ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
127#include <fcntl.h> 158#include <fcntl.h>
145#ifndef _WIN32 176#ifndef _WIN32
146# include <sys/time.h> 177# include <sys/time.h>
147# include <sys/wait.h> 178# include <sys/wait.h>
148# include <unistd.h> 179# include <unistd.h>
149#else 180#else
181# include <io.h>
150# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 183# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
154# endif 186# endif
155#endif 187#endif
156 188
157/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
225#ifndef EV_USE_CLOCK_SYSCALL
226# if __linux && __GLIBC__ >= 2
227# define EV_USE_CLOCK_SYSCALL 1
228# else
229# define EV_USE_CLOCK_SYSCALL 0
230# endif
231#endif
158 232
159#ifndef EV_USE_MONOTONIC 233#ifndef EV_USE_MONOTONIC
234# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235# define EV_USE_MONOTONIC 1
236# else
160# define EV_USE_MONOTONIC 0 237# define EV_USE_MONOTONIC 0
238# endif
161#endif 239#endif
162 240
163#ifndef EV_USE_REALTIME 241#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 243#endif
166 244
167#ifndef EV_USE_NANOSLEEP 245#ifndef EV_USE_NANOSLEEP
246# if _POSIX_C_SOURCE >= 199309L
247# define EV_USE_NANOSLEEP 1
248# else
168# define EV_USE_NANOSLEEP 0 249# define EV_USE_NANOSLEEP 0
250# endif
169#endif 251#endif
170 252
171#ifndef EV_USE_SELECT 253#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 254# define EV_USE_SELECT 1
173#endif 255#endif
179# define EV_USE_POLL 1 261# define EV_USE_POLL 1
180# endif 262# endif
181#endif 263#endif
182 264
183#ifndef EV_USE_EPOLL 265#ifndef EV_USE_EPOLL
266# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267# define EV_USE_EPOLL 1
268# else
184# define EV_USE_EPOLL 0 269# define EV_USE_EPOLL 0
270# endif
185#endif 271#endif
186 272
187#ifndef EV_USE_KQUEUE 273#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 274# define EV_USE_KQUEUE 0
189#endif 275#endif
191#ifndef EV_USE_PORT 277#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 278# define EV_USE_PORT 0
193#endif 279#endif
194 280
195#ifndef EV_USE_INOTIFY 281#ifndef EV_USE_INOTIFY
282# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283# define EV_USE_INOTIFY 1
284# else
196# define EV_USE_INOTIFY 0 285# define EV_USE_INOTIFY 0
286# endif
197#endif 287#endif
198 288
199#ifndef EV_PID_HASHSIZE 289#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 290# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 291# define EV_PID_HASHSIZE 1
210# else 300# else
211# define EV_INOTIFY_HASHSIZE 16 301# define EV_INOTIFY_HASHSIZE 16
212# endif 302# endif
213#endif 303#endif
214 304
215/**/ 305#ifndef EV_USE_EVENTFD
306# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307# define EV_USE_EVENTFD 1
308# else
309# define EV_USE_EVENTFD 0
310# endif
311#endif
312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
321#if 0 /* debugging */
322# define EV_VERIFY 3
323# define EV_USE_4HEAP 1
324# define EV_HEAP_CACHE_AT 1
325#endif
326
327#ifndef EV_VERIFY
328# define EV_VERIFY !EV_MINIMAL
329#endif
330
331#ifndef EV_USE_4HEAP
332# define EV_USE_4HEAP !EV_MINIMAL
333#endif
334
335#ifndef EV_HEAP_CACHE_AT
336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
351#endif
352
353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 354
217#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
220#endif 358#endif
234# include <sys/select.h> 372# include <sys/select.h>
235# endif 373# endif
236#endif 374#endif
237 375
238#if EV_USE_INOTIFY 376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
239# include <sys/inotify.h> 379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
240#endif 385#endif
241 386
242#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 388# include <winsock.h>
244#endif 389#endif
245 390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
400# ifdef __cplusplus
401extern "C" {
402# endif
403int eventfd (unsigned int initval, int flags);
404# ifdef __cplusplus
405}
406# endif
407#endif
408
409#if EV_USE_SIGNALFD
410# include <sys/signalfd.h>
411#endif
412
246/**/ 413/**/
414
415#if EV_VERIFY >= 3
416# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417#else
418# define EV_FREQUENT_CHECK do { } while (0)
419#endif
247 420
248/* 421/*
249 * This is used to avoid floating point rounding problems. 422 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 423 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 424 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 436# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 437# define noinline __attribute__ ((noinline))
265#else 438#else
266# define expect(expr,value) (expr) 439# define expect(expr,value) (expr)
267# define noinline 440# define noinline
268# if __STDC_VERSION__ < 199901L 441# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 442# define inline
270# endif 443# endif
271#endif 444#endif
272 445
273#define expect_false(expr) expect ((expr) != 0, 0) 446#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 451# define inline_speed static noinline
279#else 452#else
280# define inline_speed static inline 453# define inline_speed static inline
281#endif 454#endif
282 455
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
285 463
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 464#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 465#define EMPTY2(a,b) /* used to suppress some warnings */
288 466
289typedef ev_watcher *W; 467typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 468typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
292 470
293#if EV_USE_MONOTONIC 471#define ev_active(w) ((W)(w))->active
472#define ev_at(w) ((WT)(w))->at
473
474#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
479
480#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 482#endif
298 483
299#ifdef _WIN32 484#ifdef _WIN32
300# include "ev_win32.c" 485# include "ev_win32.c"
301#endif 486#endif
309{ 494{
310 syserr_cb = cb; 495 syserr_cb = cb;
311} 496}
312 497
313static void noinline 498static void noinline
314syserr (const char *msg) 499ev_syserr (const char *msg)
315{ 500{
316 if (!msg) 501 if (!msg)
317 msg = "(libev) system error"; 502 msg = "(libev) system error";
318 503
319 if (syserr_cb) 504 if (syserr_cb)
323 perror (msg); 508 perror (msg);
324 abort (); 509 abort ();
325 } 510 }
326} 511}
327 512
513static void *
514ev_realloc_emul (void *ptr, long size)
515{
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526}
527
328static void *(*alloc)(void *ptr, long size); 528static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 529
330void 530void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 531ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 532{
333 alloc = cb; 533 alloc = cb;
334} 534}
335 535
336inline_speed void * 536inline_speed void *
337ev_realloc (void *ptr, long size) 537ev_realloc (void *ptr, long size)
338{ 538{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 539 ptr = alloc (ptr, size);
340 540
341 if (!ptr && size) 541 if (!ptr && size)
342 { 542 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 544 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 550#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 551#define ev_free(ptr) ev_realloc ((ptr), 0)
352 552
353/*****************************************************************************/ 553/*****************************************************************************/
354 554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
355typedef struct 559typedef struct
356{ 560{
357 WL head; 561 WL head;
358 unsigned char events; 562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 565 unsigned char unused;
566#if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568#endif
360#if EV_SELECT_IS_WINSOCKET 569#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 570 SOCKET handle;
362#endif 571#endif
363} ANFD; 572} ANFD;
364 573
574/* stores the pending event set for a given watcher */
365typedef struct 575typedef struct
366{ 576{
367 W w; 577 W w;
368 int events; 578 int events; /* the pending event set for the given watcher */
369} ANPENDING; 579} ANPENDING;
370 580
371#if EV_USE_INOTIFY 581#if EV_USE_INOTIFY
582/* hash table entry per inotify-id */
372typedef struct 583typedef struct
373{ 584{
374 WL head; 585 WL head;
375} ANFS; 586} ANFS;
587#endif
588
589/* Heap Entry */
590#if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600#else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
376#endif 607#endif
377 608
378#if EV_MULTIPLICITY 609#if EV_MULTIPLICITY
379 610
380 struct ev_loop 611 struct ev_loop
399 630
400 static int ev_default_loop_ptr; 631 static int ev_default_loop_ptr;
401 632
402#endif 633#endif
403 634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
646
404/*****************************************************************************/ 647/*****************************************************************************/
405 648
649#ifndef EV_HAVE_EV_TIME
406ev_tstamp 650ev_tstamp
407ev_time (void) 651ev_time (void)
408{ 652{
409#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
410 struct timespec ts; 656 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 659 }
660#endif
661
414 struct timeval tv; 662 struct timeval tv;
415 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 665}
666#endif
419 667
420ev_tstamp inline_size 668inline_size ev_tstamp
421get_clock (void) 669get_clock (void)
422{ 670{
423#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 672 if (expect_true (have_monotonic))
425 { 673 {
451 ts.tv_sec = (time_t)delay; 699 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 701
454 nanosleep (&ts, 0); 702 nanosleep (&ts, 0);
455#elif defined(_WIN32) 703#elif defined(_WIN32)
456 Sleep (delay * 1e3); 704 Sleep ((unsigned long)(delay * 1e3));
457#else 705#else
458 struct timeval tv; 706 struct timeval tv;
459 707
460 tv.tv_sec = (time_t)delay; 708 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
463 select (0, 0, 0, 0, &tv); 714 select (0, 0, 0, 0, &tv);
464#endif 715#endif
465 } 716 }
466} 717}
467 718
468/*****************************************************************************/ 719/*****************************************************************************/
469 720
470int inline_size 721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722
723/* find a suitable new size for the given array, */
724/* hopefully by rounding to a ncie-to-malloc size */
725inline_size int
471array_nextsize (int elem, int cur, int cnt) 726array_nextsize (int elem, int cur, int cnt)
472{ 727{
473 int ncur = cur + 1; 728 int ncur = cur + 1;
474 729
475 do 730 do
476 ncur <<= 1; 731 ncur <<= 1;
477 while (cnt > ncur); 732 while (cnt > ncur);
478 733
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 736 {
482 ncur *= elem; 737 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 739 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 740 ncur /= elem;
486 } 741 }
487 742
488 return ncur; 743 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 747array_realloc (int elem, void *base, int *cur, int cnt)
493{ 748{
494 *cur = array_nextsize (elem, *cur, cnt); 749 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 750 return ev_realloc (base, elem * *cur);
496} 751}
752
753#define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 755
498#define array_needsize(type,base,cur,cnt,init) \ 756#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 757 if (expect_false ((cnt) > (cur))) \
500 { \ 758 { \
501 int ocur_ = (cur); \ 759 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 772 }
515#endif 773#endif
516 774
517#define array_free(stem, idx) \ 775#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 777
520/*****************************************************************************/ 778/*****************************************************************************/
779
780/* dummy callback for pending events */
781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
783{
784}
521 785
522void noinline 786void noinline
523ev_feed_event (EV_P_ void *w, int revents) 787ev_feed_event (EV_P_ void *w, int revents)
524{ 788{
525 W w_ = (W)w; 789 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 798 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 799 pendings [pri][w_->pending - 1].events = revents;
536 } 800 }
537} 801}
538 802
539void inline_speed 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 820{
542 int i; 821 int i;
543 822
544 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
546} 825}
547 826
548/*****************************************************************************/ 827/*****************************************************************************/
549 828
550void inline_size 829inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 830fd_event_nc (EV_P_ int fd, int revents)
565{ 831{
566 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
567 ev_io *w; 833 ev_io *w;
568 834
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 839 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
575 } 841 }
576} 842}
577 843
844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853}
854
578void 855void
579ev_feed_fd_event (EV_P_ int fd, int revents) 856ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 857{
581 if (fd >= 0 && fd < anfdmax) 858 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 859 fd_event_nc (EV_A_ fd, revents);
583} 860}
584 861
585void inline_size 862/* make sure the external fd watch events are in-sync */
863/* with the kernel/libev internal state */
864inline_size void
586fd_reify (EV_P) 865fd_reify (EV_P)
587{ 866{
588 int i; 867 int i;
589 868
590 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 878 events |= (unsigned char)w->events;
600 879
601#if EV_SELECT_IS_WINSOCKET 880#if EV_SELECT_IS_WINSOCKET
602 if (events) 881 if (events)
603 { 882 {
604 unsigned long argp; 883 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 884 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 886 #else
608 anfd->handle = _get_osfhandle (fd); 887 anfd->handle = _get_osfhandle (fd);
609 #endif 888 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 890 }
612#endif 891#endif
613 892
614 { 893 {
615 unsigned char o_events = anfd->events; 894 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 895 unsigned char o_reify = anfd->reify;
617 896
618 anfd->reify = 0; 897 anfd->reify = 0;
619 anfd->events = events; 898 anfd->events = events;
620 899
621 if (o_events != events || o_reify & EV_IOFDSET) 900 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 901 backend_modify (EV_A_ fd, o_events, events);
623 } 902 }
624 } 903 }
625 904
626 fdchangecnt = 0; 905 fdchangecnt = 0;
627} 906}
628 907
629void inline_size 908/* something about the given fd changed */
909inline_size void
630fd_change (EV_P_ int fd, int flags) 910fd_change (EV_P_ int fd, int flags)
631{ 911{
632 unsigned char reify = anfds [fd].reify; 912 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 913 anfds [fd].reify |= flags;
634 914
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
640 } 920 }
641} 921}
642 922
643void inline_speed 923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
644fd_kill (EV_P_ int fd) 925fd_kill (EV_P_ int fd)
645{ 926{
646 ev_io *w; 927 ev_io *w;
647 928
648 while ((w = (ev_io *)anfds [fd].head)) 929 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 931 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 933 }
653} 934}
654 935
655int inline_size 936/* check whether the given fd is atcually valid, for error recovery */
937inline_size int
656fd_valid (int fd) 938fd_valid (int fd)
657{ 939{
658#ifdef _WIN32 940#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 941 return _get_osfhandle (fd) != -1;
660#else 942#else
668{ 950{
669 int fd; 951 int fd;
670 952
671 for (fd = 0; fd < anfdmax; ++fd) 953 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 954 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 955 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 956 fd_kill (EV_A_ fd);
675} 957}
676 958
677/* called on ENOMEM in select/poll to kill some fds and retry */ 959/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 960static void noinline
696 978
697 for (fd = 0; fd < anfdmax; ++fd) 979 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 980 if (anfds [fd].events)
699 { 981 {
700 anfds [fd].events = 0; 982 anfds [fd].events = 0;
983 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 985 }
703} 986}
704 987
705/*****************************************************************************/ 988/*****************************************************************************/
706 989
707void inline_speed 990/*
708upheap (WT *heap, int k) 991 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 993 * the branching factor of the d-tree.
994 */
711 995
712 while (k) 996/*
713 { 997 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
999 * which is more cache-efficient.
1000 * the difference is about 5% with 50000+ watchers.
1001 */
1002#if EV_USE_4HEAP
715 1003
716 if (heap [p]->at <= w->at) 1004#define DHEAP 4
1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007#define UPHEAP_DONE(p,k) ((p) == (k))
1008
1009/* away from the root */
1010inline_speed void
1011downheap (ANHE *heap, int N, int k)
1012{
1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
1015
1016 for (;;)
1017 {
1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1021
1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
1024 {
1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
717 break; 1038 break;
718 1039
1040 if (ANHE_at (he) <= minat)
1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051}
1052
1053#else /* 4HEAP */
1054
1055#define HEAP0 1
1056#define HPARENT(k) ((k) >> 1)
1057#define UPHEAP_DONE(p,k) (!(p))
1058
1059/* away from the root */
1060inline_speed void
1061downheap (ANHE *heap, int N, int k)
1062{
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
1078 heap [k] = heap [c];
1079 ev_active (ANHE_w (heap [k])) = k;
1080
1081 k = c;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087#endif
1088
1089/* towards the root */
1090inline_speed void
1091upheap (ANHE *heap, int k)
1092{
1093 ANHE he = heap [k];
1094
1095 for (;;)
1096 {
1097 int p = HPARENT (k);
1098
1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 break;
1101
719 heap [k] = heap [p]; 1102 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1103 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1104 k = p;
722 } 1105 }
723 1106
724 heap [k] = w; 1107 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1108 ev_active (ANHE_w (he)) = k;
726} 1109}
727 1110
728void inline_speed 1111/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1112inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1113adjustheap (ANHE *heap, int N, int k)
758{ 1114{
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1116 upheap (heap, k);
1117 else
760 downheap (heap, N, k); 1118 downheap (heap, N, k);
1119}
1120
1121/* rebuild the heap: this function is used only once and executed rarely */
1122inline_size void
1123reheap (ANHE *heap, int N)
1124{
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
761} 1131}
762 1132
763/*****************************************************************************/ 1133/*****************************************************************************/
764 1134
1135/* associate signal watchers to a signal signal */
765typedef struct 1136typedef struct
766{ 1137{
767 WL head; 1138 WL head;
768 sig_atomic_t volatile gotsig; 1139 EV_ATOMIC_T gotsig;
769} ANSIG; 1140} ANSIG;
770 1141
771static ANSIG *signals; 1142static ANSIG *signals;
772static int signalmax; 1143static int signalmax;
773 1144
774static int sigpipe [2]; 1145static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 1146
778void inline_size 1147/*****************************************************************************/
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785 1148
786 ++base; 1149/* used to prepare libev internal fd's */
787 } 1150/* this is not fork-safe */
788} 1151inline_speed void
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1152fd_intern (int fd)
843{ 1153{
844#ifdef _WIN32 1154#ifdef _WIN32
845 int arg = 1; 1155 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 1157#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1159 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1160#endif
851} 1161}
852 1162
853static void noinline 1163static void noinline
854siginit (EV_P) 1164evpipe_init (EV_P)
855{ 1165{
1166 if (!ev_is_active (&pipe_w))
1167 {
1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180#endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
856 fd_intern (sigpipe [0]); 1185 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
858 1189
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1190 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193}
1194
1195inline_size void
1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197{
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204#if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211#endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216}
1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
1220static void
1221pipecb (EV_P_ ev_io *iow, int revents)
1222{
1223#if EV_USE_EVENTFD
1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
1228 }
1229 else
1230#endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
1235
1236 if (gotsig && ev_is_default_loop (EV_A))
1237 {
1238 int signum;
1239 gotsig = 0;
1240
1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246#if EV_ASYNC_ENABLE
1247 if (gotasync)
1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259#endif
862} 1260}
863 1261
864/*****************************************************************************/ 1262/*****************************************************************************/
865 1263
1264static void
1265ev_sighandler (int signum)
1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269#endif
1270
1271#if _WIN32
1272 signal (signum, ev_sighandler);
1273#endif
1274
1275 signals [signum - 1].gotsig = 1;
1276 evpipe_write (EV_A_ &gotsig);
1277}
1278
1279void noinline
1280ev_feed_signal_event (EV_P_ int signum)
1281{
1282 WL w;
1283
1284#if EV_MULTIPLICITY
1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286#endif
1287
1288 --signum;
1289
1290 if (signum < 0 || signum >= signalmax)
1291 return;
1292
1293 signals [signum].gotsig = 0;
1294
1295 for (w = signals [signum].head; w; w = w->next)
1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297}
1298
1299#if EV_USE_SIGNALFD
1300static void
1301sigfdcb (EV_P_ ev_io *iow, int revents)
1302{
1303 struct signalfd_siginfo si[4], *sip;
1304
1305 for (;;)
1306 {
1307 ssize_t res = read (sigfd, si, sizeof (si));
1308
1309 /* not ISO-C, as res might be -1, but works with SuS */
1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
1315 }
1316}
1317#endif
1318
1319/*****************************************************************************/
1320
866static WL childs [EV_PID_HASHSIZE]; 1321static WL childs [EV_PID_HASHSIZE];
867 1322
868#ifndef _WIN32 1323#ifndef _WIN32
869 1324
870static ev_signal childev; 1325static ev_signal childev;
871 1326
872void inline_speed 1327#ifndef WIFCONTINUED
1328# define WIFCONTINUED(status) 0
1329#endif
1330
1331/* handle a single child status event */
1332inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1333child_reap (EV_P_ int chain, int pid, int status)
874{ 1334{
875 ev_child *w; 1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1337
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
878 if (w->pid == pid || !w->pid) 1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
879 { 1342 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1344 w->rpid = pid;
882 w->rstatus = status; 1345 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1347 }
1348 }
885} 1349}
886 1350
887#ifndef WCONTINUED 1351#ifndef WCONTINUED
888# define WCONTINUED 0 1352# define WCONTINUED 0
889#endif 1353#endif
890 1354
1355/* called on sigchld etc., calls waitpid */
891static void 1356static void
892childcb (EV_P_ ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
893{ 1358{
894 int pid, status; 1359 int pid, status;
895 1360
898 if (!WCONTINUED 1363 if (!WCONTINUED
899 || errno != EINVAL 1364 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1366 return;
902 1367
903 /* make sure we are called again until all childs have been reaped */ 1368 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1369 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1371
907 child_reap (EV_A_ sw, pid, pid, status); 1372 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1373 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1375}
911 1376
912#endif 1377#endif
913 1378
914/*****************************************************************************/ 1379/*****************************************************************************/
976 /* kqueue is borked on everything but netbsd apparently */ 1441 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1442 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1443 flags &= ~EVBACKEND_KQUEUE;
979#endif 1444#endif
980#ifdef __APPLE__ 1445#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1446 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
983#endif 1449#endif
984 1450
985 return flags; 1451 return flags;
986} 1452}
987 1453
1001ev_backend (EV_P) 1467ev_backend (EV_P)
1002{ 1468{
1003 return backend; 1469 return backend;
1004} 1470}
1005 1471
1472#if EV_MINIMAL < 2
1006unsigned int 1473unsigned int
1007ev_loop_count (EV_P) 1474ev_loop_count (EV_P)
1008{ 1475{
1009 return loop_count; 1476 return loop_count;
1010} 1477}
1011 1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1012void 1485void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 1487{
1015 io_blocktime = interval; 1488 io_blocktime = interval;
1016} 1489}
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1493{
1021 timeout_blocktime = interval; 1494 timeout_blocktime = interval;
1022} 1495}
1023 1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1522static void noinline
1025loop_init (EV_P_ unsigned int flags) 1523loop_init (EV_P_ unsigned int flags)
1026{ 1524{
1027 if (!backend) 1525 if (!backend)
1028 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
1029#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
1030 { 1539 {
1031 struct timespec ts; 1540 struct timespec ts;
1541
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1543 have_monotonic = 1;
1034 } 1544 }
1035#endif 1545#endif
1036 1546
1037 ev_rt_now = ev_time (); 1547 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1548 mn_now = get_clock ();
1039 now_floor = mn_now; 1549 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1041 1554
1042 io_blocktime = 0.; 1555 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560#if EV_USE_INOTIFY
1561 fs_fd = -2;
1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
1044 1566
1045 /* pid check not overridable via env */ 1567 /* pid check not overridable via env */
1046#ifndef _WIN32 1568#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1569 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1570 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1573 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1574 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1575 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1576 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1577
1056 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1580
1065#if EV_USE_PORT 1581#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1583#endif
1068#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
1076#endif 1592#endif
1077#if EV_USE_SELECT 1593#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1595#endif
1080 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1081 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1083 } 1601 }
1084} 1602}
1085 1603
1604/* free up a loop structure */
1086static void noinline 1605static void noinline
1087loop_destroy (EV_P) 1606loop_destroy (EV_P)
1088{ 1607{
1089 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1090 1636
1091#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1093 close (fs_fd); 1639 close (fs_fd);
1094#endif 1640#endif
1118#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 1665 array_free (idle, [i]);
1120#endif 1666#endif
1121 } 1667 }
1122 1668
1123 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 1670
1125 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1130#endif 1677#endif
1131#if EV_FORK_ENABLE 1678#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1679 array_free (fork, EMPTY);
1133#endif 1680#endif
1134 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1136 1686
1137 backend = 0; 1687 backend = 0;
1138} 1688}
1139 1689
1690#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1141 1693
1142void inline_size 1694inline_size void
1143loop_fork (EV_P) 1695loop_fork (EV_P)
1144{ 1696{
1145#if EV_USE_PORT 1697#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1699#endif
1153#endif 1705#endif
1154#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1707 infy_fork (EV_A);
1156#endif 1708#endif
1157 1709
1158 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
1159 { 1711 {
1160 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715#if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717#endif
1161 1718
1162 ev_ref (EV_A); 1719 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1164 close (sigpipe [0]); 1729 close (evpipe [0]);
1165 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
1166 1732
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1735 pipecb (EV_A_ &pipe_w, EV_READ);
1172 } 1736 }
1173 1737
1174 postfork = 0; 1738 postfork = 0;
1175} 1739}
1176 1740
1177#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1178struct ev_loop * 1743struct ev_loop *
1179ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1180{ 1745{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1747
1183 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (loop, 0, sizeof (struct ev_loop));
1184
1185 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1186 1750
1187 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1188 return loop; 1752 return loop;
1189 1753
1200void 1764void
1201ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1202{ 1766{
1203 postfork = 1; /* must be in line with ev_default_fork */ 1767 postfork = 1; /* must be in line with ev_default_fork */
1204} 1768}
1769#endif /* multiplicity */
1205 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1867# endif
1868#endif
1869}
1206#endif 1870#endif
1207 1871
1208#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1209struct ev_loop * 1873struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1211#else 1875#else
1212int 1876int
1213ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
1214#endif 1878#endif
1215{ 1879{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1221 { 1881 {
1222#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1224#else 1884#else
1227 1887
1228 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1229 1889
1230 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
1231 { 1891 {
1232 siginit (EV_A);
1233
1234#ifndef _WIN32 1892#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1250{ 1908{
1251#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1910 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1911#endif
1254 1912
1913 ev_default_loop_ptr = 0;
1914
1255#ifndef _WIN32 1915#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1258#endif 1918#endif
1259 1919
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1267} 1921}
1268 1922
1269void 1923void
1270ev_default_fork (void) 1924ev_default_fork (void)
1271{ 1925{
1272#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr; 1927 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif 1928#endif
1275 1929
1276 if (backend)
1277 postfork = 1; /* must be in line with ev_loop_fork */ 1930 postfork = 1; /* must be in line with ev_loop_fork */
1278} 1931}
1279 1932
1280/*****************************************************************************/ 1933/*****************************************************************************/
1281 1934
1282void 1935void
1283ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1284{ 1937{
1285 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1286} 1939}
1287 1940
1288void inline_speed 1941unsigned int
1289call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1290{ 1955{
1291 int pri; 1956 int pri;
1292 1957
1293 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1294 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1295 { 1960 {
1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1297 1962
1298 if (expect_true (p->w))
1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1301 1965
1302 p->w->pending = 0; 1966 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1304 } 1968 EV_FREQUENT_CHECK;
1305 } 1969 }
1306} 1970}
1307 1971
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387
1388#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1389void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1390idle_reify (EV_P) 1976idle_reify (EV_P)
1391{ 1977{
1392 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1393 { 1979 {
1394 int pri; 1980 int pri;
1406 } 1992 }
1407 } 1993 }
1408} 1994}
1409#endif 1995#endif
1410 1996
1411void inline_speed 1997/* make timers pending */
1998inline_size void
1999timers_reify (EV_P)
2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1412time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1413{ 2135{
1414 int i;
1415
1416#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1418 { 2138 {
2139 int i;
1419 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1420 2141
1421 mn_now = get_clock (); 2142 mn_now = get_clock ();
1422 2143
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1441 */ 2162 */
1442 for (i = 4; --i; ) 2163 for (i = 4; --i; )
1443 { 2164 {
1444 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1445 2166
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 2168 return; /* all is well */
1448 2169
1449 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 2171 mn_now = get_clock ();
1451 now_floor = mn_now; 2172 now_floor = mn_now;
1452 } 2173 }
1453 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1456# endif 2179# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 } 2180 }
1460 else 2181 else
1461#endif 2182#endif
1462 { 2183 {
1463 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1464 2185
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1467#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1469#endif 2192#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i)
1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1473 } 2193 }
1474 2194
1475 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1476 } 2196 }
1477} 2197}
1478 2198
1479void 2199void
1480ev_ref (EV_P)
1481{
1482 ++activecnt;
1483}
1484
1485void
1486ev_unref (EV_P)
1487{
1488 --activecnt;
1489}
1490
1491static int loop_done;
1492
1493void
1494ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1495{ 2201{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1497 ? EVUNLOOP_ONE 2203 ++loop_depth;
1498 : EVUNLOOP_CANCEL; 2204#endif
1499 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1501 2211
1502 do 2212 do
1503 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1504#ifndef _WIN32 2218#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1507 { 2221 {
1508 curpid = getpid (); 2222 curpid = getpid ();
1514 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1516 if (forkcnt) 2230 if (forkcnt)
1517 { 2231 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1520 } 2234 }
1521#endif 2235#endif
1522 2236
1523 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1524 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1525 { 2239 {
1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1527 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1528 } 2242 }
1529 2243
1530 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1531 break; 2245 break;
1532 2246
1533 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1534 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1535 loop_fork (EV_A); 2249 loop_fork (EV_A);
1542 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
1544 2258
1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1546 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1547 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1548 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
1549 2266
1550 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1551 2268
1552 if (timercnt) 2269 if (timercnt)
1553 { 2270 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 2272 if (waittime > to) waittime = to;
1556 } 2273 }
1557 2274
1558#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 2276 if (periodiccnt)
1560 { 2277 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
1563 } 2280 }
1564#endif 2281#endif
1565 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
1566 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
1568 2286
1569 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
1570
1571 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
1576 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
1577 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
1578 } 2300 }
1579 } 2301 }
1580 2302
2303#if EV_MINIMAL < 2
1581 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1582 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1583 2309
1584 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1585 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
1586 } 2312 }
1587 2313
1598 2324
1599 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1602 2328
1603 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1604
1605 } 2330 }
1606 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1607 2336
1608 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1610} 2343}
1611 2344
1612void 2345void
1613ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1614{ 2347{
1615 loop_done = how; 2348 loop_done = how;
1616} 2349}
1617 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1618/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1619 2390
1620void inline_size 2391inline_size void
1621wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1622{ 2393{
1623 elem->next = *head; 2394 elem->next = *head;
1624 *head = elem; 2395 *head = elem;
1625} 2396}
1626 2397
1627void inline_size 2398inline_size void
1628wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1629{ 2400{
1630 while (*head) 2401 while (*head)
1631 { 2402 {
1632 if (*head == elem) 2403 if (*head == elem)
1637 2408
1638 head = &(*head)->next; 2409 head = &(*head)->next;
1639 } 2410 }
1640} 2411}
1641 2412
1642void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1643clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1644{ 2416{
1645 if (w->pending) 2417 if (w->pending)
1646 { 2418 {
1647 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1648 w->pending = 0; 2420 w->pending = 0;
1649 } 2421 }
1650} 2422}
1651 2423
1652int 2424int
1656 int pending = w_->pending; 2428 int pending = w_->pending;
1657 2429
1658 if (expect_true (pending)) 2430 if (expect_true (pending))
1659 { 2431 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
1661 w_->pending = 0; 2434 w_->pending = 0;
1662 p->w = 0;
1663 return p->events; 2435 return p->events;
1664 } 2436 }
1665 else 2437 else
1666 return 0; 2438 return 0;
1667} 2439}
1668 2440
1669void inline_size 2441inline_size void
1670pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1671{ 2443{
1672 int pri = w->priority; 2444 int pri = ev_priority (w);
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri; 2447 ev_set_priority (w, pri);
1676} 2448}
1677 2449
1678void inline_speed 2450inline_speed void
1679ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1680{ 2452{
1681 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1682 w->active = active; 2454 w->active = active;
1683 ev_ref (EV_A); 2455 ev_ref (EV_A);
1684} 2456}
1685 2457
1686void inline_size 2458inline_size void
1687ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1688{ 2460{
1689 ev_unref (EV_A); 2461 ev_unref (EV_A);
1690 w->active = 0; 2462 w->active = 0;
1691} 2463}
1698 int fd = w->fd; 2470 int fd = w->fd;
1699 2471
1700 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1701 return; 2473 return;
1702 2474
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1704 2479
1705 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1707 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1708 2483
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1710 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
1711} 2488}
1712 2489
1713void noinline 2490void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1715{ 2492{
1716 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1718 return; 2495 return;
1719 2496
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
1721 2500
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1724 2503
1725 fd_change (EV_A_ w->fd, 1); 2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
1726} 2507}
1727 2508
1728void noinline 2509void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1730{ 2511{
1731 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1732 return; 2513 return;
1733 2514
1734 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1735 2516
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1742 2527
2528 EV_FREQUENT_CHECK;
2529
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2531}
1745 2532
1746void noinline 2533void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2535{
1749 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1751 return; 2538 return;
1752 2539
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2540 EV_FREQUENT_CHECK;
1754 2541
1755 { 2542 {
1756 int active = ((W)w)->active; 2543 int active = ev_active (w);
1757 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1758 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1759 { 2550 {
1760 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1762 } 2553 }
1763 } 2554 }
1764 2555
1765 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1766 2559
1767 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1768} 2561}
1769 2562
1770void noinline 2563void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1772{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1773 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1774 { 2569 {
1775 if (w->repeat) 2570 if (w->repeat)
1776 { 2571 {
1777 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1779 } 2575 }
1780 else 2576 else
1781 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1782 } 2578 }
1783 else if (w->repeat) 2579 else if (w->repeat)
1784 { 2580 {
1785 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1787 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1788} 2592}
1789 2593
1790#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1791void noinline 2595void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2597{
1794 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1795 return; 2599 return;
1796 2600
1797 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2603 else if (w->interval)
1800 { 2604 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2608 }
1805 else 2609 else
1806 ((WT)w)->at = w->offset; 2610 ev_at (w) = w->offset;
1807 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1812 2620
2621 EV_FREQUENT_CHECK;
2622
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2624}
1815 2625
1816void noinline 2626void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2628{
1819 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1821 return; 2631 return;
1822 2632
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2633 EV_FREQUENT_CHECK;
1824 2634
1825 { 2635 {
1826 int active = ((W)w)->active; 2636 int active = ev_active (w);
1827 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1828 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2643 {
1830 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1832 } 2646 }
1833 } 2647 }
1834 2648
2649 EV_FREQUENT_CHECK;
2650
1835 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1836} 2652}
1837 2653
1838void noinline 2654void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1850 2666
1851void noinline 2667void noinline
1852ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1853{ 2669{
1854#if EV_MULTIPLICITY 2670#if EV_MULTIPLICITY
1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1856#endif 2672#endif
1857 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
1858 return; 2674 return;
1859 2675
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2710 evpipe_init (EV_A);
1861 2711
1862 { 2712 {
1863#ifndef _WIN32 2713#ifndef _WIN32
1864 sigset_t full, prev; 2714 sigset_t full, prev;
1865 sigfillset (&full); 2715 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev); 2716 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif 2717#endif
1868 2718
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1870 2720
1871#ifndef _WIN32 2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
1872 sigprocmask (SIG_SETMASK, &prev, 0); 2726 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif 2727#endif
1874 } 2728 }
1875 2729
1876 ev_start (EV_A_ (W)w, 1); 2730 ev_start (EV_A_ (W)w, 1);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2732
1879 if (!((WL)w)->next) 2733 if (!((WL)w)->next)
1880 { 2734 {
1881#if _WIN32 2735#if _WIN32
1882 signal (w->signum, sighandler); 2736 signal (w->signum, ev_sighandler);
1883#else 2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
1884 struct sigaction sa; 2742 struct sigaction sa = { };
1885 sa.sa_handler = sighandler; 2743 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2744 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2746 sigaction (w->signum, &sa, 0);
2747 }
1889#endif 2748#endif
1890 } 2749 }
2750
2751 EV_FREQUENT_CHECK;
1891} 2752}
1892 2753
1893void noinline 2754void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2755ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2756{
1896 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1898 return; 2759 return;
1899 2760
2761 EV_FREQUENT_CHECK;
2762
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2764 ev_stop (EV_A_ (W)w);
1902 2765
1903 if (!signals [w->signum - 1].head) 2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
1904 signal (w->signum, SIG_DFL); 2778 signal (w->signum, SIG_DFL);
2779
2780 EV_FREQUENT_CHECK;
1905} 2781}
1906 2782
1907void 2783void
1908ev_child_start (EV_P_ ev_child *w) 2784ev_child_start (EV_P_ ev_child *w)
1909{ 2785{
1910#if EV_MULTIPLICITY 2786#if EV_MULTIPLICITY
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2788#endif
1913 if (expect_false (ev_is_active (w))) 2789 if (expect_false (ev_is_active (w)))
1914 return; 2790 return;
1915 2791
2792 EV_FREQUENT_CHECK;
2793
1916 ev_start (EV_A_ (W)w, 1); 2794 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2796
2797 EV_FREQUENT_CHECK;
1918} 2798}
1919 2799
1920void 2800void
1921ev_child_stop (EV_P_ ev_child *w) 2801ev_child_stop (EV_P_ ev_child *w)
1922{ 2802{
1923 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1925 return; 2805 return;
1926 2806
2807 EV_FREQUENT_CHECK;
2808
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2810 ev_stop (EV_A_ (W)w);
2811
2812 EV_FREQUENT_CHECK;
1929} 2813}
1930 2814
1931#if EV_STAT_ENABLE 2815#if EV_STAT_ENABLE
1932 2816
1933# ifdef _WIN32 2817# ifdef _WIN32
1934# undef lstat 2818# undef lstat
1935# define lstat(a,b) _stati64 (a,b) 2819# define lstat(a,b) _stati64 (a,b)
1936# endif 2820# endif
1937 2821
1938#define DEF_STAT_INTERVAL 5.0074891 2822#define DEF_STAT_INTERVAL 5.0074891
2823#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1939#define MIN_STAT_INTERVAL 0.1074891 2824#define MIN_STAT_INTERVAL 0.1074891
1940 2825
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2826static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942 2827
1943#if EV_USE_INOTIFY 2828#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192 2829# define EV_INOTIFY_BUFSIZE 8192
1948{ 2833{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950 2835
1951 if (w->wd < 0) 2836 if (w->wd < 0)
1952 { 2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954 2840
1955 /* monitor some parent directory for speedup hints */ 2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2845 {
1958 char path [4096]; 2846 char path [4096];
1959 strcpy (path, w->path); 2847 strcpy (path, w->path);
1960 2848
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965 2853
1966 char *pend = strrchr (path, '/'); 2854 char *pend = strrchr (path, '/');
1967 2855
1968 if (!pend) 2856 if (!pend || pend == path)
1969 break; /* whoops, no '/', complain to your admin */ 2857 break;
1970 2858
1971 *pend = 0; 2859 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask); 2860 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 } 2861 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 } 2863 }
1976 } 2864 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979 2865
1980 if (w->wd >= 0) 2866 if (w->wd >= 0)
2867 {
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
1982} 2887}
1983 2888
1984static void noinline 2889static void noinline
1985infy_del (EV_P_ ev_stat *w) 2890infy_del (EV_P_ ev_stat *w)
1986{ 2891{
2000 2905
2001static void noinline 2906static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2907infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 2908{
2004 if (slot < 0) 2909 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 2910 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 2912 infy_wd (EV_A_ slot, wd, ev);
2008 else 2913 else
2009 { 2914 {
2010 WL w_; 2915 WL w_;
2016 2921
2017 if (w->wd == wd || wd == -1) 2922 if (w->wd == wd || wd == -1)
2018 { 2923 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 { 2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2021 w->wd = -1; 2927 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */ 2928 infy_add (EV_A_ w); /* re-add, no matter what */
2023 } 2929 }
2024 2930
2025 stat_timer_cb (EV_A_ &w->timer, 0); 2931 stat_timer_cb (EV_A_ &w->timer, 0);
2038 2944
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2041} 2947}
2042 2948
2043void inline_size 2949inline_size void
2950check_2625 (EV_P)
2951{
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970}
2971
2972inline_size void
2044infy_init (EV_P) 2973infy_init (EV_P)
2045{ 2974{
2046 if (fs_fd != -2) 2975 if (fs_fd != -2)
2047 return; 2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
2048 2981
2049 fs_fd = inotify_init (); 2982 fs_fd = inotify_init ();
2050 2983
2051 if (fs_fd >= 0) 2984 if (fs_fd >= 0)
2052 { 2985 {
2054 ev_set_priority (&fs_w, EV_MAXPRI); 2987 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w); 2988 ev_io_start (EV_A_ &fs_w);
2056 } 2989 }
2057} 2990}
2058 2991
2059void inline_size 2992inline_size void
2060infy_fork (EV_P) 2993infy_fork (EV_P)
2061{ 2994{
2062 int slot; 2995 int slot;
2063 2996
2064 if (fs_fd < 0) 2997 if (fs_fd < 0)
2080 w->wd = -1; 3013 w->wd = -1;
2081 3014
2082 if (fs_fd >= 0) 3015 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 3016 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 3017 else
2085 ev_timer_start (EV_A_ &w->timer); 3018 ev_timer_again (EV_A_ &w->timer);
2086 } 3019 }
2087
2088 } 3020 }
2089} 3021}
2090 3022
3023#endif
3024
3025#ifdef _WIN32
3026# define EV_LSTAT(p,b) _stati64 (p, b)
3027#else
3028# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 3029#endif
2092 3030
2093void 3031void
2094ev_stat_stat (EV_P_ ev_stat *w) 3032ev_stat_stat (EV_P_ ev_stat *w)
2095{ 3033{
2122 || w->prev.st_atime != w->attr.st_atime 3060 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 3061 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 3062 || w->prev.st_ctime != w->attr.st_ctime
2125 ) { 3063 ) {
2126 #if EV_USE_INOTIFY 3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
2127 infy_del (EV_A_ w); 3067 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 3068 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
2130 #endif 3071 #endif
2131 3072
2132 ev_feed_event (EV_A_ w, EV_STAT); 3073 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 3074 }
2134} 3075}
2137ev_stat_start (EV_P_ ev_stat *w) 3078ev_stat_start (EV_P_ ev_stat *w)
2138{ 3079{
2139 if (expect_false (ev_is_active (w))) 3080 if (expect_false (ev_is_active (w)))
2140 return; 3081 return;
2141 3082
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w); 3083 ev_stat_stat (EV_A_ w);
2147 3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2148 if (w->interval < MIN_STAT_INTERVAL) 3086 w->interval = MIN_STAT_INTERVAL;
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150 3087
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2152 ev_set_priority (&w->timer, ev_priority (w)); 3089 ev_set_priority (&w->timer, ev_priority (w));
2153 3090
2154#if EV_USE_INOTIFY 3091#if EV_USE_INOTIFY
2155 infy_init (EV_A); 3092 infy_init (EV_A);
2156 3093
2157 if (fs_fd >= 0) 3094 if (fs_fd >= 0)
2158 infy_add (EV_A_ w); 3095 infy_add (EV_A_ w);
2159 else 3096 else
2160#endif 3097#endif
2161 ev_timer_start (EV_A_ &w->timer); 3098 ev_timer_again (EV_A_ &w->timer);
2162 3099
2163 ev_start (EV_A_ (W)w, 1); 3100 ev_start (EV_A_ (W)w, 1);
3101
3102 EV_FREQUENT_CHECK;
2164} 3103}
2165 3104
2166void 3105void
2167ev_stat_stop (EV_P_ ev_stat *w) 3106ev_stat_stop (EV_P_ ev_stat *w)
2168{ 3107{
2169 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2171 return; 3110 return;
2172 3111
3112 EV_FREQUENT_CHECK;
3113
2173#if EV_USE_INOTIFY 3114#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 3115 infy_del (EV_A_ w);
2175#endif 3116#endif
2176 ev_timer_stop (EV_A_ &w->timer); 3117 ev_timer_stop (EV_A_ &w->timer);
2177 3118
2178 ev_stop (EV_A_ (W)w); 3119 ev_stop (EV_A_ (W)w);
3120
3121 EV_FREQUENT_CHECK;
2179} 3122}
2180#endif 3123#endif
2181 3124
2182#if EV_IDLE_ENABLE 3125#if EV_IDLE_ENABLE
2183void 3126void
2185{ 3128{
2186 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2187 return; 3130 return;
2188 3131
2189 pri_adjust (EV_A_ (W)w); 3132 pri_adjust (EV_A_ (W)w);
3133
3134 EV_FREQUENT_CHECK;
2190 3135
2191 { 3136 {
2192 int active = ++idlecnt [ABSPRI (w)]; 3137 int active = ++idlecnt [ABSPRI (w)];
2193 3138
2194 ++idleall; 3139 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 3140 ev_start (EV_A_ (W)w, active);
2196 3141
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 3143 idles [ABSPRI (w)][active - 1] = w;
2199 } 3144 }
3145
3146 EV_FREQUENT_CHECK;
2200} 3147}
2201 3148
2202void 3149void
2203ev_idle_stop (EV_P_ ev_idle *w) 3150ev_idle_stop (EV_P_ ev_idle *w)
2204{ 3151{
2205 clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
2207 return; 3154 return;
2208 3155
3156 EV_FREQUENT_CHECK;
3157
2209 { 3158 {
2210 int active = ((W)w)->active; 3159 int active = ev_active (w);
2211 3160
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 3163
2215 ev_stop (EV_A_ (W)w); 3164 ev_stop (EV_A_ (W)w);
2216 --idleall; 3165 --idleall;
2217 } 3166 }
3167
3168 EV_FREQUENT_CHECK;
2218} 3169}
2219#endif 3170#endif
2220 3171
2221void 3172void
2222ev_prepare_start (EV_P_ ev_prepare *w) 3173ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 3174{
2224 if (expect_false (ev_is_active (w))) 3175 if (expect_false (ev_is_active (w)))
2225 return; 3176 return;
3177
3178 EV_FREQUENT_CHECK;
2226 3179
2227 ev_start (EV_A_ (W)w, ++preparecnt); 3180 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 3182 prepares [preparecnt - 1] = w;
3183
3184 EV_FREQUENT_CHECK;
2230} 3185}
2231 3186
2232void 3187void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 3188ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 3189{
2235 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2237 return; 3192 return;
2238 3193
3194 EV_FREQUENT_CHECK;
3195
2239 { 3196 {
2240 int active = ((W)w)->active; 3197 int active = ev_active (w);
3198
2241 prepares [active - 1] = prepares [--preparecnt]; 3199 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 3200 ev_active (prepares [active - 1]) = active;
2243 } 3201 }
2244 3202
2245 ev_stop (EV_A_ (W)w); 3203 ev_stop (EV_A_ (W)w);
3204
3205 EV_FREQUENT_CHECK;
2246} 3206}
2247 3207
2248void 3208void
2249ev_check_start (EV_P_ ev_check *w) 3209ev_check_start (EV_P_ ev_check *w)
2250{ 3210{
2251 if (expect_false (ev_is_active (w))) 3211 if (expect_false (ev_is_active (w)))
2252 return; 3212 return;
3213
3214 EV_FREQUENT_CHECK;
2253 3215
2254 ev_start (EV_A_ (W)w, ++checkcnt); 3216 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 3218 checks [checkcnt - 1] = w;
3219
3220 EV_FREQUENT_CHECK;
2257} 3221}
2258 3222
2259void 3223void
2260ev_check_stop (EV_P_ ev_check *w) 3224ev_check_stop (EV_P_ ev_check *w)
2261{ 3225{
2262 clear_pending (EV_A_ (W)w); 3226 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 3227 if (expect_false (!ev_is_active (w)))
2264 return; 3228 return;
2265 3229
3230 EV_FREQUENT_CHECK;
3231
2266 { 3232 {
2267 int active = ((W)w)->active; 3233 int active = ev_active (w);
3234
2268 checks [active - 1] = checks [--checkcnt]; 3235 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 3236 ev_active (checks [active - 1]) = active;
2270 } 3237 }
2271 3238
2272 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
3240
3241 EV_FREQUENT_CHECK;
2273} 3242}
2274 3243
2275#if EV_EMBED_ENABLE 3244#if EV_EMBED_ENABLE
2276void noinline 3245void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 3246ev_embed_sweep (EV_P_ ev_embed *w)
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 } 3274 }
2306 } 3275 }
2307} 3276}
2308 3277
3278static void
3279embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280{
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293}
3294
2309#if 0 3295#if 0
2310static void 3296static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3297embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 3298{
2313 ev_idle_stop (EV_A_ idle); 3299 ev_idle_stop (EV_A_ idle);
2320 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2321 return; 3307 return;
2322 3308
2323 { 3309 {
2324 struct ev_loop *loop = w->other; 3310 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 3313 }
3314
3315 EV_FREQUENT_CHECK;
2328 3316
2329 ev_set_priority (&w->io, ev_priority (w)); 3317 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 3318 ev_io_start (EV_A_ &w->io);
2331 3319
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 3321 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 3322 ev_prepare_start (EV_A_ &w->prepare);
2335 3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 3328
2338 ev_start (EV_A_ (W)w, 1); 3329 ev_start (EV_A_ (W)w, 1);
3330
3331 EV_FREQUENT_CHECK;
2339} 3332}
2340 3333
2341void 3334void
2342ev_embed_stop (EV_P_ ev_embed *w) 3335ev_embed_stop (EV_P_ ev_embed *w)
2343{ 3336{
2344 clear_pending (EV_A_ (W)w); 3337 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 3338 if (expect_false (!ev_is_active (w)))
2346 return; 3339 return;
2347 3340
3341 EV_FREQUENT_CHECK;
3342
2348 ev_io_stop (EV_A_ &w->io); 3343 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
2350 3346
2351 ev_stop (EV_A_ (W)w); 3347 EV_FREQUENT_CHECK;
2352} 3348}
2353#endif 3349#endif
2354 3350
2355#if EV_FORK_ENABLE 3351#if EV_FORK_ENABLE
2356void 3352void
2357ev_fork_start (EV_P_ ev_fork *w) 3353ev_fork_start (EV_P_ ev_fork *w)
2358{ 3354{
2359 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2360 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
2361 3359
2362 ev_start (EV_A_ (W)w, ++forkcnt); 3360 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
2365} 3365}
2366 3366
2367void 3367void
2368ev_fork_stop (EV_P_ ev_fork *w) 3368ev_fork_stop (EV_P_ ev_fork *w)
2369{ 3369{
2370 clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
2372 return; 3372 return;
2373 3373
3374 EV_FREQUENT_CHECK;
3375
2374 { 3376 {
2375 int active = ((W)w)->active; 3377 int active = ev_active (w);
3378
2376 forks [active - 1] = forks [--forkcnt]; 3379 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 3380 ev_active (forks [active - 1]) = active;
2378 } 3381 }
2379 3382
2380 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_ASYNC_ENABLE
3390void
3391ev_async_start (EV_P_ ev_async *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405}
3406
3407void
3408ev_async_stop (EV_P_ ev_async *w)
3409{
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426}
3427
3428void
3429ev_async_send (EV_P_ ev_async *w)
3430{
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
2381} 3433}
2382#endif 3434#endif
2383 3435
2384/*****************************************************************************/ 3436/*****************************************************************************/
2385 3437
2395once_cb (EV_P_ struct ev_once *once, int revents) 3447once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3448{
2397 void (*cb)(int revents, void *arg) = once->cb; 3449 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3450 void *arg = once->arg;
2399 3451
2400 ev_io_stop (EV_A_ &once->io); 3452 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3453 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3454 ev_free (once);
2403 3455
2404 cb (revents, arg); 3456 cb (revents, arg);
2405} 3457}
2406 3458
2407static void 3459static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3460once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3461{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3465}
2412 3466
2413static void 3467static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3468once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3469{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3473}
2418 3474
2419void 3475void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3476ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3477{
2443 ev_timer_set (&once->to, timeout, 0.); 3499 ev_timer_set (&once->to, timeout, 0.);
2444 ev_timer_start (EV_A_ &once->to); 3500 ev_timer_start (EV_A_ &once->to);
2445 } 3501 }
2446} 3502}
2447 3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
3516 {
3517 wn = wl->next;
3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
3537 }
3538
3539 if (types & (EV_TIMER | EV_STAT))
3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544 {
3545 if (types & EV_STAT)
3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547 }
3548 else
3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552
3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
3558
3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
3565
3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
3572
3573#if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577#endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581#if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583#endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607/* EV_STAT 0x00001000 /* stat data changed */
3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609}
3610#endif
3611
2448#if EV_MULTIPLICITY 3612#if EV_MULTIPLICITY
2449 #include "ev_wrap.h" 3613 #include "ev_wrap.h"
2450#endif 3614#endif
2451 3615
2452#ifdef __cplusplus 3616#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines