ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
80#ifndef _WIN32 145#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 146# include <sys/time.h>
83# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
84#else 149#else
85# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 151# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
90#endif 155#endif
91 156
92/**/ 157/**/
93 158
94#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
96#endif 169#endif
97 170
98#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
100#endif 173#endif
101 174
102#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
104#endif 181#endif
105 182
106#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
108#endif 185#endif
109 186
110#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
112#endif 189#endif
113 190
114#ifndef EV_USE_REALTIME 191#ifndef EV_USE_PORT
115# define EV_USE_REALTIME 1 192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
116#endif 213#endif
117 214
118/**/ 215/**/
119 216
120#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
125#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
126# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
127# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
128#endif 225#endif
129 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
130#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h> 243# include <winsock.h>
132#endif 244#endif
133 245
134/**/ 246/**/
135 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
140 261
141#ifdef EV_H
142# include EV_H
143#else
144# include "ev.h"
145#endif
146
147#if __GNUC__ >= 3 262#if __GNUC__ >= 4
148# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
149# define inline inline 264# define noinline __attribute__ ((noinline))
150#else 265#else
151# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
152# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
153#endif 271#endif
154 272
155#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
156#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
157 282
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
160 285
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
162 288
163typedef struct ev_watcher *W; 289typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
166 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
168 298
169#ifdef _WIN32 299#ifdef _WIN32
170# include "ev_win32.c" 300# include "ev_win32.c"
171#endif 301#endif
172 302
173/*****************************************************************************/ 303/*****************************************************************************/
174 304
175static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
176 306
307void
177void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
178{ 309{
179 syserr_cb = cb; 310 syserr_cb = cb;
180} 311}
181 312
182static void 313static void noinline
183syserr (const char *msg) 314syserr (const char *msg)
184{ 315{
185 if (!msg) 316 if (!msg)
186 msg = "(libev) system error"; 317 msg = "(libev) system error";
187 318
194 } 325 }
195} 326}
196 327
197static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
198 329
330void
199void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
200{ 332{
201 alloc = cb; 333 alloc = cb;
202} 334}
203 335
204static void * 336inline_speed void *
205ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
206{ 338{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
208 340
209 if (!ptr && size) 341 if (!ptr && size)
233typedef struct 365typedef struct
234{ 366{
235 W w; 367 W w;
236 int events; 368 int events;
237} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
238 377
239#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
240 379
241 struct ev_loop 380 struct ev_loop
242 { 381 {
246 #include "ev_vars.h" 385 #include "ev_vars.h"
247 #undef VAR 386 #undef VAR
248 }; 387 };
249 #include "ev_wrap.h" 388 #include "ev_wrap.h"
250 389
251 struct ev_loop default_loop_struct; 390 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 391 struct ev_loop *ev_default_loop_ptr;
253 392
254#else 393#else
255 394
256 ev_tstamp ev_rt_now; 395 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 397 #include "ev_vars.h"
259 #undef VAR 398 #undef VAR
260 399
261 static int default_loop; 400 static int ev_default_loop_ptr;
262 401
263#endif 402#endif
264 403
265/*****************************************************************************/ 404/*****************************************************************************/
266 405
276 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
277 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
278#endif 417#endif
279} 418}
280 419
281inline ev_tstamp 420ev_tstamp inline_size
282get_clock (void) 421get_clock (void)
283{ 422{
284#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
285 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
286 { 425 {
299{ 438{
300 return ev_rt_now; 439 return ev_rt_now;
301} 440}
302#endif 441#endif
303 442
304#define array_roundsize(type,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
305 497
306#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
308 { \ 500 { \
309 int newcnt = cur; \ 501 int ocur_ = (cur); \
310 do \ 502 (base) = (type *)array_realloc \
311 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
312 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
313 } \
314 while ((cnt) > newcnt); \
315 \
316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
317 init (base + cur, newcnt - cur); \
318 cur = newcnt; \
319 } 505 }
320 506
507#if 0
321#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \ 510 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 } 514 }
515#endif
328 516
329#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
331 519
332/*****************************************************************************/ 520/*****************************************************************************/
333 521
334static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
335anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
336{ 552{
337 while (count--) 553 while (count--)
338 { 554 {
339 base->head = 0; 555 base->head = 0;
342 558
343 ++base; 559 ++base;
344 } 560 }
345} 561}
346 562
347void 563void inline_speed
348ev_feed_event (EV_P_ void *w, int revents)
349{
350 W w_ = (W)w;
351
352 if (w_->pending)
353 {
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
355 return;
356 }
357
358 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362}
363
364static void
365queue_events (EV_P_ W *events, int eventcnt, int type)
366{
367 int i;
368
369 for (i = 0; i < eventcnt; ++i)
370 ev_feed_event (EV_A_ events [i], type);
371}
372
373inline void
374fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
375{ 565{
376 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 567 ev_io *w;
378 568
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 570 {
381 int ev = w->events & revents; 571 int ev = w->events & revents;
382 572
383 if (ev) 573 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
386} 576}
387 577
388void 578void
389ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
390{ 580{
581 if (fd >= 0 && fd < anfdmax)
391 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
392} 583}
393 584
394/*****************************************************************************/ 585void inline_size
395
396static void
397fd_reify (EV_P) 586fd_reify (EV_P)
398{ 587{
399 int i; 588 int i;
400 589
401 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
402 { 591 {
403 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
405 struct ev_io *w; 594 ev_io *w;
406 595
407 int events = 0; 596 unsigned char events = 0;
408 597
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
410 events |= w->events; 599 events |= (unsigned char)w->events;
411 600
412#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
413 if (events) 602 if (events)
414 { 603 {
415 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
416 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
418 } 611 }
419#endif 612#endif
420 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
421 anfd->reify = 0; 618 anfd->reify = 0;
422
423 method_modify (EV_A_ fd, anfd->events, events);
424 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
425 } 624 }
426 625
427 fdchangecnt = 0; 626 fdchangecnt = 0;
428} 627}
429 628
430static void 629void inline_size
431fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
432{ 631{
433 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
434 return;
435
436 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
437 634
635 if (expect_true (!reify))
636 {
438 ++fdchangecnt; 637 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
441} 641}
442 642
443static void 643void inline_speed
444fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
445{ 645{
446 struct ev_io *w; 646 ev_io *w;
447 647
448 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
449 { 649 {
450 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 652 }
453} 653}
454 654
455static int 655int inline_size
456fd_valid (int fd) 656fd_valid (int fd)
457{ 657{
458#ifdef _WIN32 658#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
460#else 660#else
461 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
462#endif 662#endif
463} 663}
464 664
465/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
466static void 666static void noinline
467fd_ebadf (EV_P) 667fd_ebadf (EV_P)
468{ 668{
469 int fd; 669 int fd;
470 670
471 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
473 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
474 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
475} 675}
476 676
477/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
478static void 678static void noinline
479fd_enomem (EV_P) 679fd_enomem (EV_P)
480{ 680{
481 int fd; 681 int fd;
482 682
483 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
486 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
487 return; 687 return;
488 } 688 }
489} 689}
490 690
491/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 692static void noinline
493fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
494{ 694{
495 int fd; 695 int fd;
496 696
497 /* this should be highly optimised to not do anything but set a flag */
498 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
499 if (anfds [fd].events) 698 if (anfds [fd].events)
500 { 699 {
501 anfds [fd].events = 0; 700 anfds [fd].events = 0;
502 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
503 } 702 }
504} 703}
505 704
506/*****************************************************************************/ 705/*****************************************************************************/
507 706
508static void 707void inline_speed
509upheap (WT *heap, int k) 708upheap (WT *heap, int k)
510{ 709{
511 WT w = heap [k]; 710 WT w = heap [k];
512 711
513 while (k && heap [k >> 1]->at > w->at) 712 while (k)
514 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
515 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
516 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
517 k >>= 1; 721 k = p;
518 } 722 }
519 723
520 heap [k] = w; 724 heap [k] = w;
521 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
522
523} 726}
524 727
525static void 728void inline_speed
526downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
527{ 730{
528 WT w = heap [k]; 731 WT w = heap [k];
529 732
530 while (k < (N >> 1)) 733 for (;;)
531 { 734 {
532 int j = k << 1; 735 int c = (k << 1) + 1;
533 736
534 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
535 ++j;
536
537 if (w->at <= heap [j]->at)
538 break; 738 break;
539 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
540 heap [k] = heap [j]; 746 heap [k] = heap [c];
541 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
542 k = j; 749 k = c;
543 } 750 }
544 751
545 heap [k] = w; 752 heap [k] = w;
546 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
547} 754}
548 755
549inline void 756void inline_size
550adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
551{ 758{
552 upheap (heap, k); 759 upheap (heap, k);
553 downheap (heap, N, k); 760 downheap (heap, N, k);
554} 761}
564static ANSIG *signals; 771static ANSIG *signals;
565static int signalmax; 772static int signalmax;
566 773
567static int sigpipe [2]; 774static int sigpipe [2];
568static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
569static struct ev_io sigev; 776static ev_io sigev;
570 777
571static void 778void inline_size
572signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
573{ 780{
574 while (count--) 781 while (count--)
575 { 782 {
576 base->head = 0; 783 base->head = 0;
596 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
597 errno = old_errno; 804 errno = old_errno;
598 } 805 }
599} 806}
600 807
601void 808void noinline
602ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
603{ 810{
604 WL w; 811 WL w;
605 812
606#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
608#endif 815#endif
609 816
610 --signum; 817 --signum;
611 818
612 if (signum < 0 || signum >= signalmax) 819 if (signum < 0 || signum >= signalmax)
617 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619} 826}
620 827
621static void 828static void
622sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
623{ 830{
624 int signum; 831 int signum;
625 832
626 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
627 gotsig = 0; 834 gotsig = 0;
629 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
632} 839}
633 840
634inline void 841void inline_speed
635fd_intern (int fd) 842fd_intern (int fd)
636{ 843{
637#ifdef _WIN32 844#ifdef _WIN32
638 int arg = 1; 845 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
641 fcntl (fd, F_SETFD, FD_CLOEXEC); 848 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK); 849 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif 850#endif
644} 851}
645 852
646static void 853static void noinline
647siginit (EV_P) 854siginit (EV_P)
648{ 855{
649 fd_intern (sigpipe [0]); 856 fd_intern (sigpipe [0]);
650 fd_intern (sigpipe [1]); 857 fd_intern (sigpipe [1]);
651 858
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
655} 862}
656 863
657/*****************************************************************************/ 864/*****************************************************************************/
658 865
659static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
660 867
661#ifndef _WIN32 868#ifndef _WIN32
662 869
663static struct ev_signal childev; 870static ev_signal childev;
871
872void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
874{
875 ev_child *w;
876
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
878 if (w->pid == pid || !w->pid)
879 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
881 w->rpid = pid;
882 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 }
885}
664 886
665#ifndef WCONTINUED 887#ifndef WCONTINUED
666# define WCONTINUED 0 888# define WCONTINUED 0
667#endif 889#endif
668 890
669static void 891static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
671{
672 struct ev_child *w;
673
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid)
676 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid;
679 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 }
682}
683
684static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 892childcb (EV_P_ ev_signal *sw, int revents)
686{ 893{
687 int pid, status; 894 int pid, status;
688 895
896 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 897 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 898 if (!WCONTINUED
899 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return;
902
691 /* make sure we are called again until all childs have been reaped */ 903 /* make sure we are called again until all childs have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 906
694 child_reap (EV_A_ sw, pid, pid, status); 907 child_reap (EV_A_ sw, pid, pid, status);
908 if (EV_PID_HASHSIZE > 1)
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 }
697} 910}
698 911
699#endif 912#endif
700 913
701/*****************************************************************************/ 914/*****************************************************************************/
702 915
916#if EV_USE_PORT
917# include "ev_port.c"
918#endif
703#if EV_USE_KQUEUE 919#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 920# include "ev_kqueue.c"
705#endif 921#endif
706#if EV_USE_EPOLL 922#if EV_USE_EPOLL
707# include "ev_epoll.c" 923# include "ev_epoll.c"
724{ 940{
725 return EV_VERSION_MINOR; 941 return EV_VERSION_MINOR;
726} 942}
727 943
728/* return true if we are running with elevated privileges and should ignore env variables */ 944/* return true if we are running with elevated privileges and should ignore env variables */
729static int 945int inline_size
730enable_secure (void) 946enable_secure (void)
731{ 947{
732#ifdef _WIN32 948#ifdef _WIN32
733 return 0; 949 return 0;
734#else 950#else
735 return getuid () != geteuid () 951 return getuid () != geteuid ()
736 || getgid () != getegid (); 952 || getgid () != getegid ();
737#endif 953#endif
738} 954}
739 955
740int 956unsigned int
741ev_method (EV_P) 957ev_supported_backends (void)
742{ 958{
743 return method; 959 unsigned int flags = 0;
744}
745 960
746static void 961 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
747loop_init (EV_P_ int methods) 962 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
963 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
964 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
965 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
966
967 return flags;
968}
969
970unsigned int
971ev_recommended_backends (void)
748{ 972{
749 if (!method) 973 unsigned int flags = ev_supported_backends ();
974
975#ifndef __NetBSD__
976 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE;
979#endif
980#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation
982 flags &= ~EVBACKEND_POLL;
983#endif
984
985 return flags;
986}
987
988unsigned int
989ev_embeddable_backends (void)
990{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
998}
999
1000unsigned int
1001ev_backend (EV_P)
1002{
1003 return backend;
1004}
1005
1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
1025loop_init (EV_P_ unsigned int flags)
1026{
1027 if (!backend)
750 { 1028 {
751#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
752 { 1030 {
753 struct timespec ts; 1031 struct timespec ts;
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
759 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 1038 mn_now = get_clock ();
761 now_floor = mn_now; 1039 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
763 1041
764 if (methods == EVMETHOD_AUTO) 1042 io_blocktime = 0.;
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
1051 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS"))
766 methods = atoi (getenv ("LIBEV_METHODS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
767 else
768 methods = EVMETHOD_ANY;
769 1055
770 method = 0; 1056 if (!(flags & 0x0000ffffUL))
1057 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064
1065#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif
771#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 1070#endif
774#if EV_USE_EPOLL 1071#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1072 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 1073#endif
777#if EV_USE_POLL 1074#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1075 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 1076#endif
780#if EV_USE_SELECT 1077#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 1079#endif
783 1080
784 ev_init (&sigev, sigcb); 1081 ev_init (&sigev, sigcb);
785 ev_set_priority (&sigev, EV_MAXPRI); 1082 ev_set_priority (&sigev, EV_MAXPRI);
786 } 1083 }
787} 1084}
788 1085
789void 1086static void noinline
790loop_destroy (EV_P) 1087loop_destroy (EV_P)
791{ 1088{
792 int i; 1089 int i;
793 1090
1091#if EV_USE_INOTIFY
1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
1098
1099#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1101#endif
794#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 1104#endif
797#if EV_USE_EPOLL 1105#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1106 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 1107#endif
800#if EV_USE_POLL 1108#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1109 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 1110#endif
803#if EV_USE_SELECT 1111#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 1113#endif
806 1114
807 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
808 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
809 1124
810 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY); 1126 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY); 1127 array_free (timer, EMPTY);
813#if EV_PERIODICS 1128#if EV_PERIODIC_ENABLE
814 array_free (periodic, EMPTY); 1129 array_free (periodic, EMPTY);
815#endif 1130#endif
1131#if EV_FORK_ENABLE
816 array_free (idle, EMPTY); 1132 array_free (fork, EMPTY);
1133#endif
817 array_free (prepare, EMPTY); 1134 array_free (prepare, EMPTY);
818 array_free (check, EMPTY); 1135 array_free (check, EMPTY);
819 1136
820 method = 0; 1137 backend = 0;
821} 1138}
822 1139
823static void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
824loop_fork (EV_P) 1143loop_fork (EV_P)
825{ 1144{
1145#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif
1148#if EV_USE_KQUEUE
1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1150#endif
826#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif 1153#endif
829#if EV_USE_KQUEUE 1154#if EV_USE_INOTIFY
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1155 infy_fork (EV_A);
831#endif 1156#endif
832 1157
833 if (ev_is_active (&sigev)) 1158 if (ev_is_active (&sigev))
834 { 1159 {
835 /* default loop */ 1160 /* default loop */
841 1166
842 while (pipe (sigpipe)) 1167 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe"); 1168 syserr ("(libev) error creating pipe");
844 1169
845 siginit (EV_A); 1170 siginit (EV_A);
1171 sigcb (EV_A_ &sigev, EV_READ);
846 } 1172 }
847 1173
848 postfork = 0; 1174 postfork = 0;
849} 1175}
850 1176
851#if EV_MULTIPLICITY 1177#if EV_MULTIPLICITY
852struct ev_loop * 1178struct ev_loop *
853ev_loop_new (int methods) 1179ev_loop_new (unsigned int flags)
854{ 1180{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856 1182
857 memset (loop, 0, sizeof (struct ev_loop)); 1183 memset (loop, 0, sizeof (struct ev_loop));
858 1184
859 loop_init (EV_A_ methods); 1185 loop_init (EV_A_ flags);
860 1186
861 if (ev_method (EV_A)) 1187 if (ev_backend (EV_A))
862 return loop; 1188 return loop;
863 1189
864 return 0; 1190 return 0;
865} 1191}
866 1192
872} 1198}
873 1199
874void 1200void
875ev_loop_fork (EV_P) 1201ev_loop_fork (EV_P)
876{ 1202{
877 postfork = 1; 1203 postfork = 1; /* must be in line with ev_default_fork */
878} 1204}
879 1205
880#endif 1206#endif
881 1207
882#if EV_MULTIPLICITY 1208#if EV_MULTIPLICITY
883struct ev_loop * 1209struct ev_loop *
1210ev_default_loop_init (unsigned int flags)
884#else 1211#else
885int 1212int
1213ev_default_loop (unsigned int flags)
886#endif 1214#endif
887ev_default_loop (int methods)
888{ 1215{
889 if (sigpipe [0] == sigpipe [1]) 1216 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe)) 1217 if (pipe (sigpipe))
891 return 0; 1218 return 0;
892 1219
893 if (!default_loop) 1220 if (!ev_default_loop_ptr)
894 { 1221 {
895#if EV_MULTIPLICITY 1222#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
897#else 1224#else
898 default_loop = 1; 1225 ev_default_loop_ptr = 1;
899#endif 1226#endif
900 1227
901 loop_init (EV_A_ methods); 1228 loop_init (EV_A_ flags);
902 1229
903 if (ev_method (EV_A)) 1230 if (ev_backend (EV_A))
904 { 1231 {
905 siginit (EV_A); 1232 siginit (EV_A);
906 1233
907#ifndef _WIN32 1234#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1235 ev_signal_init (&childev, childcb, SIGCHLD);
910 ev_signal_start (EV_A_ &childev); 1237 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1238 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1239#endif
913 } 1240 }
914 else 1241 else
915 default_loop = 0; 1242 ev_default_loop_ptr = 0;
916 } 1243 }
917 1244
918 return default_loop; 1245 return ev_default_loop_ptr;
919} 1246}
920 1247
921void 1248void
922ev_default_destroy (void) 1249ev_default_destroy (void)
923{ 1250{
924#if EV_MULTIPLICITY 1251#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1252 struct ev_loop *loop = ev_default_loop_ptr;
926#endif 1253#endif
927 1254
928#ifndef _WIN32 1255#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1256 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1257 ev_signal_stop (EV_A_ &childev);
941 1268
942void 1269void
943ev_default_fork (void) 1270ev_default_fork (void)
944{ 1271{
945#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1273 struct ev_loop *loop = ev_default_loop_ptr;
947#endif 1274#endif
948 1275
949 if (method) 1276 if (backend)
950 postfork = 1; 1277 postfork = 1; /* must be in line with ev_loop_fork */
951} 1278}
952 1279
953/*****************************************************************************/ 1280/*****************************************************************************/
954 1281
955static int 1282void
956any_pending (EV_P) 1283ev_invoke (EV_P_ void *w, int revents)
957{ 1284{
958 int pri; 1285 EV_CB_INVOKE ((W)w, revents);
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965} 1286}
966 1287
967static void 1288void inline_speed
968call_pending (EV_P) 1289call_pending (EV_P)
969{ 1290{
970 int pri; 1291 int pri;
971 1292
972 for (pri = NUMPRI; pri--; ) 1293 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1294 while (pendingcnt [pri])
974 { 1295 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1297
977 if (p->w) 1298 if (expect_true (p->w))
978 { 1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301
979 p->w->pending = 0; 1302 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1303 EV_CB_INVOKE (p->w, p->events);
981 } 1304 }
982 } 1305 }
983} 1306}
984 1307
985static void 1308void inline_size
986timers_reify (EV_P) 1309timers_reify (EV_P)
987{ 1310{
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
989 { 1312 {
990 struct ev_timer *w = timers [0]; 1313 ev_timer *w = (ev_timer *)timers [0];
991 1314
992 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
993 1316
994 /* first reschedule or stop timer */ 1317 /* first reschedule or stop timer */
995 if (w->repeat) 1318 if (w->repeat)
996 { 1319 {
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 1321
999 ((WT)w)->at += w->repeat; 1322 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now) 1323 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now; 1324 ((WT)w)->at = mn_now;
1002 1325
1003 downheap ((WT *)timers, timercnt, 0); 1326 downheap (timers, timercnt, 0);
1004 } 1327 }
1005 else 1328 else
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 1330
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1009 } 1332 }
1010} 1333}
1011 1334
1012#if EV_PERIODICS 1335#if EV_PERIODIC_ENABLE
1013static void 1336void inline_size
1014periodics_reify (EV_P) 1337periodics_reify (EV_P)
1015{ 1338{
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1017 { 1340 {
1018 struct ev_periodic *w = periodics [0]; 1341 ev_periodic *w = (ev_periodic *)periodics [0];
1019 1342
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 1344
1022 /* first reschedule or stop timer */ 1345 /* first reschedule or stop timer */
1023 if (w->reschedule_cb) 1346 if (w->reschedule_cb)
1024 { 1347 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0); 1350 downheap (periodics, periodiccnt, 0);
1029 } 1351 }
1030 else if (w->interval) 1352 else if (w->interval)
1031 { 1353 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1034 downheap ((WT *)periodics, periodiccnt, 0); 1357 downheap (periodics, periodiccnt, 0);
1035 } 1358 }
1036 else 1359 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 1361
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 } 1363 }
1041} 1364}
1042 1365
1043static void 1366static void noinline
1044periodics_reschedule (EV_P) 1367periodics_reschedule (EV_P)
1045{ 1368{
1046 int i; 1369 int i;
1047 1370
1048 /* adjust periodics after time jump */ 1371 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i) 1372 for (i = 0; i < periodiccnt; ++i)
1050 { 1373 {
1051 struct ev_periodic *w = periodics [i]; 1374 ev_periodic *w = (ev_periodic *)periodics [i];
1052 1375
1053 if (w->reschedule_cb) 1376 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval) 1378 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1057 } 1380 }
1058 1381
1059 /* now rebuild the heap */ 1382 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; ) 1383 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i); 1384 downheap (periodics, periodiccnt, i);
1062} 1385}
1063#endif 1386#endif
1064 1387
1065inline int 1388#if EV_IDLE_ENABLE
1066time_update_monotonic (EV_P) 1389void inline_size
1390idle_reify (EV_P)
1067{ 1391{
1392 if (expect_false (idleall))
1393 {
1394 int pri;
1395
1396 for (pri = NUMPRI; pri--; )
1397 {
1398 if (pendingcnt [pri])
1399 break;
1400
1401 if (idlecnt [pri])
1402 {
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break;
1405 }
1406 }
1407 }
1408}
1409#endif
1410
1411void inline_speed
1412time_update (EV_P_ ev_tstamp max_block)
1413{
1414 int i;
1415
1416#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic))
1418 {
1419 ev_tstamp odiff = rtmn_diff;
1420
1068 mn_now = get_clock (); 1421 mn_now = get_clock ();
1069 1422
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1424 /* interpolate in the meantime */
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1425 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 1426 {
1072 ev_rt_now = rtmn_diff + mn_now; 1427 ev_rt_now = rtmn_diff + mn_now;
1073 return 0; 1428 return;
1074 } 1429 }
1075 else 1430
1076 {
1077 now_floor = mn_now; 1431 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 1432 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 1433
1083static void 1434 /* loop a few times, before making important decisions.
1084time_update (EV_P) 1435 * on the choice of "4": one iteration isn't enough,
1085{ 1436 * in case we get preempted during the calls to
1086 int i; 1437 * ev_time and get_clock. a second call is almost guaranteed
1087 1438 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 1439 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 1440 * in the unlikely event of having been preempted here.
1090 { 1441 */
1091 if (time_update_monotonic (EV_A)) 1442 for (i = 4; --i; )
1092 { 1443 {
1093 ev_tstamp odiff = rtmn_diff;
1094
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1096 {
1097 rtmn_diff = ev_rt_now - mn_now; 1444 rtmn_diff = ev_rt_now - mn_now;
1098 1445
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1100 return; /* all is well */ 1447 return; /* all is well */
1101 1448
1102 ev_rt_now = ev_time (); 1449 ev_rt_now = ev_time ();
1103 mn_now = get_clock (); 1450 mn_now = get_clock ();
1104 now_floor = mn_now; 1451 now_floor = mn_now;
1105 } 1452 }
1106 1453
1107# if EV_PERIODICS 1454# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A);
1456# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 }
1460 else
1461#endif
1462 {
1463 ev_rt_now = ev_time ();
1464
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 {
1467#if EV_PERIODIC_ENABLE
1108 periodics_reschedule (EV_A); 1468 periodics_reschedule (EV_A);
1109# endif 1469#endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */ 1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1126 for (i = 0; i < timercnt; ++i) 1471 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now; 1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 } 1473 }
1129 1474
1130 mn_now = ev_rt_now; 1475 mn_now = ev_rt_now;
1146static int loop_done; 1491static int loop_done;
1147 1492
1148void 1493void
1149ev_loop (EV_P_ int flags) 1494ev_loop (EV_P_ int flags)
1150{ 1495{
1151 double block;
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1499
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1153 1501
1154 do 1502 do
1155 { 1503 {
1504#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid))
1507 {
1508 curpid = getpid ();
1509 postfork = 1;
1510 }
1511#endif
1512
1513#if EV_FORK_ENABLE
1514 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork))
1516 if (forkcnt)
1517 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A);
1520 }
1521#endif
1522
1156 /* queue check watchers (and execute them) */ 1523 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 1524 if (expect_false (preparecnt))
1158 { 1525 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 1527 call_pending (EV_A);
1161 } 1528 }
1162 1529
1530 if (expect_false (!activecnt))
1531 break;
1532
1163 /* we might have forked, so reify kernel state if necessary */ 1533 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 1534 if (expect_false (postfork))
1165 loop_fork (EV_A); 1535 loop_fork (EV_A);
1166 1536
1167 /* update fd-related kernel structures */ 1537 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 1538 fd_reify (EV_A);
1169 1539
1170 /* calculate blocking time */ 1540 /* calculate blocking time */
1541 {
1542 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.;
1171 1544
1172 /* we only need this for !monotonic clock or timers, but as we basically 1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1173 always have timers, we just calculate it always */
1174#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A);
1177 else
1178#endif
1179 { 1546 {
1180 ev_rt_now = ev_time (); 1547 /* update time to cancel out callback processing overhead */
1181 mn_now = ev_rt_now; 1548 time_update (EV_A_ 1e100);
1182 }
1183 1549
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 1550 waittime = MAX_BLOCKTIME;
1189 1551
1190 if (timercnt) 1552 if (timercnt)
1191 { 1553 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1193 if (block > to) block = to; 1555 if (waittime > to) waittime = to;
1194 } 1556 }
1195 1557
1196#if EV_PERIODICS 1558#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 1559 if (periodiccnt)
1198 { 1560 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 1562 if (waittime > to) waittime = to;
1201 } 1563 }
1202#endif 1564#endif
1203 1565
1204 if (block < 0.) block = 0.; 1566 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime;
1568
1569 sleeptime = waittime - backend_fudge;
1570
1571 if (expect_true (sleeptime > io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 {
1576 ev_sleep (sleeptime);
1577 waittime -= sleeptime;
1578 }
1205 } 1579 }
1206 1580
1207 method_poll (EV_A_ block); 1581 ++loop_count;
1582 backend_poll (EV_A_ waittime);
1208 1583
1209 /* update ev_rt_now, do magic */ 1584 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 1585 time_update (EV_A_ waittime + sleeptime);
1586 }
1211 1587
1212 /* queue pending timers and reschedule them */ 1588 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 1589 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 1590#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 1591 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 1592#endif
1217 1593
1594#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 1595 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 1596 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1597#endif
1221 1598
1222 /* queue check watchers, to be executed first */ 1599 /* queue check watchers, to be executed first */
1223 if (checkcnt) 1600 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 1602
1226 call_pending (EV_A); 1603 call_pending (EV_A);
1604
1227 } 1605 }
1228 while (activecnt && !loop_done); 1606 while (expect_true (activecnt && !loop_done));
1229 1607
1230 if (loop_done != 2) 1608 if (loop_done == EVUNLOOP_ONE)
1231 loop_done = 0; 1609 loop_done = EVUNLOOP_CANCEL;
1232} 1610}
1233 1611
1234void 1612void
1235ev_unloop (EV_P_ int how) 1613ev_unloop (EV_P_ int how)
1236{ 1614{
1237 loop_done = how; 1615 loop_done = how;
1238} 1616}
1239 1617
1240/*****************************************************************************/ 1618/*****************************************************************************/
1241 1619
1242inline void 1620void inline_size
1243wlist_add (WL *head, WL elem) 1621wlist_add (WL *head, WL elem)
1244{ 1622{
1245 elem->next = *head; 1623 elem->next = *head;
1246 *head = elem; 1624 *head = elem;
1247} 1625}
1248 1626
1249inline void 1627void inline_size
1250wlist_del (WL *head, WL elem) 1628wlist_del (WL *head, WL elem)
1251{ 1629{
1252 while (*head) 1630 while (*head)
1253 { 1631 {
1254 if (*head == elem) 1632 if (*head == elem)
1259 1637
1260 head = &(*head)->next; 1638 head = &(*head)->next;
1261 } 1639 }
1262} 1640}
1263 1641
1264inline void 1642void inline_speed
1265ev_clear_pending (EV_P_ W w) 1643clear_pending (EV_P_ W w)
1266{ 1644{
1267 if (w->pending) 1645 if (w->pending)
1268 { 1646 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1647 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1270 w->pending = 0; 1648 w->pending = 0;
1271 } 1649 }
1272} 1650}
1273 1651
1274inline void 1652int
1653ev_clear_pending (EV_P_ void *w)
1654{
1655 W w_ = (W)w;
1656 int pending = w_->pending;
1657
1658 if (expect_true (pending))
1659 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1661 w_->pending = 0;
1662 p->w = 0;
1663 return p->events;
1664 }
1665 else
1666 return 0;
1667}
1668
1669void inline_size
1670pri_adjust (EV_P_ W w)
1671{
1672 int pri = w->priority;
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri;
1676}
1677
1678void inline_speed
1275ev_start (EV_P_ W w, int active) 1679ev_start (EV_P_ W w, int active)
1276{ 1680{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1681 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 1682 w->active = active;
1281 ev_ref (EV_A); 1683 ev_ref (EV_A);
1282} 1684}
1283 1685
1284inline void 1686void inline_size
1285ev_stop (EV_P_ W w) 1687ev_stop (EV_P_ W w)
1286{ 1688{
1287 ev_unref (EV_A); 1689 ev_unref (EV_A);
1288 w->active = 0; 1690 w->active = 0;
1289} 1691}
1290 1692
1291/*****************************************************************************/ 1693/*****************************************************************************/
1292 1694
1293void 1695void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 1696ev_io_start (EV_P_ ev_io *w)
1295{ 1697{
1296 int fd = w->fd; 1698 int fd = w->fd;
1297 1699
1298 if (ev_is_active (w)) 1700 if (expect_false (ev_is_active (w)))
1299 return; 1701 return;
1300 1702
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 1703 assert (("ev_io_start called with negative fd", fd >= 0));
1302 1704
1303 ev_start (EV_A_ (W)w, 1); 1705 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1707 wlist_add (&anfds[fd].head, (WL)w);
1306 1708
1307 fd_change (EV_A_ fd); 1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET;
1308} 1711}
1309 1712
1310void 1713void noinline
1311ev_io_stop (EV_P_ struct ev_io *w) 1714ev_io_stop (EV_P_ ev_io *w)
1312{ 1715{
1313 ev_clear_pending (EV_A_ (W)w); 1716 clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 1717 if (expect_false (!ev_is_active (w)))
1315 return; 1718 return;
1316 1719
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 1721
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1722 wlist_del (&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 1723 ev_stop (EV_A_ (W)w);
1321 1724
1322 fd_change (EV_A_ w->fd); 1725 fd_change (EV_A_ w->fd, 1);
1323} 1726}
1324 1727
1325void 1728void noinline
1326ev_timer_start (EV_P_ struct ev_timer *w) 1729ev_timer_start (EV_P_ ev_timer *w)
1327{ 1730{
1328 if (ev_is_active (w)) 1731 if (expect_false (ev_is_active (w)))
1329 return; 1732 return;
1330 1733
1331 ((WT)w)->at += mn_now; 1734 ((WT)w)->at += mn_now;
1332 1735
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 1737
1335 ev_start (EV_A_ (W)w, ++timercnt); 1738 ev_start (EV_A_ (W)w, ++timercnt);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1337 timers [timercnt - 1] = w; 1740 timers [timercnt - 1] = (WT)w;
1338 upheap ((WT *)timers, timercnt - 1); 1741 upheap (timers, timercnt - 1);
1339 1742
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1341} 1744}
1342 1745
1343void 1746void noinline
1344ev_timer_stop (EV_P_ struct ev_timer *w) 1747ev_timer_stop (EV_P_ ev_timer *w)
1345{ 1748{
1346 ev_clear_pending (EV_A_ (W)w); 1749 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 1750 if (expect_false (!ev_is_active (w)))
1348 return; 1751 return;
1349 1752
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1351 1754
1352 if (((W)w)->active < timercnt--) 1755 {
1756 int active = ((W)w)->active;
1757
1758 if (expect_true (--active < --timercnt))
1353 { 1759 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 1760 timers [active] = timers [timercnt];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1761 adjustheap (timers, timercnt, active);
1356 } 1762 }
1763 }
1357 1764
1358 ((WT)w)->at -= mn_now; 1765 ((WT)w)->at -= mn_now;
1359 1766
1360 ev_stop (EV_A_ (W)w); 1767 ev_stop (EV_A_ (W)w);
1361} 1768}
1362 1769
1363void 1770void noinline
1364ev_timer_again (EV_P_ struct ev_timer *w) 1771ev_timer_again (EV_P_ ev_timer *w)
1365{ 1772{
1366 if (ev_is_active (w)) 1773 if (ev_is_active (w))
1367 { 1774 {
1368 if (w->repeat) 1775 if (w->repeat)
1369 { 1776 {
1370 ((WT)w)->at = mn_now + w->repeat; 1777 ((WT)w)->at = mn_now + w->repeat;
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1778 adjustheap (timers, timercnt, ((W)w)->active - 1);
1372 } 1779 }
1373 else 1780 else
1374 ev_timer_stop (EV_A_ w); 1781 ev_timer_stop (EV_A_ w);
1375 } 1782 }
1376 else if (w->repeat) 1783 else if (w->repeat)
1784 {
1785 w->at = w->repeat;
1377 ev_timer_start (EV_A_ w); 1786 ev_timer_start (EV_A_ w);
1787 }
1378} 1788}
1379 1789
1380#if EV_PERIODICS 1790#if EV_PERIODIC_ENABLE
1381void 1791void noinline
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 1792ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 1793{
1384 if (ev_is_active (w)) 1794 if (expect_false (ev_is_active (w)))
1385 return; 1795 return;
1386 1796
1387 if (w->reschedule_cb) 1797 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 1799 else if (w->interval)
1390 { 1800 {
1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 1802 /* this formula differs from the one in periodic_reify because we do not always round up */
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1394 } 1804 }
1805 else
1806 ((WT)w)->at = w->offset;
1395 1807
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 1808 ev_start (EV_A_ (W)w, ++periodiccnt);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 1810 periodics [periodiccnt - 1] = (WT)w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 1811 upheap (periodics, periodiccnt - 1);
1400 1812
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1402} 1814}
1403 1815
1404void 1816void noinline
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 1817ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 1818{
1407 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 1820 if (expect_false (!ev_is_active (w)))
1409 return; 1821 return;
1410 1822
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1412 1824
1413 if (((W)w)->active < periodiccnt--) 1825 {
1826 int active = ((W)w)->active;
1827
1828 if (expect_true (--active < --periodiccnt))
1414 { 1829 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1830 periodics [active] = periodics [periodiccnt];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1831 adjustheap (periodics, periodiccnt, active);
1417 } 1832 }
1833 }
1418 1834
1419 ev_stop (EV_A_ (W)w); 1835 ev_stop (EV_A_ (W)w);
1420} 1836}
1421 1837
1422void 1838void noinline
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 1839ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 1840{
1425 /* TODO: use adjustheap and recalculation */ 1841 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 1842 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 1843 ev_periodic_start (EV_A_ w);
1428} 1844}
1429#endif 1845#endif
1430 1846
1431void
1432ev_idle_start (EV_P_ struct ev_idle *w)
1433{
1434 if (ev_is_active (w))
1435 return;
1436
1437 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1439 idles [idlecnt - 1] = w;
1440}
1441
1442void
1443ev_idle_stop (EV_P_ struct ev_idle *w)
1444{
1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1456 if (ev_is_active (w))
1457 return;
1458
1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1472 ev_stop (EV_A_ (W)w);
1473}
1474
1475void
1476ev_check_start (EV_P_ struct ev_check *w)
1477{
1478 if (ev_is_active (w))
1479 return;
1480
1481 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1483 checks [checkcnt - 1] = w;
1484}
1485
1486void
1487ev_check_stop (EV_P_ struct ev_check *w)
1488{
1489 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w))
1491 return;
1492
1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1494 ev_stop (EV_A_ (W)w);
1495}
1496
1497#ifndef SA_RESTART 1847#ifndef SA_RESTART
1498# define SA_RESTART 0 1848# define SA_RESTART 0
1499#endif 1849#endif
1500 1850
1501void 1851void noinline
1502ev_signal_start (EV_P_ struct ev_signal *w) 1852ev_signal_start (EV_P_ ev_signal *w)
1503{ 1853{
1504#if EV_MULTIPLICITY 1854#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 1856#endif
1507 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
1508 return; 1858 return;
1509 1859
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1511 1861
1862 {
1863#ifndef _WIN32
1864 sigset_t full, prev;
1865 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1870
1871#ifndef _WIN32
1872 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif
1874 }
1875
1512 ev_start (EV_A_ (W)w, 1); 1876 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1877 wlist_add (&signals [w->signum - 1].head, (WL)w);
1515 1878
1516 if (!((WL)w)->next) 1879 if (!((WL)w)->next)
1517 { 1880 {
1518#if _WIN32 1881#if _WIN32
1519 signal (w->signum, sighandler); 1882 signal (w->signum, sighandler);
1525 sigaction (w->signum, &sa, 0); 1888 sigaction (w->signum, &sa, 0);
1526#endif 1889#endif
1527 } 1890 }
1528} 1891}
1529 1892
1530void 1893void noinline
1531ev_signal_stop (EV_P_ struct ev_signal *w) 1894ev_signal_stop (EV_P_ ev_signal *w)
1532{ 1895{
1533 ev_clear_pending (EV_A_ (W)w); 1896 clear_pending (EV_A_ (W)w);
1534 if (!ev_is_active (w)) 1897 if (expect_false (!ev_is_active (w)))
1535 return; 1898 return;
1536 1899
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1900 wlist_del (&signals [w->signum - 1].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1539 1902
1540 if (!signals [w->signum - 1].head) 1903 if (!signals [w->signum - 1].head)
1541 signal (w->signum, SIG_DFL); 1904 signal (w->signum, SIG_DFL);
1542} 1905}
1543 1906
1544void 1907void
1545ev_child_start (EV_P_ struct ev_child *w) 1908ev_child_start (EV_P_ ev_child *w)
1546{ 1909{
1547#if EV_MULTIPLICITY 1910#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1549#endif 1912#endif
1550 if (ev_is_active (w)) 1913 if (expect_false (ev_is_active (w)))
1551 return; 1914 return;
1552 1915
1553 ev_start (EV_A_ (W)w, 1); 1916 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1555} 1918}
1556 1919
1557void 1920void
1558ev_child_stop (EV_P_ struct ev_child *w) 1921ev_child_stop (EV_P_ ev_child *w)
1559{ 1922{
1560 ev_clear_pending (EV_A_ (W)w); 1923 clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 1924 if (expect_false (!ev_is_active (w)))
1562 return; 1925 return;
1563 1926
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1566} 1929}
1567 1930
1931#if EV_STAT_ENABLE
1932
1933# ifdef _WIN32
1934# undef lstat
1935# define lstat(a,b) _stati64 (a,b)
1936# endif
1937
1938#define DEF_STAT_INTERVAL 5.0074891
1939#define MIN_STAT_INTERVAL 0.1074891
1940
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942
1943#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192
1945
1946static void noinline
1947infy_add (EV_P_ ev_stat *w)
1948{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950
1951 if (w->wd < 0)
1952 {
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954
1955 /* monitor some parent directory for speedup hints */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 {
1958 char path [4096];
1959 strcpy (path, w->path);
1960
1961 do
1962 {
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965
1966 char *pend = strrchr (path, '/');
1967
1968 if (!pend)
1969 break; /* whoops, no '/', complain to your admin */
1970
1971 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 }
1976 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979
1980 if (w->wd >= 0)
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1982}
1983
1984static void noinline
1985infy_del (EV_P_ ev_stat *w)
1986{
1987 int slot;
1988 int wd = w->wd;
1989
1990 if (wd < 0)
1991 return;
1992
1993 w->wd = -2;
1994 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1995 wlist_del (&fs_hash [slot].head, (WL)w);
1996
1997 /* remove this watcher, if others are watching it, they will rearm */
1998 inotify_rm_watch (fs_fd, wd);
1999}
2000
2001static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{
2004 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev);
2008 else
2009 {
2010 WL w_;
2011
2012 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2013 {
2014 ev_stat *w = (ev_stat *)w_;
2015 w_ = w_->next; /* lets us remove this watcher and all before it */
2016
2017 if (w->wd == wd || wd == -1)
2018 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 {
2021 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */
2023 }
2024
2025 stat_timer_cb (EV_A_ &w->timer, 0);
2026 }
2027 }
2028 }
2029}
2030
2031static void
2032infy_cb (EV_P_ ev_io *w, int revents)
2033{
2034 char buf [EV_INOTIFY_BUFSIZE];
2035 struct inotify_event *ev = (struct inotify_event *)buf;
2036 int ofs;
2037 int len = read (fs_fd, buf, sizeof (buf));
2038
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2041}
2042
2043void inline_size
2044infy_init (EV_P)
2045{
2046 if (fs_fd != -2)
2047 return;
2048
2049 fs_fd = inotify_init ();
2050
2051 if (fs_fd >= 0)
2052 {
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2054 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w);
2056 }
2057}
2058
2059void inline_size
2060infy_fork (EV_P)
2061{
2062 int slot;
2063
2064 if (fs_fd < 0)
2065 return;
2066
2067 close (fs_fd);
2068 fs_fd = inotify_init ();
2069
2070 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2071 {
2072 WL w_ = fs_hash [slot].head;
2073 fs_hash [slot].head = 0;
2074
2075 while (w_)
2076 {
2077 ev_stat *w = (ev_stat *)w_;
2078 w_ = w_->next; /* lets us add this watcher */
2079
2080 w->wd = -1;
2081
2082 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else
2085 ev_timer_start (EV_A_ &w->timer);
2086 }
2087
2088 }
2089}
2090
2091#endif
2092
2093void
2094ev_stat_stat (EV_P_ ev_stat *w)
2095{
2096 if (lstat (w->path, &w->attr) < 0)
2097 w->attr.st_nlink = 0;
2098 else if (!w->attr.st_nlink)
2099 w->attr.st_nlink = 1;
2100}
2101
2102static void noinline
2103stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2104{
2105 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2106
2107 /* we copy this here each the time so that */
2108 /* prev has the old value when the callback gets invoked */
2109 w->prev = w->attr;
2110 ev_stat_stat (EV_A_ w);
2111
2112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2113 if (
2114 w->prev.st_dev != w->attr.st_dev
2115 || w->prev.st_ino != w->attr.st_ino
2116 || w->prev.st_mode != w->attr.st_mode
2117 || w->prev.st_nlink != w->attr.st_nlink
2118 || w->prev.st_uid != w->attr.st_uid
2119 || w->prev.st_gid != w->attr.st_gid
2120 || w->prev.st_rdev != w->attr.st_rdev
2121 || w->prev.st_size != w->attr.st_size
2122 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime
2125 ) {
2126 #if EV_USE_INOTIFY
2127 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */
2130 #endif
2131
2132 ev_feed_event (EV_A_ w, EV_STAT);
2133 }
2134}
2135
2136void
2137ev_stat_start (EV_P_ ev_stat *w)
2138{
2139 if (expect_false (ev_is_active (w)))
2140 return;
2141
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w);
2147
2148 if (w->interval < MIN_STAT_INTERVAL)
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2152 ev_set_priority (&w->timer, ev_priority (w));
2153
2154#if EV_USE_INOTIFY
2155 infy_init (EV_A);
2156
2157 if (fs_fd >= 0)
2158 infy_add (EV_A_ w);
2159 else
2160#endif
2161 ev_timer_start (EV_A_ &w->timer);
2162
2163 ev_start (EV_A_ (W)w, 1);
2164}
2165
2166void
2167ev_stat_stop (EV_P_ ev_stat *w)
2168{
2169 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w)))
2171 return;
2172
2173#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w);
2175#endif
2176 ev_timer_stop (EV_A_ &w->timer);
2177
2178 ev_stop (EV_A_ (W)w);
2179}
2180#endif
2181
2182#if EV_IDLE_ENABLE
2183void
2184ev_idle_start (EV_P_ ev_idle *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 pri_adjust (EV_A_ (W)w);
2190
2191 {
2192 int active = ++idlecnt [ABSPRI (w)];
2193
2194 ++idleall;
2195 ev_start (EV_A_ (W)w, active);
2196
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w;
2199 }
2200}
2201
2202void
2203ev_idle_stop (EV_P_ ev_idle *w)
2204{
2205 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w)))
2207 return;
2208
2209 {
2210 int active = ((W)w)->active;
2211
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2214
2215 ev_stop (EV_A_ (W)w);
2216 --idleall;
2217 }
2218}
2219#endif
2220
2221void
2222ev_prepare_start (EV_P_ ev_prepare *w)
2223{
2224 if (expect_false (ev_is_active (w)))
2225 return;
2226
2227 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w;
2230}
2231
2232void
2233ev_prepare_stop (EV_P_ ev_prepare *w)
2234{
2235 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w)))
2237 return;
2238
2239 {
2240 int active = ((W)w)->active;
2241 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active;
2243 }
2244
2245 ev_stop (EV_A_ (W)w);
2246}
2247
2248void
2249ev_check_start (EV_P_ ev_check *w)
2250{
2251 if (expect_false (ev_is_active (w)))
2252 return;
2253
2254 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w;
2257}
2258
2259void
2260ev_check_stop (EV_P_ ev_check *w)
2261{
2262 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w)))
2264 return;
2265
2266 {
2267 int active = ((W)w)->active;
2268 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active;
2270 }
2271
2272 ev_stop (EV_A_ (W)w);
2273}
2274
2275#if EV_EMBED_ENABLE
2276void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w)
2278{
2279 ev_loop (w->other, EVLOOP_NONBLOCK);
2280}
2281
2282static void
2283embed_io_cb (EV_P_ ev_io *io, int revents)
2284{
2285 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2286
2287 if (ev_cb (w))
2288 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2289 else
2290 ev_loop (w->other, EVLOOP_NONBLOCK);
2291}
2292
2293static void
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297
2298 {
2299 struct ev_loop *loop = w->other;
2300
2301 while (fdchangecnt)
2302 {
2303 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 }
2306 }
2307}
2308
2309#if 0
2310static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{
2313 ev_idle_stop (EV_A_ idle);
2314}
2315#endif
2316
2317void
2318ev_embed_start (EV_P_ ev_embed *w)
2319{
2320 if (expect_false (ev_is_active (w)))
2321 return;
2322
2323 {
2324 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 }
2328
2329 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io);
2331
2332 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare);
2335
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337
2338 ev_start (EV_A_ (W)w, 1);
2339}
2340
2341void
2342ev_embed_stop (EV_P_ ev_embed *w)
2343{
2344 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w)))
2346 return;
2347
2348 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare);
2350
2351 ev_stop (EV_A_ (W)w);
2352}
2353#endif
2354
2355#if EV_FORK_ENABLE
2356void
2357ev_fork_start (EV_P_ ev_fork *w)
2358{
2359 if (expect_false (ev_is_active (w)))
2360 return;
2361
2362 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w;
2365}
2366
2367void
2368ev_fork_stop (EV_P_ ev_fork *w)
2369{
2370 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w)))
2372 return;
2373
2374 {
2375 int active = ((W)w)->active;
2376 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active;
2378 }
2379
2380 ev_stop (EV_A_ (W)w);
2381}
2382#endif
2383
1568/*****************************************************************************/ 2384/*****************************************************************************/
1569 2385
1570struct ev_once 2386struct ev_once
1571{ 2387{
1572 struct ev_io io; 2388 ev_io io;
1573 struct ev_timer to; 2389 ev_timer to;
1574 void (*cb)(int revents, void *arg); 2390 void (*cb)(int revents, void *arg);
1575 void *arg; 2391 void *arg;
1576}; 2392};
1577 2393
1578static void 2394static void
1587 2403
1588 cb (revents, arg); 2404 cb (revents, arg);
1589} 2405}
1590 2406
1591static void 2407static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 2408once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 2409{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1595} 2411}
1596 2412
1597static void 2413static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 2414once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 2415{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1601} 2417}
1602 2418
1603void 2419void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 2421{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 2423
1608 if (!once) 2424 if (expect_false (!once))
2425 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1610 else 2427 return;
1611 { 2428 }
2429
1612 once->cb = cb; 2430 once->cb = cb;
1613 once->arg = arg; 2431 once->arg = arg;
1614 2432
1615 ev_init (&once->io, once_cb_io); 2433 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 2434 if (fd >= 0)
1617 { 2435 {
1618 ev_io_set (&once->io, fd, events); 2436 ev_io_set (&once->io, fd, events);
1619 ev_io_start (EV_A_ &once->io); 2437 ev_io_start (EV_A_ &once->io);
1620 } 2438 }
1621 2439
1622 ev_init (&once->to, once_cb_to); 2440 ev_init (&once->to, once_cb_to);
1623 if (timeout >= 0.) 2441 if (timeout >= 0.)
1624 { 2442 {
1625 ev_timer_set (&once->to, timeout, 0.); 2443 ev_timer_set (&once->to, timeout, 0.);
1626 ev_timer_start (EV_A_ &once->to); 2444 ev_timer_start (EV_A_ &once->to);
1627 }
1628 } 2445 }
1629} 2446}
2447
2448#if EV_MULTIPLICITY
2449 #include "ev_wrap.h"
2450#endif
1630 2451
1631#ifdef __cplusplus 2452#ifdef __cplusplus
1632} 2453}
1633#endif 2454#endif
1634 2455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines