 1482 postfork = 0;
1175} 1483}
1176 1484
1177#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1178struct ev_loop * 1487struct ev_loop *
1179ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1180{ 1489{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1491
1198} 1507}
1199 1508
1200void 1509void
1201ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1202{ 1511{
1203 postfork = 1; // must be in line with ev_default_fork 1512 postfork = 1; /* must be in line with ev_default_fork */
1204} 1513}
1205 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1206#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1207 1615
1208#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1209struct ev_loop * 1617struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1211#else 1619#else
1212int 1620int
1213ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1214#endif 1622#endif
1215{ 1623{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1221 { 1625 {
1222#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1224#else 1628#else
1227 1631
1228 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1229 1633
1230 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1231 { 1635 {
1232 siginit (EV_A);
1233
1234#ifndef _WIN32 1636#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1255#ifndef _WIN32 1657#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1258#endif 1660#endif
1259 1661
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1267} 1663}
1268 1664
1269void 1665void
1270ev_default_fork (void) 1666ev_default_fork (void)
1272#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif 1670#endif
1275 1671
1276 if (backend) 1672 if (backend)
1277 postfork = 1; // must be in line with ev_loop_fork 1673 postfork = 1; /* must be in line with ev_loop_fork */
1278} 1674}
1279 1675
1280/*****************************************************************************/ 1676/*****************************************************************************/
1281 1677
1282void 1678void
1299 { 1695 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301 1697
1302 p->w->pending = 0; 1698 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1304 } 1701 }
1305 } 1702 }
1306} 1703}
1307
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387 1704
1388#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1389void inline_size 1706void inline_size
1390idle_reify (EV_P) 1707idle_reify (EV_P)
1391{ 1708{
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break; 1721 break;
1405 } 1722 }
1406 } 1723 }
1407 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1408} 1827}
1409#endif 1828#endif
1410 1829
1411void inline_speed 1830void inline_speed
1412time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1441 */ 1860 */
1442 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1443 { 1862 {
1444 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1445 1864
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 1866 return; /* all is well */
1448 1867
1449 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 1869 mn_now = get_clock ();
1451 now_floor = mn_now; 1870 now_floor = mn_now;
1467#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1469#endif 1888#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1472 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1473 } 1896 }
1474 1897
1475 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1476 } 1899 }
1477} 1900}
1486ev_unref (EV_P) 1909ev_unref (EV_P)
1487{ 1910{
1488 --activecnt; 1911 --activecnt;
1489} 1912}
1490 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1491static int loop_done; 1920static int loop_done;
1492 1921
1493void 1922void
1494ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1495{ 1924{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1499 1926
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1501 1928
1502 do 1929 do
1503 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1504#ifndef _WIN32 1935#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1507 { 1938 {
1508 curpid = getpid (); 1939 curpid = getpid ();
1549 1980
1550 waittime = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1551 1982
1552 if (timercnt) 1983 if (timercnt)
1553 { 1984 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 1986 if (waittime > to) waittime = to;
1556 } 1987 }
1557 1988
1558#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 1990 if (periodiccnt)
1560 { 1991 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 1993 if (waittime > to) waittime = to;
1563 } 1994 }
1564#endif 1995#endif
1565 1996
1566 if (expect_false (waittime < timeout_blocktime)) 1997 if (expect_false (waittime < timeout_blocktime))
1599 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1602 2033
1603 call_pending (EV_A); 2034 call_pending (EV_A);
1604
1605 } 2035 }
1606 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1607 2041
1608 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1610} 2044}
1611 2045
1700 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1701 return; 2135 return;
1702 2136
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1704 2138
2139 EV_FREQUENT_CHECK;
2140
1705 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1707 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1708 2144
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1711} 2149}
1712 2150
1713void noinline 2151void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1715{ 2153{
1716 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1718 return; 2156 return;
1719 2157
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1721 2161
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1724 2164
1725 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1726} 2168}
1727 2169
1728void noinline 2170void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1730{ 2172{
1731 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1732 return; 2174 return;
1733 2175
1734 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1735 2177
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1742 2188
2189 EV_FREQUENT_CHECK;
2190
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2192}
1745 2193
1746void noinline 2194void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2196{
1749 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1751 return; 2199 return;
1752 2200
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1754 2202
1755 { 2203 {
1756 int active = ((W)w)->active; 2204 int active = ev_active (w);
1757 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1758 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1759 { 2211 {
1760 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1762 } 2214 }
1763 } 2215 }
1764 2216
1765 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1766 2220
1767 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1768} 2222}
1769 2223
1770void noinline 2224void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1772{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1773 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1774 { 2230 {
1775 if (w->repeat) 2231 if (w->repeat)
1776 { 2232 {
1777 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1779 } 2236 }
1780 else 2237 else
1781 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1782 } 2239 }
1783 else if (w->repeat) 2240 else if (w->repeat)
1784 { 2241 {
1785 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1787 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1788} 2247}
1789 2248
1790#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1791void noinline 2250void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2252{
1794 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1795 return; 2254 return;
1796 2255
1797 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2258 else if (w->interval)
1800 { 2259 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2263 }
1805 else 2264 else
1806 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1807 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1812 2275
2276 EV_FREQUENT_CHECK;
2277
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2279}
1815 2280
1816void noinline 2281void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2283{
1819 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1821 return; 2286 return;
1822 2287
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1824 2289
1825 { 2290 {
1826 int active = ((W)w)->active; 2291 int active = ev_active (w);
1827 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1828 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2298 {
1830 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1832 } 2301 }
1833 } 2302 }
1834 2303
2304 EV_FREQUENT_CHECK;
2305
1835 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1836} 2307}
1837 2308
1838void noinline 2309void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1856#endif 2327#endif
1857 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1858 return; 2329 return;
1859 2330
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
1861 2336
1862 { 2337 {
1863#ifndef _WIN32 2338#ifndef _WIN32
1864 sigset_t full, prev; 2339 sigset_t full, prev;
1865 sigfillset (&full); 2340 sigfillset (&full);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2353
1879 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1880 { 2355 {
1881#if _WIN32 2356#if _WIN32
1882 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1883#else 2358#else
1884 struct sigaction sa; 2359 struct sigaction sa;
1885 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1889#endif 2364#endif
1890 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
1891} 2368}
1892 2369
1893void noinline 2370void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2372{
1896 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1898 return; 2375 return;
1899 2376
2377 EV_FREQUENT_CHECK;
2378
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1902 2381
1903 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1904 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1905} 2386}
1906 2387
1907void 2388void
1908ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1909{ 2390{
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2393#endif
1913 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1914 return; 2395 return;
1915 2396
2397 EV_FREQUENT_CHECK;
2398
1916 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1918} 2403}
1919 2404
1920void 2405void
1921ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1922{ 2407{
1923 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1925 return; 2410 return;
1926 2411
2412 EV_FREQUENT_CHECK;
2413
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1929} 2418}
1930 2419
1931#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1932 2421
1933# ifdef _WIN32 2422# ifdef _WIN32
1951 if (w->wd < 0) 2440 if (w->wd < 0)
1952 { 2441 {
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954 2443
1955 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2448 {
1958 char path [4096]; 2449 char path [4096];
1959 strcpy (path, w->path); 2450 strcpy (path, w->path);
1960 2451
2086 } 2577 }
2087 2578
2088 } 2579 }
2089} 2580}
2090 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 2588#endif
2092 2589
2093void 2590void
2094ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2095{ 2592{
2159 else 2656 else
2160#endif 2657#endif
2161 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2162 2659
2163 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2164} 2663}
2165 2664
2166void 2665void
2167ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2168{ 2667{
2169 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2171 return; 2670 return;
2172 2671
2672 EV_FREQUENT_CHECK;
2673
2173#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2175#endif 2676#endif
2176 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2177 2678
2178 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2179} 2682}
2180#endif 2683#endif
2181 2684
2182#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2183void 2686void
2185{ 2688{
2186 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2187 return; 2690 return;
2188 2691
2189 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2190 2695
2191 { 2696 {
2192 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2193 2698
2194 ++idleall; 2699 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2196 2701
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2199 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2200} 2707}
2201 2708
2202void 2709void
2203ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2204{ 2711{
2205 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2207 return; 2714 return;
2208 2715
2716 EV_FREQUENT_CHECK;
2717
2209 { 2718 {
2210 int active = ((W)w)->active; 2719 int active = ev_active (w);
2211 2720
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 2723
2215 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2216 --idleall; 2725 --idleall;
2217 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2218} 2729}
2219#endif 2730#endif
2220 2731
2221void 2732void
2222ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 2734{
2224 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2225 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2226 2739
2227 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2230} 2745}
2231 2746
2232void 2747void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 2749{
2235 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2237 return; 2752 return;
2238 2753
2754 EV_FREQUENT_CHECK;
2755
2239 { 2756 {
2240 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2241 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2243 } 2761 }
2244 2762
2245 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2246} 2766}
2247 2767
2248void 2768void
2249ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2250{ 2770{
2251 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2252 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2253 2775
2254 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2257} 2781}
2258 2782
2259void 2783void
2260ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2261{ 2785{
2262 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2264 return; 2788 return;
2265 2789
2790 EV_FREQUENT_CHECK;
2791
2266 { 2792 {
2267 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2268 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2270 } 2797 }
2271 2798
2272 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2273} 2802}
2274 2803
2275#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2276void noinline 2805void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 } 2834 }
2306 } 2835 }
2307} 2836}
2308 2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2309#if 0 2850#if 0
2310static void 2851static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 2853{
2313 ev_idle_stop (EV_A_ idle); 2854 ev_idle_stop (EV_A_ idle);
2324 struct ev_loop *loop = w->other; 2865 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 2868 }
2328 2869
2870 EV_FREQUENT_CHECK;
2871
2329 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2331 2874
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 2876 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 2877 ev_prepare_start (EV_A_ &w->prepare);
2335 2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 2883
2338 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2339} 2887}
2340 2888
2341void 2889void
2342ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2343{ 2891{
2344 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2346 return; 2894 return;
2347 2895
2896 EV_FREQUENT_CHECK;
2897
2348 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2350 2901
2351 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2352} 2903}
2353#endif 2904#endif
2354 2905
2355#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2356void 2907void
2357ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2358{ 2909{
2359 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2360 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2361 2914
2362 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2365} 2920}
2366 2921
2367void 2922void
2368ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2369{ 2924{
2370 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2372 return; 2927 return;
2373 2928
2929 EV_FREQUENT_CHECK;
2930
2374 { 2931 {
2375 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2376 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2378 } 2936 }
2379 2937
2380 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2941}
2942#endif
2943
2944#if EV_ASYNC_ENABLE
2945void
2946ev_async_start (EV_P_ ev_async *w)
2947{
2948 if (expect_false (ev_is_active (w)))
2949 return;
2950
2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++asynccnt);
2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_async_stop (EV_P_ ev_async *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 asyncs [active - 1] = asyncs [--asynccnt];
2975 ev_active (asyncs [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983void
2984ev_async_send (EV_P_ ev_async *w)
2985{
2986 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync);
2381} 2988}
2382#endif 2989#endif
2383 2990
2384/*****************************************************************************/ 2991/*****************************************************************************/
2385 2992
2395once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3003{
2397 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3005 void *arg = once->arg;
2399 3006
2400 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3009 ev_free (once);
2403 3010
2404 cb (revents, arg); 3011 cb (revents, arg);
2405} 3012}
2406 3013
2407static void 3014static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3015once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3016{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3017 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3018
3019 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3020}
2412 3021
2413static void 3022static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3023once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3024{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3025 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3026
3027 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3028}
2418 3029
2419void 3030void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3031ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3032{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines