ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC vs.
Revision 1.301 by root, Wed Jul 15 16:58:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 391# define inline_speed static noinline
279#else 392#else
280# define inline_speed static inline 393# define inline_speed static inline
281#endif 394#endif
282 395
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
285 403
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
288 406
289typedef ev_watcher *W; 407typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
292 410
293#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 422#endif
298 423
299#ifdef _WIN32 424#ifdef _WIN32
300# include "ev_win32.c" 425# include "ev_win32.c"
301#endif 426#endif
309{ 434{
310 syserr_cb = cb; 435 syserr_cb = cb;
311} 436}
312 437
313static void noinline 438static void noinline
314syserr (const char *msg) 439ev_syserr (const char *msg)
315{ 440{
316 if (!msg) 441 if (!msg)
317 msg = "(libev) system error"; 442 msg = "(libev) system error";
318 443
319 if (syserr_cb) 444 if (syserr_cb)
323 perror (msg); 448 perror (msg);
324 abort (); 449 abort ();
325 } 450 }
326} 451}
327 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
328static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 469
330void 470void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 472{
333 alloc = cb; 473 alloc = cb;
334} 474}
335 475
336inline_speed void * 476inline_speed void *
337ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
338{ 478{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
340 480
341 if (!ptr && size) 481 if (!ptr && size)
342 { 482 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 484 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
352 492
353/*****************************************************************************/ 493/*****************************************************************************/
354 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
355typedef struct 499typedef struct
356{ 500{
357 WL head; 501 WL head;
358 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
360#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 510 SOCKET handle;
362#endif 511#endif
363} ANFD; 512} ANFD;
364 513
514/* stores the pending event set for a given watcher */
365typedef struct 515typedef struct
366{ 516{
367 W w; 517 W w;
368 int events; 518 int events; /* the pending event set for the given watcher */
369} ANPENDING; 519} ANPENDING;
370 520
371#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
372typedef struct 523typedef struct
373{ 524{
374 WL head; 525 WL head;
375} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
376#endif 547#endif
377 548
378#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
379 550
380 struct ev_loop 551 struct ev_loop
399 570
400 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
401 572
402#endif 573#endif
403 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
404/*****************************************************************************/ 587/*****************************************************************************/
405 588
589#ifndef EV_HAVE_EV_TIME
406ev_tstamp 590ev_tstamp
407ev_time (void) 591ev_time (void)
408{ 592{
409#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
410 struct timespec ts; 596 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 599 }
600#endif
601
414 struct timeval tv; 602 struct timeval tv;
415 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 605}
606#endif
419 607
420ev_tstamp inline_size 608inline_size ev_tstamp
421get_clock (void) 609get_clock (void)
422{ 610{
423#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
425 { 613 {
451 ts.tv_sec = (time_t)delay; 639 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 641
454 nanosleep (&ts, 0); 642 nanosleep (&ts, 0);
455#elif defined(_WIN32) 643#elif defined(_WIN32)
456 Sleep (delay * 1e3); 644 Sleep ((unsigned long)(delay * 1e3));
457#else 645#else
458 struct timeval tv; 646 struct timeval tv;
459 647
460 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
463 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
464#endif 655#endif
465 } 656 }
466} 657}
467 658
468/*****************************************************************************/ 659/*****************************************************************************/
469 660
470int inline_size 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
471array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
472{ 667{
473 int ncur = cur + 1; 668 int ncur = cur + 1;
474 669
475 do 670 do
476 ncur <<= 1; 671 ncur <<= 1;
477 while (cnt > ncur); 672 while (cnt > ncur);
478 673
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 676 {
482 ncur *= elem; 677 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 680 ncur /= elem;
486 } 681 }
487 682
488 return ncur; 683 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
493{ 688{
494 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
496} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 695
498#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
500 { \ 698 { \
501 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 712 }
515#endif 713#endif
516 714
517#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 717
520/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
521 725
522void noinline 726void noinline
523ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
524{ 728{
525 W w_ = (W)w; 729 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
536 } 740 }
537} 741}
538 742
539void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 760{
542 int i; 761 int i;
543 762
544 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
546} 765}
547 766
548/*****************************************************************************/ 767/*****************************************************************************/
549 768
550void inline_size 769inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
565{ 771{
566 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
567 ev_io *w; 773 ev_io *w;
568 774
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 779 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
575 } 781 }
576} 782}
577 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
578void 795void
579ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 797{
581 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
583} 800}
584 801
585void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
586fd_reify (EV_P) 805fd_reify (EV_P)
587{ 806{
588 int i; 807 int i;
589 808
590 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
600 819
601#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
602 if (events) 821 if (events)
603 { 822 {
604 unsigned long argp; 823 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 826 #else
608 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
609 #endif 828 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 830 }
612#endif 831#endif
613 832
614 { 833 {
615 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
617 836
618 anfd->reify = 0; 837 anfd->reify = 0;
619 anfd->events = events; 838 anfd->events = events;
620 839
621 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
623 } 842 }
624 } 843 }
625 844
626 fdchangecnt = 0; 845 fdchangecnt = 0;
627} 846}
628 847
629void inline_size 848/* something about the given fd changed */
849inline_size void
630fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
631{ 851{
632 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
634 854
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
640 } 860 }
641} 861}
642 862
643void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
644fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
645{ 866{
646 ev_io *w; 867 ev_io *w;
647 868
648 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 873 }
653} 874}
654 875
655int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
656fd_valid (int fd) 878fd_valid (int fd)
657{ 879{
658#ifdef _WIN32 880#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
660#else 882#else
668{ 890{
669 int fd; 891 int fd;
670 892
671 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 894 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
675} 897}
676 898
677/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 900static void noinline
696 918
697 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 920 if (anfds [fd].events)
699 { 921 {
700 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 925 }
703} 926}
704 927
705/*****************************************************************************/ 928/*****************************************************************************/
706 929
707void inline_speed 930/*
708upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
711 935
712 while (k) 936/*
713 { 937 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
715 943
716 if (heap [p]->at <= w->at) 944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
717 break; 978 break;
718 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
719 heap [k] = heap [p]; 1042 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1043 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1044 k = p;
722 } 1045 }
723 1046
724 heap [k] = w; 1047 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1048 ev_active (ANHE_w (he)) = k;
726} 1049}
727 1050
728void inline_speed 1051/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1052inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
758{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1056 upheap (heap, k);
1057 else
760 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
761} 1071}
762 1072
763/*****************************************************************************/ 1073/*****************************************************************************/
764 1074
1075/* associate signal watchers to a signal signal */
765typedef struct 1076typedef struct
766{ 1077{
767 WL head; 1078 WL head;
768 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
769} ANSIG; 1080} ANSIG;
770 1081
771static ANSIG *signals; 1082static ANSIG *signals;
772static int signalmax; 1083static int signalmax;
773 1084
774static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 1086
778void inline_size 1087/*****************************************************************************/
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785 1088
786 ++base; 1089/* used to prepare libev internal fd's */
787 } 1090/* this is not fork-safe */
788} 1091inline_speed void
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1092fd_intern (int fd)
843{ 1093{
844#ifdef _WIN32 1094#ifdef _WIN32
845 int arg = 1; 1095 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 1097#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1100#endif
851} 1101}
852 1102
853static void noinline 1103static void noinline
854siginit (EV_P) 1104evpipe_init (EV_P)
855{ 1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
856 fd_intern (sigpipe [0]); 1121 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
858 1125
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1126 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1156static void
1157pipecb (EV_P_ ev_io *iow, int revents)
1158{
1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
862} 1196}
863 1197
864/*****************************************************************************/ 1198/*****************************************************************************/
865 1199
1200static void
1201ev_sighandler (int signum)
1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213}
1214
1215void noinline
1216ev_feed_signal_event (EV_P_ int signum)
1217{
1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233}
1234
1235/*****************************************************************************/
1236
866static WL childs [EV_PID_HASHSIZE]; 1237static WL childs [EV_PID_HASHSIZE];
867 1238
868#ifndef _WIN32 1239#ifndef _WIN32
869 1240
870static ev_signal childev; 1241static ev_signal childev;
871 1242
872void inline_speed 1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
874{ 1250{
875 ev_child *w; 1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1253
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
878 if (w->pid == pid || !w->pid) 1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
879 { 1258 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1260 w->rpid = pid;
882 w->rstatus = status; 1261 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1263 }
1264 }
885} 1265}
886 1266
887#ifndef WCONTINUED 1267#ifndef WCONTINUED
888# define WCONTINUED 0 1268# define WCONTINUED 0
889#endif 1269#endif
890 1270
1271/* called on sigchld etc., calls waitpid */
891static void 1272static void
892childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
893{ 1274{
894 int pid, status; 1275 int pid, status;
895 1276
898 if (!WCONTINUED 1279 if (!WCONTINUED
899 || errno != EINVAL 1280 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1282 return;
902 1283
903 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1285 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1287
907 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1289 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1291}
911 1292
912#endif 1293#endif
913 1294
914/*****************************************************************************/ 1295/*****************************************************************************/
976 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
979#endif 1360#endif
980#ifdef __APPLE__ 1361#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
983#endif 1365#endif
984 1366
985 return flags; 1367 return flags;
986} 1368}
987 1369
1001ev_backend (EV_P) 1383ev_backend (EV_P)
1002{ 1384{
1003 return backend; 1385 return backend;
1004} 1386}
1005 1387
1388#if EV_MINIMAL < 2
1006unsigned int 1389unsigned int
1007ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1008{ 1391{
1009 return loop_count; 1392 return loop_count;
1010} 1393}
1011 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1012void 1401void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 1403{
1015 io_blocktime = interval; 1404 io_blocktime = interval;
1016} 1405}
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1409{
1021 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1022} 1411}
1023 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1438static void noinline
1025loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1026{ 1440{
1027 if (!backend) 1441 if (!backend)
1028 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1029#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1030 { 1455 {
1031 struct timespec ts; 1456 struct timespec ts;
1457
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1459 have_monotonic = 1;
1034 } 1460 }
1035#endif 1461#endif
1036 1462
1037 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1464 mn_now = get_clock ();
1039 now_floor = mn_now; 1465 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1041 1470
1042 io_blocktime = 0.; 1471 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1044 1479
1045 /* pid check not overridable via env */ 1480 /* pid check not overridable via env */
1046#ifndef _WIN32 1481#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1482 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1483 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1486 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1487 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1488 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1490
1056 if (!(flags & 0x0000ffffUL)) 1491 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1492 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1493
1065#if EV_USE_PORT 1494#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1496#endif
1068#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
1076#endif 1505#endif
1077#if EV_USE_SELECT 1506#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1508#endif
1080 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1081 ev_init (&sigev, sigcb); 1512 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1083 } 1514 }
1084} 1515}
1085 1516
1517/* free up a loop structure */
1086static void noinline 1518static void noinline
1087loop_destroy (EV_P) 1519loop_destroy (EV_P)
1088{ 1520{
1089 int i; 1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1090 1539
1091#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1541 if (fs_fd >= 0)
1093 close (fs_fd); 1542 close (fs_fd);
1094#endif 1543#endif
1121 } 1570 }
1122 1571
1123 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1124 1573
1125 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1130#endif 1580#endif
1131#if EV_FORK_ENABLE 1581#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1582 array_free (fork, EMPTY);
1133#endif 1583#endif
1134 array_free (prepare, EMPTY); 1584 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1136 1589
1137 backend = 0; 1590 backend = 0;
1138} 1591}
1139 1592
1593#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1595#endif
1141 1596
1142void inline_size 1597inline_size void
1143loop_fork (EV_P) 1598loop_fork (EV_P)
1144{ 1599{
1145#if EV_USE_PORT 1600#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1602#endif
1153#endif 1608#endif
1154#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1610 infy_fork (EV_A);
1156#endif 1611#endif
1157 1612
1158 if (ev_is_active (&sigev)) 1613 if (ev_is_active (&pipe_w))
1159 { 1614 {
1160 /* default loop */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1161 1621
1162 ev_ref (EV_A); 1622 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1164 close (sigpipe [0]); 1632 close (evpipe [0]);
1165 close (sigpipe [1]); 1633 close (evpipe [1]);
1634 }
1166 1635
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1172 } 1639 }
1173 1640
1174 postfork = 0; 1641 postfork = 0;
1175} 1642}
1176 1643
1177#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1178struct ev_loop * 1646struct ev_loop *
1179ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1180{ 1648{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1650
1200void 1668void
1201ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1202{ 1670{
1203 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1204} 1672}
1673#endif /* multiplicity */
1205 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1206#endif 1774#endif
1207 1775
1208#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1209struct ev_loop * 1777struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1211#else 1779#else
1212int 1780int
1213ev_default_loop (unsigned int flags) 1781ev_default_loop (unsigned int flags)
1214#endif 1782#endif
1215{ 1783{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1784 if (!ev_default_loop_ptr)
1221 { 1785 {
1222#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1224#else 1788#else
1227 1791
1228 loop_init (EV_A_ flags); 1792 loop_init (EV_A_ flags);
1229 1793
1230 if (ev_backend (EV_A)) 1794 if (ev_backend (EV_A))
1231 { 1795 {
1232 siginit (EV_A);
1233
1234#ifndef _WIN32 1796#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
1250{ 1812{
1251#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1815#endif
1254 1816
1817 ev_default_loop_ptr = 0;
1818
1255#ifndef _WIN32 1819#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1258#endif 1822#endif
1259 1823
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
1267} 1825}
1268 1826
1269void 1827void
1270ev_default_fork (void) 1828ev_default_fork (void)
1271{ 1829{
1272#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif 1832#endif
1275 1833
1276 if (backend)
1277 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1278} 1835}
1279 1836
1280/*****************************************************************************/ 1837/*****************************************************************************/
1281 1838
1282void 1839void
1283ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1284{ 1841{
1285 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1286} 1843}
1287 1844
1288void inline_speed 1845unsigned int
1289call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1290{ 1859{
1291 int pri; 1860 int pri;
1292 1861
1293 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1294 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1295 { 1864 {
1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1297 1866
1298 if (expect_true (p->w))
1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1301 1869
1302 p->w->pending = 0; 1870 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1304 } 1872 EV_FREQUENT_CHECK;
1305 } 1873 }
1306} 1874}
1307 1875
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387
1388#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1389void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1390idle_reify (EV_P) 1880idle_reify (EV_P)
1391{ 1881{
1392 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1393 { 1883 {
1394 int pri; 1884 int pri;
1406 } 1896 }
1407 } 1897 }
1408} 1898}
1409#endif 1899#endif
1410 1900
1411void inline_speed 1901/* make timers pending */
1902inline_size void
1903timers_reify (EV_P)
1904{
1905 EV_FREQUENT_CHECK;
1906
1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1908 {
1909 do
1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923
1924 ANHE_at_cache (timers [HEAP0]);
1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1932 }
1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934
1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1936 }
1937}
1938
1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1941inline_size void
1942periodics_reify (EV_P)
1943{
1944 EV_FREQUENT_CHECK;
1945
1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1947 {
1948 int feed_count = 0;
1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1412time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1413{ 2039{
1414 int i;
1415
1416#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1418 { 2042 {
2043 int i;
1419 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1420 2045
1421 mn_now = get_clock (); 2046 mn_now = get_clock ();
1422 2047
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1441 */ 2066 */
1442 for (i = 4; --i; ) 2067 for (i = 4; --i; )
1443 { 2068 {
1444 rtmn_diff = ev_rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1445 2070
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 2072 return; /* all is well */
1448 2073
1449 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 2075 mn_now = get_clock ();
1451 now_floor = mn_now; 2076 now_floor = mn_now;
1452 } 2077 }
1453 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1456# endif 2083# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 } 2084 }
1460 else 2085 else
1461#endif 2086#endif
1462 { 2087 {
1463 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1464 2089
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1467#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1469#endif 2096#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i)
1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1473 } 2097 }
1474 2098
1475 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1476 } 2100 }
1477} 2101}
1478 2102
1479void 2103void
1480ev_ref (EV_P)
1481{
1482 ++activecnt;
1483}
1484
1485void
1486ev_unref (EV_P)
1487{
1488 --activecnt;
1489}
1490
1491static int loop_done;
1492
1493void
1494ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1495{ 2105{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2106#if EV_MINIMAL < 2
1497 ? EVUNLOOP_ONE 2107 ++loop_depth;
1498 : EVUNLOOP_CANCEL; 2108#endif
1499 2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1501 2115
1502 do 2116 do
1503 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
1504#ifndef _WIN32 2122#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 2123 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 2124 if (expect_false (getpid () != curpid))
1507 { 2125 {
1508 curpid = getpid (); 2126 curpid = getpid ();
1514 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1516 if (forkcnt) 2134 if (forkcnt)
1517 { 2135 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1520 } 2138 }
1521#endif 2139#endif
1522 2140
1523 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1524 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1525 { 2143 {
1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1527 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1528 } 2146 }
1529 2147
1530 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1531 break; 2149 break;
1532 2150
1533 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1534 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1535 loop_fork (EV_A); 2153 loop_fork (EV_A);
1542 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
1544 2162
1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1546 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1547 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1548 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
1549 2170
1550 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1551 2172
1552 if (timercnt) 2173 if (timercnt)
1553 { 2174 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 2176 if (waittime > to) waittime = to;
1556 } 2177 }
1557 2178
1558#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 2180 if (periodiccnt)
1560 { 2181 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
1563 } 2184 }
1564#endif 2185#endif
1565 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
1566 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
1568 2190
1569 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
1570
1571 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
1576 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
1577 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
1578 } 2204 }
1579 } 2205 }
1580 2206
2207#if EV_MINIMAL < 2
1581 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1582 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1583 2213
1584 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1585 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
1586 } 2216 }
1587 2217
1598 2228
1599 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1602 2232
1603 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1604
1605 } 2234 }
1606 while (expect_true (activecnt && !loop_done)); 2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
1607 2240
1608 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1610} 2247}
1611 2248
1612void 2249void
1613ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1614{ 2251{
1615 loop_done = how; 2252 loop_done = how;
1616} 2253}
1617 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1618/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1619 2294
1620void inline_size 2295inline_size void
1621wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1622{ 2297{
1623 elem->next = *head; 2298 elem->next = *head;
1624 *head = elem; 2299 *head = elem;
1625} 2300}
1626 2301
1627void inline_size 2302inline_size void
1628wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1629{ 2304{
1630 while (*head) 2305 while (*head)
1631 { 2306 {
1632 if (*head == elem) 2307 if (*head == elem)
1637 2312
1638 head = &(*head)->next; 2313 head = &(*head)->next;
1639 } 2314 }
1640} 2315}
1641 2316
1642void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
1643clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1644{ 2320{
1645 if (w->pending) 2321 if (w->pending)
1646 { 2322 {
1647 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1648 w->pending = 0; 2324 w->pending = 0;
1649 } 2325 }
1650} 2326}
1651 2327
1652int 2328int
1656 int pending = w_->pending; 2332 int pending = w_->pending;
1657 2333
1658 if (expect_true (pending)) 2334 if (expect_true (pending))
1659 { 2335 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
1661 w_->pending = 0; 2338 w_->pending = 0;
1662 p->w = 0;
1663 return p->events; 2339 return p->events;
1664 } 2340 }
1665 else 2341 else
1666 return 0; 2342 return 0;
1667} 2343}
1668 2344
1669void inline_size 2345inline_size void
1670pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
1671{ 2347{
1672 int pri = w->priority; 2348 int pri = ev_priority (w);
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri; 2351 ev_set_priority (w, pri);
1676} 2352}
1677 2353
1678void inline_speed 2354inline_speed void
1679ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1680{ 2356{
1681 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
1682 w->active = active; 2358 w->active = active;
1683 ev_ref (EV_A); 2359 ev_ref (EV_A);
1684} 2360}
1685 2361
1686void inline_size 2362inline_size void
1687ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1688{ 2364{
1689 ev_unref (EV_A); 2365 ev_unref (EV_A);
1690 w->active = 0; 2366 w->active = 0;
1691} 2367}
1698 int fd = w->fd; 2374 int fd = w->fd;
1699 2375
1700 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1701 return; 2377 return;
1702 2378
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1704 2383
1705 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1707 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1708 2387
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1710 w->events &= ~EV_IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2390
2391 EV_FREQUENT_CHECK;
1711} 2392}
1712 2393
1713void noinline 2394void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1715{ 2396{
1716 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1718 return; 2399 return;
1719 2400
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
1721 2404
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1724 2407
1725 fd_change (EV_A_ w->fd, 1); 2408 fd_change (EV_A_ w->fd, 1);
2409
2410 EV_FREQUENT_CHECK;
1726} 2411}
1727 2412
1728void noinline 2413void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1730{ 2415{
1731 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1732 return; 2417 return;
1733 2418
1734 ((WT)w)->at += mn_now; 2419 ev_at (w) += mn_now;
1735 2420
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
1742 2431
2432 EV_FREQUENT_CHECK;
2433
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2435}
1745 2436
1746void noinline 2437void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2439{
1749 clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1751 return; 2442 return;
1752 2443
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2444 EV_FREQUENT_CHECK;
1754 2445
1755 { 2446 {
1756 int active = ((W)w)->active; 2447 int active = ev_active (w);
1757 2448
2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450
2451 --timercnt;
2452
1758 if (expect_true (--active < --timercnt)) 2453 if (expect_true (active < timercnt + HEAP0))
1759 { 2454 {
1760 timers [active] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2456 adjustheap (timers, timercnt, active);
1762 } 2457 }
1763 } 2458 }
1764 2459
1765 ((WT)w)->at -= mn_now; 2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
1766 2463
1767 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1768} 2465}
1769 2466
1770void noinline 2467void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1772{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1773 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1774 { 2473 {
1775 if (w->repeat) 2474 if (w->repeat)
1776 { 2475 {
1777 ((WT)w)->at = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2478 adjustheap (timers, timercnt, ev_active (w));
1779 } 2479 }
1780 else 2480 else
1781 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1782 } 2482 }
1783 else if (w->repeat) 2483 else if (w->repeat)
1784 { 2484 {
1785 w->at = w->repeat; 2485 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1787 } 2487 }
2488
2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1788} 2496}
1789 2497
1790#if EV_PERIODIC_ENABLE 2498#if EV_PERIODIC_ENABLE
1791void noinline 2499void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2501{
1794 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1795 return; 2503 return;
1796 2504
1797 if (w->reschedule_cb) 2505 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2507 else if (w->interval)
1800 { 2508 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2512 }
1805 else 2513 else
1806 ((WT)w)->at = w->offset; 2514 ev_at (w) = w->offset;
1807 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2522 ANHE_at_cache (periodics [ev_active (w)]);
2523 upheap (periodics, ev_active (w));
1812 2524
2525 EV_FREQUENT_CHECK;
2526
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2528}
1815 2529
1816void noinline 2530void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2532{
1819 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
1821 return; 2535 return;
1822 2536
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2537 EV_FREQUENT_CHECK;
1824 2538
1825 { 2539 {
1826 int active = ((W)w)->active; 2540 int active = ev_active (w);
1827 2541
2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2543
2544 --periodiccnt;
2545
1828 if (expect_true (--active < --periodiccnt)) 2546 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2547 {
1830 periodics [active] = periodics [periodiccnt]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2549 adjustheap (periodics, periodiccnt, active);
1832 } 2550 }
1833 } 2551 }
1834 2552
2553 EV_FREQUENT_CHECK;
2554
1835 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1836} 2556}
1837 2557
1838void noinline 2558void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2559ev_periodic_again (EV_P_ ev_periodic *w)
1850 2570
1851void noinline 2571void noinline
1852ev_signal_start (EV_P_ ev_signal *w) 2572ev_signal_start (EV_P_ ev_signal *w)
1853{ 2573{
1854#if EV_MULTIPLICITY 2574#if EV_MULTIPLICITY
1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1856#endif 2576#endif
1857 if (expect_false (ev_is_active (w))) 2577 if (expect_false (ev_is_active (w)))
1858 return; 2578 return;
1859 2579
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2581
2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
1861 2585
1862 { 2586 {
1863#ifndef _WIN32 2587#ifndef _WIN32
1864 sigset_t full, prev; 2588 sigset_t full, prev;
1865 sigfillset (&full); 2589 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev); 2590 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif 2591#endif
1868 2592
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1870 2594
1871#ifndef _WIN32 2595#ifndef _WIN32
1872 sigprocmask (SIG_SETMASK, &prev, 0); 2596 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif 2597#endif
1874 } 2598 }
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2601 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2602
1879 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
1880 { 2604 {
1881#if _WIN32 2605#if _WIN32
1882 signal (w->signum, sighandler); 2606 signal (w->signum, ev_sighandler);
1883#else 2607#else
1884 struct sigaction sa; 2608 struct sigaction sa = { };
1885 sa.sa_handler = sighandler; 2609 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
1889#endif 2613#endif
1890 } 2614 }
2615
2616 EV_FREQUENT_CHECK;
1891} 2617}
1892 2618
1893void noinline 2619void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2621{
1896 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
1898 return; 2624 return;
1899 2625
2626 EV_FREQUENT_CHECK;
2627
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2629 ev_stop (EV_A_ (W)w);
1902 2630
1903 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
1904 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
2633
2634 EV_FREQUENT_CHECK;
1905} 2635}
1906 2636
1907void 2637void
1908ev_child_start (EV_P_ ev_child *w) 2638ev_child_start (EV_P_ ev_child *w)
1909{ 2639{
1910#if EV_MULTIPLICITY 2640#if EV_MULTIPLICITY
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2642#endif
1913 if (expect_false (ev_is_active (w))) 2643 if (expect_false (ev_is_active (w)))
1914 return; 2644 return;
1915 2645
2646 EV_FREQUENT_CHECK;
2647
1916 ev_start (EV_A_ (W)w, 1); 2648 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2650
2651 EV_FREQUENT_CHECK;
1918} 2652}
1919 2653
1920void 2654void
1921ev_child_stop (EV_P_ ev_child *w) 2655ev_child_stop (EV_P_ ev_child *w)
1922{ 2656{
1923 clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
1925 return; 2659 return;
1926 2660
2661 EV_FREQUENT_CHECK;
2662
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
1929} 2667}
1930 2668
1931#if EV_STAT_ENABLE 2669#if EV_STAT_ENABLE
1932 2670
1933# ifdef _WIN32 2671# ifdef _WIN32
1934# undef lstat 2672# undef lstat
1935# define lstat(a,b) _stati64 (a,b) 2673# define lstat(a,b) _stati64 (a,b)
1936# endif 2674# endif
1937 2675
1938#define DEF_STAT_INTERVAL 5.0074891 2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1939#define MIN_STAT_INTERVAL 0.1074891 2678#define MIN_STAT_INTERVAL 0.1074891
1940 2679
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942 2681
1943#if EV_USE_INOTIFY 2682#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192 2683# define EV_INOTIFY_BUFSIZE 8192
1948{ 2687{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950 2689
1951 if (w->wd < 0) 2690 if (w->wd < 0)
1952 { 2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954 2694
1955 /* monitor some parent directory for speedup hints */ 2695 /* monitor some parent directory for speedup hints */
2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2697 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2699 {
1958 char path [4096]; 2700 char path [4096];
1959 strcpy (path, w->path); 2701 strcpy (path, w->path);
1960 2702
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965 2707
1966 char *pend = strrchr (path, '/'); 2708 char *pend = strrchr (path, '/');
1967 2709
1968 if (!pend) 2710 if (!pend || pend == path)
1969 break; /* whoops, no '/', complain to your admin */ 2711 break;
1970 2712
1971 *pend = 0; 2713 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask); 2714 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 } 2715 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 } 2717 }
1976 } 2718 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979 2719
1980 if (w->wd >= 0) 2720 if (w->wd >= 0)
2721 {
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
1982} 2741}
1983 2742
1984static void noinline 2743static void noinline
1985infy_del (EV_P_ ev_stat *w) 2744infy_del (EV_P_ ev_stat *w)
1986{ 2745{
2000 2759
2001static void noinline 2760static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 2762{
2004 if (slot < 0) 2763 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 2764 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 2766 infy_wd (EV_A_ slot, wd, ev);
2008 else 2767 else
2009 { 2768 {
2010 WL w_; 2769 WL w_;
2016 2775
2017 if (w->wd == wd || wd == -1) 2776 if (w->wd == wd || wd == -1)
2018 { 2777 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 { 2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2021 w->wd = -1; 2781 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */ 2782 infy_add (EV_A_ w); /* re-add, no matter what */
2023 } 2783 }
2024 2784
2025 stat_timer_cb (EV_A_ &w->timer, 0); 2785 stat_timer_cb (EV_A_ &w->timer, 0);
2038 2798
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2041} 2801}
2042 2802
2043void inline_size 2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2044infy_init (EV_P) 2827infy_init (EV_P)
2045{ 2828{
2046 if (fs_fd != -2) 2829 if (fs_fd != -2)
2047 return; 2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2048 2835
2049 fs_fd = inotify_init (); 2836 fs_fd = inotify_init ();
2050 2837
2051 if (fs_fd >= 0) 2838 if (fs_fd >= 0)
2052 { 2839 {
2054 ev_set_priority (&fs_w, EV_MAXPRI); 2841 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w); 2842 ev_io_start (EV_A_ &fs_w);
2056 } 2843 }
2057} 2844}
2058 2845
2059void inline_size 2846inline_size void
2060infy_fork (EV_P) 2847infy_fork (EV_P)
2061{ 2848{
2062 int slot; 2849 int slot;
2063 2850
2064 if (fs_fd < 0) 2851 if (fs_fd < 0)
2080 w->wd = -1; 2867 w->wd = -1;
2081 2868
2082 if (fs_fd >= 0) 2869 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 2870 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 2871 else
2085 ev_timer_start (EV_A_ &w->timer); 2872 ev_timer_again (EV_A_ &w->timer);
2086 } 2873 }
2087
2088 } 2874 }
2089} 2875}
2090 2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 2883#endif
2092 2884
2093void 2885void
2094ev_stat_stat (EV_P_ ev_stat *w) 2886ev_stat_stat (EV_P_ ev_stat *w)
2095{ 2887{
2122 || w->prev.st_atime != w->attr.st_atime 2914 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 2915 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 2916 || w->prev.st_ctime != w->attr.st_ctime
2125 ) { 2917 ) {
2126 #if EV_USE_INOTIFY 2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2127 infy_del (EV_A_ w); 2921 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 2922 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2130 #endif 2925 #endif
2131 2926
2132 ev_feed_event (EV_A_ w, EV_STAT); 2927 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 2928 }
2134} 2929}
2137ev_stat_start (EV_P_ ev_stat *w) 2932ev_stat_start (EV_P_ ev_stat *w)
2138{ 2933{
2139 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
2140 return; 2935 return;
2141 2936
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w); 2937 ev_stat_stat (EV_A_ w);
2147 2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2148 if (w->interval < MIN_STAT_INTERVAL) 2940 w->interval = MIN_STAT_INTERVAL;
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150 2941
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2152 ev_set_priority (&w->timer, ev_priority (w)); 2943 ev_set_priority (&w->timer, ev_priority (w));
2153 2944
2154#if EV_USE_INOTIFY 2945#if EV_USE_INOTIFY
2155 infy_init (EV_A); 2946 infy_init (EV_A);
2156 2947
2157 if (fs_fd >= 0) 2948 if (fs_fd >= 0)
2158 infy_add (EV_A_ w); 2949 infy_add (EV_A_ w);
2159 else 2950 else
2160#endif 2951#endif
2161 ev_timer_start (EV_A_ &w->timer); 2952 ev_timer_again (EV_A_ &w->timer);
2162 2953
2163 ev_start (EV_A_ (W)w, 1); 2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2164} 2957}
2165 2958
2166void 2959void
2167ev_stat_stop (EV_P_ ev_stat *w) 2960ev_stat_stop (EV_P_ ev_stat *w)
2168{ 2961{
2169 clear_pending (EV_A_ (W)w); 2962 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 2963 if (expect_false (!ev_is_active (w)))
2171 return; 2964 return;
2172 2965
2966 EV_FREQUENT_CHECK;
2967
2173#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 2969 infy_del (EV_A_ w);
2175#endif 2970#endif
2176 ev_timer_stop (EV_A_ &w->timer); 2971 ev_timer_stop (EV_A_ &w->timer);
2177 2972
2178 ev_stop (EV_A_ (W)w); 2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2179} 2976}
2180#endif 2977#endif
2181 2978
2182#if EV_IDLE_ENABLE 2979#if EV_IDLE_ENABLE
2183void 2980void
2185{ 2982{
2186 if (expect_false (ev_is_active (w))) 2983 if (expect_false (ev_is_active (w)))
2187 return; 2984 return;
2188 2985
2189 pri_adjust (EV_A_ (W)w); 2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2190 2989
2191 { 2990 {
2192 int active = ++idlecnt [ABSPRI (w)]; 2991 int active = ++idlecnt [ABSPRI (w)];
2193 2992
2194 ++idleall; 2993 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 2994 ev_start (EV_A_ (W)w, active);
2196 2995
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 2997 idles [ABSPRI (w)][active - 1] = w;
2199 } 2998 }
2999
3000 EV_FREQUENT_CHECK;
2200} 3001}
2201 3002
2202void 3003void
2203ev_idle_stop (EV_P_ ev_idle *w) 3004ev_idle_stop (EV_P_ ev_idle *w)
2204{ 3005{
2205 clear_pending (EV_A_ (W)w); 3006 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 3007 if (expect_false (!ev_is_active (w)))
2207 return; 3008 return;
2208 3009
3010 EV_FREQUENT_CHECK;
3011
2209 { 3012 {
2210 int active = ((W)w)->active; 3013 int active = ev_active (w);
2211 3014
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 3017
2215 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
2216 --idleall; 3019 --idleall;
2217 } 3020 }
3021
3022 EV_FREQUENT_CHECK;
2218} 3023}
2219#endif 3024#endif
2220 3025
2221void 3026void
2222ev_prepare_start (EV_P_ ev_prepare *w) 3027ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 3028{
2224 if (expect_false (ev_is_active (w))) 3029 if (expect_false (ev_is_active (w)))
2225 return; 3030 return;
3031
3032 EV_FREQUENT_CHECK;
2226 3033
2227 ev_start (EV_A_ (W)w, ++preparecnt); 3034 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
2230} 3039}
2231 3040
2232void 3041void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 3042ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 3043{
2235 clear_pending (EV_A_ (W)w); 3044 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 3045 if (expect_false (!ev_is_active (w)))
2237 return; 3046 return;
2238 3047
3048 EV_FREQUENT_CHECK;
3049
2239 { 3050 {
2240 int active = ((W)w)->active; 3051 int active = ev_active (w);
3052
2241 prepares [active - 1] = prepares [--preparecnt]; 3053 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 3054 ev_active (prepares [active - 1]) = active;
2243 } 3055 }
2244 3056
2245 ev_stop (EV_A_ (W)w); 3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
2246} 3060}
2247 3061
2248void 3062void
2249ev_check_start (EV_P_ ev_check *w) 3063ev_check_start (EV_P_ ev_check *w)
2250{ 3064{
2251 if (expect_false (ev_is_active (w))) 3065 if (expect_false (ev_is_active (w)))
2252 return; 3066 return;
3067
3068 EV_FREQUENT_CHECK;
2253 3069
2254 ev_start (EV_A_ (W)w, ++checkcnt); 3070 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
2257} 3075}
2258 3076
2259void 3077void
2260ev_check_stop (EV_P_ ev_check *w) 3078ev_check_stop (EV_P_ ev_check *w)
2261{ 3079{
2262 clear_pending (EV_A_ (W)w); 3080 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 3081 if (expect_false (!ev_is_active (w)))
2264 return; 3082 return;
2265 3083
3084 EV_FREQUENT_CHECK;
3085
2266 { 3086 {
2267 int active = ((W)w)->active; 3087 int active = ev_active (w);
3088
2268 checks [active - 1] = checks [--checkcnt]; 3089 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 3090 ev_active (checks [active - 1]) = active;
2270 } 3091 }
2271 3092
2272 ev_stop (EV_A_ (W)w); 3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
2273} 3096}
2274 3097
2275#if EV_EMBED_ENABLE 3098#if EV_EMBED_ENABLE
2276void noinline 3099void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 3100ev_embed_sweep (EV_P_ ev_embed *w)
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 } 3128 }
2306 } 3129 }
2307} 3130}
2308 3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
2309#if 0 3149#if 0
2310static void 3150static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 3152{
2313 ev_idle_stop (EV_A_ idle); 3153 ev_idle_stop (EV_A_ idle);
2320 if (expect_false (ev_is_active (w))) 3160 if (expect_false (ev_is_active (w)))
2321 return; 3161 return;
2322 3162
2323 { 3163 {
2324 struct ev_loop *loop = w->other; 3164 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 3167 }
3168
3169 EV_FREQUENT_CHECK;
2328 3170
2329 ev_set_priority (&w->io, ev_priority (w)); 3171 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 3172 ev_io_start (EV_A_ &w->io);
2331 3173
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 3175 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 3176 ev_prepare_start (EV_A_ &w->prepare);
2335 3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 3182
2338 ev_start (EV_A_ (W)w, 1); 3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
2339} 3186}
2340 3187
2341void 3188void
2342ev_embed_stop (EV_P_ ev_embed *w) 3189ev_embed_stop (EV_P_ ev_embed *w)
2343{ 3190{
2344 clear_pending (EV_A_ (W)w); 3191 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 3192 if (expect_false (!ev_is_active (w)))
2346 return; 3193 return;
2347 3194
3195 EV_FREQUENT_CHECK;
3196
2348 ev_io_stop (EV_A_ &w->io); 3197 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
2350 3200
2351 ev_stop (EV_A_ (W)w); 3201 EV_FREQUENT_CHECK;
2352} 3202}
2353#endif 3203#endif
2354 3204
2355#if EV_FORK_ENABLE 3205#if EV_FORK_ENABLE
2356void 3206void
2357ev_fork_start (EV_P_ ev_fork *w) 3207ev_fork_start (EV_P_ ev_fork *w)
2358{ 3208{
2359 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2360 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
2361 3213
2362 ev_start (EV_A_ (W)w, ++forkcnt); 3214 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
2365} 3219}
2366 3220
2367void 3221void
2368ev_fork_stop (EV_P_ ev_fork *w) 3222ev_fork_stop (EV_P_ ev_fork *w)
2369{ 3223{
2370 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2372 return; 3226 return;
2373 3227
3228 EV_FREQUENT_CHECK;
3229
2374 { 3230 {
2375 int active = ((W)w)->active; 3231 int active = ev_active (w);
3232
2376 forks [active - 1] = forks [--forkcnt]; 3233 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 3234 ev_active (forks [active - 1]) = active;
2378 } 3235 }
2379 3236
2380 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
3240}
3241#endif
3242
3243#if EV_ASYNC_ENABLE
3244void
3245ev_async_start (EV_P_ ev_async *w)
3246{
3247 if (expect_false (ev_is_active (w)))
3248 return;
3249
3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
3253
3254 ev_start (EV_A_ (W)w, ++asynccnt);
3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
3259}
3260
3261void
3262ev_async_stop (EV_P_ ev_async *w)
3263{
3264 clear_pending (EV_A_ (W)w);
3265 if (expect_false (!ev_is_active (w)))
3266 return;
3267
3268 EV_FREQUENT_CHECK;
3269
3270 {
3271 int active = ev_active (w);
3272
3273 asyncs [active - 1] = asyncs [--asynccnt];
3274 ev_active (asyncs [active - 1]) = active;
3275 }
3276
3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
3280}
3281
3282void
3283ev_async_send (EV_P_ ev_async *w)
3284{
3285 w->sent = 1;
3286 evpipe_write (EV_A_ &gotasync);
2381} 3287}
2382#endif 3288#endif
2383 3289
2384/*****************************************************************************/ 3290/*****************************************************************************/
2385 3291
2395once_cb (EV_P_ struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3302{
2397 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3304 void *arg = once->arg;
2399 3305
2400 ev_io_stop (EV_A_ &once->io); 3306 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3307 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3308 ev_free (once);
2403 3309
2404 cb (revents, arg); 3310 cb (revents, arg);
2405} 3311}
2406 3312
2407static void 3313static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3315{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3319}
2412 3320
2413static void 3321static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3323{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3327}
2418 3328
2419void 3329void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3331{
2443 ev_timer_set (&once->to, timeout, 0.); 3353 ev_timer_set (&once->to, timeout, 0.);
2444 ev_timer_start (EV_A_ &once->to); 3354 ev_timer_start (EV_A_ &once->to);
2445 } 3355 }
2446} 3356}
2447 3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
3370 {
3371 wn = wl->next;
3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
3391 }
3392
3393 if (types & (EV_TIMER | EV_STAT))
3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3398 {
3399 if (types & EV_STAT)
3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3401 }
3402 else
3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3406
3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
3412
3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
3419
3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
3426
3427#if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431#endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435#if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437#endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461/* EV_STAT 0x00001000 /* stat data changed */
3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463}
3464#endif
3465
2448#if EV_MULTIPLICITY 3466#if EV_MULTIPLICITY
2449 #include "ev_wrap.h" 3467 #include "ev_wrap.h"
2450#endif 3468#endif
2451 3469
2452#ifdef __cplusplus 3470#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines