ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
47# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
49# endif 61# endif
50# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
52# endif 72# endif
53# endif 73# endif
54 74
55# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 110# else
91# define EV_USE_PORT 0 111# define EV_USE_PORT 0
92# endif 112# endif
93# endif 113# endif
94 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
95#endif 123#endif
96 124
97#include <math.h> 125#include <math.h>
98#include <stdlib.h> 126#include <stdlib.h>
99#include <fcntl.h> 127#include <fcntl.h>
106#include <sys/types.h> 134#include <sys/types.h>
107#include <time.h> 135#include <time.h>
108 136
109#include <signal.h> 137#include <signal.h>
110 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
111#ifndef _WIN32 145#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 146# include <sys/time.h>
114# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
115#else 149#else
116# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 151# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
128 162
129#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
131#endif 165#endif
132 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
133#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
135#endif 173#endif
136 174
137#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
152 190
153#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 192# define EV_USE_PORT 0
155#endif 193#endif
156 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
157/**/ 215/**/
158 216
159#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
167#endif 225#endif
168 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
169#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 243# include <winsock.h>
171#endif 244#endif
172 245
173/**/ 246/**/
174 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 261
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 262#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 264# define noinline __attribute__ ((noinline))
189#else 265#else
190# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
191# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
192#endif 271#endif
193 272
194#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
196 282
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 285
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
202 288
203typedef struct ev_watcher *W; 289typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
206 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
208 298
209#ifdef _WIN32 299#ifdef _WIN32
210# include "ev_win32.c" 300# include "ev_win32.c"
211#endif 301#endif
212 302
213/*****************************************************************************/ 303/*****************************************************************************/
214 304
215static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
216 306
307void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 309{
219 syserr_cb = cb; 310 syserr_cb = cb;
220} 311}
221 312
222static void 313static void noinline
223syserr (const char *msg) 314syserr (const char *msg)
224{ 315{
225 if (!msg) 316 if (!msg)
226 msg = "(libev) system error"; 317 msg = "(libev) system error";
227 318
234 } 325 }
235} 326}
236 327
237static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
238 329
330void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 332{
241 alloc = cb; 333 alloc = cb;
242} 334}
243 335
244static void * 336inline_speed void *
245ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
246{ 338{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 340
249 if (!ptr && size) 341 if (!ptr && size)
273typedef struct 365typedef struct
274{ 366{
275 W w; 367 W w;
276 int events; 368 int events;
277} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
278 377
279#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
280 379
281 struct ev_loop 380 struct ev_loop
282 { 381 {
316 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 417#endif
319} 418}
320 419
321inline ev_tstamp 420ev_tstamp inline_size
322get_clock (void) 421get_clock (void)
323{ 422{
324#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
326 { 425 {
339{ 438{
340 return ev_rt_now; 439 return ev_rt_now;
341} 440}
342#endif 441#endif
343 442
344#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
345 497
346#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
348 { \ 500 { \
349 int newcnt = cur; \ 501 int ocur_ = (cur); \
350 do \ 502 (base) = (type *)array_realloc \
351 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 505 }
360 506
507#if 0
361#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 510 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 514 }
515#endif
368 516
369#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 519
372/*****************************************************************************/ 520/*****************************************************************************/
373 521
374static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
375anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
376{ 552{
377 while (count--) 553 while (count--)
378 { 554 {
379 base->head = 0; 555 base->head = 0;
382 558
383 ++base; 559 ++base;
384 } 560 }
385} 561}
386 562
387void 563void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
415{ 565{
416 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 567 ev_io *w;
418 568
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 570 {
421 int ev = w->events & revents; 571 int ev = w->events & revents;
422 572
423 if (ev) 573 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
426} 576}
427 577
428void 578void
429ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 580{
581 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
432} 583}
433 584
434/*****************************************************************************/ 585void inline_size
435
436inline void
437fd_reify (EV_P) 586fd_reify (EV_P)
438{ 587{
439 int i; 588 int i;
440 589
441 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
442 { 591 {
443 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 594 ev_io *w;
446 595
447 int events = 0; 596 unsigned char events = 0;
448 597
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 599 events |= (unsigned char)w->events;
451 600
452#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
453 if (events) 602 if (events)
454 { 603 {
455 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
456 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 611 }
459#endif 612#endif
460 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
461 anfd->reify = 0; 618 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
465 } 624 }
466 625
467 fdchangecnt = 0; 626 fdchangecnt = 0;
468} 627}
469 628
470static void 629void inline_size
471fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
472{ 631{
473 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
477 634
635 if (expect_true (!reify))
636 {
478 ++fdchangecnt; 637 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
481} 641}
482 642
483static void 643void inline_speed
484fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
485{ 645{
486 struct ev_io *w; 646 ev_io *w;
487 647
488 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
489 { 649 {
490 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 652 }
493} 653}
494 654
495inline int 655int inline_size
496fd_valid (int fd) 656fd_valid (int fd)
497{ 657{
498#ifdef _WIN32 658#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
500#else 660#else
501 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
502#endif 662#endif
503} 663}
504 664
505/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
506static void 666static void noinline
507fd_ebadf (EV_P) 667fd_ebadf (EV_P)
508{ 668{
509 int fd; 669 int fd;
510 670
511 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
515} 675}
516 676
517/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 678static void noinline
519fd_enomem (EV_P) 679fd_enomem (EV_P)
520{ 680{
521 int fd; 681 int fd;
522 682
523 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
527 return; 687 return;
528 } 688 }
529} 689}
530 690
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 692static void noinline
533fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
534{ 694{
535 int fd; 695 int fd;
536 696
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 698 if (anfds [fd].events)
540 { 699 {
541 anfds [fd].events = 0; 700 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 702 }
544} 703}
545 704
546/*****************************************************************************/ 705/*****************************************************************************/
547 706
548static void 707void inline_speed
549upheap (WT *heap, int k) 708upheap (WT *heap, int k)
550{ 709{
551 WT w = heap [k]; 710 WT w = heap [k];
552 711
553 while (k && heap [k >> 1]->at > w->at) 712 while (k)
554 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
555 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
557 k >>= 1; 721 k = p;
558 } 722 }
559 723
560 heap [k] = w; 724 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
562
563} 726}
564 727
565static void 728void inline_speed
566downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
567{ 730{
568 WT w = heap [k]; 731 WT w = heap [k];
569 732
570 while (k < (N >> 1)) 733 for (;;)
571 { 734 {
572 int j = k << 1; 735 int c = (k << 1) + 1;
573 736
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 738 break;
579 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
580 heap [k] = heap [j]; 746 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
582 k = j; 749 k = c;
583 } 750 }
584 751
585 heap [k] = w; 752 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
587} 754}
588 755
589inline void 756void inline_size
590adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
591{ 758{
592 upheap (heap, k); 759 upheap (heap, k);
593 downheap (heap, N, k); 760 downheap (heap, N, k);
594} 761}
604static ANSIG *signals; 771static ANSIG *signals;
605static int signalmax; 772static int signalmax;
606 773
607static int sigpipe [2]; 774static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 776static ev_io sigev;
610 777
611static void 778void inline_size
612signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
613{ 780{
614 while (count--) 781 while (count--)
615 { 782 {
616 base->head = 0; 783 base->head = 0;
636 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 804 errno = old_errno;
638 } 805 }
639} 806}
640 807
641void 808void noinline
642ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
643{ 810{
644 WL w; 811 WL w;
645 812
646#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 826}
660 827
661static void 828static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
663{ 830{
664 int signum; 831 int signum;
665 832
666 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 834 gotsig = 0;
669 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
672} 839}
673 840
674static void 841void inline_speed
675fd_intern (int fd) 842fd_intern (int fd)
676{ 843{
677#ifdef _WIN32 844#ifdef _WIN32
678 int arg = 1; 845 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 848 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 849 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 850#endif
684} 851}
685 852
686static void 853static void noinline
687siginit (EV_P) 854siginit (EV_P)
688{ 855{
689 fd_intern (sigpipe [0]); 856 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 857 fd_intern (sigpipe [1]);
691 858
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 862}
696 863
697/*****************************************************************************/ 864/*****************************************************************************/
698 865
699static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
700 867
701#ifndef _WIN32 868#ifndef _WIN32
702 869
703static struct ev_signal childev; 870static ev_signal childev;
871
872void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
874{
875 ev_child *w;
876
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
878 if (w->pid == pid || !w->pid)
879 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
881 w->rpid = pid;
882 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 }
885}
704 886
705#ifndef WCONTINUED 887#ifndef WCONTINUED
706# define WCONTINUED 0 888# define WCONTINUED 0
707#endif 889#endif
708 890
709static void 891static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 892childcb (EV_P_ ev_signal *sw, int revents)
726{ 893{
727 int pid, status; 894 int pid, status;
728 895
896 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 897 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 898 if (!WCONTINUED
899 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return;
902
731 /* make sure we are called again until all childs have been reaped */ 903 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 904 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 906
735 child_reap (EV_A_ sw, pid, pid, status); 907 child_reap (EV_A_ sw, pid, pid, status);
908 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 910}
739 911
740#endif 912#endif
741 913
742/*****************************************************************************/ 914/*****************************************************************************/
768{ 940{
769 return EV_VERSION_MINOR; 941 return EV_VERSION_MINOR;
770} 942}
771 943
772/* return true if we are running with elevated privileges and should ignore env variables */ 944/* return true if we are running with elevated privileges and should ignore env variables */
773static int 945int inline_size
774enable_secure (void) 946enable_secure (void)
775{ 947{
776#ifdef _WIN32 948#ifdef _WIN32
777 return 0; 949 return 0;
778#else 950#else
812 984
813 return flags; 985 return flags;
814} 986}
815 987
816unsigned int 988unsigned int
989ev_embeddable_backends (void)
990{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
998}
999
1000unsigned int
817ev_backend (EV_P) 1001ev_backend (EV_P)
818{ 1002{
819 return backend; 1003 return backend;
820} 1004}
821 1005
822static void 1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
823loop_init (EV_P_ unsigned int flags) 1025loop_init (EV_P_ unsigned int flags)
824{ 1026{
825 if (!backend) 1027 if (!backend)
826 { 1028 {
827#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
835 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
836 mn_now = get_clock (); 1038 mn_now = get_clock ();
837 now_floor = mn_now; 1039 now_floor = mn_now;
838 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
839 1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
840 if (!(flags & EVFLAG_NOENV) 1051 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 1052 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 1053 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
844 1055
845 if (!(flags & 0x0000ffffUL)) 1056 if (!(flags & 0x0000ffffUL))
846 flags |= ev_recommended_backends (); 1057 flags |= ev_recommended_backends ();
847 1058
848 backend = 0; 1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064
849#if EV_USE_PORT 1065#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 1067#endif
852#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
865 ev_init (&sigev, sigcb); 1081 ev_init (&sigev, sigcb);
866 ev_set_priority (&sigev, EV_MAXPRI); 1082 ev_set_priority (&sigev, EV_MAXPRI);
867 } 1083 }
868} 1084}
869 1085
870static void 1086static void noinline
871loop_destroy (EV_P) 1087loop_destroy (EV_P)
872{ 1088{
873 int i; 1089 int i;
1090
1091#if EV_USE_INOTIFY
1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
874 1098
875#if EV_USE_PORT 1099#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1101#endif
878#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1111#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1113#endif
890 1114
891 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
892 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
893 1124
894 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 1126 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1127 array_free (timer, EMPTY);
897#if EV_PERIODICS 1128#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1129 array_free (periodic, EMPTY);
899#endif 1130#endif
1131#if EV_FORK_ENABLE
900 array_free (idle, EMPTY0); 1132 array_free (fork, EMPTY);
1133#endif
901 array_free (prepare, EMPTY0); 1134 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1135 array_free (check, EMPTY);
903 1136
904 backend = 0; 1137 backend = 0;
905} 1138}
906 1139
907static void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
908loop_fork (EV_P) 1143loop_fork (EV_P)
909{ 1144{
910#if EV_USE_PORT 1145#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1147#endif
913#if EV_USE_KQUEUE 1148#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1150#endif
916#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1153#endif
1154#if EV_USE_INOTIFY
1155 infy_fork (EV_A);
918#endif 1156#endif
919 1157
920 if (ev_is_active (&sigev)) 1158 if (ev_is_active (&sigev))
921 { 1159 {
922 /* default loop */ 1160 /* default loop */
928 1166
929 while (pipe (sigpipe)) 1167 while (pipe (sigpipe))
930 syserr ("(libev) error creating pipe"); 1168 syserr ("(libev) error creating pipe");
931 1169
932 siginit (EV_A); 1170 siginit (EV_A);
1171 sigcb (EV_A_ &sigev, EV_READ);
933 } 1172 }
934 1173
935 postfork = 0; 1174 postfork = 0;
936} 1175}
937 1176
959} 1198}
960 1199
961void 1200void
962ev_loop_fork (EV_P) 1201ev_loop_fork (EV_P)
963{ 1202{
964 postfork = 1; 1203 postfork = 1; /* must be in line with ev_default_fork */
965} 1204}
966 1205
967#endif 1206#endif
968 1207
969#if EV_MULTIPLICITY 1208#if EV_MULTIPLICITY
1033#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
1034 struct ev_loop *loop = ev_default_loop_ptr; 1273 struct ev_loop *loop = ev_default_loop_ptr;
1035#endif 1274#endif
1036 1275
1037 if (backend) 1276 if (backend)
1038 postfork = 1; 1277 postfork = 1; /* must be in line with ev_loop_fork */
1039} 1278}
1040 1279
1041/*****************************************************************************/ 1280/*****************************************************************************/
1042 1281
1043static int 1282void
1044any_pending (EV_P) 1283ev_invoke (EV_P_ void *w, int revents)
1045{ 1284{
1046 int pri; 1285 EV_CB_INVOKE ((W)w, revents);
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053} 1286}
1054 1287
1055inline void 1288void inline_speed
1056call_pending (EV_P) 1289call_pending (EV_P)
1057{ 1290{
1058 int pri; 1291 int pri;
1059 1292
1060 for (pri = NUMPRI; pri--; ) 1293 for (pri = NUMPRI; pri--; )
1062 { 1295 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1297
1065 if (expect_true (p->w)) 1298 if (expect_true (p->w))
1066 { 1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301
1067 p->w->pending = 0; 1302 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1303 EV_CB_INVOKE (p->w, p->events);
1069 } 1304 }
1070 } 1305 }
1071} 1306}
1072 1307
1073inline void 1308void inline_size
1074timers_reify (EV_P) 1309timers_reify (EV_P)
1075{ 1310{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1077 { 1312 {
1078 struct ev_timer *w = timers [0]; 1313 ev_timer *w = (ev_timer *)timers [0];
1079 1314
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1081 1316
1082 /* first reschedule or stop timer */ 1317 /* first reschedule or stop timer */
1083 if (w->repeat) 1318 if (w->repeat)
1084 { 1319 {
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 1321
1087 ((WT)w)->at += w->repeat; 1322 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now) 1323 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now; 1324 ((WT)w)->at = mn_now;
1090 1325
1091 downheap ((WT *)timers, timercnt, 0); 1326 downheap (timers, timercnt, 0);
1092 } 1327 }
1093 else 1328 else
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 1330
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1332 }
1098} 1333}
1099 1334
1100#if EV_PERIODICS 1335#if EV_PERIODIC_ENABLE
1101inline void 1336void inline_size
1102periodics_reify (EV_P) 1337periodics_reify (EV_P)
1103{ 1338{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1105 { 1340 {
1106 struct ev_periodic *w = periodics [0]; 1341 ev_periodic *w = (ev_periodic *)periodics [0];
1107 1342
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 1344
1110 /* first reschedule or stop timer */ 1345 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1346 if (w->reschedule_cb)
1112 { 1347 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0); 1350 downheap (periodics, periodiccnt, 0);
1116 } 1351 }
1117 else if (w->interval) 1352 else if (w->interval)
1118 { 1353 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0); 1357 downheap (periodics, periodiccnt, 0);
1122 } 1358 }
1123 else 1359 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 1361
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1363 }
1128} 1364}
1129 1365
1130static void 1366static void noinline
1131periodics_reschedule (EV_P) 1367periodics_reschedule (EV_P)
1132{ 1368{
1133 int i; 1369 int i;
1134 1370
1135 /* adjust periodics after time jump */ 1371 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1372 for (i = 0; i < periodiccnt; ++i)
1137 { 1373 {
1138 struct ev_periodic *w = periodics [i]; 1374 ev_periodic *w = (ev_periodic *)periodics [i];
1139 1375
1140 if (w->reschedule_cb) 1376 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1378 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1144 } 1380 }
1145 1381
1146 /* now rebuild the heap */ 1382 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; ) 1383 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1384 downheap (periodics, periodiccnt, i);
1149} 1385}
1150#endif 1386#endif
1151 1387
1152inline int 1388#if EV_IDLE_ENABLE
1153time_update_monotonic (EV_P) 1389void inline_size
1390idle_reify (EV_P)
1154{ 1391{
1392 if (expect_false (idleall))
1393 {
1394 int pri;
1395
1396 for (pri = NUMPRI; pri--; )
1397 {
1398 if (pendingcnt [pri])
1399 break;
1400
1401 if (idlecnt [pri])
1402 {
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break;
1405 }
1406 }
1407 }
1408}
1409#endif
1410
1411void inline_speed
1412time_update (EV_P_ ev_tstamp max_block)
1413{
1414 int i;
1415
1416#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic))
1418 {
1419 ev_tstamp odiff = rtmn_diff;
1420
1155 mn_now = get_clock (); 1421 mn_now = get_clock ();
1156 1422
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1424 /* interpolate in the meantime */
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1425 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 { 1426 {
1159 ev_rt_now = rtmn_diff + mn_now; 1427 ev_rt_now = rtmn_diff + mn_now;
1160 return 0; 1428 return;
1161 } 1429 }
1162 else 1430
1163 {
1164 now_floor = mn_now; 1431 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 1432 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 1433
1170inline void 1434 /* loop a few times, before making important decisions.
1171time_update (EV_P) 1435 * on the choice of "4": one iteration isn't enough,
1172{ 1436 * in case we get preempted during the calls to
1173 int i; 1437 * ev_time and get_clock. a second call is almost guaranteed
1174 1438 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 1439 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 1440 * in the unlikely event of having been preempted here.
1177 { 1441 */
1178 if (time_update_monotonic (EV_A)) 1442 for (i = 4; --i; )
1179 { 1443 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 1444 rtmn_diff = ev_rt_now - mn_now;
1185 1445
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1187 return; /* all is well */ 1447 return; /* all is well */
1188 1448
1189 ev_rt_now = ev_time (); 1449 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1450 mn_now = get_clock ();
1191 now_floor = mn_now; 1451 now_floor = mn_now;
1192 } 1452 }
1193 1453
1194# if EV_PERIODICS 1454# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A);
1456# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 }
1460 else
1461#endif
1462 {
1463 ev_rt_now = ev_time ();
1464
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 {
1467#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1468 periodics_reschedule (EV_A);
1196# endif 1469#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */ 1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 for (i = 0; i < timercnt; ++i) 1471 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now; 1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 } 1473 }
1216 1474
1217 mn_now = ev_rt_now; 1475 mn_now = ev_rt_now;
1233static int loop_done; 1491static int loop_done;
1234 1492
1235void 1493void
1236ev_loop (EV_P_ int flags) 1494ev_loop (EV_P_ int flags)
1237{ 1495{
1238 double block;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1240 1499
1241 while (activecnt) 1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1501
1502 do
1242 { 1503 {
1504#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid))
1507 {
1508 curpid = getpid ();
1509 postfork = 1;
1510 }
1511#endif
1512
1513#if EV_FORK_ENABLE
1514 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork))
1516 if (forkcnt)
1517 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A);
1520 }
1521#endif
1522
1243 /* queue check watchers (and execute them) */ 1523 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1524 if (expect_false (preparecnt))
1245 { 1525 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 1527 call_pending (EV_A);
1248 } 1528 }
1249 1529
1530 if (expect_false (!activecnt))
1531 break;
1532
1250 /* we might have forked, so reify kernel state if necessary */ 1533 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 1534 if (expect_false (postfork))
1252 loop_fork (EV_A); 1535 loop_fork (EV_A);
1253 1536
1254 /* update fd-related kernel structures */ 1537 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1538 fd_reify (EV_A);
1256 1539
1257 /* calculate blocking time */ 1540 /* calculate blocking time */
1541 {
1542 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.;
1258 1544
1259 /* we only need this for !monotonic clock or timers, but as we basically 1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1260 always have timers, we just calculate it always */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else
1265#endif
1266 { 1546 {
1267 ev_rt_now = ev_time (); 1547 /* update time to cancel out callback processing overhead */
1268 mn_now = ev_rt_now; 1548 time_update (EV_A_ 1e100);
1269 }
1270 1549
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1550 waittime = MAX_BLOCKTIME;
1276 1551
1277 if (timercnt) 1552 if (timercnt)
1278 { 1553 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1280 if (block > to) block = to; 1555 if (waittime > to) waittime = to;
1281 } 1556 }
1282 1557
1283#if EV_PERIODICS 1558#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1559 if (periodiccnt)
1285 { 1560 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1562 if (waittime > to) waittime = to;
1288 } 1563 }
1289#endif 1564#endif
1290 1565
1291 if (expect_false (block < 0.)) block = 0.; 1566 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime;
1568
1569 sleeptime = waittime - backend_fudge;
1570
1571 if (expect_true (sleeptime > io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 {
1576 ev_sleep (sleeptime);
1577 waittime -= sleeptime;
1578 }
1292 } 1579 }
1293 1580
1581 ++loop_count;
1294 backend_poll (EV_A_ block); 1582 backend_poll (EV_A_ waittime);
1295 1583
1296 /* update ev_rt_now, do magic */ 1584 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1585 time_update (EV_A_ waittime + sleeptime);
1586 }
1298 1587
1299 /* queue pending timers and reschedule them */ 1588 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1589 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1590#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1591 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1592#endif
1304 1593
1594#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 1595 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1596 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1597#endif
1308 1598
1309 /* queue check watchers, to be executed first */ 1599 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1600 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 1602
1313 call_pending (EV_A); 1603 call_pending (EV_A);
1314 1604
1315 if (expect_false (loop_done))
1316 break;
1317 } 1605 }
1606 while (expect_true (activecnt && !loop_done));
1318 1607
1319 if (loop_done != 2) 1608 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1609 loop_done = EVUNLOOP_CANCEL;
1321} 1610}
1322 1611
1323void 1612void
1324ev_unloop (EV_P_ int how) 1613ev_unloop (EV_P_ int how)
1325{ 1614{
1326 loop_done = how; 1615 loop_done = how;
1327} 1616}
1328 1617
1329/*****************************************************************************/ 1618/*****************************************************************************/
1330 1619
1331inline void 1620void inline_size
1332wlist_add (WL *head, WL elem) 1621wlist_add (WL *head, WL elem)
1333{ 1622{
1334 elem->next = *head; 1623 elem->next = *head;
1335 *head = elem; 1624 *head = elem;
1336} 1625}
1337 1626
1338inline void 1627void inline_size
1339wlist_del (WL *head, WL elem) 1628wlist_del (WL *head, WL elem)
1340{ 1629{
1341 while (*head) 1630 while (*head)
1342 { 1631 {
1343 if (*head == elem) 1632 if (*head == elem)
1348 1637
1349 head = &(*head)->next; 1638 head = &(*head)->next;
1350 } 1639 }
1351} 1640}
1352 1641
1353inline void 1642void inline_speed
1354ev_clear_pending (EV_P_ W w) 1643clear_pending (EV_P_ W w)
1355{ 1644{
1356 if (w->pending) 1645 if (w->pending)
1357 { 1646 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1647 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1648 w->pending = 0;
1360 } 1649 }
1361} 1650}
1362 1651
1363inline void 1652int
1653ev_clear_pending (EV_P_ void *w)
1654{
1655 W w_ = (W)w;
1656 int pending = w_->pending;
1657
1658 if (expect_true (pending))
1659 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1661 w_->pending = 0;
1662 p->w = 0;
1663 return p->events;
1664 }
1665 else
1666 return 0;
1667}
1668
1669void inline_size
1670pri_adjust (EV_P_ W w)
1671{
1672 int pri = w->priority;
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri;
1676}
1677
1678void inline_speed
1364ev_start (EV_P_ W w, int active) 1679ev_start (EV_P_ W w, int active)
1365{ 1680{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1681 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 1682 w->active = active;
1370 ev_ref (EV_A); 1683 ev_ref (EV_A);
1371} 1684}
1372 1685
1373inline void 1686void inline_size
1374ev_stop (EV_P_ W w) 1687ev_stop (EV_P_ W w)
1375{ 1688{
1376 ev_unref (EV_A); 1689 ev_unref (EV_A);
1377 w->active = 0; 1690 w->active = 0;
1378} 1691}
1379 1692
1380/*****************************************************************************/ 1693/*****************************************************************************/
1381 1694
1382void 1695void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 1696ev_io_start (EV_P_ ev_io *w)
1384{ 1697{
1385 int fd = w->fd; 1698 int fd = w->fd;
1386 1699
1387 if (expect_false (ev_is_active (w))) 1700 if (expect_false (ev_is_active (w)))
1388 return; 1701 return;
1389 1702
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 1703 assert (("ev_io_start called with negative fd", fd >= 0));
1391 1704
1392 ev_start (EV_A_ (W)w, 1); 1705 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1707 wlist_add (&anfds[fd].head, (WL)w);
1395 1708
1396 fd_change (EV_A_ fd); 1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET;
1397} 1711}
1398 1712
1399void 1713void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 1714ev_io_stop (EV_P_ ev_io *w)
1401{ 1715{
1402 ev_clear_pending (EV_A_ (W)w); 1716 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1717 if (expect_false (!ev_is_active (w)))
1404 return; 1718 return;
1405 1719
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 1721
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1722 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 1723 ev_stop (EV_A_ (W)w);
1410 1724
1411 fd_change (EV_A_ w->fd); 1725 fd_change (EV_A_ w->fd, 1);
1412} 1726}
1413 1727
1414void 1728void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 1729ev_timer_start (EV_P_ ev_timer *w)
1416{ 1730{
1417 if (expect_false (ev_is_active (w))) 1731 if (expect_false (ev_is_active (w)))
1418 return; 1732 return;
1419 1733
1420 ((WT)w)->at += mn_now; 1734 ((WT)w)->at += mn_now;
1421 1735
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1737
1424 ev_start (EV_A_ (W)w, ++timercnt); 1738 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1426 timers [timercnt - 1] = w; 1740 timers [timercnt - 1] = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 1741 upheap (timers, timercnt - 1);
1428 1742
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1430} 1744}
1431 1745
1432void 1746void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1747ev_timer_stop (EV_P_ ev_timer *w)
1434{ 1748{
1435 ev_clear_pending (EV_A_ (W)w); 1749 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 1750 if (expect_false (!ev_is_active (w)))
1437 return; 1751 return;
1438 1752
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1440 1754
1755 {
1756 int active = ((W)w)->active;
1757
1441 if (expect_true (((W)w)->active < timercnt--)) 1758 if (expect_true (--active < --timercnt))
1442 { 1759 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 1760 timers [active] = timers [timercnt];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1761 adjustheap (timers, timercnt, active);
1445 } 1762 }
1763 }
1446 1764
1447 ((WT)w)->at -= mn_now; 1765 ((WT)w)->at -= mn_now;
1448 1766
1449 ev_stop (EV_A_ (W)w); 1767 ev_stop (EV_A_ (W)w);
1450} 1768}
1451 1769
1452void 1770void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 1771ev_timer_again (EV_P_ ev_timer *w)
1454{ 1772{
1455 if (ev_is_active (w)) 1773 if (ev_is_active (w))
1456 { 1774 {
1457 if (w->repeat) 1775 if (w->repeat)
1458 { 1776 {
1459 ((WT)w)->at = mn_now + w->repeat; 1777 ((WT)w)->at = mn_now + w->repeat;
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1778 adjustheap (timers, timercnt, ((W)w)->active - 1);
1461 } 1779 }
1462 else 1780 else
1463 ev_timer_stop (EV_A_ w); 1781 ev_timer_stop (EV_A_ w);
1464 } 1782 }
1465 else if (w->repeat) 1783 else if (w->repeat)
1467 w->at = w->repeat; 1785 w->at = w->repeat;
1468 ev_timer_start (EV_A_ w); 1786 ev_timer_start (EV_A_ w);
1469 } 1787 }
1470} 1788}
1471 1789
1472#if EV_PERIODICS 1790#if EV_PERIODIC_ENABLE
1473void 1791void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1792ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1793{
1476 if (expect_false (ev_is_active (w))) 1794 if (expect_false (ev_is_active (w)))
1477 return; 1795 return;
1478 1796
1479 if (w->reschedule_cb) 1797 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 1799 else if (w->interval)
1482 { 1800 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1802 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 1804 }
1805 else
1806 ((WT)w)->at = w->offset;
1487 1807
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1808 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1810 periodics [periodiccnt - 1] = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1811 upheap (periodics, periodiccnt - 1);
1492 1812
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1494} 1814}
1495 1815
1496void 1816void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1817ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 1818{
1499 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 1820 if (expect_false (!ev_is_active (w)))
1501 return; 1821 return;
1502 1822
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1504 1824
1825 {
1826 int active = ((W)w)->active;
1827
1505 if (expect_true (((W)w)->active < periodiccnt--)) 1828 if (expect_true (--active < --periodiccnt))
1506 { 1829 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1830 periodics [active] = periodics [periodiccnt];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1831 adjustheap (periodics, periodiccnt, active);
1509 } 1832 }
1833 }
1510 1834
1511 ev_stop (EV_A_ (W)w); 1835 ev_stop (EV_A_ (W)w);
1512} 1836}
1513 1837
1514void 1838void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 1839ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 1840{
1517 /* TODO: use adjustheap and recalculation */ 1841 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 1842 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 1843 ev_periodic_start (EV_A_ w);
1520} 1844}
1521#endif 1845#endif
1522 1846
1523void
1524ev_idle_start (EV_P_ struct ev_idle *w)
1525{
1526 if (expect_false (ev_is_active (w)))
1527 return;
1528
1529 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w;
1532}
1533
1534void
1535ev_idle_stop (EV_P_ struct ev_idle *w)
1536{
1537 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w)))
1539 return;
1540
1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1542 ev_stop (EV_A_ (W)w);
1543}
1544
1545void
1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1547{
1548 if (expect_false (ev_is_active (w)))
1549 return;
1550
1551 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w;
1554}
1555
1556void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1558{
1559 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w)))
1561 return;
1562
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1564 ev_stop (EV_A_ (W)w);
1565}
1566
1567void
1568ev_check_start (EV_P_ struct ev_check *w)
1569{
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577
1578void
1579ev_check_stop (EV_P_ struct ev_check *w)
1580{
1581 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w)))
1583 return;
1584
1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1586 ev_stop (EV_A_ (W)w);
1587}
1588
1589#ifndef SA_RESTART 1847#ifndef SA_RESTART
1590# define SA_RESTART 0 1848# define SA_RESTART 0
1591#endif 1849#endif
1592 1850
1593void 1851void noinline
1594ev_signal_start (EV_P_ struct ev_signal *w) 1852ev_signal_start (EV_P_ ev_signal *w)
1595{ 1853{
1596#if EV_MULTIPLICITY 1854#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1856#endif
1599 if (expect_false (ev_is_active (w))) 1857 if (expect_false (ev_is_active (w)))
1600 return; 1858 return;
1601 1859
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 1861
1862 {
1863#ifndef _WIN32
1864 sigset_t full, prev;
1865 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1870
1871#ifndef _WIN32
1872 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif
1874 }
1875
1604 ev_start (EV_A_ (W)w, 1); 1876 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1877 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 1878
1608 if (!((WL)w)->next) 1879 if (!((WL)w)->next)
1609 { 1880 {
1610#if _WIN32 1881#if _WIN32
1611 signal (w->signum, sighandler); 1882 signal (w->signum, sighandler);
1617 sigaction (w->signum, &sa, 0); 1888 sigaction (w->signum, &sa, 0);
1618#endif 1889#endif
1619 } 1890 }
1620} 1891}
1621 1892
1622void 1893void noinline
1623ev_signal_stop (EV_P_ struct ev_signal *w) 1894ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1895{
1625 ev_clear_pending (EV_A_ (W)w); 1896 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1897 if (expect_false (!ev_is_active (w)))
1627 return; 1898 return;
1628 1899
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1900 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1631 1902
1632 if (!signals [w->signum - 1].head) 1903 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1904 signal (w->signum, SIG_DFL);
1634} 1905}
1635 1906
1636void 1907void
1637ev_child_start (EV_P_ struct ev_child *w) 1908ev_child_start (EV_P_ ev_child *w)
1638{ 1909{
1639#if EV_MULTIPLICITY 1910#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 1912#endif
1642 if (expect_false (ev_is_active (w))) 1913 if (expect_false (ev_is_active (w)))
1643 return; 1914 return;
1644 1915
1645 ev_start (EV_A_ (W)w, 1); 1916 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 1918}
1648 1919
1649void 1920void
1650ev_child_stop (EV_P_ struct ev_child *w) 1921ev_child_stop (EV_P_ ev_child *w)
1651{ 1922{
1652 ev_clear_pending (EV_A_ (W)w); 1923 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1924 if (expect_false (!ev_is_active (w)))
1654 return; 1925 return;
1655 1926
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1658} 1929}
1659 1930
1931#if EV_STAT_ENABLE
1932
1933# ifdef _WIN32
1934# undef lstat
1935# define lstat(a,b) _stati64 (a,b)
1936# endif
1937
1938#define DEF_STAT_INTERVAL 5.0074891
1939#define MIN_STAT_INTERVAL 0.1074891
1940
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942
1943#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192
1945
1946static void noinline
1947infy_add (EV_P_ ev_stat *w)
1948{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950
1951 if (w->wd < 0)
1952 {
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954
1955 /* monitor some parent directory for speedup hints */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 {
1958 char path [4096];
1959 strcpy (path, w->path);
1960
1961 do
1962 {
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965
1966 char *pend = strrchr (path, '/');
1967
1968 if (!pend)
1969 break; /* whoops, no '/', complain to your admin */
1970
1971 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 }
1976 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979
1980 if (w->wd >= 0)
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1982}
1983
1984static void noinline
1985infy_del (EV_P_ ev_stat *w)
1986{
1987 int slot;
1988 int wd = w->wd;
1989
1990 if (wd < 0)
1991 return;
1992
1993 w->wd = -2;
1994 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1995 wlist_del (&fs_hash [slot].head, (WL)w);
1996
1997 /* remove this watcher, if others are watching it, they will rearm */
1998 inotify_rm_watch (fs_fd, wd);
1999}
2000
2001static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{
2004 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev);
2008 else
2009 {
2010 WL w_;
2011
2012 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2013 {
2014 ev_stat *w = (ev_stat *)w_;
2015 w_ = w_->next; /* lets us remove this watcher and all before it */
2016
2017 if (w->wd == wd || wd == -1)
2018 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 {
2021 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */
2023 }
2024
2025 stat_timer_cb (EV_A_ &w->timer, 0);
2026 }
2027 }
2028 }
2029}
2030
2031static void
2032infy_cb (EV_P_ ev_io *w, int revents)
2033{
2034 char buf [EV_INOTIFY_BUFSIZE];
2035 struct inotify_event *ev = (struct inotify_event *)buf;
2036 int ofs;
2037 int len = read (fs_fd, buf, sizeof (buf));
2038
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2041}
2042
2043void inline_size
2044infy_init (EV_P)
2045{
2046 if (fs_fd != -2)
2047 return;
2048
2049 fs_fd = inotify_init ();
2050
2051 if (fs_fd >= 0)
2052 {
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2054 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w);
2056 }
2057}
2058
2059void inline_size
2060infy_fork (EV_P)
2061{
2062 int slot;
2063
2064 if (fs_fd < 0)
2065 return;
2066
2067 close (fs_fd);
2068 fs_fd = inotify_init ();
2069
2070 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2071 {
2072 WL w_ = fs_hash [slot].head;
2073 fs_hash [slot].head = 0;
2074
2075 while (w_)
2076 {
2077 ev_stat *w = (ev_stat *)w_;
2078 w_ = w_->next; /* lets us add this watcher */
2079
2080 w->wd = -1;
2081
2082 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else
2085 ev_timer_start (EV_A_ &w->timer);
2086 }
2087
2088 }
2089}
2090
2091#endif
2092
2093void
2094ev_stat_stat (EV_P_ ev_stat *w)
2095{
2096 if (lstat (w->path, &w->attr) < 0)
2097 w->attr.st_nlink = 0;
2098 else if (!w->attr.st_nlink)
2099 w->attr.st_nlink = 1;
2100}
2101
2102static void noinline
2103stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2104{
2105 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2106
2107 /* we copy this here each the time so that */
2108 /* prev has the old value when the callback gets invoked */
2109 w->prev = w->attr;
2110 ev_stat_stat (EV_A_ w);
2111
2112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2113 if (
2114 w->prev.st_dev != w->attr.st_dev
2115 || w->prev.st_ino != w->attr.st_ino
2116 || w->prev.st_mode != w->attr.st_mode
2117 || w->prev.st_nlink != w->attr.st_nlink
2118 || w->prev.st_uid != w->attr.st_uid
2119 || w->prev.st_gid != w->attr.st_gid
2120 || w->prev.st_rdev != w->attr.st_rdev
2121 || w->prev.st_size != w->attr.st_size
2122 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime
2125 ) {
2126 #if EV_USE_INOTIFY
2127 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */
2130 #endif
2131
2132 ev_feed_event (EV_A_ w, EV_STAT);
2133 }
2134}
2135
2136void
2137ev_stat_start (EV_P_ ev_stat *w)
2138{
2139 if (expect_false (ev_is_active (w)))
2140 return;
2141
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w);
2147
2148 if (w->interval < MIN_STAT_INTERVAL)
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2152 ev_set_priority (&w->timer, ev_priority (w));
2153
2154#if EV_USE_INOTIFY
2155 infy_init (EV_A);
2156
2157 if (fs_fd >= 0)
2158 infy_add (EV_A_ w);
2159 else
2160#endif
2161 ev_timer_start (EV_A_ &w->timer);
2162
2163 ev_start (EV_A_ (W)w, 1);
2164}
2165
2166void
2167ev_stat_stop (EV_P_ ev_stat *w)
2168{
2169 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w)))
2171 return;
2172
2173#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w);
2175#endif
2176 ev_timer_stop (EV_A_ &w->timer);
2177
2178 ev_stop (EV_A_ (W)w);
2179}
2180#endif
2181
2182#if EV_IDLE_ENABLE
2183void
2184ev_idle_start (EV_P_ ev_idle *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 pri_adjust (EV_A_ (W)w);
2190
2191 {
2192 int active = ++idlecnt [ABSPRI (w)];
2193
2194 ++idleall;
2195 ev_start (EV_A_ (W)w, active);
2196
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w;
2199 }
2200}
2201
2202void
2203ev_idle_stop (EV_P_ ev_idle *w)
2204{
2205 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w)))
2207 return;
2208
2209 {
2210 int active = ((W)w)->active;
2211
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2214
2215 ev_stop (EV_A_ (W)w);
2216 --idleall;
2217 }
2218}
2219#endif
2220
2221void
2222ev_prepare_start (EV_P_ ev_prepare *w)
2223{
2224 if (expect_false (ev_is_active (w)))
2225 return;
2226
2227 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w;
2230}
2231
2232void
2233ev_prepare_stop (EV_P_ ev_prepare *w)
2234{
2235 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w)))
2237 return;
2238
2239 {
2240 int active = ((W)w)->active;
2241 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active;
2243 }
2244
2245 ev_stop (EV_A_ (W)w);
2246}
2247
2248void
2249ev_check_start (EV_P_ ev_check *w)
2250{
2251 if (expect_false (ev_is_active (w)))
2252 return;
2253
2254 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w;
2257}
2258
2259void
2260ev_check_stop (EV_P_ ev_check *w)
2261{
2262 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w)))
2264 return;
2265
2266 {
2267 int active = ((W)w)->active;
2268 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active;
2270 }
2271
2272 ev_stop (EV_A_ (W)w);
2273}
2274
2275#if EV_EMBED_ENABLE
2276void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w)
2278{
2279 ev_loop (w->other, EVLOOP_NONBLOCK);
2280}
2281
2282static void
2283embed_io_cb (EV_P_ ev_io *io, int revents)
2284{
2285 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2286
2287 if (ev_cb (w))
2288 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2289 else
2290 ev_loop (w->other, EVLOOP_NONBLOCK);
2291}
2292
2293static void
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297
2298 {
2299 struct ev_loop *loop = w->other;
2300
2301 while (fdchangecnt)
2302 {
2303 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 }
2306 }
2307}
2308
2309#if 0
2310static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{
2313 ev_idle_stop (EV_A_ idle);
2314}
2315#endif
2316
2317void
2318ev_embed_start (EV_P_ ev_embed *w)
2319{
2320 if (expect_false (ev_is_active (w)))
2321 return;
2322
2323 {
2324 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 }
2328
2329 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io);
2331
2332 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare);
2335
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337
2338 ev_start (EV_A_ (W)w, 1);
2339}
2340
2341void
2342ev_embed_stop (EV_P_ ev_embed *w)
2343{
2344 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w)))
2346 return;
2347
2348 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare);
2350
2351 ev_stop (EV_A_ (W)w);
2352}
2353#endif
2354
2355#if EV_FORK_ENABLE
2356void
2357ev_fork_start (EV_P_ ev_fork *w)
2358{
2359 if (expect_false (ev_is_active (w)))
2360 return;
2361
2362 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w;
2365}
2366
2367void
2368ev_fork_stop (EV_P_ ev_fork *w)
2369{
2370 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w)))
2372 return;
2373
2374 {
2375 int active = ((W)w)->active;
2376 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active;
2378 }
2379
2380 ev_stop (EV_A_ (W)w);
2381}
2382#endif
2383
1660/*****************************************************************************/ 2384/*****************************************************************************/
1661 2385
1662struct ev_once 2386struct ev_once
1663{ 2387{
1664 struct ev_io io; 2388 ev_io io;
1665 struct ev_timer to; 2389 ev_timer to;
1666 void (*cb)(int revents, void *arg); 2390 void (*cb)(int revents, void *arg);
1667 void *arg; 2391 void *arg;
1668}; 2392};
1669 2393
1670static void 2394static void
1679 2403
1680 cb (revents, arg); 2404 cb (revents, arg);
1681} 2405}
1682 2406
1683static void 2407static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 2408once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 2409{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 2411}
1688 2412
1689static void 2413static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 2414once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 2415{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 2417}
1694 2418
1695void 2419void
1719 ev_timer_set (&once->to, timeout, 0.); 2443 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 2444 ev_timer_start (EV_A_ &once->to);
1721 } 2445 }
1722} 2446}
1723 2447
2448#if EV_MULTIPLICITY
2449 #include "ev_wrap.h"
2450#endif
2451
1724#ifdef __cplusplus 2452#ifdef __cplusplus
1725} 2453}
1726#endif 2454#endif
1727 2455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines