ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC vs.
Revision 1.369 by root, Sun Jan 23 18:53:06 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
51# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
54# endif 65# endif
55# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
57# endif 68# endif
58# else 69# else
59# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
61# endif 72# endif
62# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
64# endif 75# endif
65# endif 76# endif
66 77
78# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
70# else 82# else
83# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
73# endif 94# endif
74 95
96# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 99# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 100# else
101# undef EV_USE_POLL
87# define EV_USE_POLL 0 102# define EV_USE_POLL 0
88# endif
89# endif 103# endif
90 104
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
94# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
97# endif 112# endif
98 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
105# endif 121# endif
106 122
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
110# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
113# endif 130# endif
114 131
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
121# endif 139# endif
122 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
123#endif 159#endif
124 160
125#include <math.h> 161#include <math.h>
126#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
127#include <fcntl.h> 164#include <fcntl.h>
128#include <stddef.h> 165#include <stddef.h>
129 166
130#include <stdio.h> 167#include <stdio.h>
131 168
132#include <assert.h> 169#include <assert.h>
133#include <errno.h> 170#include <errno.h>
134#include <sys/types.h> 171#include <sys/types.h>
135#include <time.h> 172#include <time.h>
173#include <limits.h>
136 174
137#include <signal.h> 175#include <signal.h>
138 176
139#ifdef EV_H 177#ifdef EV_H
140# include EV_H 178# include EV_H
141#else 179#else
142# include "ev.h" 180# include "ev.h"
143#endif 181#endif
182
183EV_CPP(extern "C" {)
144 184
145#ifndef _WIN32 185#ifndef _WIN32
146# include <sys/time.h> 186# include <sys/time.h>
147# include <sys/wait.h> 187# include <sys/wait.h>
148# include <unistd.h> 188# include <unistd.h>
149#else 189#else
190# include <io.h>
150# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 192# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
154# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
155#endif 242# endif
156 243#endif
157/**/
158 244
159#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
160# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
161#endif 251#endif
162 252
163#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 255#endif
166 256
167#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
168# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
169#endif 263#endif
170 264
171#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 267#endif
174 268
175#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
176# ifdef _WIN32 270# ifdef _WIN32
177# define EV_USE_POLL 0 271# define EV_USE_POLL 0
178# else 272# else
179# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 274# endif
181#endif 275#endif
182 276
183#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
184# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
185#endif 283#endif
186 284
187#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
189#endif 287#endif
191#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 290# define EV_USE_PORT 0
193#endif 291#endif
194 292
195#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
196# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
197#endif 299#endif
198 300
199#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 312# else
203# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
204# endif 314# endif
205#endif 315#endif
206 316
207#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 320# else
211# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
212# endif 322# endif
213#endif 323#endif
214 324
215/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
216 364
217#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
220#endif 368#endif
234# include <sys/select.h> 382# include <sys/select.h>
235# endif 383# endif
236#endif 384#endif
237 385
238#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
239# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
240#endif 394#endif
241 395
242#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 397# include <winsock.h>
244#endif 398#endif
245 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
246/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
247 445
248/* 446/*
249 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
255 */ 453 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 455
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
261 461
262#if __GNUC__ >= 4 462#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
265#else 465#else
266# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
267# define noinline 467# define noinline
268# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 469# define inline
270# endif 470# endif
271#endif 471#endif
272 472
273#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 475#define inline_size static inline
276 476
277#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
278# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
279#else 487#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
285 490
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
288 493
289typedef ev_watcher *W; 494typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
292 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
293#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 519#endif
298 520
299#ifdef _WIN32 521#ifdef _WIN32
300# include "ev_win32.c" 522# include "ev_win32.c"
301#endif 523#endif
302 524
303/*****************************************************************************/ 525/*****************************************************************************/
304 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
305static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
306 578
307void 579void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 581{
310 syserr_cb = cb; 582 syserr_cb = cb;
311} 583}
312 584
313static void noinline 585static void noinline
314syserr (const char *msg) 586ev_syserr (const char *msg)
315{ 587{
316 if (!msg) 588 if (!msg)
317 msg = "(libev) system error"; 589 msg = "(libev) system error";
318 590
319 if (syserr_cb) 591 if (syserr_cb)
320 syserr_cb (msg); 592 syserr_cb (msg);
321 else 593 else
322 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
323 perror (msg); 601 perror (msg);
602#endif
324 abort (); 603 abort ();
325 } 604 }
326} 605}
327 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
328static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 627
330void 628void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 630{
333 alloc = cb; 631 alloc = cb;
334} 632}
335 633
336inline_speed void * 634inline_speed void *
337ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
338{ 636{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
340 638
341 if (!ptr && size) 639 if (!ptr && size)
342 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
344 abort (); 646 abort ();
345 } 647 }
346 648
347 return ptr; 649 return ptr;
348} 650}
350#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
352 654
353/*****************************************************************************/ 655/*****************************************************************************/
354 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
355typedef struct 661typedef struct
356{ 662{
357 WL head; 663 WL head;
358 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
360#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 672 SOCKET handle;
362#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
363} ANFD; 677} ANFD;
364 678
679/* stores the pending event set for a given watcher */
365typedef struct 680typedef struct
366{ 681{
367 W w; 682 W w;
368 int events; 683 int events; /* the pending event set for the given watcher */
369} ANPENDING; 684} ANPENDING;
370 685
371#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
372typedef struct 688typedef struct
373{ 689{
374 WL head; 690 WL head;
375} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
376#endif 712#endif
377 713
378#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
379 715
380 struct ev_loop 716 struct ev_loop
399 735
400 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
401 737
402#endif 738#endif
403 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
404/*****************************************************************************/ 752/*****************************************************************************/
405 753
754#ifndef EV_HAVE_EV_TIME
406ev_tstamp 755ev_tstamp
407ev_time (void) 756ev_time (void)
408{ 757{
409#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
410 struct timespec ts; 761 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 764 }
765#endif
766
414 struct timeval tv; 767 struct timeval tv;
415 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 770}
771#endif
419 772
420ev_tstamp inline_size 773inline_size ev_tstamp
421get_clock (void) 774get_clock (void)
422{ 775{
423#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
425 { 778 {
446 if (delay > 0.) 799 if (delay > 0.)
447 { 800 {
448#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
449 struct timespec ts; 802 struct timespec ts;
450 803
451 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
455#elif defined(_WIN32) 806#elif defined(_WIN32)
456 Sleep (delay * 1e3); 807 Sleep ((unsigned long)(delay * 1e3));
457#else 808#else
458 struct timeval tv; 809 struct timeval tv;
459 810
460 tv.tv_sec = (time_t)delay; 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 812 /* something not guaranteed by newer posix versions, but guaranteed */
462 813 /* by older ones */
814 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
464#endif 816#endif
465 } 817 }
466} 818}
467 819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
468/*****************************************************************************/ 828/*****************************************************************************/
469 829
470int inline_size 830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831
832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
471array_nextsize (int elem, int cur, int cnt) 835array_nextsize (int elem, int cur, int cnt)
472{ 836{
473 int ncur = cur + 1; 837 int ncur = cur + 1;
474 838
475 do 839 do
476 ncur <<= 1; 840 ncur <<= 1;
477 while (cnt > ncur); 841 while (cnt > ncur);
478 842
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 843 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 844 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 845 {
482 ncur *= elem; 846 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 847 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 848 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 849 ncur /= elem;
486 } 850 }
487 851
488 return ncur; 852 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 856array_realloc (int elem, void *base, int *cur, int cnt)
493{ 857{
494 *cur = array_nextsize (elem, *cur, cnt); 858 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 859 return ev_realloc (base, elem * *cur);
496} 860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 864
498#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 866 if (expect_false ((cnt) > (cur))) \
500 { \ 867 { \
501 int ocur_ = (cur); \ 868 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 881 }
515#endif 882#endif
516 883
517#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 886
520/*****************************************************************************/ 887/*****************************************************************************/
888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
521 894
522void noinline 895void noinline
523ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
524{ 897{
525 W w_ = (W)w; 898 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 907 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 908 pendings [pri][w_->pending - 1].events = revents;
536 } 909 }
537} 910}
538 911
539void inline_speed 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 929{
542 int i; 930 int i;
543 931
544 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
546} 934}
547 935
548/*****************************************************************************/ 936/*****************************************************************************/
549 937
550void inline_size 938inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
565{ 940{
566 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
567 ev_io *w; 942 ev_io *w;
568 943
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 948 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
575 } 950 }
576} 951}
577 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
578void 964void
579ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 966{
581 if (fd >= 0 && fd < anfdmax) 967 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
583} 969}
584 970
585void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
586fd_reify (EV_P) 974fd_reify (EV_P)
587{ 975{
588 int i; 976 int i;
589 977
590 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
591 { 979 {
592 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
594 ev_io *w; 982 ev_io *w;
595 983
596 unsigned char events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
597 986
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 988
601#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
602 if (events) 990 if (o_reify & EV__IOFDSET)
603 { 991 {
604 unsigned long argp; 992 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
611 } 996 }
612#endif 997#endif
613 998
999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
614 { 1000 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events; 1001 anfd->events = 0;
620 1002
621 if (o_events != events || o_reify & EV_IOFDSET) 1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1012 }
625 1013
626 fdchangecnt = 0; 1014 fdchangecnt = 0;
627} 1015}
628 1016
629void inline_size 1017/* something about the given fd changed */
1018inline_size void
630fd_change (EV_P_ int fd, int flags) 1019fd_change (EV_P_ int fd, int flags)
631{ 1020{
632 unsigned char reify = anfds [fd].reify; 1021 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1022 anfds [fd].reify |= flags;
634 1023
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
640 } 1029 }
641} 1030}
642 1031
643void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
644fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
645{ 1035{
646 ev_io *w; 1036 ev_io *w;
647 1037
648 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1042 }
653} 1043}
654 1044
655int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
656fd_valid (int fd) 1047fd_valid (int fd)
657{ 1048{
658#ifdef _WIN32 1049#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1051#else
661 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
662#endif 1053#endif
663} 1054}
664 1055
668{ 1059{
669 int fd; 1060 int fd;
670 1061
671 for (fd = 0; fd < anfdmax; ++fd) 1062 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1063 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1064 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1065 fd_kill (EV_A_ fd);
675} 1066}
676 1067
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1068/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1069static void noinline
682 1073
683 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1075 if (anfds [fd].events)
685 { 1076 {
686 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
687 return; 1078 break;
688 } 1079 }
689} 1080}
690 1081
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1083static void noinline
696 1087
697 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1089 if (anfds [fd].events)
699 { 1090 {
700 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
1092 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1094 }
703} 1095}
704 1096
705/*****************************************************************************/ 1097/* used to prepare libev internal fd's */
706 1098/* this is not fork-safe */
707void inline_speed 1099inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static int sigpipe [2];
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777
778void inline_size
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1100fd_intern (int fd)
843{ 1101{
844#ifdef _WIN32 1102#ifdef _WIN32
845 int arg = 1; 1103 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 1105#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1107 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1108#endif
851} 1109}
852 1110
1111/*****************************************************************************/
1112
1113/*
1114 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116 * the branching factor of the d-tree.
1117 */
1118
1119/*
1120 * at the moment we allow libev the luxury of two heaps,
1121 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122 * which is more cache-efficient.
1123 * the difference is about 5% with 50000+ watchers.
1124 */
1125#if EV_USE_4HEAP
1126
1127#define DHEAP 4
1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130#define UPHEAP_DONE(p,k) ((p) == (k))
1131
1132/* away from the root */
1133inline_speed void
1134downheap (ANHE *heap, int N, int k)
1135{
1136 ANHE he = heap [k];
1137 ANHE *E = heap + N + HEAP0;
1138
1139 for (;;)
1140 {
1141 ev_tstamp minat;
1142 ANHE *minpos;
1143 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144
1145 /* find minimum child */
1146 if (expect_true (pos + DHEAP - 1 < E))
1147 {
1148 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 }
1153 else if (pos < E)
1154 {
1155 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 }
1160 else
1161 break;
1162
1163 if (ANHE_at (he) <= minat)
1164 break;
1165
1166 heap [k] = *minpos;
1167 ev_active (ANHE_w (*minpos)) = k;
1168
1169 k = minpos - heap;
1170 }
1171
1172 heap [k] = he;
1173 ev_active (ANHE_w (he)) = k;
1174}
1175
1176#else /* 4HEAP */
1177
1178#define HEAP0 1
1179#define HPARENT(k) ((k) >> 1)
1180#define UPHEAP_DONE(p,k) (!(p))
1181
1182/* away from the root */
1183inline_speed void
1184downheap (ANHE *heap, int N, int k)
1185{
1186 ANHE he = heap [k];
1187
1188 for (;;)
1189 {
1190 int c = k << 1;
1191
1192 if (c >= N + HEAP0)
1193 break;
1194
1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196 ? 1 : 0;
1197
1198 if (ANHE_at (he) <= ANHE_at (heap [c]))
1199 break;
1200
1201 heap [k] = heap [c];
1202 ev_active (ANHE_w (heap [k])) = k;
1203
1204 k = c;
1205 }
1206
1207 heap [k] = he;
1208 ev_active (ANHE_w (he)) = k;
1209}
1210#endif
1211
1212/* towards the root */
1213inline_speed void
1214upheap (ANHE *heap, int k)
1215{
1216 ANHE he = heap [k];
1217
1218 for (;;)
1219 {
1220 int p = HPARENT (k);
1221
1222 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 break;
1224
1225 heap [k] = heap [p];
1226 ev_active (ANHE_w (heap [k])) = k;
1227 k = p;
1228 }
1229
1230 heap [k] = he;
1231 ev_active (ANHE_w (he)) = k;
1232}
1233
1234/* move an element suitably so it is in a correct place */
1235inline_size void
1236adjustheap (ANHE *heap, int N, int k)
1237{
1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 upheap (heap, k);
1240 else
1241 downheap (heap, N, k);
1242}
1243
1244/* rebuild the heap: this function is used only once and executed rarely */
1245inline_size void
1246reheap (ANHE *heap, int N)
1247{
1248 int i;
1249
1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252 for (i = 0; i < N; ++i)
1253 upheap (heap, i + HEAP0);
1254}
1255
1256/*****************************************************************************/
1257
1258/* associate signal watchers to a signal signal */
1259typedef struct
1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1265 WL head;
1266} ANSIG;
1267
1268static ANSIG signals [EV_NSIG - 1];
1269
1270/*****************************************************************************/
1271
1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273
853static void noinline 1274static void noinline
854siginit (EV_P) 1275evpipe_init (EV_P)
855{ 1276{
1277 if (!ev_is_active (&pipe_w))
1278 {
1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1285 {
1286 evpipe [0] = -1;
1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 }
1290 else
1291# endif
1292 {
1293 while (pipe (evpipe))
1294 ev_syserr ("(libev) error creating signal/async pipe");
1295
856 fd_intern (sigpipe [0]); 1296 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1297 fd_intern (evpipe [1]);
1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 }
858 1300
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1301 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 }
1304}
1305
1306inline_size void
1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308{
1309 if (!*flag)
1310 {
1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1313
1314 *flag = 1;
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 {
1319 uint64_t counter = 1;
1320 write (evfd, &counter, sizeof (uint64_t));
1321 }
1322 else
1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1329 write (evpipe [1], &dummy, 1);
1330
1331 errno = old_errno;
1332 }
1333}
1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
1337static void
1338pipecb (EV_P_ ev_io *iow, int revents)
1339{
1340 int i;
1341
1342#if EV_USE_EVENTFD
1343 if (evfd >= 0)
1344 {
1345 uint64_t counter;
1346 read (evfd, &counter, sizeof (uint64_t));
1347 }
1348 else
1349#endif
1350 {
1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 read (evpipe [0], &dummy, 1);
1354 }
1355
1356#if EV_SIGNAL_ENABLE
1357 if (sig_pending)
1358 {
1359 sig_pending = 0;
1360
1361 for (i = EV_NSIG - 1; i--; )
1362 if (expect_false (signals [i].pending))
1363 ev_feed_signal_event (EV_A_ i + 1);
1364 }
1365#endif
1366
1367#if EV_ASYNC_ENABLE
1368 if (async_pending)
1369 {
1370 async_pending = 0;
1371
1372 for (i = asynccnt; i--; )
1373 if (asyncs [i]->sent)
1374 {
1375 asyncs [i]->sent = 0;
1376 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1377 }
1378 }
1379#endif
862} 1380}
863 1381
864/*****************************************************************************/ 1382/*****************************************************************************/
865 1383
1384void
1385ev_feed_signal (int signum)
1386{
1387#if EV_MULTIPLICITY
1388 EV_P = signals [signum - 1].loop;
1389
1390 if (!EV_A)
1391 return;
1392#endif
1393
1394 signals [signum - 1].pending = 1;
1395 evpipe_write (EV_A_ &sig_pending);
1396}
1397
1398static void
1399ev_sighandler (int signum)
1400{
1401#ifdef _WIN32
1402 signal (signum, ev_sighandler);
1403#endif
1404
1405 ev_feed_signal (signum);
1406}
1407
1408void noinline
1409ev_feed_signal_event (EV_P_ int signum)
1410{
1411 WL w;
1412
1413 if (expect_false (signum <= 0 || signum > EV_NSIG))
1414 return;
1415
1416 --signum;
1417
1418#if EV_MULTIPLICITY
1419 /* it is permissible to try to feed a signal to the wrong loop */
1420 /* or, likely more useful, feeding a signal nobody is waiting for */
1421
1422 if (expect_false (signals [signum].loop != EV_A))
1423 return;
1424#endif
1425
1426 signals [signum].pending = 0;
1427
1428 for (w = signals [signum].head; w; w = w->next)
1429 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1430}
1431
1432#if EV_USE_SIGNALFD
1433static void
1434sigfdcb (EV_P_ ev_io *iow, int revents)
1435{
1436 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1437
1438 for (;;)
1439 {
1440 ssize_t res = read (sigfd, si, sizeof (si));
1441
1442 /* not ISO-C, as res might be -1, but works with SuS */
1443 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1444 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1445
1446 if (res < (ssize_t)sizeof (si))
1447 break;
1448 }
1449}
1450#endif
1451
1452#endif
1453
1454/*****************************************************************************/
1455
1456#if EV_CHILD_ENABLE
866static WL childs [EV_PID_HASHSIZE]; 1457static WL childs [EV_PID_HASHSIZE];
867 1458
868#ifndef _WIN32
869
870static ev_signal childev; 1459static ev_signal childev;
871 1460
872void inline_speed 1461#ifndef WIFCONTINUED
1462# define WIFCONTINUED(status) 0
1463#endif
1464
1465/* handle a single child status event */
1466inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1467child_reap (EV_P_ int chain, int pid, int status)
874{ 1468{
875 ev_child *w; 1469 ev_child *w;
1470 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1471
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1472 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1473 {
878 if (w->pid == pid || !w->pid) 1474 if ((w->pid == pid || !w->pid)
1475 && (!traced || (w->flags & 1)))
879 { 1476 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1477 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1478 w->rpid = pid;
882 w->rstatus = status; 1479 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1480 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1481 }
1482 }
885} 1483}
886 1484
887#ifndef WCONTINUED 1485#ifndef WCONTINUED
888# define WCONTINUED 0 1486# define WCONTINUED 0
889#endif 1487#endif
890 1488
1489/* called on sigchld etc., calls waitpid */
891static void 1490static void
892childcb (EV_P_ ev_signal *sw, int revents) 1491childcb (EV_P_ ev_signal *sw, int revents)
893{ 1492{
894 int pid, status; 1493 int pid, status;
895 1494
898 if (!WCONTINUED 1497 if (!WCONTINUED
899 || errno != EINVAL 1498 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1499 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1500 return;
902 1501
903 /* make sure we are called again until all childs have been reaped */ 1502 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1503 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1504 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1505
907 child_reap (EV_A_ sw, pid, pid, status); 1506 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1507 if ((EV_PID_HASHSIZE) > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1508 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1509}
911 1510
912#endif 1511#endif
913 1512
914/*****************************************************************************/ 1513/*****************************************************************************/
915 1514
1515#if EV_USE_IOCP
1516# include "ev_iocp.c"
1517#endif
916#if EV_USE_PORT 1518#if EV_USE_PORT
917# include "ev_port.c" 1519# include "ev_port.c"
918#endif 1520#endif
919#if EV_USE_KQUEUE 1521#if EV_USE_KQUEUE
920# include "ev_kqueue.c" 1522# include "ev_kqueue.c"
976 /* kqueue is borked on everything but netbsd apparently */ 1578 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1579 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1580 flags &= ~EVBACKEND_KQUEUE;
979#endif 1581#endif
980#ifdef __APPLE__ 1582#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1583 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1584 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1585 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1586#endif
1587#ifdef __FreeBSD__
1588 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
983#endif 1589#endif
984 1590
985 return flags; 1591 return flags;
986} 1592}
987 1593
989ev_embeddable_backends (void) 1595ev_embeddable_backends (void)
990{ 1596{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1597 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992 1598
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1599 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */ 1600 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
995 flags &= ~EVBACKEND_EPOLL; 1601 flags &= ~EVBACKEND_EPOLL;
996 1602
997 return flags; 1603 return flags;
998} 1604}
999 1605
1000unsigned int 1606unsigned int
1001ev_backend (EV_P) 1607ev_backend (EV_P)
1002{ 1608{
1003 return backend; 1609 return backend;
1004} 1610}
1005 1611
1612#if EV_FEATURE_API
1006unsigned int 1613unsigned int
1007ev_loop_count (EV_P) 1614ev_iteration (EV_P)
1008{ 1615{
1009 return loop_count; 1616 return loop_count;
1010} 1617}
1011 1618
1619unsigned int
1620ev_depth (EV_P)
1621{
1622 return loop_depth;
1623}
1624
1012void 1625void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1626ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 1627{
1015 io_blocktime = interval; 1628 io_blocktime = interval;
1016} 1629}
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1632ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1633{
1021 timeout_blocktime = interval; 1634 timeout_blocktime = interval;
1022} 1635}
1023 1636
1637void
1638ev_set_userdata (EV_P_ void *data)
1639{
1640 userdata = data;
1641}
1642
1643void *
1644ev_userdata (EV_P)
1645{
1646 return userdata;
1647}
1648
1649void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1650{
1651 invoke_cb = invoke_pending_cb;
1652}
1653
1654void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1655{
1656 release_cb = release;
1657 acquire_cb = acquire;
1658}
1659#endif
1660
1661/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1662static void noinline
1025loop_init (EV_P_ unsigned int flags) 1663loop_init (EV_P_ unsigned int flags)
1026{ 1664{
1027 if (!backend) 1665 if (!backend)
1028 { 1666 {
1667 origflags = flags;
1668
1669#if EV_USE_REALTIME
1670 if (!have_realtime)
1671 {
1672 struct timespec ts;
1673
1674 if (!clock_gettime (CLOCK_REALTIME, &ts))
1675 have_realtime = 1;
1676 }
1677#endif
1678
1029#if EV_USE_MONOTONIC 1679#if EV_USE_MONOTONIC
1680 if (!have_monotonic)
1030 { 1681 {
1031 struct timespec ts; 1682 struct timespec ts;
1683
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1685 have_monotonic = 1;
1034 } 1686 }
1035#endif 1687#endif
1036
1037 ev_rt_now = ev_time ();
1038 mn_now = get_clock ();
1039 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now;
1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044 1688
1045 /* pid check not overridable via env */ 1689 /* pid check not overridable via env */
1046#ifndef _WIN32 1690#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1691 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1692 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1695 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1696 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1697 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1698 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1699
1056 if (!(flags & 0x0000ffffUL)) 1700 ev_rt_now = ev_time ();
1701 mn_now = get_clock ();
1702 now_floor = mn_now;
1703 rtmn_diff = ev_rt_now - mn_now;
1704#if EV_FEATURE_API
1705 invoke_cb = ev_invoke_pending;
1706#endif
1707
1708 io_blocktime = 0.;
1709 timeout_blocktime = 0.;
1710 backend = 0;
1711 backend_fd = -1;
1712 sig_pending = 0;
1713#if EV_ASYNC_ENABLE
1714 async_pending = 0;
1715#endif
1716#if EV_USE_INOTIFY
1717 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1718#endif
1719#if EV_USE_SIGNALFD
1720 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1721#endif
1722
1723 if (!(flags & EVBACKEND_MASK))
1057 flags |= ev_recommended_backends (); 1724 flags |= ev_recommended_backends ();
1058 1725
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY 1726#if EV_USE_IOCP
1062 fs_fd = -2; 1727 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1063#endif 1728#endif
1064
1065#if EV_USE_PORT 1729#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1730 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1731#endif
1068#if EV_USE_KQUEUE 1732#if EV_USE_KQUEUE
1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1733 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1076#endif 1740#endif
1077#if EV_USE_SELECT 1741#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1742 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1743#endif
1080 1744
1745 ev_prepare_init (&pending_w, pendingcb);
1746
1747#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1081 ev_init (&sigev, sigcb); 1748 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1749 ev_set_priority (&pipe_w, EV_MAXPRI);
1750#endif
1083 } 1751 }
1084} 1752}
1085 1753
1086static void noinline 1754/* free up a loop structure */
1755void
1087loop_destroy (EV_P) 1756ev_loop_destroy (EV_P)
1088{ 1757{
1089 int i; 1758 int i;
1759
1760#if EV_MULTIPLICITY
1761 /* mimic free (0) */
1762 if (!EV_A)
1763 return;
1764#endif
1765
1766#if EV_CLEANUP_ENABLE
1767 /* queue cleanup watchers (and execute them) */
1768 if (expect_false (cleanupcnt))
1769 {
1770 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1771 EV_INVOKE_PENDING;
1772 }
1773#endif
1774
1775#if EV_CHILD_ENABLE
1776 if (ev_is_active (&childev))
1777 {
1778 ev_ref (EV_A); /* child watcher */
1779 ev_signal_stop (EV_A_ &childev);
1780 }
1781#endif
1782
1783 if (ev_is_active (&pipe_w))
1784 {
1785 /*ev_ref (EV_A);*/
1786 /*ev_io_stop (EV_A_ &pipe_w);*/
1787
1788#if EV_USE_EVENTFD
1789 if (evfd >= 0)
1790 close (evfd);
1791#endif
1792
1793 if (evpipe [0] >= 0)
1794 {
1795 EV_WIN32_CLOSE_FD (evpipe [0]);
1796 EV_WIN32_CLOSE_FD (evpipe [1]);
1797 }
1798 }
1799
1800#if EV_USE_SIGNALFD
1801 if (ev_is_active (&sigfd_w))
1802 close (sigfd);
1803#endif
1090 1804
1091#if EV_USE_INOTIFY 1805#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1806 if (fs_fd >= 0)
1093 close (fs_fd); 1807 close (fs_fd);
1094#endif 1808#endif
1095 1809
1096 if (backend_fd >= 0) 1810 if (backend_fd >= 0)
1097 close (backend_fd); 1811 close (backend_fd);
1098 1812
1813#if EV_USE_IOCP
1814 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1815#endif
1099#if EV_USE_PORT 1816#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1817 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1101#endif 1818#endif
1102#if EV_USE_KQUEUE 1819#if EV_USE_KQUEUE
1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1820 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1118#if EV_IDLE_ENABLE 1835#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 1836 array_free (idle, [i]);
1120#endif 1837#endif
1121 } 1838 }
1122 1839
1123 ev_free (anfds); anfdmax = 0; 1840 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 1841
1125 /* have to use the microsoft-never-gets-it-right macro */ 1842 /* have to use the microsoft-never-gets-it-right macro */
1843 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1844 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1845 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1846#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1847 array_free (periodic, EMPTY);
1130#endif 1848#endif
1131#if EV_FORK_ENABLE 1849#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1850 array_free (fork, EMPTY);
1133#endif 1851#endif
1852#if EV_CLEANUP_ENABLE
1853 array_free (cleanup, EMPTY);
1854#endif
1134 array_free (prepare, EMPTY); 1855 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1856 array_free (check, EMPTY);
1857#if EV_ASYNC_ENABLE
1858 array_free (async, EMPTY);
1859#endif
1136 1860
1137 backend = 0; 1861 backend = 0;
1138}
1139 1862
1863#if EV_MULTIPLICITY
1864 if (ev_is_default_loop (EV_A))
1865#endif
1866 ev_default_loop_ptr = 0;
1867#if EV_MULTIPLICITY
1868 else
1869 ev_free (EV_A);
1870#endif
1871}
1872
1873#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1874inline_size void infy_fork (EV_P);
1875#endif
1141 1876
1142void inline_size 1877inline_size void
1143loop_fork (EV_P) 1878loop_fork (EV_P)
1144{ 1879{
1145#if EV_USE_PORT 1880#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1881 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1882#endif
1153#endif 1888#endif
1154#if EV_USE_INOTIFY 1889#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1890 infy_fork (EV_A);
1156#endif 1891#endif
1157 1892
1158 if (ev_is_active (&sigev)) 1893 if (ev_is_active (&pipe_w))
1159 { 1894 {
1160 /* default loop */ 1895 /* this "locks" the handlers against writing to the pipe */
1896 /* while we modify the fd vars */
1897 sig_pending = 1;
1898#if EV_ASYNC_ENABLE
1899 async_pending = 1;
1900#endif
1161 1901
1162 ev_ref (EV_A); 1902 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1903 ev_io_stop (EV_A_ &pipe_w);
1164 close (sigpipe [0]);
1165 close (sigpipe [1]);
1166 1904
1167 while (pipe (sigpipe)) 1905#if EV_USE_EVENTFD
1168 syserr ("(libev) error creating pipe"); 1906 if (evfd >= 0)
1907 close (evfd);
1908#endif
1169 1909
1910 if (evpipe [0] >= 0)
1911 {
1912 EV_WIN32_CLOSE_FD (evpipe [0]);
1913 EV_WIN32_CLOSE_FD (evpipe [1]);
1914 }
1915
1916#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1170 siginit (EV_A); 1917 evpipe_init (EV_A);
1918 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1919 pipecb (EV_A_ &pipe_w, EV_READ);
1920#endif
1172 } 1921 }
1173 1922
1174 postfork = 0; 1923 postfork = 0;
1175} 1924}
1925
1926#if EV_MULTIPLICITY
1927
1928struct ev_loop *
1929ev_loop_new (unsigned int flags)
1930{
1931 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1932
1933 memset (EV_A, 0, sizeof (struct ev_loop));
1934 loop_init (EV_A_ flags);
1935
1936 if (ev_backend (EV_A))
1937 return EV_A;
1938
1939 ev_free (EV_A);
1940 return 0;
1941}
1942
1943#endif /* multiplicity */
1944
1945#if EV_VERIFY
1946static void noinline
1947verify_watcher (EV_P_ W w)
1948{
1949 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1950
1951 if (w->pending)
1952 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1953}
1954
1955static void noinline
1956verify_heap (EV_P_ ANHE *heap, int N)
1957{
1958 int i;
1959
1960 for (i = HEAP0; i < N + HEAP0; ++i)
1961 {
1962 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1963 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1964 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1965
1966 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1967 }
1968}
1969
1970static void noinline
1971array_verify (EV_P_ W *ws, int cnt)
1972{
1973 while (cnt--)
1974 {
1975 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1976 verify_watcher (EV_A_ ws [cnt]);
1977 }
1978}
1979#endif
1980
1981#if EV_FEATURE_API
1982void
1983ev_verify (EV_P)
1984{
1985#if EV_VERIFY
1986 int i;
1987 WL w;
1988
1989 assert (activecnt >= -1);
1990
1991 assert (fdchangemax >= fdchangecnt);
1992 for (i = 0; i < fdchangecnt; ++i)
1993 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1994
1995 assert (anfdmax >= 0);
1996 for (i = 0; i < anfdmax; ++i)
1997 for (w = anfds [i].head; w; w = w->next)
1998 {
1999 verify_watcher (EV_A_ (W)w);
2000 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2001 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2002 }
2003
2004 assert (timermax >= timercnt);
2005 verify_heap (EV_A_ timers, timercnt);
2006
2007#if EV_PERIODIC_ENABLE
2008 assert (periodicmax >= periodiccnt);
2009 verify_heap (EV_A_ periodics, periodiccnt);
2010#endif
2011
2012 for (i = NUMPRI; i--; )
2013 {
2014 assert (pendingmax [i] >= pendingcnt [i]);
2015#if EV_IDLE_ENABLE
2016 assert (idleall >= 0);
2017 assert (idlemax [i] >= idlecnt [i]);
2018 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2019#endif
2020 }
2021
2022#if EV_FORK_ENABLE
2023 assert (forkmax >= forkcnt);
2024 array_verify (EV_A_ (W *)forks, forkcnt);
2025#endif
2026
2027#if EV_CLEANUP_ENABLE
2028 assert (cleanupmax >= cleanupcnt);
2029 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2030#endif
2031
2032#if EV_ASYNC_ENABLE
2033 assert (asyncmax >= asynccnt);
2034 array_verify (EV_A_ (W *)asyncs, asynccnt);
2035#endif
2036
2037#if EV_PREPARE_ENABLE
2038 assert (preparemax >= preparecnt);
2039 array_verify (EV_A_ (W *)prepares, preparecnt);
2040#endif
2041
2042#if EV_CHECK_ENABLE
2043 assert (checkmax >= checkcnt);
2044 array_verify (EV_A_ (W *)checks, checkcnt);
2045#endif
2046
2047# if 0
2048#if EV_CHILD_ENABLE
2049 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2050 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2051#endif
2052# endif
2053#endif
2054}
2055#endif
1176 2056
1177#if EV_MULTIPLICITY 2057#if EV_MULTIPLICITY
1178struct ev_loop * 2058struct ev_loop *
1179ev_loop_new (unsigned int flags)
1180{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182
1183 memset (loop, 0, sizeof (struct ev_loop));
1184
1185 loop_init (EV_A_ flags);
1186
1187 if (ev_backend (EV_A))
1188 return loop;
1189
1190 return 0;
1191}
1192
1193void
1194ev_loop_destroy (EV_P)
1195{
1196 loop_destroy (EV_A);
1197 ev_free (loop);
1198}
1199
1200void
1201ev_loop_fork (EV_P)
1202{
1203 postfork = 1; /* must be in line with ev_default_fork */
1204}
1205
1206#endif
1207
1208#if EV_MULTIPLICITY
1209struct ev_loop *
1210ev_default_loop_init (unsigned int flags)
1211#else 2059#else
1212int 2060int
2061#endif
1213ev_default_loop (unsigned int flags) 2062ev_default_loop (unsigned int flags)
1214#endif
1215{ 2063{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 2064 if (!ev_default_loop_ptr)
1221 { 2065 {
1222#if EV_MULTIPLICITY 2066#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2067 EV_P = ev_default_loop_ptr = &default_loop_struct;
1224#else 2068#else
1225 ev_default_loop_ptr = 1; 2069 ev_default_loop_ptr = 1;
1226#endif 2070#endif
1227 2071
1228 loop_init (EV_A_ flags); 2072 loop_init (EV_A_ flags);
1229 2073
1230 if (ev_backend (EV_A)) 2074 if (ev_backend (EV_A))
1231 { 2075 {
1232 siginit (EV_A); 2076#if EV_CHILD_ENABLE
1233
1234#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 2077 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 2078 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 2079 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2080 ev_unref (EV_A); /* child watcher should not keep loop alive */
1239#endif 2081#endif
1244 2086
1245 return ev_default_loop_ptr; 2087 return ev_default_loop_ptr;
1246} 2088}
1247 2089
1248void 2090void
1249ev_default_destroy (void) 2091ev_loop_fork (EV_P)
1250{ 2092{
1251#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev);
1258#endif
1259
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A);
1267}
1268
1269void
1270ev_default_fork (void)
1271{
1272#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif
1275
1276 if (backend)
1277 postfork = 1; /* must be in line with ev_loop_fork */ 2093 postfork = 1; /* must be in line with ev_default_fork */
1278} 2094}
1279 2095
1280/*****************************************************************************/ 2096/*****************************************************************************/
1281 2097
1282void 2098void
1283ev_invoke (EV_P_ void *w, int revents) 2099ev_invoke (EV_P_ void *w, int revents)
1284{ 2100{
1285 EV_CB_INVOKE ((W)w, revents); 2101 EV_CB_INVOKE ((W)w, revents);
1286} 2102}
1287 2103
1288void inline_speed 2104unsigned int
1289call_pending (EV_P) 2105ev_pending_count (EV_P)
2106{
2107 int pri;
2108 unsigned int count = 0;
2109
2110 for (pri = NUMPRI; pri--; )
2111 count += pendingcnt [pri];
2112
2113 return count;
2114}
2115
2116void noinline
2117ev_invoke_pending (EV_P)
1290{ 2118{
1291 int pri; 2119 int pri;
1292 2120
1293 for (pri = NUMPRI; pri--; ) 2121 for (pri = NUMPRI; pri--; )
1294 while (pendingcnt [pri]) 2122 while (pendingcnt [pri])
1295 { 2123 {
1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2124 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1297 2125
1298 if (expect_true (p->w))
1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301
1302 p->w->pending = 0; 2126 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 2127 EV_CB_INVOKE (p->w, p->events);
1304 } 2128 EV_FREQUENT_CHECK;
1305 } 2129 }
1306} 2130}
1307 2131
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387
1388#if EV_IDLE_ENABLE 2132#if EV_IDLE_ENABLE
1389void inline_size 2133/* make idle watchers pending. this handles the "call-idle */
2134/* only when higher priorities are idle" logic */
2135inline_size void
1390idle_reify (EV_P) 2136idle_reify (EV_P)
1391{ 2137{
1392 if (expect_false (idleall)) 2138 if (expect_false (idleall))
1393 { 2139 {
1394 int pri; 2140 int pri;
1406 } 2152 }
1407 } 2153 }
1408} 2154}
1409#endif 2155#endif
1410 2156
1411void inline_speed 2157/* make timers pending */
2158inline_size void
2159timers_reify (EV_P)
2160{
2161 EV_FREQUENT_CHECK;
2162
2163 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2164 {
2165 do
2166 {
2167 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2168
2169 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2170
2171 /* first reschedule or stop timer */
2172 if (w->repeat)
2173 {
2174 ev_at (w) += w->repeat;
2175 if (ev_at (w) < mn_now)
2176 ev_at (w) = mn_now;
2177
2178 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2179
2180 ANHE_at_cache (timers [HEAP0]);
2181 downheap (timers, timercnt, HEAP0);
2182 }
2183 else
2184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2185
2186 EV_FREQUENT_CHECK;
2187 feed_reverse (EV_A_ (W)w);
2188 }
2189 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2190
2191 feed_reverse_done (EV_A_ EV_TIMER);
2192 }
2193}
2194
2195#if EV_PERIODIC_ENABLE
2196/* make periodics pending */
2197inline_size void
2198periodics_reify (EV_P)
2199{
2200 EV_FREQUENT_CHECK;
2201
2202 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2203 {
2204 int feed_count = 0;
2205
2206 do
2207 {
2208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2209
2210 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2211
2212 /* first reschedule or stop timer */
2213 if (w->reschedule_cb)
2214 {
2215 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2216
2217 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2218
2219 ANHE_at_cache (periodics [HEAP0]);
2220 downheap (periodics, periodiccnt, HEAP0);
2221 }
2222 else if (w->interval)
2223 {
2224 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2225 /* if next trigger time is not sufficiently in the future, put it there */
2226 /* this might happen because of floating point inexactness */
2227 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2228 {
2229 ev_at (w) += w->interval;
2230
2231 /* if interval is unreasonably low we might still have a time in the past */
2232 /* so correct this. this will make the periodic very inexact, but the user */
2233 /* has effectively asked to get triggered more often than possible */
2234 if (ev_at (w) < ev_rt_now)
2235 ev_at (w) = ev_rt_now;
2236 }
2237
2238 ANHE_at_cache (periodics [HEAP0]);
2239 downheap (periodics, periodiccnt, HEAP0);
2240 }
2241 else
2242 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2243
2244 EV_FREQUENT_CHECK;
2245 feed_reverse (EV_A_ (W)w);
2246 }
2247 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2248
2249 feed_reverse_done (EV_A_ EV_PERIODIC);
2250 }
2251}
2252
2253/* simply recalculate all periodics */
2254/* TODO: maybe ensure that at least one event happens when jumping forward? */
2255static void noinline
2256periodics_reschedule (EV_P)
2257{
2258 int i;
2259
2260 /* adjust periodics after time jump */
2261 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2262 {
2263 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2264
2265 if (w->reschedule_cb)
2266 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2267 else if (w->interval)
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269
2270 ANHE_at_cache (periodics [i]);
2271 }
2272
2273 reheap (periodics, periodiccnt);
2274}
2275#endif
2276
2277/* adjust all timers by a given offset */
2278static void noinline
2279timers_reschedule (EV_P_ ev_tstamp adjust)
2280{
2281 int i;
2282
2283 for (i = 0; i < timercnt; ++i)
2284 {
2285 ANHE *he = timers + i + HEAP0;
2286 ANHE_w (*he)->at += adjust;
2287 ANHE_at_cache (*he);
2288 }
2289}
2290
2291/* fetch new monotonic and realtime times from the kernel */
2292/* also detect if there was a timejump, and act accordingly */
2293inline_speed void
1412time_update (EV_P_ ev_tstamp max_block) 2294time_update (EV_P_ ev_tstamp max_block)
1413{ 2295{
1414 int i;
1415
1416#if EV_USE_MONOTONIC 2296#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic)) 2297 if (expect_true (have_monotonic))
1418 { 2298 {
2299 int i;
1419 ev_tstamp odiff = rtmn_diff; 2300 ev_tstamp odiff = rtmn_diff;
1420 2301
1421 mn_now = get_clock (); 2302 mn_now = get_clock ();
1422 2303
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2304 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1441 */ 2322 */
1442 for (i = 4; --i; ) 2323 for (i = 4; --i; )
1443 { 2324 {
1444 rtmn_diff = ev_rt_now - mn_now; 2325 rtmn_diff = ev_rt_now - mn_now;
1445 2326
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2327 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 2328 return; /* all is well */
1448 2329
1449 ev_rt_now = ev_time (); 2330 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 2331 mn_now = get_clock ();
1451 now_floor = mn_now; 2332 now_floor = mn_now;
1452 } 2333 }
1453 2334
2335 /* no timer adjustment, as the monotonic clock doesn't jump */
2336 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454# if EV_PERIODIC_ENABLE 2337# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2338 periodics_reschedule (EV_A);
1456# endif 2339# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 } 2340 }
1460 else 2341 else
1461#endif 2342#endif
1462 { 2343 {
1463 ev_rt_now = ev_time (); 2344 ev_rt_now = ev_time ();
1464 2345
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2346 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 { 2347 {
2348 /* adjust timers. this is easy, as the offset is the same for all of them */
2349 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1467#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 2351 periodics_reschedule (EV_A);
1469#endif 2352#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i)
1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1473 } 2353 }
1474 2354
1475 mn_now = ev_rt_now; 2355 mn_now = ev_rt_now;
1476 } 2356 }
1477} 2357}
1478 2358
1479void 2359void
1480ev_ref (EV_P)
1481{
1482 ++activecnt;
1483}
1484
1485void
1486ev_unref (EV_P)
1487{
1488 --activecnt;
1489}
1490
1491static int loop_done;
1492
1493void
1494ev_loop (EV_P_ int flags) 2360ev_run (EV_P_ int flags)
1495{ 2361{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2362#if EV_FEATURE_API
1497 ? EVUNLOOP_ONE 2363 ++loop_depth;
1498 : EVUNLOOP_CANCEL; 2364#endif
1499 2365
2366 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2367
2368 loop_done = EVBREAK_CANCEL;
2369
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2370 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1501 2371
1502 do 2372 do
1503 { 2373 {
2374#if EV_VERIFY >= 2
2375 ev_verify (EV_A);
2376#endif
2377
1504#ifndef _WIN32 2378#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 2379 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 2380 if (expect_false (getpid () != curpid))
1507 { 2381 {
1508 curpid = getpid (); 2382 curpid = getpid ();
1514 /* we might have forked, so queue fork handlers */ 2388 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork)) 2389 if (expect_false (postfork))
1516 if (forkcnt) 2390 if (forkcnt)
1517 { 2391 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2392 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A); 2393 EV_INVOKE_PENDING;
1520 } 2394 }
1521#endif 2395#endif
1522 2396
2397#if EV_PREPARE_ENABLE
1523 /* queue prepare watchers (and execute them) */ 2398 /* queue prepare watchers (and execute them) */
1524 if (expect_false (preparecnt)) 2399 if (expect_false (preparecnt))
1525 { 2400 {
1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2401 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1527 call_pending (EV_A); 2402 EV_INVOKE_PENDING;
1528 } 2403 }
2404#endif
1529 2405
1530 if (expect_false (!activecnt)) 2406 if (expect_false (loop_done))
1531 break; 2407 break;
1532 2408
1533 /* we might have forked, so reify kernel state if necessary */ 2409 /* we might have forked, so reify kernel state if necessary */
1534 if (expect_false (postfork)) 2410 if (expect_false (postfork))
1535 loop_fork (EV_A); 2411 loop_fork (EV_A);
1540 /* calculate blocking time */ 2416 /* calculate blocking time */
1541 { 2417 {
1542 ev_tstamp waittime = 0.; 2418 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.; 2419 ev_tstamp sleeptime = 0.;
1544 2420
2421 /* remember old timestamp for io_blocktime calculation */
2422 ev_tstamp prev_mn_now = mn_now;
2423
2424 /* update time to cancel out callback processing overhead */
2425 time_update (EV_A_ 1e100);
2426
1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2427 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1546 { 2428 {
1547 /* update time to cancel out callback processing overhead */
1548 time_update (EV_A_ 1e100);
1549
1550 waittime = MAX_BLOCKTIME; 2429 waittime = MAX_BLOCKTIME;
1551 2430
1552 if (timercnt) 2431 if (timercnt)
1553 { 2432 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2433 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 2434 if (waittime > to) waittime = to;
1556 } 2435 }
1557 2436
1558#if EV_PERIODIC_ENABLE 2437#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 2438 if (periodiccnt)
1560 { 2439 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2440 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 2441 if (waittime > to) waittime = to;
1563 } 2442 }
1564#endif 2443#endif
1565 2444
2445 /* don't let timeouts decrease the waittime below timeout_blocktime */
1566 if (expect_false (waittime < timeout_blocktime)) 2446 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime; 2447 waittime = timeout_blocktime;
1568 2448
1569 sleeptime = waittime - backend_fudge; 2449 /* extra check because io_blocktime is commonly 0 */
1570
1571 if (expect_true (sleeptime > io_blocktime)) 2450 if (expect_false (io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 { 2451 {
2452 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2453
2454 if (sleeptime > waittime - backend_fudge)
2455 sleeptime = waittime - backend_fudge;
2456
2457 if (expect_true (sleeptime > 0.))
2458 {
1576 ev_sleep (sleeptime); 2459 ev_sleep (sleeptime);
1577 waittime -= sleeptime; 2460 waittime -= sleeptime;
2461 }
1578 } 2462 }
1579 } 2463 }
1580 2464
2465#if EV_FEATURE_API
1581 ++loop_count; 2466 ++loop_count;
2467#endif
2468 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1582 backend_poll (EV_A_ waittime); 2469 backend_poll (EV_A_ waittime);
2470 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1583 2471
1584 /* update ev_rt_now, do magic */ 2472 /* update ev_rt_now, do magic */
1585 time_update (EV_A_ waittime + sleeptime); 2473 time_update (EV_A_ waittime + sleeptime);
1586 } 2474 }
1587 2475
1594#if EV_IDLE_ENABLE 2482#if EV_IDLE_ENABLE
1595 /* queue idle watchers unless other events are pending */ 2483 /* queue idle watchers unless other events are pending */
1596 idle_reify (EV_A); 2484 idle_reify (EV_A);
1597#endif 2485#endif
1598 2486
2487#if EV_CHECK_ENABLE
1599 /* queue check watchers, to be executed first */ 2488 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2489 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2490 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2491#endif
1602 2492
1603 call_pending (EV_A); 2493 EV_INVOKE_PENDING;
1604
1605 } 2494 }
1606 while (expect_true (activecnt && !loop_done)); 2495 while (expect_true (
2496 activecnt
2497 && !loop_done
2498 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2499 ));
1607 2500
1608 if (loop_done == EVUNLOOP_ONE) 2501 if (loop_done == EVBREAK_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2502 loop_done = EVBREAK_CANCEL;
1610}
1611 2503
2504#if EV_FEATURE_API
2505 --loop_depth;
2506#endif
2507}
2508
1612void 2509void
1613ev_unloop (EV_P_ int how) 2510ev_break (EV_P_ int how)
1614{ 2511{
1615 loop_done = how; 2512 loop_done = how;
1616} 2513}
1617 2514
2515void
2516ev_ref (EV_P)
2517{
2518 ++activecnt;
2519}
2520
2521void
2522ev_unref (EV_P)
2523{
2524 --activecnt;
2525}
2526
2527void
2528ev_now_update (EV_P)
2529{
2530 time_update (EV_A_ 1e100);
2531}
2532
2533void
2534ev_suspend (EV_P)
2535{
2536 ev_now_update (EV_A);
2537}
2538
2539void
2540ev_resume (EV_P)
2541{
2542 ev_tstamp mn_prev = mn_now;
2543
2544 ev_now_update (EV_A);
2545 timers_reschedule (EV_A_ mn_now - mn_prev);
2546#if EV_PERIODIC_ENABLE
2547 /* TODO: really do this? */
2548 periodics_reschedule (EV_A);
2549#endif
2550}
2551
1618/*****************************************************************************/ 2552/*****************************************************************************/
2553/* singly-linked list management, used when the expected list length is short */
1619 2554
1620void inline_size 2555inline_size void
1621wlist_add (WL *head, WL elem) 2556wlist_add (WL *head, WL elem)
1622{ 2557{
1623 elem->next = *head; 2558 elem->next = *head;
1624 *head = elem; 2559 *head = elem;
1625} 2560}
1626 2561
1627void inline_size 2562inline_size void
1628wlist_del (WL *head, WL elem) 2563wlist_del (WL *head, WL elem)
1629{ 2564{
1630 while (*head) 2565 while (*head)
1631 { 2566 {
1632 if (*head == elem) 2567 if (expect_true (*head == elem))
1633 { 2568 {
1634 *head = elem->next; 2569 *head = elem->next;
1635 return; 2570 break;
1636 } 2571 }
1637 2572
1638 head = &(*head)->next; 2573 head = &(*head)->next;
1639 } 2574 }
1640} 2575}
1641 2576
1642void inline_speed 2577/* internal, faster, version of ev_clear_pending */
2578inline_speed void
1643clear_pending (EV_P_ W w) 2579clear_pending (EV_P_ W w)
1644{ 2580{
1645 if (w->pending) 2581 if (w->pending)
1646 { 2582 {
1647 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2583 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1648 w->pending = 0; 2584 w->pending = 0;
1649 } 2585 }
1650} 2586}
1651 2587
1652int 2588int
1656 int pending = w_->pending; 2592 int pending = w_->pending;
1657 2593
1658 if (expect_true (pending)) 2594 if (expect_true (pending))
1659 { 2595 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2596 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2597 p->w = (W)&pending_w;
1661 w_->pending = 0; 2598 w_->pending = 0;
1662 p->w = 0;
1663 return p->events; 2599 return p->events;
1664 } 2600 }
1665 else 2601 else
1666 return 0; 2602 return 0;
1667} 2603}
1668 2604
1669void inline_size 2605inline_size void
1670pri_adjust (EV_P_ W w) 2606pri_adjust (EV_P_ W w)
1671{ 2607{
1672 int pri = w->priority; 2608 int pri = ev_priority (w);
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2609 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2610 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri; 2611 ev_set_priority (w, pri);
1676} 2612}
1677 2613
1678void inline_speed 2614inline_speed void
1679ev_start (EV_P_ W w, int active) 2615ev_start (EV_P_ W w, int active)
1680{ 2616{
1681 pri_adjust (EV_A_ w); 2617 pri_adjust (EV_A_ w);
1682 w->active = active; 2618 w->active = active;
1683 ev_ref (EV_A); 2619 ev_ref (EV_A);
1684} 2620}
1685 2621
1686void inline_size 2622inline_size void
1687ev_stop (EV_P_ W w) 2623ev_stop (EV_P_ W w)
1688{ 2624{
1689 ev_unref (EV_A); 2625 ev_unref (EV_A);
1690 w->active = 0; 2626 w->active = 0;
1691} 2627}
1698 int fd = w->fd; 2634 int fd = w->fd;
1699 2635
1700 if (expect_false (ev_is_active (w))) 2636 if (expect_false (ev_is_active (w)))
1701 return; 2637 return;
1702 2638
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2639 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2640 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2641
2642 EV_FREQUENT_CHECK;
1704 2643
1705 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2645 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1707 wlist_add (&anfds[fd].head, (WL)w); 2646 wlist_add (&anfds[fd].head, (WL)w);
1708 2647
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1710 w->events &= ~EV_IOFDSET; 2649 w->events &= ~EV__IOFDSET;
2650
2651 EV_FREQUENT_CHECK;
1711} 2652}
1712 2653
1713void noinline 2654void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2655ev_io_stop (EV_P_ ev_io *w)
1715{ 2656{
1716 clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
1718 return; 2659 return;
1719 2660
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2661 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2662
2663 EV_FREQUENT_CHECK;
1721 2664
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2665 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2666 ev_stop (EV_A_ (W)w);
1724 2667
1725 fd_change (EV_A_ w->fd, 1); 2668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2669
2670 EV_FREQUENT_CHECK;
1726} 2671}
1727 2672
1728void noinline 2673void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2674ev_timer_start (EV_P_ ev_timer *w)
1730{ 2675{
1731 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
1732 return; 2677 return;
1733 2678
1734 ((WT)w)->at += mn_now; 2679 ev_at (w) += mn_now;
1735 2680
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2681 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2682
2683 EV_FREQUENT_CHECK;
2684
2685 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2686 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2687 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2688 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2689 ANHE_at_cache (timers [ev_active (w)]);
2690 upheap (timers, ev_active (w));
1742 2691
2692 EV_FREQUENT_CHECK;
2693
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2694 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2695}
1745 2696
1746void noinline 2697void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2698ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2699{
1749 clear_pending (EV_A_ (W)w); 2700 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2701 if (expect_false (!ev_is_active (w)))
1751 return; 2702 return;
1752 2703
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2704 EV_FREQUENT_CHECK;
1754 2705
1755 { 2706 {
1756 int active = ((W)w)->active; 2707 int active = ev_active (w);
1757 2708
2709 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2710
2711 --timercnt;
2712
1758 if (expect_true (--active < --timercnt)) 2713 if (expect_true (active < timercnt + HEAP0))
1759 { 2714 {
1760 timers [active] = timers [timercnt]; 2715 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2716 adjustheap (timers, timercnt, active);
1762 } 2717 }
1763 } 2718 }
1764 2719
1765 ((WT)w)->at -= mn_now; 2720 ev_at (w) -= mn_now;
1766 2721
1767 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
1768} 2725}
1769 2726
1770void noinline 2727void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2728ev_timer_again (EV_P_ ev_timer *w)
1772{ 2729{
2730 EV_FREQUENT_CHECK;
2731
1773 if (ev_is_active (w)) 2732 if (ev_is_active (w))
1774 { 2733 {
1775 if (w->repeat) 2734 if (w->repeat)
1776 { 2735 {
1777 ((WT)w)->at = mn_now + w->repeat; 2736 ev_at (w) = mn_now + w->repeat;
2737 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2738 adjustheap (timers, timercnt, ev_active (w));
1779 } 2739 }
1780 else 2740 else
1781 ev_timer_stop (EV_A_ w); 2741 ev_timer_stop (EV_A_ w);
1782 } 2742 }
1783 else if (w->repeat) 2743 else if (w->repeat)
1784 { 2744 {
1785 w->at = w->repeat; 2745 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2746 ev_timer_start (EV_A_ w);
1787 } 2747 }
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752ev_tstamp
2753ev_timer_remaining (EV_P_ ev_timer *w)
2754{
2755 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1788} 2756}
1789 2757
1790#if EV_PERIODIC_ENABLE 2758#if EV_PERIODIC_ENABLE
1791void noinline 2759void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2760ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2761{
1794 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
1795 return; 2763 return;
1796 2764
1797 if (w->reschedule_cb) 2765 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2767 else if (w->interval)
1800 { 2768 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2769 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2770 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2772 }
1805 else 2773 else
1806 ((WT)w)->at = w->offset; 2774 ev_at (w) = w->offset;
1807 2775
2776 EV_FREQUENT_CHECK;
2777
2778 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2779 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2780 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2781 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2782 ANHE_at_cache (periodics [ev_active (w)]);
2783 upheap (periodics, ev_active (w));
1812 2784
2785 EV_FREQUENT_CHECK;
2786
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2787 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2788}
1815 2789
1816void noinline 2790void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2791ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2792{
1819 clear_pending (EV_A_ (W)w); 2793 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2794 if (expect_false (!ev_is_active (w)))
1821 return; 2795 return;
1822 2796
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2797 EV_FREQUENT_CHECK;
1824 2798
1825 { 2799 {
1826 int active = ((W)w)->active; 2800 int active = ev_active (w);
1827 2801
2802 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2803
2804 --periodiccnt;
2805
1828 if (expect_true (--active < --periodiccnt)) 2806 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2807 {
1830 periodics [active] = periodics [periodiccnt]; 2808 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2809 adjustheap (periodics, periodiccnt, active);
1832 } 2810 }
1833 } 2811 }
1834 2812
1835 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
2814
2815 EV_FREQUENT_CHECK;
1836} 2816}
1837 2817
1838void noinline 2818void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2819ev_periodic_again (EV_P_ ev_periodic *w)
1840{ 2820{
1846 2826
1847#ifndef SA_RESTART 2827#ifndef SA_RESTART
1848# define SA_RESTART 0 2828# define SA_RESTART 0
1849#endif 2829#endif
1850 2830
2831#if EV_SIGNAL_ENABLE
2832
1851void noinline 2833void noinline
1852ev_signal_start (EV_P_ ev_signal *w) 2834ev_signal_start (EV_P_ ev_signal *w)
1853{ 2835{
1854#if EV_MULTIPLICITY
1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1856#endif
1857 if (expect_false (ev_is_active (w))) 2836 if (expect_false (ev_is_active (w)))
1858 return; 2837 return;
1859 2838
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2839 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1861 2840
2841#if EV_MULTIPLICITY
2842 assert (("libev: a signal must not be attached to two different loops",
2843 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2844
2845 signals [w->signum - 1].loop = EV_A;
2846#endif
2847
2848 EV_FREQUENT_CHECK;
2849
2850#if EV_USE_SIGNALFD
2851 if (sigfd == -2)
1862 { 2852 {
1863#ifndef _WIN32 2853 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1864 sigset_t full, prev; 2854 if (sigfd < 0 && errno == EINVAL)
1865 sigfillset (&full); 2855 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868 2856
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2857 if (sigfd >= 0)
2858 {
2859 fd_intern (sigfd); /* doing it twice will not hurt */
1870 2860
1871#ifndef _WIN32 2861 sigemptyset (&sigfd_set);
1872 sigprocmask (SIG_SETMASK, &prev, 0); 2862
1873#endif 2863 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2864 ev_set_priority (&sigfd_w, EV_MAXPRI);
2865 ev_io_start (EV_A_ &sigfd_w);
2866 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2867 }
1874 } 2868 }
2869
2870 if (sigfd >= 0)
2871 {
2872 /* TODO: check .head */
2873 sigaddset (&sigfd_set, w->signum);
2874 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2875
2876 signalfd (sigfd, &sigfd_set, 0);
2877 }
2878#endif
1875 2879
1876 ev_start (EV_A_ (W)w, 1); 2880 ev_start (EV_A_ (W)w, 1);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2881 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2882
1879 if (!((WL)w)->next) 2883 if (!((WL)w)->next)
2884# if EV_USE_SIGNALFD
2885 if (sigfd < 0) /*TODO*/
2886# endif
1880 { 2887 {
1881#if _WIN32 2888# ifdef _WIN32
2889 evpipe_init (EV_A);
2890
1882 signal (w->signum, sighandler); 2891 signal (w->signum, ev_sighandler);
1883#else 2892# else
1884 struct sigaction sa; 2893 struct sigaction sa;
2894
2895 evpipe_init (EV_A);
2896
1885 sa.sa_handler = sighandler; 2897 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2898 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2899 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2900 sigaction (w->signum, &sa, 0);
2901
2902 if (origflags & EVFLAG_NOSIGMASK)
2903 {
2904 sigemptyset (&sa.sa_mask);
2905 sigaddset (&sa.sa_mask, w->signum);
2906 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2907 }
1889#endif 2908#endif
1890 } 2909 }
2910
2911 EV_FREQUENT_CHECK;
1891} 2912}
1892 2913
1893void noinline 2914void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2915ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2916{
1896 clear_pending (EV_A_ (W)w); 2917 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2918 if (expect_false (!ev_is_active (w)))
1898 return; 2919 return;
1899 2920
2921 EV_FREQUENT_CHECK;
2922
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2923 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2924 ev_stop (EV_A_ (W)w);
1902 2925
1903 if (!signals [w->signum - 1].head) 2926 if (!signals [w->signum - 1].head)
2927 {
2928#if EV_MULTIPLICITY
2929 signals [w->signum - 1].loop = 0; /* unattach from signal */
2930#endif
2931#if EV_USE_SIGNALFD
2932 if (sigfd >= 0)
2933 {
2934 sigset_t ss;
2935
2936 sigemptyset (&ss);
2937 sigaddset (&ss, w->signum);
2938 sigdelset (&sigfd_set, w->signum);
2939
2940 signalfd (sigfd, &sigfd_set, 0);
2941 sigprocmask (SIG_UNBLOCK, &ss, 0);
2942 }
2943 else
2944#endif
1904 signal (w->signum, SIG_DFL); 2945 signal (w->signum, SIG_DFL);
2946 }
2947
2948 EV_FREQUENT_CHECK;
1905} 2949}
2950
2951#endif
2952
2953#if EV_CHILD_ENABLE
1906 2954
1907void 2955void
1908ev_child_start (EV_P_ ev_child *w) 2956ev_child_start (EV_P_ ev_child *w)
1909{ 2957{
1910#if EV_MULTIPLICITY 2958#if EV_MULTIPLICITY
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2959 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2960#endif
1913 if (expect_false (ev_is_active (w))) 2961 if (expect_false (ev_is_active (w)))
1914 return; 2962 return;
1915 2963
2964 EV_FREQUENT_CHECK;
2965
1916 ev_start (EV_A_ (W)w, 1); 2966 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2967 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2968
2969 EV_FREQUENT_CHECK;
1918} 2970}
1919 2971
1920void 2972void
1921ev_child_stop (EV_P_ ev_child *w) 2973ev_child_stop (EV_P_ ev_child *w)
1922{ 2974{
1923 clear_pending (EV_A_ (W)w); 2975 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2976 if (expect_false (!ev_is_active (w)))
1925 return; 2977 return;
1926 2978
2979 EV_FREQUENT_CHECK;
2980
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2981 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2982 ev_stop (EV_A_ (W)w);
2983
2984 EV_FREQUENT_CHECK;
1929} 2985}
2986
2987#endif
1930 2988
1931#if EV_STAT_ENABLE 2989#if EV_STAT_ENABLE
1932 2990
1933# ifdef _WIN32 2991# ifdef _WIN32
1934# undef lstat 2992# undef lstat
1935# define lstat(a,b) _stati64 (a,b) 2993# define lstat(a,b) _stati64 (a,b)
1936# endif 2994# endif
1937 2995
1938#define DEF_STAT_INTERVAL 5.0074891 2996#define DEF_STAT_INTERVAL 5.0074891
2997#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1939#define MIN_STAT_INTERVAL 0.1074891 2998#define MIN_STAT_INTERVAL 0.1074891
1940 2999
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3000static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942 3001
1943#if EV_USE_INOTIFY 3002#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192 3003
3004/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3005# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1945 3006
1946static void noinline 3007static void noinline
1947infy_add (EV_P_ ev_stat *w) 3008infy_add (EV_P_ ev_stat *w)
1948{ 3009{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3010 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950 3011
1951 if (w->wd < 0) 3012 if (w->wd >= 0)
3013 {
3014 struct statfs sfs;
3015
3016 /* now local changes will be tracked by inotify, but remote changes won't */
3017 /* unless the filesystem is known to be local, we therefore still poll */
3018 /* also do poll on <2.6.25, but with normal frequency */
3019
3020 if (!fs_2625)
3021 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3022 else if (!statfs (w->path, &sfs)
3023 && (sfs.f_type == 0x1373 /* devfs */
3024 || sfs.f_type == 0xEF53 /* ext2/3 */
3025 || sfs.f_type == 0x3153464a /* jfs */
3026 || sfs.f_type == 0x52654973 /* reiser3 */
3027 || sfs.f_type == 0x01021994 /* tempfs */
3028 || sfs.f_type == 0x58465342 /* xfs */))
3029 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3030 else
3031 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1952 { 3032 }
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3033 else
3034 {
3035 /* can't use inotify, continue to stat */
3036 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1954 3037
1955 /* monitor some parent directory for speedup hints */ 3038 /* if path is not there, monitor some parent directory for speedup hints */
3039 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3040 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3041 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 3042 {
1958 char path [4096]; 3043 char path [4096];
1959 strcpy (path, w->path); 3044 strcpy (path, w->path);
1960 3045
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3048 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3049 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965 3050
1966 char *pend = strrchr (path, '/'); 3051 char *pend = strrchr (path, '/');
1967 3052
1968 if (!pend) 3053 if (!pend || pend == path)
1969 break; /* whoops, no '/', complain to your admin */ 3054 break;
1970 3055
1971 *pend = 0; 3056 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask); 3057 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 } 3058 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3059 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 } 3060 }
1976 } 3061 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979 3062
1980 if (w->wd >= 0) 3063 if (w->wd >= 0)
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3064 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3065
3066 /* now re-arm timer, if required */
3067 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3068 ev_timer_again (EV_A_ &w->timer);
3069 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1982} 3070}
1983 3071
1984static void noinline 3072static void noinline
1985infy_del (EV_P_ ev_stat *w) 3073infy_del (EV_P_ ev_stat *w)
1986{ 3074{
1989 3077
1990 if (wd < 0) 3078 if (wd < 0)
1991 return; 3079 return;
1992 3080
1993 w->wd = -2; 3081 w->wd = -2;
1994 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3082 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1995 wlist_del (&fs_hash [slot].head, (WL)w); 3083 wlist_del (&fs_hash [slot].head, (WL)w);
1996 3084
1997 /* remove this watcher, if others are watching it, they will rearm */ 3085 /* remove this watcher, if others are watching it, they will rearm */
1998 inotify_rm_watch (fs_fd, wd); 3086 inotify_rm_watch (fs_fd, wd);
1999} 3087}
2000 3088
2001static void noinline 3089static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3090infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 3091{
2004 if (slot < 0) 3092 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 3093 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3094 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 3095 infy_wd (EV_A_ slot, wd, ev);
2008 else 3096 else
2009 { 3097 {
2010 WL w_; 3098 WL w_;
2011 3099
2012 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3100 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2013 { 3101 {
2014 ev_stat *w = (ev_stat *)w_; 3102 ev_stat *w = (ev_stat *)w_;
2015 w_ = w_->next; /* lets us remove this watcher and all before it */ 3103 w_ = w_->next; /* lets us remove this watcher and all before it */
2016 3104
2017 if (w->wd == wd || wd == -1) 3105 if (w->wd == wd || wd == -1)
2018 { 3106 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3107 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 { 3108 {
3109 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2021 w->wd = -1; 3110 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */ 3111 infy_add (EV_A_ w); /* re-add, no matter what */
2023 } 3112 }
2024 3113
2025 stat_timer_cb (EV_A_ &w->timer, 0); 3114 stat_timer_cb (EV_A_ &w->timer, 0);
2030 3119
2031static void 3120static void
2032infy_cb (EV_P_ ev_io *w, int revents) 3121infy_cb (EV_P_ ev_io *w, int revents)
2033{ 3122{
2034 char buf [EV_INOTIFY_BUFSIZE]; 3123 char buf [EV_INOTIFY_BUFSIZE];
2035 struct inotify_event *ev = (struct inotify_event *)buf;
2036 int ofs; 3124 int ofs;
2037 int len = read (fs_fd, buf, sizeof (buf)); 3125 int len = read (fs_fd, buf, sizeof (buf));
2038 3126
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3127 for (ofs = 0; ofs < len; )
3128 {
3129 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3130 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3131 ofs += sizeof (struct inotify_event) + ev->len;
3132 }
2041} 3133}
2042 3134
2043void inline_size 3135inline_size void
3136ev_check_2625 (EV_P)
3137{
3138 /* kernels < 2.6.25 are borked
3139 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3140 */
3141 if (ev_linux_version () < 0x020619)
3142 return;
3143
3144 fs_2625 = 1;
3145}
3146
3147inline_size int
3148infy_newfd (void)
3149{
3150#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3151 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3152 if (fd >= 0)
3153 return fd;
3154#endif
3155 return inotify_init ();
3156}
3157
3158inline_size void
2044infy_init (EV_P) 3159infy_init (EV_P)
2045{ 3160{
2046 if (fs_fd != -2) 3161 if (fs_fd != -2)
2047 return; 3162 return;
2048 3163
3164 fs_fd = -1;
3165
3166 ev_check_2625 (EV_A);
3167
2049 fs_fd = inotify_init (); 3168 fs_fd = infy_newfd ();
2050 3169
2051 if (fs_fd >= 0) 3170 if (fs_fd >= 0)
2052 { 3171 {
3172 fd_intern (fs_fd);
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3173 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2054 ev_set_priority (&fs_w, EV_MAXPRI); 3174 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w); 3175 ev_io_start (EV_A_ &fs_w);
3176 ev_unref (EV_A);
2056 } 3177 }
2057} 3178}
2058 3179
2059void inline_size 3180inline_size void
2060infy_fork (EV_P) 3181infy_fork (EV_P)
2061{ 3182{
2062 int slot; 3183 int slot;
2063 3184
2064 if (fs_fd < 0) 3185 if (fs_fd < 0)
2065 return; 3186 return;
2066 3187
3188 ev_ref (EV_A);
3189 ev_io_stop (EV_A_ &fs_w);
2067 close (fs_fd); 3190 close (fs_fd);
2068 fs_fd = inotify_init (); 3191 fs_fd = infy_newfd ();
2069 3192
3193 if (fs_fd >= 0)
3194 {
3195 fd_intern (fs_fd);
3196 ev_io_set (&fs_w, fs_fd, EV_READ);
3197 ev_io_start (EV_A_ &fs_w);
3198 ev_unref (EV_A);
3199 }
3200
2070 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3201 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2071 { 3202 {
2072 WL w_ = fs_hash [slot].head; 3203 WL w_ = fs_hash [slot].head;
2073 fs_hash [slot].head = 0; 3204 fs_hash [slot].head = 0;
2074 3205
2075 while (w_) 3206 while (w_)
2080 w->wd = -1; 3211 w->wd = -1;
2081 3212
2082 if (fs_fd >= 0) 3213 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 3214 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 3215 else
3216 {
3217 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3218 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2085 ev_timer_start (EV_A_ &w->timer); 3219 ev_timer_again (EV_A_ &w->timer);
3220 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3221 }
2086 } 3222 }
2087
2088 } 3223 }
2089} 3224}
2090 3225
3226#endif
3227
3228#ifdef _WIN32
3229# define EV_LSTAT(p,b) _stati64 (p, b)
3230#else
3231# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 3232#endif
2092 3233
2093void 3234void
2094ev_stat_stat (EV_P_ ev_stat *w) 3235ev_stat_stat (EV_P_ ev_stat *w)
2095{ 3236{
2102static void noinline 3243static void noinline
2103stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3244stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2104{ 3245{
2105 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3246 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2106 3247
2107 /* we copy this here each the time so that */ 3248 ev_statdata prev = w->attr;
2108 /* prev has the old value when the callback gets invoked */
2109 w->prev = w->attr;
2110 ev_stat_stat (EV_A_ w); 3249 ev_stat_stat (EV_A_ w);
2111 3250
2112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3251 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2113 if ( 3252 if (
2114 w->prev.st_dev != w->attr.st_dev 3253 prev.st_dev != w->attr.st_dev
2115 || w->prev.st_ino != w->attr.st_ino 3254 || prev.st_ino != w->attr.st_ino
2116 || w->prev.st_mode != w->attr.st_mode 3255 || prev.st_mode != w->attr.st_mode
2117 || w->prev.st_nlink != w->attr.st_nlink 3256 || prev.st_nlink != w->attr.st_nlink
2118 || w->prev.st_uid != w->attr.st_uid 3257 || prev.st_uid != w->attr.st_uid
2119 || w->prev.st_gid != w->attr.st_gid 3258 || prev.st_gid != w->attr.st_gid
2120 || w->prev.st_rdev != w->attr.st_rdev 3259 || prev.st_rdev != w->attr.st_rdev
2121 || w->prev.st_size != w->attr.st_size 3260 || prev.st_size != w->attr.st_size
2122 || w->prev.st_atime != w->attr.st_atime 3261 || prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 3262 || prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 3263 || prev.st_ctime != w->attr.st_ctime
2125 ) { 3264 ) {
3265 /* we only update w->prev on actual differences */
3266 /* in case we test more often than invoke the callback, */
3267 /* to ensure that prev is always different to attr */
3268 w->prev = prev;
3269
2126 #if EV_USE_INOTIFY 3270 #if EV_USE_INOTIFY
3271 if (fs_fd >= 0)
3272 {
2127 infy_del (EV_A_ w); 3273 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 3274 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 3275 ev_stat_stat (EV_A_ w); /* avoid race... */
3276 }
2130 #endif 3277 #endif
2131 3278
2132 ev_feed_event (EV_A_ w, EV_STAT); 3279 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 3280 }
2134} 3281}
2137ev_stat_start (EV_P_ ev_stat *w) 3284ev_stat_start (EV_P_ ev_stat *w)
2138{ 3285{
2139 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2140 return; 3287 return;
2141 3288
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w); 3289 ev_stat_stat (EV_A_ w);
2147 3290
3291 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2148 if (w->interval < MIN_STAT_INTERVAL) 3292 w->interval = MIN_STAT_INTERVAL;
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150 3293
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3294 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2152 ev_set_priority (&w->timer, ev_priority (w)); 3295 ev_set_priority (&w->timer, ev_priority (w));
2153 3296
2154#if EV_USE_INOTIFY 3297#if EV_USE_INOTIFY
2155 infy_init (EV_A); 3298 infy_init (EV_A);
2156 3299
2157 if (fs_fd >= 0) 3300 if (fs_fd >= 0)
2158 infy_add (EV_A_ w); 3301 infy_add (EV_A_ w);
2159 else 3302 else
2160#endif 3303#endif
3304 {
2161 ev_timer_start (EV_A_ &w->timer); 3305 ev_timer_again (EV_A_ &w->timer);
3306 ev_unref (EV_A);
3307 }
2162 3308
2163 ev_start (EV_A_ (W)w, 1); 3309 ev_start (EV_A_ (W)w, 1);
3310
3311 EV_FREQUENT_CHECK;
2164} 3312}
2165 3313
2166void 3314void
2167ev_stat_stop (EV_P_ ev_stat *w) 3315ev_stat_stop (EV_P_ ev_stat *w)
2168{ 3316{
2169 clear_pending (EV_A_ (W)w); 3317 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 3318 if (expect_false (!ev_is_active (w)))
2171 return; 3319 return;
2172 3320
3321 EV_FREQUENT_CHECK;
3322
2173#if EV_USE_INOTIFY 3323#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 3324 infy_del (EV_A_ w);
2175#endif 3325#endif
3326
3327 if (ev_is_active (&w->timer))
3328 {
3329 ev_ref (EV_A);
2176 ev_timer_stop (EV_A_ &w->timer); 3330 ev_timer_stop (EV_A_ &w->timer);
3331 }
2177 3332
2178 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2179} 3336}
2180#endif 3337#endif
2181 3338
2182#if EV_IDLE_ENABLE 3339#if EV_IDLE_ENABLE
2183void 3340void
2185{ 3342{
2186 if (expect_false (ev_is_active (w))) 3343 if (expect_false (ev_is_active (w)))
2187 return; 3344 return;
2188 3345
2189 pri_adjust (EV_A_ (W)w); 3346 pri_adjust (EV_A_ (W)w);
3347
3348 EV_FREQUENT_CHECK;
2190 3349
2191 { 3350 {
2192 int active = ++idlecnt [ABSPRI (w)]; 3351 int active = ++idlecnt [ABSPRI (w)];
2193 3352
2194 ++idleall; 3353 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 3354 ev_start (EV_A_ (W)w, active);
2196 3355
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3356 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 3357 idles [ABSPRI (w)][active - 1] = w;
2199 } 3358 }
3359
3360 EV_FREQUENT_CHECK;
2200} 3361}
2201 3362
2202void 3363void
2203ev_idle_stop (EV_P_ ev_idle *w) 3364ev_idle_stop (EV_P_ ev_idle *w)
2204{ 3365{
2205 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2207 return; 3368 return;
2208 3369
3370 EV_FREQUENT_CHECK;
3371
2209 { 3372 {
2210 int active = ((W)w)->active; 3373 int active = ev_active (w);
2211 3374
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 3377
2215 ev_stop (EV_A_ (W)w); 3378 ev_stop (EV_A_ (W)w);
2216 --idleall; 3379 --idleall;
2217 } 3380 }
2218}
2219#endif
2220 3381
3382 EV_FREQUENT_CHECK;
3383}
3384#endif
3385
3386#if EV_PREPARE_ENABLE
2221void 3387void
2222ev_prepare_start (EV_P_ ev_prepare *w) 3388ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 3389{
2224 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
2225 return; 3391 return;
3392
3393 EV_FREQUENT_CHECK;
2226 3394
2227 ev_start (EV_A_ (W)w, ++preparecnt); 3395 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3396 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 3397 prepares [preparecnt - 1] = w;
3398
3399 EV_FREQUENT_CHECK;
2230} 3400}
2231 3401
2232void 3402void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 3403ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 3404{
2235 clear_pending (EV_A_ (W)w); 3405 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 3406 if (expect_false (!ev_is_active (w)))
2237 return; 3407 return;
2238 3408
3409 EV_FREQUENT_CHECK;
3410
2239 { 3411 {
2240 int active = ((W)w)->active; 3412 int active = ev_active (w);
3413
2241 prepares [active - 1] = prepares [--preparecnt]; 3414 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 3415 ev_active (prepares [active - 1]) = active;
2243 } 3416 }
2244 3417
2245 ev_stop (EV_A_ (W)w); 3418 ev_stop (EV_A_ (W)w);
2246}
2247 3419
3420 EV_FREQUENT_CHECK;
3421}
3422#endif
3423
3424#if EV_CHECK_ENABLE
2248void 3425void
2249ev_check_start (EV_P_ ev_check *w) 3426ev_check_start (EV_P_ ev_check *w)
2250{ 3427{
2251 if (expect_false (ev_is_active (w))) 3428 if (expect_false (ev_is_active (w)))
2252 return; 3429 return;
3430
3431 EV_FREQUENT_CHECK;
2253 3432
2254 ev_start (EV_A_ (W)w, ++checkcnt); 3433 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3434 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 3435 checks [checkcnt - 1] = w;
3436
3437 EV_FREQUENT_CHECK;
2257} 3438}
2258 3439
2259void 3440void
2260ev_check_stop (EV_P_ ev_check *w) 3441ev_check_stop (EV_P_ ev_check *w)
2261{ 3442{
2262 clear_pending (EV_A_ (W)w); 3443 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 3444 if (expect_false (!ev_is_active (w)))
2264 return; 3445 return;
2265 3446
3447 EV_FREQUENT_CHECK;
3448
2266 { 3449 {
2267 int active = ((W)w)->active; 3450 int active = ev_active (w);
3451
2268 checks [active - 1] = checks [--checkcnt]; 3452 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 3453 ev_active (checks [active - 1]) = active;
2270 } 3454 }
2271 3455
2272 ev_stop (EV_A_ (W)w); 3456 ev_stop (EV_A_ (W)w);
3457
3458 EV_FREQUENT_CHECK;
2273} 3459}
3460#endif
2274 3461
2275#if EV_EMBED_ENABLE 3462#if EV_EMBED_ENABLE
2276void noinline 3463void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 3464ev_embed_sweep (EV_P_ ev_embed *w)
2278{ 3465{
2279 ev_loop (w->other, EVLOOP_NONBLOCK); 3466 ev_run (w->other, EVRUN_NOWAIT);
2280} 3467}
2281 3468
2282static void 3469static void
2283embed_io_cb (EV_P_ ev_io *io, int revents) 3470embed_io_cb (EV_P_ ev_io *io, int revents)
2284{ 3471{
2285 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3472 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2286 3473
2287 if (ev_cb (w)) 3474 if (ev_cb (w))
2288 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3475 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2289 else 3476 else
2290 ev_loop (w->other, EVLOOP_NONBLOCK); 3477 ev_run (w->other, EVRUN_NOWAIT);
2291} 3478}
2292 3479
2293static void 3480static void
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3481embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{ 3482{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3483 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297 3484
2298 { 3485 {
2299 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2300 3487
2301 while (fdchangecnt) 3488 while (fdchangecnt)
2302 { 3489 {
2303 fd_reify (EV_A); 3490 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3491 ev_run (EV_A_ EVRUN_NOWAIT);
2305 } 3492 }
2306 } 3493 }
3494}
3495
3496static void
3497embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3498{
3499 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3500
3501 ev_embed_stop (EV_A_ w);
3502
3503 {
3504 EV_P = w->other;
3505
3506 ev_loop_fork (EV_A);
3507 ev_run (EV_A_ EVRUN_NOWAIT);
3508 }
3509
3510 ev_embed_start (EV_A_ w);
2307} 3511}
2308 3512
2309#if 0 3513#if 0
2310static void 3514static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3515embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2319{ 3523{
2320 if (expect_false (ev_is_active (w))) 3524 if (expect_false (ev_is_active (w)))
2321 return; 3525 return;
2322 3526
2323 { 3527 {
2324 struct ev_loop *loop = w->other; 3528 EV_P = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3529 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3530 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 3531 }
3532
3533 EV_FREQUENT_CHECK;
2328 3534
2329 ev_set_priority (&w->io, ev_priority (w)); 3535 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 3536 ev_io_start (EV_A_ &w->io);
2331 3537
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 3538 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 3539 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 3540 ev_prepare_start (EV_A_ &w->prepare);
2335 3541
3542 ev_fork_init (&w->fork, embed_fork_cb);
3543 ev_fork_start (EV_A_ &w->fork);
3544
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3545 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 3546
2338 ev_start (EV_A_ (W)w, 1); 3547 ev_start (EV_A_ (W)w, 1);
3548
3549 EV_FREQUENT_CHECK;
2339} 3550}
2340 3551
2341void 3552void
2342ev_embed_stop (EV_P_ ev_embed *w) 3553ev_embed_stop (EV_P_ ev_embed *w)
2343{ 3554{
2344 clear_pending (EV_A_ (W)w); 3555 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 3556 if (expect_false (!ev_is_active (w)))
2346 return; 3557 return;
2347 3558
3559 EV_FREQUENT_CHECK;
3560
2348 ev_io_stop (EV_A_ &w->io); 3561 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 3562 ev_prepare_stop (EV_A_ &w->prepare);
3563 ev_fork_stop (EV_A_ &w->fork);
2350 3564
2351 ev_stop (EV_A_ (W)w); 3565 ev_stop (EV_A_ (W)w);
3566
3567 EV_FREQUENT_CHECK;
2352} 3568}
2353#endif 3569#endif
2354 3570
2355#if EV_FORK_ENABLE 3571#if EV_FORK_ENABLE
2356void 3572void
2357ev_fork_start (EV_P_ ev_fork *w) 3573ev_fork_start (EV_P_ ev_fork *w)
2358{ 3574{
2359 if (expect_false (ev_is_active (w))) 3575 if (expect_false (ev_is_active (w)))
2360 return; 3576 return;
3577
3578 EV_FREQUENT_CHECK;
2361 3579
2362 ev_start (EV_A_ (W)w, ++forkcnt); 3580 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3581 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 3582 forks [forkcnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
2365} 3585}
2366 3586
2367void 3587void
2368ev_fork_stop (EV_P_ ev_fork *w) 3588ev_fork_stop (EV_P_ ev_fork *w)
2369{ 3589{
2370 clear_pending (EV_A_ (W)w); 3590 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 3591 if (expect_false (!ev_is_active (w)))
2372 return; 3592 return;
2373 3593
3594 EV_FREQUENT_CHECK;
3595
2374 { 3596 {
2375 int active = ((W)w)->active; 3597 int active = ev_active (w);
3598
2376 forks [active - 1] = forks [--forkcnt]; 3599 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 3600 ev_active (forks [active - 1]) = active;
2378 } 3601 }
2379 3602
2380 ev_stop (EV_A_ (W)w); 3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607#endif
3608
3609#if EV_CLEANUP_ENABLE
3610void
3611ev_cleanup_start (EV_P_ ev_cleanup *w)
3612{
3613 if (expect_false (ev_is_active (w)))
3614 return;
3615
3616 EV_FREQUENT_CHECK;
3617
3618 ev_start (EV_A_ (W)w, ++cleanupcnt);
3619 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3620 cleanups [cleanupcnt - 1] = w;
3621
3622 /* cleanup watchers should never keep a refcount on the loop */
3623 ev_unref (EV_A);
3624 EV_FREQUENT_CHECK;
3625}
3626
3627void
3628ev_cleanup_stop (EV_P_ ev_cleanup *w)
3629{
3630 clear_pending (EV_A_ (W)w);
3631 if (expect_false (!ev_is_active (w)))
3632 return;
3633
3634 EV_FREQUENT_CHECK;
3635 ev_ref (EV_A);
3636
3637 {
3638 int active = ev_active (w);
3639
3640 cleanups [active - 1] = cleanups [--cleanupcnt];
3641 ev_active (cleanups [active - 1]) = active;
3642 }
3643
3644 ev_stop (EV_A_ (W)w);
3645
3646 EV_FREQUENT_CHECK;
3647}
3648#endif
3649
3650#if EV_ASYNC_ENABLE
3651void
3652ev_async_start (EV_P_ ev_async *w)
3653{
3654 if (expect_false (ev_is_active (w)))
3655 return;
3656
3657 w->sent = 0;
3658
3659 evpipe_init (EV_A);
3660
3661 EV_FREQUENT_CHECK;
3662
3663 ev_start (EV_A_ (W)w, ++asynccnt);
3664 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3665 asyncs [asynccnt - 1] = w;
3666
3667 EV_FREQUENT_CHECK;
3668}
3669
3670void
3671ev_async_stop (EV_P_ ev_async *w)
3672{
3673 clear_pending (EV_A_ (W)w);
3674 if (expect_false (!ev_is_active (w)))
3675 return;
3676
3677 EV_FREQUENT_CHECK;
3678
3679 {
3680 int active = ev_active (w);
3681
3682 asyncs [active - 1] = asyncs [--asynccnt];
3683 ev_active (asyncs [active - 1]) = active;
3684 }
3685
3686 ev_stop (EV_A_ (W)w);
3687
3688 EV_FREQUENT_CHECK;
3689}
3690
3691void
3692ev_async_send (EV_P_ ev_async *w)
3693{
3694 w->sent = 1;
3695 evpipe_write (EV_A_ &async_pending);
2381} 3696}
2382#endif 3697#endif
2383 3698
2384/*****************************************************************************/ 3699/*****************************************************************************/
2385 3700
2395once_cb (EV_P_ struct ev_once *once, int revents) 3710once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3711{
2397 void (*cb)(int revents, void *arg) = once->cb; 3712 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3713 void *arg = once->arg;
2399 3714
2400 ev_io_stop (EV_A_ &once->io); 3715 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3716 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3717 ev_free (once);
2403 3718
2404 cb (revents, arg); 3719 cb (revents, arg);
2405} 3720}
2406 3721
2407static void 3722static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3723once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3724{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3725 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3726
3727 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3728}
2412 3729
2413static void 3730static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3731once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3732{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3733 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3734
3735 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3736}
2418 3737
2419void 3738void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3739ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3740{
2422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3741 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2423 3742
2424 if (expect_false (!once)) 3743 if (expect_false (!once))
2425 { 3744 {
2426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3745 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2427 return; 3746 return;
2428 } 3747 }
2429 3748
2430 once->cb = cb; 3749 once->cb = cb;
2431 once->arg = arg; 3750 once->arg = arg;
2443 ev_timer_set (&once->to, timeout, 0.); 3762 ev_timer_set (&once->to, timeout, 0.);
2444 ev_timer_start (EV_A_ &once->to); 3763 ev_timer_start (EV_A_ &once->to);
2445 } 3764 }
2446} 3765}
2447 3766
3767/*****************************************************************************/
3768
3769#if EV_WALK_ENABLE
3770void
3771ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3772{
3773 int i, j;
3774 ev_watcher_list *wl, *wn;
3775
3776 if (types & (EV_IO | EV_EMBED))
3777 for (i = 0; i < anfdmax; ++i)
3778 for (wl = anfds [i].head; wl; )
3779 {
3780 wn = wl->next;
3781
3782#if EV_EMBED_ENABLE
3783 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3784 {
3785 if (types & EV_EMBED)
3786 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3787 }
3788 else
3789#endif
3790#if EV_USE_INOTIFY
3791 if (ev_cb ((ev_io *)wl) == infy_cb)
3792 ;
3793 else
3794#endif
3795 if ((ev_io *)wl != &pipe_w)
3796 if (types & EV_IO)
3797 cb (EV_A_ EV_IO, wl);
3798
3799 wl = wn;
3800 }
3801
3802 if (types & (EV_TIMER | EV_STAT))
3803 for (i = timercnt + HEAP0; i-- > HEAP0; )
3804#if EV_STAT_ENABLE
3805 /*TODO: timer is not always active*/
3806 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3807 {
3808 if (types & EV_STAT)
3809 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3810 }
3811 else
3812#endif
3813 if (types & EV_TIMER)
3814 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3815
3816#if EV_PERIODIC_ENABLE
3817 if (types & EV_PERIODIC)
3818 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3819 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3820#endif
3821
3822#if EV_IDLE_ENABLE
3823 if (types & EV_IDLE)
3824 for (j = NUMPRI; i--; )
3825 for (i = idlecnt [j]; i--; )
3826 cb (EV_A_ EV_IDLE, idles [j][i]);
3827#endif
3828
3829#if EV_FORK_ENABLE
3830 if (types & EV_FORK)
3831 for (i = forkcnt; i--; )
3832 if (ev_cb (forks [i]) != embed_fork_cb)
3833 cb (EV_A_ EV_FORK, forks [i]);
3834#endif
3835
3836#if EV_ASYNC_ENABLE
3837 if (types & EV_ASYNC)
3838 for (i = asynccnt; i--; )
3839 cb (EV_A_ EV_ASYNC, asyncs [i]);
3840#endif
3841
3842#if EV_PREPARE_ENABLE
3843 if (types & EV_PREPARE)
3844 for (i = preparecnt; i--; )
3845# if EV_EMBED_ENABLE
3846 if (ev_cb (prepares [i]) != embed_prepare_cb)
3847# endif
3848 cb (EV_A_ EV_PREPARE, prepares [i]);
3849#endif
3850
3851#if EV_CHECK_ENABLE
3852 if (types & EV_CHECK)
3853 for (i = checkcnt; i--; )
3854 cb (EV_A_ EV_CHECK, checks [i]);
3855#endif
3856
3857#if EV_SIGNAL_ENABLE
3858 if (types & EV_SIGNAL)
3859 for (i = 0; i < EV_NSIG - 1; ++i)
3860 for (wl = signals [i].head; wl; )
3861 {
3862 wn = wl->next;
3863 cb (EV_A_ EV_SIGNAL, wl);
3864 wl = wn;
3865 }
3866#endif
3867
3868#if EV_CHILD_ENABLE
3869 if (types & EV_CHILD)
3870 for (i = (EV_PID_HASHSIZE); i--; )
3871 for (wl = childs [i]; wl; )
3872 {
3873 wn = wl->next;
3874 cb (EV_A_ EV_CHILD, wl);
3875 wl = wn;
3876 }
3877#endif
3878/* EV_STAT 0x00001000 /* stat data changed */
3879/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3880}
3881#endif
3882
2448#if EV_MULTIPLICITY 3883#if EV_MULTIPLICITY
2449 #include "ev_wrap.h" 3884 #include "ev_wrap.h"
2450#endif 3885#endif
2451 3886
2452#ifdef __cplusplus 3887EV_CPP(})
2453}
2454#endif
2455 3888

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines