ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
513 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 611 }
516#endif 612#endif
517 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
518 anfd->reify = 0; 618 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
522 } 624 }
523 625
524 fdchangecnt = 0; 626 fdchangecnt = 0;
525} 627}
526 628
527void inline_size 629void inline_size
528fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
529{ 631{
530 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
534 634
635 if (expect_true (!reify))
636 {
535 ++fdchangecnt; 637 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
538} 641}
539 642
540void inline_speed 643void inline_speed
541fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
542{ 645{
593 696
594 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 698 if (anfds [fd].events)
596 { 699 {
597 anfds [fd].events = 0; 700 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 702 }
600} 703}
601 704
602/*****************************************************************************/ 705/*****************************************************************************/
603 706
604void inline_speed 707void inline_speed
605upheap (WT *heap, int k) 708upheap (WT *heap, int k)
606{ 709{
607 WT w = heap [k]; 710 WT w = heap [k];
608 711
609 while (k && heap [k >> 1]->at > w->at) 712 while (k)
610 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
611 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
613 k >>= 1; 721 k = p;
614 } 722 }
615 723
616 heap [k] = w; 724 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
618
619} 726}
620 727
621void inline_speed 728void inline_speed
622downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
623{ 730{
624 WT w = heap [k]; 731 WT w = heap [k];
625 732
626 while (k < (N >> 1)) 733 for (;;)
627 { 734 {
628 int j = k << 1; 735 int c = (k << 1) + 1;
629 736
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 738 break;
635 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
636 heap [k] = heap [j]; 746 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
638 k = j; 749 k = c;
639 } 750 }
640 751
641 heap [k] = w; 752 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
643} 754}
725 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
728} 839}
729 840
730void inline_size 841void inline_speed
731fd_intern (int fd) 842fd_intern (int fd)
732{ 843{
733#ifdef _WIN32 844#ifdef _WIN32
734 int arg = 1; 845 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 862}
752 863
753/*****************************************************************************/ 864/*****************************************************************************/
754 865
755static ev_child *childs [EV_PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
756 867
757#ifndef _WIN32 868#ifndef _WIN32
758 869
759static ev_signal childev; 870static ev_signal childev;
760 871
764 ev_child *w; 875 ev_child *w;
765 876
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 878 if (w->pid == pid || !w->pid)
768 { 879 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 881 w->rpid = pid;
771 w->rstatus = status; 882 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 884 }
774} 885}
775 886
776#ifndef WCONTINUED 887#ifndef WCONTINUED
875} 986}
876 987
877unsigned int 988unsigned int
878ev_embeddable_backends (void) 989ev_embeddable_backends (void)
879{ 990{
880 return EVBACKEND_EPOLL 991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 992
882 | EVBACKEND_PORT; 993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
883} 998}
884 999
885unsigned int 1000unsigned int
886ev_backend (EV_P) 1001ev_backend (EV_P)
887{ 1002{
890 1005
891unsigned int 1006unsigned int
892ev_loop_count (EV_P) 1007ev_loop_count (EV_P)
893{ 1008{
894 return loop_count; 1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
895} 1022}
896 1023
897static void noinline 1024static void noinline
898loop_init (EV_P_ unsigned int flags) 1025loop_init (EV_P_ unsigned int flags)
899{ 1026{
910 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
911 mn_now = get_clock (); 1038 mn_now = get_clock ();
912 now_floor = mn_now; 1039 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
914 1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044
915 /* pid check not overridable via env */ 1045 /* pid check not overridable via env */
916#ifndef _WIN32 1046#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1047 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1048 curpid = getpid ();
919#endif 1049#endif
981#if EV_USE_SELECT 1111#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1113#endif
984 1114
985 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
986 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
987 1124
988 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
989 array_free (fdchange, EMPTY0); 1126 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1127 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1128#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1129 array_free (periodic, EMPTY);
993#endif 1130#endif
1131#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1132 array_free (fork, EMPTY);
1133#endif
995 array_free (prepare, EMPTY0); 1134 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1135 array_free (check, EMPTY);
997 1136
998 backend = 0; 1137 backend = 0;
999} 1138}
1000 1139
1001void inline_size infy_fork (EV_P); 1140void inline_size infy_fork (EV_P);
1027 1166
1028 while (pipe (sigpipe)) 1167 while (pipe (sigpipe))
1029 syserr ("(libev) error creating pipe"); 1168 syserr ("(libev) error creating pipe");
1030 1169
1031 siginit (EV_A); 1170 siginit (EV_A);
1171 sigcb (EV_A_ &sigev, EV_READ);
1032 } 1172 }
1033 1173
1034 postfork = 0; 1174 postfork = 0;
1035} 1175}
1036 1176
1058} 1198}
1059 1199
1060void 1200void
1061ev_loop_fork (EV_P) 1201ev_loop_fork (EV_P)
1062{ 1202{
1063 postfork = 1; 1203 postfork = 1; /* must be in line with ev_default_fork */
1064} 1204}
1065 1205
1066#endif 1206#endif
1067 1207
1068#if EV_MULTIPLICITY 1208#if EV_MULTIPLICITY
1132#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
1133 struct ev_loop *loop = ev_default_loop_ptr; 1273 struct ev_loop *loop = ev_default_loop_ptr;
1134#endif 1274#endif
1135 1275
1136 if (backend) 1276 if (backend)
1137 postfork = 1; 1277 postfork = 1; /* must be in line with ev_loop_fork */
1138} 1278}
1139 1279
1140/*****************************************************************************/ 1280/*****************************************************************************/
1141 1281
1142int inline_size 1282void
1143any_pending (EV_P) 1283ev_invoke (EV_P_ void *w, int revents)
1144{ 1284{
1145 int pri; 1285 EV_CB_INVOKE ((W)w, revents);
1146
1147 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri])
1149 return 1;
1150
1151 return 0;
1152} 1286}
1153 1287
1154void inline_speed 1288void inline_speed
1155call_pending (EV_P) 1289call_pending (EV_P)
1156{ 1290{
1174void inline_size 1308void inline_size
1175timers_reify (EV_P) 1309timers_reify (EV_P)
1176{ 1310{
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1178 { 1312 {
1179 ev_timer *w = timers [0]; 1313 ev_timer *w = (ev_timer *)timers [0];
1180 1314
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182 1316
1183 /* first reschedule or stop timer */ 1317 /* first reschedule or stop timer */
1184 if (w->repeat) 1318 if (w->repeat)
1187 1321
1188 ((WT)w)->at += w->repeat; 1322 ((WT)w)->at += w->repeat;
1189 if (((WT)w)->at < mn_now) 1323 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now; 1324 ((WT)w)->at = mn_now;
1191 1325
1192 downheap ((WT *)timers, timercnt, 0); 1326 downheap (timers, timercnt, 0);
1193 } 1327 }
1194 else 1328 else
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 1330
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1202void inline_size 1336void inline_size
1203periodics_reify (EV_P) 1337periodics_reify (EV_P)
1204{ 1338{
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1206 { 1340 {
1207 ev_periodic *w = periodics [0]; 1341 ev_periodic *w = (ev_periodic *)periodics [0];
1208 1342
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1210 1344
1211 /* first reschedule or stop timer */ 1345 /* first reschedule or stop timer */
1212 if (w->reschedule_cb) 1346 if (w->reschedule_cb)
1213 { 1347 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1350 downheap (periodics, periodiccnt, 0);
1217 } 1351 }
1218 else if (w->interval) 1352 else if (w->interval)
1219 { 1353 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0); 1357 downheap (periodics, periodiccnt, 0);
1223 } 1358 }
1224 else 1359 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 1361
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1234 int i; 1369 int i;
1235 1370
1236 /* adjust periodics after time jump */ 1371 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 1372 for (i = 0; i < periodiccnt; ++i)
1238 { 1373 {
1239 ev_periodic *w = periodics [i]; 1374 ev_periodic *w = (ev_periodic *)periodics [i];
1240 1375
1241 if (w->reschedule_cb) 1376 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 1378 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1245 } 1380 }
1246 1381
1247 /* now rebuild the heap */ 1382 /* now rebuild the heap */
1248 for (i = periodiccnt >> 1; i--; ) 1383 for (i = periodiccnt >> 1; i--; )
1249 downheap ((WT *)periodics, periodiccnt, i); 1384 downheap (periodics, periodiccnt, i);
1250} 1385}
1251#endif 1386#endif
1252 1387
1388#if EV_IDLE_ENABLE
1253int inline_size 1389void inline_size
1254time_update_monotonic (EV_P) 1390idle_reify (EV_P)
1255{ 1391{
1392 if (expect_false (idleall))
1393 {
1394 int pri;
1395
1396 for (pri = NUMPRI; pri--; )
1397 {
1398 if (pendingcnt [pri])
1399 break;
1400
1401 if (idlecnt [pri])
1402 {
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break;
1405 }
1406 }
1407 }
1408}
1409#endif
1410
1411void inline_speed
1412time_update (EV_P_ ev_tstamp max_block)
1413{
1414 int i;
1415
1416#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic))
1418 {
1419 ev_tstamp odiff = rtmn_diff;
1420
1256 mn_now = get_clock (); 1421 mn_now = get_clock ();
1257 1422
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1424 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1425 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 1426 {
1260 ev_rt_now = rtmn_diff + mn_now; 1427 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 1428 return;
1262 } 1429 }
1263 else 1430
1264 {
1265 now_floor = mn_now; 1431 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 1432 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 1433
1271void inline_size 1434 /* loop a few times, before making important decisions.
1272time_update (EV_P) 1435 * on the choice of "4": one iteration isn't enough,
1273{ 1436 * in case we get preempted during the calls to
1274 int i; 1437 * ev_time and get_clock. a second call is almost guaranteed
1275 1438 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 1439 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 1440 * in the unlikely event of having been preempted here.
1278 { 1441 */
1279 if (time_update_monotonic (EV_A)) 1442 for (i = 4; --i; )
1280 { 1443 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 1444 rtmn_diff = ev_rt_now - mn_now;
1294 1445
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1296 return; /* all is well */ 1447 return; /* all is well */
1297 1448
1298 ev_rt_now = ev_time (); 1449 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 1450 mn_now = get_clock ();
1300 now_floor = mn_now; 1451 now_floor = mn_now;
1301 } 1452 }
1302 1453
1303# if EV_PERIODIC_ENABLE 1454# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 1455 periodics_reschedule (EV_A);
1305# endif 1456# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */ 1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 1459 }
1310 else 1460 else
1311#endif 1461#endif
1312 { 1462 {
1313 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1314 1464
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 1466 {
1317#if EV_PERIODIC_ENABLE 1467#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 1468 periodics_reschedule (EV_A);
1319#endif 1469#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */ 1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i) 1471 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now; 1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 1473 }
1325 1474
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 1519 call_pending (EV_A);
1371 } 1520 }
1372#endif 1521#endif
1373 1522
1374 /* queue check watchers (and execute them) */ 1523 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 1524 if (expect_false (preparecnt))
1376 { 1525 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 1527 call_pending (EV_A);
1379 } 1528 }
1388 /* update fd-related kernel structures */ 1537 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 1538 fd_reify (EV_A);
1390 1539
1391 /* calculate blocking time */ 1540 /* calculate blocking time */
1392 { 1541 {
1393 ev_tstamp block; 1542 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.;
1394 1544
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 1546 {
1399 /* update time to cancel out callback processing overhead */ 1547 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 1548 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 1549
1410 block = MAX_BLOCKTIME; 1550 waittime = MAX_BLOCKTIME;
1411 1551
1412 if (timercnt) 1552 if (timercnt)
1413 { 1553 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1415 if (block > to) block = to; 1555 if (waittime > to) waittime = to;
1416 } 1556 }
1417 1557
1418#if EV_PERIODIC_ENABLE 1558#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 1559 if (periodiccnt)
1420 { 1560 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 1562 if (waittime > to) waittime = to;
1423 } 1563 }
1424#endif 1564#endif
1425 1565
1426 if (expect_false (block < 0.)) block = 0.; 1566 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime;
1568
1569 sleeptime = waittime - backend_fudge;
1570
1571 if (expect_true (sleeptime > io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 {
1576 ev_sleep (sleeptime);
1577 waittime -= sleeptime;
1578 }
1427 } 1579 }
1428 1580
1429 ++loop_count; 1581 ++loop_count;
1430 backend_poll (EV_A_ block); 1582 backend_poll (EV_A_ waittime);
1583
1584 /* update ev_rt_now, do magic */
1585 time_update (EV_A_ waittime + sleeptime);
1431 } 1586 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 1587
1436 /* queue pending timers and reschedule them */ 1588 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 1589 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 1590#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 1591 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 1592#endif
1441 1593
1594#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 1595 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 1596 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1597#endif
1445 1598
1446 /* queue check watchers, to be executed first */ 1599 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 1600 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 1602
1485 head = &(*head)->next; 1638 head = &(*head)->next;
1486 } 1639 }
1487} 1640}
1488 1641
1489void inline_speed 1642void inline_speed
1490ev_clear_pending (EV_P_ W w) 1643clear_pending (EV_P_ W w)
1491{ 1644{
1492 if (w->pending) 1645 if (w->pending)
1493 { 1646 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1647 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1495 w->pending = 0; 1648 w->pending = 0;
1496 } 1649 }
1497} 1650}
1498 1651
1652int
1653ev_clear_pending (EV_P_ void *w)
1654{
1655 W w_ = (W)w;
1656 int pending = w_->pending;
1657
1658 if (expect_true (pending))
1659 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1661 w_->pending = 0;
1662 p->w = 0;
1663 return p->events;
1664 }
1665 else
1666 return 0;
1667}
1668
1669void inline_size
1670pri_adjust (EV_P_ W w)
1671{
1672 int pri = w->priority;
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri;
1676}
1677
1499void inline_speed 1678void inline_speed
1500ev_start (EV_P_ W w, int active) 1679ev_start (EV_P_ W w, int active)
1501{ 1680{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1681 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 1682 w->active = active;
1506 ev_ref (EV_A); 1683 ev_ref (EV_A);
1507} 1684}
1508 1685
1509void inline_size 1686void inline_size
1513 w->active = 0; 1690 w->active = 0;
1514} 1691}
1515 1692
1516/*****************************************************************************/ 1693/*****************************************************************************/
1517 1694
1518void 1695void noinline
1519ev_io_start (EV_P_ ev_io *w) 1696ev_io_start (EV_P_ ev_io *w)
1520{ 1697{
1521 int fd = w->fd; 1698 int fd = w->fd;
1522 1699
1523 if (expect_false (ev_is_active (w))) 1700 if (expect_false (ev_is_active (w)))
1525 1702
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 1703 assert (("ev_io_start called with negative fd", fd >= 0));
1527 1704
1528 ev_start (EV_A_ (W)w, 1); 1705 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1707 wlist_add (&anfds[fd].head, (WL)w);
1531 1708
1532 fd_change (EV_A_ fd); 1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET;
1533} 1711}
1534 1712
1535void 1713void noinline
1536ev_io_stop (EV_P_ ev_io *w) 1714ev_io_stop (EV_P_ ev_io *w)
1537{ 1715{
1538 ev_clear_pending (EV_A_ (W)w); 1716 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 1717 if (expect_false (!ev_is_active (w)))
1540 return; 1718 return;
1541 1719
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 1721
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1722 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 1723 ev_stop (EV_A_ (W)w);
1546 1724
1547 fd_change (EV_A_ w->fd); 1725 fd_change (EV_A_ w->fd, 1);
1548} 1726}
1549 1727
1550void 1728void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 1729ev_timer_start (EV_P_ ev_timer *w)
1552{ 1730{
1553 if (expect_false (ev_is_active (w))) 1731 if (expect_false (ev_is_active (w)))
1554 return; 1732 return;
1555 1733
1556 ((WT)w)->at += mn_now; 1734 ((WT)w)->at += mn_now;
1557 1735
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 1737
1560 ev_start (EV_A_ (W)w, ++timercnt); 1738 ev_start (EV_A_ (W)w, ++timercnt);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1562 timers [timercnt - 1] = w; 1740 timers [timercnt - 1] = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 1741 upheap (timers, timercnt - 1);
1564 1742
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1566} 1744}
1567 1745
1568void 1746void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 1747ev_timer_stop (EV_P_ ev_timer *w)
1570{ 1748{
1571 ev_clear_pending (EV_A_ (W)w); 1749 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 1750 if (expect_false (!ev_is_active (w)))
1573 return; 1751 return;
1574 1752
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1576 1754
1577 { 1755 {
1578 int active = ((W)w)->active; 1756 int active = ((W)w)->active;
1579 1757
1580 if (expect_true (--active < --timercnt)) 1758 if (expect_true (--active < --timercnt))
1581 { 1759 {
1582 timers [active] = timers [timercnt]; 1760 timers [active] = timers [timercnt];
1583 adjustheap ((WT *)timers, timercnt, active); 1761 adjustheap (timers, timercnt, active);
1584 } 1762 }
1585 } 1763 }
1586 1764
1587 ((WT)w)->at -= mn_now; 1765 ((WT)w)->at -= mn_now;
1588 1766
1589 ev_stop (EV_A_ (W)w); 1767 ev_stop (EV_A_ (W)w);
1590} 1768}
1591 1769
1592void 1770void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 1771ev_timer_again (EV_P_ ev_timer *w)
1594{ 1772{
1595 if (ev_is_active (w)) 1773 if (ev_is_active (w))
1596 { 1774 {
1597 if (w->repeat) 1775 if (w->repeat)
1598 { 1776 {
1599 ((WT)w)->at = mn_now + w->repeat; 1777 ((WT)w)->at = mn_now + w->repeat;
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1778 adjustheap (timers, timercnt, ((W)w)->active - 1);
1601 } 1779 }
1602 else 1780 else
1603 ev_timer_stop (EV_A_ w); 1781 ev_timer_stop (EV_A_ w);
1604 } 1782 }
1605 else if (w->repeat) 1783 else if (w->repeat)
1608 ev_timer_start (EV_A_ w); 1786 ev_timer_start (EV_A_ w);
1609 } 1787 }
1610} 1788}
1611 1789
1612#if EV_PERIODIC_ENABLE 1790#if EV_PERIODIC_ENABLE
1613void 1791void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 1792ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 1793{
1616 if (expect_false (ev_is_active (w))) 1794 if (expect_false (ev_is_active (w)))
1617 return; 1795 return;
1618 1796
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 1799 else if (w->interval)
1622 { 1800 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 1802 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 1804 }
1805 else
1806 ((WT)w)->at = w->offset;
1627 1807
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 1808 ev_start (EV_A_ (W)w, ++periodiccnt);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 1810 periodics [periodiccnt - 1] = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 1811 upheap (periodics, periodiccnt - 1);
1632 1812
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1634} 1814}
1635 1815
1636void 1816void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 1817ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 1818{
1639 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1820 if (expect_false (!ev_is_active (w)))
1641 return; 1821 return;
1642 1822
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1644 1824
1645 { 1825 {
1646 int active = ((W)w)->active; 1826 int active = ((W)w)->active;
1647 1827
1648 if (expect_true (--active < --periodiccnt)) 1828 if (expect_true (--active < --periodiccnt))
1649 { 1829 {
1650 periodics [active] = periodics [periodiccnt]; 1830 periodics [active] = periodics [periodiccnt];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 1831 adjustheap (periodics, periodiccnt, active);
1652 } 1832 }
1653 } 1833 }
1654 1834
1655 ev_stop (EV_A_ (W)w); 1835 ev_stop (EV_A_ (W)w);
1656} 1836}
1657 1837
1658void 1838void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 1839ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 1840{
1661 /* TODO: use adjustheap and recalculation */ 1841 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 1842 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 1843 ev_periodic_start (EV_A_ w);
1666 1846
1667#ifndef SA_RESTART 1847#ifndef SA_RESTART
1668# define SA_RESTART 0 1848# define SA_RESTART 0
1669#endif 1849#endif
1670 1850
1671void 1851void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 1852ev_signal_start (EV_P_ ev_signal *w)
1673{ 1853{
1674#if EV_MULTIPLICITY 1854#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif 1856#endif
1677 if (expect_false (ev_is_active (w))) 1857 if (expect_false (ev_is_active (w)))
1678 return; 1858 return;
1679 1859
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1681 1861
1862 {
1863#ifndef _WIN32
1864 sigset_t full, prev;
1865 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1870
1871#ifndef _WIN32
1872 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif
1874 }
1875
1682 ev_start (EV_A_ (W)w, 1); 1876 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1877 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 1878
1686 if (!((WL)w)->next) 1879 if (!((WL)w)->next)
1687 { 1880 {
1688#if _WIN32 1881#if _WIN32
1689 signal (w->signum, sighandler); 1882 signal (w->signum, sighandler);
1695 sigaction (w->signum, &sa, 0); 1888 sigaction (w->signum, &sa, 0);
1696#endif 1889#endif
1697 } 1890 }
1698} 1891}
1699 1892
1700void 1893void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 1894ev_signal_stop (EV_P_ ev_signal *w)
1702{ 1895{
1703 ev_clear_pending (EV_A_ (W)w); 1896 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 1897 if (expect_false (!ev_is_active (w)))
1705 return; 1898 return;
1706 1899
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1900 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1709 1902
1710 if (!signals [w->signum - 1].head) 1903 if (!signals [w->signum - 1].head)
1711 signal (w->signum, SIG_DFL); 1904 signal (w->signum, SIG_DFL);
1712} 1905}
1719#endif 1912#endif
1720 if (expect_false (ev_is_active (w))) 1913 if (expect_false (ev_is_active (w)))
1721 return; 1914 return;
1722 1915
1723 ev_start (EV_A_ (W)w, 1); 1916 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1725} 1918}
1726 1919
1727void 1920void
1728ev_child_stop (EV_P_ ev_child *w) 1921ev_child_stop (EV_P_ ev_child *w)
1729{ 1922{
1730 ev_clear_pending (EV_A_ (W)w); 1923 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 1924 if (expect_false (!ev_is_active (w)))
1732 return; 1925 return;
1733 1926
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1736} 1929}
1737 1930
1738#if EV_STAT_ENABLE 1931#if EV_STAT_ENABLE
1739 1932
1971} 2164}
1972 2165
1973void 2166void
1974ev_stat_stop (EV_P_ ev_stat *w) 2167ev_stat_stop (EV_P_ ev_stat *w)
1975{ 2168{
1976 ev_clear_pending (EV_A_ (W)w); 2169 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2170 if (expect_false (!ev_is_active (w)))
1978 return; 2171 return;
1979 2172
1980#if EV_USE_INOTIFY 2173#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 2174 infy_del (EV_A_ w);
1984 2177
1985 ev_stop (EV_A_ (W)w); 2178 ev_stop (EV_A_ (W)w);
1986} 2179}
1987#endif 2180#endif
1988 2181
2182#if EV_IDLE_ENABLE
1989void 2183void
1990ev_idle_start (EV_P_ ev_idle *w) 2184ev_idle_start (EV_P_ ev_idle *w)
1991{ 2185{
1992 if (expect_false (ev_is_active (w))) 2186 if (expect_false (ev_is_active (w)))
1993 return; 2187 return;
1994 2188
2189 pri_adjust (EV_A_ (W)w);
2190
2191 {
2192 int active = ++idlecnt [ABSPRI (w)];
2193
2194 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 2195 ev_start (EV_A_ (W)w, active);
2196
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 2198 idles [ABSPRI (w)][active - 1] = w;
2199 }
1998} 2200}
1999 2201
2000void 2202void
2001ev_idle_stop (EV_P_ ev_idle *w) 2203ev_idle_stop (EV_P_ ev_idle *w)
2002{ 2204{
2003 ev_clear_pending (EV_A_ (W)w); 2205 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2206 if (expect_false (!ev_is_active (w)))
2005 return; 2207 return;
2006 2208
2007 { 2209 {
2008 int active = ((W)w)->active; 2210 int active = ((W)w)->active;
2009 idles [active - 1] = idles [--idlecnt]; 2211
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2010 ((W)idles [active - 1])->active = active; 2213 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2214
2215 ev_stop (EV_A_ (W)w);
2216 --idleall;
2011 } 2217 }
2012
2013 ev_stop (EV_A_ (W)w);
2014} 2218}
2219#endif
2015 2220
2016void 2221void
2017ev_prepare_start (EV_P_ ev_prepare *w) 2222ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 2223{
2019 if (expect_false (ev_is_active (w))) 2224 if (expect_false (ev_is_active (w)))
2025} 2230}
2026 2231
2027void 2232void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 2233ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 2234{
2030 ev_clear_pending (EV_A_ (W)w); 2235 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 2236 if (expect_false (!ev_is_active (w)))
2032 return; 2237 return;
2033 2238
2034 { 2239 {
2035 int active = ((W)w)->active; 2240 int active = ((W)w)->active;
2052} 2257}
2053 2258
2054void 2259void
2055ev_check_stop (EV_P_ ev_check *w) 2260ev_check_stop (EV_P_ ev_check *w)
2056{ 2261{
2057 ev_clear_pending (EV_A_ (W)w); 2262 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2263 if (expect_false (!ev_is_active (w)))
2059 return; 2264 return;
2060 2265
2061 { 2266 {
2062 int active = ((W)w)->active; 2267 int active = ((W)w)->active;
2069 2274
2070#if EV_EMBED_ENABLE 2275#if EV_EMBED_ENABLE
2071void noinline 2276void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 2277ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 2278{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 2279 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 2280}
2076 2281
2077static void 2282static void
2078embed_cb (EV_P_ ev_io *io, int revents) 2283embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 2284{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2285 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 2286
2082 if (ev_cb (w)) 2287 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2288 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 2289 else
2085 ev_embed_sweep (loop, w); 2290 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 2291}
2292
2293static void
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297
2298 {
2299 struct ev_loop *loop = w->other;
2300
2301 while (fdchangecnt)
2302 {
2303 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 }
2306 }
2307}
2308
2309#if 0
2310static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{
2313 ev_idle_stop (EV_A_ idle);
2314}
2315#endif
2087 2316
2088void 2317void
2089ev_embed_start (EV_P_ ev_embed *w) 2318ev_embed_start (EV_P_ ev_embed *w)
2090{ 2319{
2091 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
2092 return; 2321 return;
2093 2322
2094 { 2323 {
2095 struct ev_loop *loop = w->loop; 2324 struct ev_loop *loop = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 2327 }
2099 2328
2100 ev_set_priority (&w->io, ev_priority (w)); 2329 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 2330 ev_io_start (EV_A_ &w->io);
2102 2331
2332 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare);
2335
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337
2103 ev_start (EV_A_ (W)w, 1); 2338 ev_start (EV_A_ (W)w, 1);
2104} 2339}
2105 2340
2106void 2341void
2107ev_embed_stop (EV_P_ ev_embed *w) 2342ev_embed_stop (EV_P_ ev_embed *w)
2108{ 2343{
2109 ev_clear_pending (EV_A_ (W)w); 2344 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2345 if (expect_false (!ev_is_active (w)))
2111 return; 2346 return;
2112 2347
2113 ev_io_stop (EV_A_ &w->io); 2348 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare);
2114 2350
2115 ev_stop (EV_A_ (W)w); 2351 ev_stop (EV_A_ (W)w);
2116} 2352}
2117#endif 2353#endif
2118 2354
2129} 2365}
2130 2366
2131void 2367void
2132ev_fork_stop (EV_P_ ev_fork *w) 2368ev_fork_stop (EV_P_ ev_fork *w)
2133{ 2369{
2134 ev_clear_pending (EV_A_ (W)w); 2370 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 2371 if (expect_false (!ev_is_active (w)))
2136 return; 2372 return;
2137 2373
2138 { 2374 {
2139 int active = ((W)w)->active; 2375 int active = ((W)w)->active;
2207 ev_timer_set (&once->to, timeout, 0.); 2443 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 2444 ev_timer_start (EV_A_ &once->to);
2209 } 2445 }
2210} 2446}
2211 2447
2448#if EV_MULTIPLICITY
2449 #include "ev_wrap.h"
2450#endif
2451
2212#ifdef __cplusplus 2452#ifdef __cplusplus
2213} 2453}
2214#endif 2454#endif
2215 2455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines