ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
145#ifndef _WIN32 154#ifndef _WIN32
146# include <sys/time.h> 155# include <sys/time.h>
147# include <sys/wait.h> 156# include <sys/wait.h>
148# include <unistd.h> 157# include <unistd.h>
149#else 158#else
159# include <io.h>
150# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 161# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
154# endif 164# endif
155#endif 165#endif
156 166
157/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
158 168
159#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
160# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
161#endif 175#endif
162 176
163#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
165#endif 179#endif
166 180
167#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
168# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
169#endif 187#endif
170 188
171#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
173#endif 191#endif
179# define EV_USE_POLL 1 197# define EV_USE_POLL 1
180# endif 198# endif
181#endif 199#endif
182 200
183#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
184# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
185#endif 207#endif
186 208
187#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
189#endif 211#endif
191#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 214# define EV_USE_PORT 0
193#endif 215#endif
194 216
195#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
196# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
197#endif 223#endif
198 224
199#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 226# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
210# else 236# else
211# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
212# endif 238# endif
213#endif 239#endif
214 240
215/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 268
217#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
220#endif 272#endif
234# include <sys/select.h> 286# include <sys/select.h>
235# endif 287# endif
236#endif 288#endif
237 289
238#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
239# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
240#endif 298#endif
241 299
242#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 301# include <winsock.h>
244#endif 302#endif
245 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
246/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
247 323
248/* 324/*
249 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
265#else 341#else
266# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
267# define noinline 343# define noinline
268# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 345# define inline
270# endif 346# endif
271#endif 347#endif
272 348
273#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
288 364
289typedef ev_watcher *W; 365typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
292 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
293#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 376#endif
298 377
299#ifdef _WIN32 378#ifdef _WIN32
300# include "ev_win32.c" 379# include "ev_win32.c"
301#endif 380#endif
323 perror (msg); 402 perror (msg);
324 abort (); 403 abort ();
325 } 404 }
326} 405}
327 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
328static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 423
330void 424void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 426{
333 alloc = cb; 427 alloc = cb;
334} 428}
335 429
336inline_speed void * 430inline_speed void *
337ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
338{ 432{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
340 434
341 if (!ptr && size) 435 if (!ptr && size)
342 { 436 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 438 abort ();
367 W w; 461 W w;
368 int events; 462 int events;
369} ANPENDING; 463} ANPENDING;
370 464
371#if EV_USE_INOTIFY 465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
372typedef struct 467typedef struct
373{ 468{
374 WL head; 469 WL head;
375} ANFS; 470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
376#endif 489#endif
377 490
378#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
379 492
380 struct ev_loop 493 struct ev_loop
451 ts.tv_sec = (time_t)delay; 564 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 566
454 nanosleep (&ts, 0); 567 nanosleep (&ts, 0);
455#elif defined(_WIN32) 568#elif defined(_WIN32)
456 Sleep (delay * 1e3); 569 Sleep ((unsigned long)(delay * 1e3));
457#else 570#else
458 struct timeval tv; 571 struct timeval tv;
459 572
460 tv.tv_sec = (time_t)delay; 573 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
463 select (0, 0, 0, 0, &tv); 579 select (0, 0, 0, 0, &tv);
464#endif 580#endif
465 } 581 }
466} 582}
467 583
468/*****************************************************************************/ 584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 587
470int inline_size 588int inline_size
471array_nextsize (int elem, int cur, int cnt) 589array_nextsize (int elem, int cur, int cnt)
472{ 590{
473 int ncur = cur + 1; 591 int ncur = cur + 1;
474 592
475 do 593 do
476 ncur <<= 1; 594 ncur <<= 1;
477 while (cnt > ncur); 595 while (cnt > ncur);
478 596
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 599 {
482 ncur *= elem; 600 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 602 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 603 ncur /= elem;
486 } 604 }
487 605
488 return ncur; 606 return ncur;
599 events |= (unsigned char)w->events; 717 events |= (unsigned char)w->events;
600 718
601#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
602 if (events) 720 if (events)
603 { 721 {
604 unsigned long argp; 722 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 723 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 725 #else
608 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
609 #endif 727 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 729 }
612#endif 730#endif
613 731
614 { 732 {
615 unsigned char o_events = anfd->events; 733 unsigned char o_events = anfd->events;
668{ 786{
669 int fd; 787 int fd;
670 788
671 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 790 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
675} 793}
676 794
677/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 796static void noinline
702 } 820 }
703} 821}
704 822
705/*****************************************************************************/ 823/*****************************************************************************/
706 824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
707void inline_speed 845void inline_speed
708upheap (WT *heap, int k) 846downheap (ANHE *heap, int N, int k)
709{ 847{
710 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
711 850
712 while (k) 851 for (;;)
713 { 852 {
714 int p = (k - 1) >> 1; 853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 856
716 if (heap [p]->at <= w->at) 857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
717 break; 873 break;
718 874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
719 heap [k] = heap [p]; 937 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 938 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 939 k = p;
722 } 940 }
723 941
724 heap [k] = w; 942 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 943 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 944}
755 945
756void inline_size 946void inline_size
757adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
758{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 950 upheap (heap, k);
951 else
760 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
761} 965}
762 966
763/*****************************************************************************/ 967/*****************************************************************************/
764 968
765typedef struct 969typedef struct
766{ 970{
767 WL head; 971 WL head;
768 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
769} ANSIG; 973} ANSIG;
770 974
771static ANSIG *signals; 975static ANSIG *signals;
772static int signalmax; 976static int signalmax;
773 977
774static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 979
778void inline_size 980void inline_size
779signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
780{ 982{
781 while (count--) 983 while (count--)
785 987
786 ++base; 988 ++base;
787 } 989 }
788} 990}
789 991
790static void 992/*****************************************************************************/
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 993
841void inline_speed 994void inline_speed
842fd_intern (int fd) 995fd_intern (int fd)
843{ 996{
844#ifdef _WIN32 997#ifdef _WIN32
845 int arg = 1; 998 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 1000#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1003#endif
851} 1004}
852 1005
853static void noinline 1006static void noinline
854siginit (EV_P) 1007evpipe_init (EV_P)
855{ 1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
856 fd_intern (sigpipe [0]); 1024 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
858 1028
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1029 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
862} 1097}
863 1098
864/*****************************************************************************/ 1099/*****************************************************************************/
865 1100
1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
866static WL childs [EV_PID_HASHSIZE]; 1138static WL childs [EV_PID_HASHSIZE];
867 1139
868#ifndef _WIN32 1140#ifndef _WIN32
869 1141
870static ev_signal childev; 1142static ev_signal childev;
871 1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
872void inline_speed 1148void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1149child_reap (EV_P_ int chain, int pid, int status)
874{ 1150{
875 ev_child *w; 1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1153
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
878 if (w->pid == pid || !w->pid) 1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
879 { 1158 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1160 w->rpid = pid;
882 w->rstatus = status; 1161 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1163 }
1164 }
885} 1165}
886 1166
887#ifndef WCONTINUED 1167#ifndef WCONTINUED
888# define WCONTINUED 0 1168# define WCONTINUED 0
889#endif 1169#endif
898 if (!WCONTINUED 1178 if (!WCONTINUED
899 || errno != EINVAL 1179 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1181 return;
902 1182
903 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1184 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1186
907 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1188 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1190}
911 1191
912#endif 1192#endif
913 1193
914/*****************************************************************************/ 1194/*****************************************************************************/
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1313 have_monotonic = 1;
1034 } 1314 }
1035#endif 1315#endif
1036 1316
1037 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1318 mn_now = get_clock ();
1039 now_floor = mn_now; 1319 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
1041 1321
1042 io_blocktime = 0.; 1322 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1044 1330
1045 /* pid check not overridable via env */ 1331 /* pid check not overridable via env */
1046#ifndef _WIN32 1332#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1333 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1334 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1337 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1338 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1339 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1341
1056 if (!(flags & 0x0000ffffUL)) 1342 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1343 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1344
1065#if EV_USE_PORT 1345#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1347#endif
1068#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
1076#endif 1356#endif
1077#if EV_USE_SELECT 1357#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1359#endif
1080 1360
1081 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
1083 } 1363 }
1084} 1364}
1085 1365
1086static void noinline 1366static void noinline
1087loop_destroy (EV_P) 1367loop_destroy (EV_P)
1088{ 1368{
1089 int i; 1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1090 1387
1091#if EV_USE_INOTIFY 1388#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1389 if (fs_fd >= 0)
1093 close (fs_fd); 1390 close (fs_fd);
1094#endif 1391#endif
1131#if EV_FORK_ENABLE 1428#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1429 array_free (fork, EMPTY);
1133#endif 1430#endif
1134 array_free (prepare, EMPTY); 1431 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
1136 1436
1137 backend = 0; 1437 backend = 0;
1138} 1438}
1139 1439
1440#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1441void inline_size infy_fork (EV_P);
1442#endif
1141 1443
1142void inline_size 1444void inline_size
1143loop_fork (EV_P) 1445loop_fork (EV_P)
1144{ 1446{
1145#if EV_USE_PORT 1447#if EV_USE_PORT
1153#endif 1455#endif
1154#if EV_USE_INOTIFY 1456#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1457 infy_fork (EV_A);
1156#endif 1458#endif
1157 1459
1158 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
1159 { 1461 {
1160 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1161 1468
1162 ev_ref (EV_A); 1469 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
1164 close (sigpipe [0]); 1479 close (evpipe [0]);
1165 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
1166 1482
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1485 pipecb (EV_A_ &pipeev, EV_READ);
1172 } 1486 }
1173 1487
1174 postfork = 0; 1488 postfork = 0;
1175} 1489}
1176 1490
1177#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
1178struct ev_loop * 1493struct ev_loop *
1179ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
1180{ 1495{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1497
1201ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
1202{ 1517{
1203 postfork = 1; /* must be in line with ev_default_fork */ 1518 postfork = 1; /* must be in line with ev_default_fork */
1204} 1519}
1205 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1206#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1207 1621
1208#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1209struct ev_loop * 1623struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
1211#else 1625#else
1212int 1626int
1213ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
1214#endif 1628#endif
1215{ 1629{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1630 if (!ev_default_loop_ptr)
1221 { 1631 {
1222#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1224#else 1634#else
1227 1637
1228 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
1229 1639
1230 if (ev_backend (EV_A)) 1640 if (ev_backend (EV_A))
1231 { 1641 {
1232 siginit (EV_A);
1233
1234#ifndef _WIN32 1642#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1255#ifndef _WIN32 1663#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
1258#endif 1666#endif
1259 1667
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
1267} 1669}
1268 1670
1269void 1671void
1270ev_default_fork (void) 1672ev_default_fork (void)
1299 { 1701 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301 1703
1302 p->w->pending = 0; 1704 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1304 } 1707 }
1305 } 1708 }
1306} 1709}
1307
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387 1710
1388#if EV_IDLE_ENABLE 1711#if EV_IDLE_ENABLE
1389void inline_size 1712void inline_size
1390idle_reify (EV_P) 1713idle_reify (EV_P)
1391{ 1714{
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break; 1727 break;
1405 } 1728 }
1406 } 1729 }
1407 } 1730 }
1731}
1732#endif
1733
1734void inline_size
1735timers_reify (EV_P)
1736{
1737 EV_FREQUENT_CHECK;
1738
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753
1754 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0);
1756 }
1757 else
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759
1760 EV_FREQUENT_CHECK;
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 }
1763}
1764
1765#if EV_PERIODIC_ENABLE
1766void inline_size
1767periodics_reify (EV_P)
1768{
1769 EV_FREQUENT_CHECK;
1770
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else if (w->interval)
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1811 }
1812}
1813
1814static void noinline
1815periodics_reschedule (EV_P)
1816{
1817 int i;
1818
1819 /* adjust periodics after time jump */
1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1821 {
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823
1824 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1408} 1833}
1409#endif 1834#endif
1410 1835
1411void inline_speed 1836void inline_speed
1412time_update (EV_P_ ev_tstamp max_block) 1837time_update (EV_P_ ev_tstamp max_block)
1441 */ 1866 */
1442 for (i = 4; --i; ) 1867 for (i = 4; --i; )
1443 { 1868 {
1444 rtmn_diff = ev_rt_now - mn_now; 1869 rtmn_diff = ev_rt_now - mn_now;
1445 1870
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 1872 return; /* all is well */
1448 1873
1449 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 1875 mn_now = get_clock ();
1451 now_floor = mn_now; 1876 now_floor = mn_now;
1467#if EV_PERIODIC_ENABLE 1892#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 1893 periodics_reschedule (EV_A);
1469#endif 1894#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */ 1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i) 1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1472 ((WT)timers [i])->at += ev_rt_now - mn_now; 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1473 } 1902 }
1474 1903
1475 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1476 } 1905 }
1477} 1906}
1486ev_unref (EV_P) 1915ev_unref (EV_P)
1487{ 1916{
1488 --activecnt; 1917 --activecnt;
1489} 1918}
1490 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1491static int loop_done; 1926static int loop_done;
1492 1927
1493void 1928void
1494ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1495{ 1930{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1931 loop_done = EVUNLOOP_CANCEL;
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1499 1932
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1501 1934
1502 do 1935 do
1503 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1504#ifndef _WIN32 1941#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 1942 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 1943 if (expect_false (getpid () != curpid))
1507 { 1944 {
1508 curpid = getpid (); 1945 curpid = getpid ();
1549 1986
1550 waittime = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1551 1988
1552 if (timercnt) 1989 if (timercnt)
1553 { 1990 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 1992 if (waittime > to) waittime = to;
1556 } 1993 }
1557 1994
1558#if EV_PERIODIC_ENABLE 1995#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 1996 if (periodiccnt)
1560 { 1997 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 1999 if (waittime > to) waittime = to;
1563 } 2000 }
1564#endif 2001#endif
1565 2002
1566 if (expect_false (waittime < timeout_blocktime)) 2003 if (expect_false (waittime < timeout_blocktime))
1599 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2037 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1602 2039
1603 call_pending (EV_A); 2040 call_pending (EV_A);
1604
1605 } 2041 }
1606 while (expect_true (activecnt && !loop_done)); 2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1607 2047
1608 if (loop_done == EVUNLOOP_ONE) 2048 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2049 loop_done = EVUNLOOP_CANCEL;
1610} 2050}
1611 2051
1700 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1701 return; 2141 return;
1702 2142
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1704 2144
2145 EV_FREQUENT_CHECK;
2146
1705 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1707 wlist_add (&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1708 2150
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET; 2152 w->events &= ~EV_IOFDSET;
2153
2154 EV_FREQUENT_CHECK;
1711} 2155}
1712 2156
1713void noinline 2157void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1715{ 2159{
1716 clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1718 return; 2162 return;
1719 2163
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165
2166 EV_FREQUENT_CHECK;
1721 2167
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1724 2170
1725 fd_change (EV_A_ w->fd, 1); 2171 fd_change (EV_A_ w->fd, 1);
2172
2173 EV_FREQUENT_CHECK;
1726} 2174}
1727 2175
1728void noinline 2176void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1730{ 2178{
1731 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1732 return; 2180 return;
1733 2181
1734 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1735 2183
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1742 2194
2195 EV_FREQUENT_CHECK;
2196
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2198}
1745 2199
1746void noinline 2200void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2202{
1749 clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1751 return; 2205 return;
1752 2206
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2207 EV_FREQUENT_CHECK;
1754 2208
1755 { 2209 {
1756 int active = ((W)w)->active; 2210 int active = ev_active (w);
1757 2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
1758 if (expect_true (--active < --timercnt)) 2216 if (expect_true (active < timercnt + HEAP0))
1759 { 2217 {
1760 timers [active] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2219 adjustheap (timers, timercnt, active);
1762 } 2220 }
1763 } 2221 }
1764 2222
1765 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1766 2226
1767 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1768} 2228}
1769 2229
1770void noinline 2230void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1772{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1773 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1774 { 2236 {
1775 if (w->repeat) 2237 if (w->repeat)
1776 { 2238 {
1777 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1779 } 2242 }
1780 else 2243 else
1781 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1782 } 2245 }
1783 else if (w->repeat) 2246 else if (w->repeat)
1784 { 2247 {
1785 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1787 } 2250 }
2251
2252 EV_FREQUENT_CHECK;
1788} 2253}
1789 2254
1790#if EV_PERIODIC_ENABLE 2255#if EV_PERIODIC_ENABLE
1791void noinline 2256void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2258{
1794 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1795 return; 2260 return;
1796 2261
1797 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2264 else if (w->interval)
1800 { 2265 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2269 }
1805 else 2270 else
1806 ((WT)w)->at = w->offset; 2271 ev_at (w) = w->offset;
1807 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1812 2281
2282 EV_FREQUENT_CHECK;
2283
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2285}
1815 2286
1816void noinline 2287void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2289{
1819 clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1821 return; 2292 return;
1822 2293
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2294 EV_FREQUENT_CHECK;
1824 2295
1825 { 2296 {
1826 int active = ((W)w)->active; 2297 int active = ev_active (w);
1827 2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
1828 if (expect_true (--active < --periodiccnt)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2304 {
1830 periodics [active] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2306 adjustheap (periodics, periodiccnt, active);
1832 } 2307 }
1833 } 2308 }
1834 2309
2310 EV_FREQUENT_CHECK;
2311
1835 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1836} 2313}
1837 2314
1838void noinline 2315void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1856#endif 2333#endif
1857 if (expect_false (ev_is_active (w))) 2334 if (expect_false (ev_is_active (w)))
1858 return; 2335 return;
1859 2336
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
1861 2342
1862 { 2343 {
1863#ifndef _WIN32 2344#ifndef _WIN32
1864 sigset_t full, prev; 2345 sigset_t full, prev;
1865 sigfillset (&full); 2346 sigfillset (&full);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2359
1879 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1880 { 2361 {
1881#if _WIN32 2362#if _WIN32
1882 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1883#else 2364#else
1884 struct sigaction sa; 2365 struct sigaction sa;
1885 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1889#endif 2370#endif
1890 } 2371 }
2372
2373 EV_FREQUENT_CHECK;
1891} 2374}
1892 2375
1893void noinline 2376void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2378{
1896 clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1898 return; 2381 return;
1899 2382
2383 EV_FREQUENT_CHECK;
2384
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1902 2387
1903 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1904 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
2390
2391 EV_FREQUENT_CHECK;
1905} 2392}
1906 2393
1907void 2394void
1908ev_child_start (EV_P_ ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1909{ 2396{
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2399#endif
1913 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
1914 return; 2401 return;
1915 2402
2403 EV_FREQUENT_CHECK;
2404
1916 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
1918} 2409}
1919 2410
1920void 2411void
1921ev_child_stop (EV_P_ ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1922{ 2413{
1923 clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
1925 return; 2416 return;
1926 2417
2418 EV_FREQUENT_CHECK;
2419
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1929} 2424}
1930 2425
1931#if EV_STAT_ENABLE 2426#if EV_STAT_ENABLE
1932 2427
1933# ifdef _WIN32 2428# ifdef _WIN32
1951 if (w->wd < 0) 2446 if (w->wd < 0)
1952 { 2447 {
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954 2449
1955 /* monitor some parent directory for speedup hints */ 2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2454 {
1958 char path [4096]; 2455 char path [4096];
1959 strcpy (path, w->path); 2456 strcpy (path, w->path);
1960 2457
2000 2497
2001static void noinline 2498static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 2500{
2004 if (slot < 0) 2501 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 2502 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 2504 infy_wd (EV_A_ slot, wd, ev);
2008 else 2505 else
2009 { 2506 {
2010 WL w_; 2507 WL w_;
2044infy_init (EV_P) 2541infy_init (EV_P)
2045{ 2542{
2046 if (fs_fd != -2) 2543 if (fs_fd != -2)
2047 return; 2544 return;
2048 2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2049 fs_fd = inotify_init (); 2567 fs_fd = inotify_init ();
2050 2568
2051 if (fs_fd >= 0) 2569 if (fs_fd >= 0)
2052 { 2570 {
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2082 if (fs_fd >= 0) 2600 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 2601 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 2602 else
2085 ev_timer_start (EV_A_ &w->timer); 2603 ev_timer_start (EV_A_ &w->timer);
2086 } 2604 }
2087
2088 } 2605 }
2089} 2606}
2090 2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 2614#endif
2092 2615
2093void 2616void
2094ev_stat_stat (EV_P_ ev_stat *w) 2617ev_stat_stat (EV_P_ ev_stat *w)
2095{ 2618{
2122 || w->prev.st_atime != w->attr.st_atime 2645 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 2646 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 2647 || w->prev.st_ctime != w->attr.st_ctime
2125 ) { 2648 ) {
2126 #if EV_USE_INOTIFY 2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2127 infy_del (EV_A_ w); 2652 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 2653 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2130 #endif 2656 #endif
2131 2657
2132 ev_feed_event (EV_A_ w, EV_STAT); 2658 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 2659 }
2134} 2660}
2159 else 2685 else
2160#endif 2686#endif
2161 ev_timer_start (EV_A_ &w->timer); 2687 ev_timer_start (EV_A_ &w->timer);
2162 2688
2163 ev_start (EV_A_ (W)w, 1); 2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2164} 2692}
2165 2693
2166void 2694void
2167ev_stat_stop (EV_P_ ev_stat *w) 2695ev_stat_stop (EV_P_ ev_stat *w)
2168{ 2696{
2169 clear_pending (EV_A_ (W)w); 2697 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 2698 if (expect_false (!ev_is_active (w)))
2171 return; 2699 return;
2172 2700
2701 EV_FREQUENT_CHECK;
2702
2173#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 2704 infy_del (EV_A_ w);
2175#endif 2705#endif
2176 ev_timer_stop (EV_A_ &w->timer); 2706 ev_timer_stop (EV_A_ &w->timer);
2177 2707
2178 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2179} 2711}
2180#endif 2712#endif
2181 2713
2182#if EV_IDLE_ENABLE 2714#if EV_IDLE_ENABLE
2183void 2715void
2185{ 2717{
2186 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
2187 return; 2719 return;
2188 2720
2189 pri_adjust (EV_A_ (W)w); 2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2190 2724
2191 { 2725 {
2192 int active = ++idlecnt [ABSPRI (w)]; 2726 int active = ++idlecnt [ABSPRI (w)];
2193 2727
2194 ++idleall; 2728 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 2729 ev_start (EV_A_ (W)w, active);
2196 2730
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 2732 idles [ABSPRI (w)][active - 1] = w;
2199 } 2733 }
2734
2735 EV_FREQUENT_CHECK;
2200} 2736}
2201 2737
2202void 2738void
2203ev_idle_stop (EV_P_ ev_idle *w) 2739ev_idle_stop (EV_P_ ev_idle *w)
2204{ 2740{
2205 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2207 return; 2743 return;
2208 2744
2745 EV_FREQUENT_CHECK;
2746
2209 { 2747 {
2210 int active = ((W)w)->active; 2748 int active = ev_active (w);
2211 2749
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 2752
2215 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2216 --idleall; 2754 --idleall;
2217 } 2755 }
2756
2757 EV_FREQUENT_CHECK;
2218} 2758}
2219#endif 2759#endif
2220 2760
2221void 2761void
2222ev_prepare_start (EV_P_ ev_prepare *w) 2762ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 2763{
2224 if (expect_false (ev_is_active (w))) 2764 if (expect_false (ev_is_active (w)))
2225 return; 2765 return;
2766
2767 EV_FREQUENT_CHECK;
2226 2768
2227 ev_start (EV_A_ (W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2230} 2774}
2231 2775
2232void 2776void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 2778{
2235 clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2237 return; 2781 return;
2238 2782
2783 EV_FREQUENT_CHECK;
2784
2239 { 2785 {
2240 int active = ((W)w)->active; 2786 int active = ev_active (w);
2787
2241 prepares [active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 2789 ev_active (prepares [active - 1]) = active;
2243 } 2790 }
2244 2791
2245 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2246} 2795}
2247 2796
2248void 2797void
2249ev_check_start (EV_P_ ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
2250{ 2799{
2251 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2252 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2253 2804
2254 ev_start (EV_A_ (W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2257} 2810}
2258 2811
2259void 2812void
2260ev_check_stop (EV_P_ ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
2261{ 2814{
2262 clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2264 return; 2817 return;
2265 2818
2819 EV_FREQUENT_CHECK;
2820
2266 { 2821 {
2267 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2268 checks [active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 2825 ev_active (checks [active - 1]) = active;
2270 } 2826 }
2271 2827
2272 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2273} 2831}
2274 2832
2275#if EV_EMBED_ENABLE 2833#if EV_EMBED_ENABLE
2276void noinline 2834void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 2835ev_embed_sweep (EV_P_ ev_embed *w)
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 } 2863 }
2306 } 2864 }
2307} 2865}
2308 2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2309#if 0 2879#if 0
2310static void 2880static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 2882{
2313 ev_idle_stop (EV_A_ idle); 2883 ev_idle_stop (EV_A_ idle);
2324 struct ev_loop *loop = w->other; 2894 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 2897 }
2328 2898
2899 EV_FREQUENT_CHECK;
2900
2329 ev_set_priority (&w->io, ev_priority (w)); 2901 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 2902 ev_io_start (EV_A_ &w->io);
2331 2903
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 2905 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 2906 ev_prepare_start (EV_A_ &w->prepare);
2335 2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 2912
2338 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2339} 2916}
2340 2917
2341void 2918void
2342ev_embed_stop (EV_P_ ev_embed *w) 2919ev_embed_stop (EV_P_ ev_embed *w)
2343{ 2920{
2344 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2346 return; 2923 return;
2347 2924
2925 EV_FREQUENT_CHECK;
2926
2348 ev_io_stop (EV_A_ &w->io); 2927 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2350 2930
2351 ev_stop (EV_A_ (W)w); 2931 EV_FREQUENT_CHECK;
2352} 2932}
2353#endif 2933#endif
2354 2934
2355#if EV_FORK_ENABLE 2935#if EV_FORK_ENABLE
2356void 2936void
2357ev_fork_start (EV_P_ ev_fork *w) 2937ev_fork_start (EV_P_ ev_fork *w)
2358{ 2938{
2359 if (expect_false (ev_is_active (w))) 2939 if (expect_false (ev_is_active (w)))
2360 return; 2940 return;
2941
2942 EV_FREQUENT_CHECK;
2361 2943
2362 ev_start (EV_A_ (W)w, ++forkcnt); 2944 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2365} 2949}
2366 2950
2367void 2951void
2368ev_fork_stop (EV_P_ ev_fork *w) 2952ev_fork_stop (EV_P_ ev_fork *w)
2369{ 2953{
2370 clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
2372 return; 2956 return;
2373 2957
2958 EV_FREQUENT_CHECK;
2959
2374 { 2960 {
2375 int active = ((W)w)->active; 2961 int active = ev_active (w);
2962
2376 forks [active - 1] = forks [--forkcnt]; 2963 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 2964 ev_active (forks [active - 1]) = active;
2378 } 2965 }
2379 2966
2380 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
2381} 3017}
2382#endif 3018#endif
2383 3019
2384/*****************************************************************************/ 3020/*****************************************************************************/
2385 3021
2395once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3032{
2397 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3034 void *arg = once->arg;
2399 3035
2400 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3038 ev_free (once);
2403 3039
2404 cb (revents, arg); 3040 cb (revents, arg);
2405} 3041}
2406 3042
2407static void 3043static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3045{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3049}
2412 3050
2413static void 3051static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3053{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3057}
2418 3058
2419void 3059void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3061{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines