ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
80#ifndef _WIN32 145#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 146# include <sys/time.h>
83# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
84#else 149#else
85# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 151# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
90#endif 155#endif
91 156
92/**/ 157/**/
93 158
94#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
96#endif 169#endif
97 170
98#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 173#endif
102 174
103#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
104# ifdef _WIN32 176# ifdef _WIN32
105# define EV_USE_POLL 0 177# define EV_USE_POLL 0
114 186
115#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
117#endif 189#endif
118 190
119#ifndef EV_USE_REALTIME 191#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
121#endif 213#endif
122 214
123/**/ 215/**/
124 216
125#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
130#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
133#endif 225#endif
134 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
135#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 243# include <winsock.h>
137#endif 244#endif
138 245
139/**/ 246/**/
140 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 261
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 262#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 264# define noinline __attribute__ ((noinline))
155#else 265#else
156# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
157# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
158#endif 271#endif
159 272
160#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
162 282
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 285
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
167 288
168typedef struct ev_watcher *W; 289typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
171 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
173 298
174#ifdef _WIN32 299#ifdef _WIN32
175# include "ev_win32.c" 300# include "ev_win32.c"
176#endif 301#endif
177 302
178/*****************************************************************************/ 303/*****************************************************************************/
179 304
180static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
181 306
307void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 309{
184 syserr_cb = cb; 310 syserr_cb = cb;
185} 311}
186 312
187static void 313static void noinline
188syserr (const char *msg) 314syserr (const char *msg)
189{ 315{
190 if (!msg) 316 if (!msg)
191 msg = "(libev) system error"; 317 msg = "(libev) system error";
192 318
199 } 325 }
200} 326}
201 327
202static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
203 329
330void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 332{
206 alloc = cb; 333 alloc = cb;
207} 334}
208 335
209static void * 336inline_speed void *
210ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
211{ 338{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
213 340
214 if (!ptr && size) 341 if (!ptr && size)
238typedef struct 365typedef struct
239{ 366{
240 W w; 367 W w;
241 int events; 368 int events;
242} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
243 377
244#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
245 379
246 struct ev_loop 380 struct ev_loop
247 { 381 {
251 #include "ev_vars.h" 385 #include "ev_vars.h"
252 #undef VAR 386 #undef VAR
253 }; 387 };
254 #include "ev_wrap.h" 388 #include "ev_wrap.h"
255 389
256 struct ev_loop default_loop_struct; 390 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 391 struct ev_loop *ev_default_loop_ptr;
258 392
259#else 393#else
260 394
261 ev_tstamp ev_rt_now; 395 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 397 #include "ev_vars.h"
264 #undef VAR 398 #undef VAR
265 399
266 static int default_loop; 400 static int ev_default_loop_ptr;
267 401
268#endif 402#endif
269 403
270/*****************************************************************************/ 404/*****************************************************************************/
271 405
281 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 417#endif
284} 418}
285 419
286inline ev_tstamp 420ev_tstamp inline_size
287get_clock (void) 421get_clock (void)
288{ 422{
289#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
291 { 425 {
304{ 438{
305 return ev_rt_now; 439 return ev_rt_now;
306} 440}
307#endif 441#endif
308 442
309#define array_roundsize(type,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
310 497
311#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
313 { \ 500 { \
314 int newcnt = cur; \ 501 int ocur_ = (cur); \
315 do \ 502 (base) = (type *)array_realloc \
316 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 505 }
325 506
507#if 0
326#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 510 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 514 }
515#endif
333 516
334#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 519
337/*****************************************************************************/ 520/*****************************************************************************/
338 521
339static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
340anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
341{ 552{
342 while (count--) 553 while (count--)
343 { 554 {
344 base->head = 0; 555 base->head = 0;
347 558
348 ++base; 559 ++base;
349 } 560 }
350} 561}
351 562
352void 563void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
380{ 565{
381 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 567 ev_io *w;
383 568
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 570 {
386 int ev = w->events & revents; 571 int ev = w->events & revents;
387 572
388 if (ev) 573 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
391} 576}
392 577
393void 578void
394ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 580{
581 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
397} 583}
398 584
399/*****************************************************************************/ 585void inline_size
400
401static void
402fd_reify (EV_P) 586fd_reify (EV_P)
403{ 587{
404 int i; 588 int i;
405 589
406 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
407 { 591 {
408 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 594 ev_io *w;
411 595
412 int events = 0; 596 unsigned char events = 0;
413 597
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 599 events |= (unsigned char)w->events;
416 600
417#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
418 if (events) 602 if (events)
419 { 603 {
420 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
421 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 } 611 }
424#endif 612#endif
425 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
426 anfd->reify = 0; 618 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
430 } 624 }
431 625
432 fdchangecnt = 0; 626 fdchangecnt = 0;
433} 627}
434 628
435static void 629void inline_size
436fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
437{ 631{
438 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
442 634
635 if (expect_true (!reify))
636 {
443 ++fdchangecnt; 637 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
446} 641}
447 642
448static void 643void inline_speed
449fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
450{ 645{
451 struct ev_io *w; 646 ev_io *w;
452 647
453 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
454 { 649 {
455 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 652 }
458} 653}
459 654
460static int 655int inline_size
461fd_valid (int fd) 656fd_valid (int fd)
462{ 657{
463#ifdef _WIN32 658#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
465#else 660#else
466 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
467#endif 662#endif
468} 663}
469 664
470/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
471static void 666static void noinline
472fd_ebadf (EV_P) 667fd_ebadf (EV_P)
473{ 668{
474 int fd; 669 int fd;
475 670
476 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
480} 675}
481 676
482/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 678static void noinline
484fd_enomem (EV_P) 679fd_enomem (EV_P)
485{ 680{
486 int fd; 681 int fd;
487 682
488 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
492 return; 687 return;
493 } 688 }
494} 689}
495 690
496/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 692static void noinline
498fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
499{ 694{
500 int fd; 695 int fd;
501 696
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 698 if (anfds [fd].events)
505 { 699 {
506 anfds [fd].events = 0; 700 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
508 } 702 }
509} 703}
510 704
511/*****************************************************************************/ 705/*****************************************************************************/
512 706
513static void 707void inline_speed
514upheap (WT *heap, int k) 708upheap (WT *heap, int k)
515{ 709{
516 WT w = heap [k]; 710 WT w = heap [k];
517 711
518 while (k && heap [k >> 1]->at > w->at) 712 while (k)
519 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
520 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
521 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
522 k >>= 1; 721 k = p;
523 } 722 }
524 723
525 heap [k] = w; 724 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
527
528} 726}
529 727
530static void 728void inline_speed
531downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
532{ 730{
533 WT w = heap [k]; 731 WT w = heap [k];
534 732
535 while (k < (N >> 1)) 733 for (;;)
536 { 734 {
537 int j = k << 1; 735 int c = (k << 1) + 1;
538 736
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
540 ++j;
541
542 if (w->at <= heap [j]->at)
543 break; 738 break;
544 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
545 heap [k] = heap [j]; 746 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
547 k = j; 749 k = c;
548 } 750 }
549 751
550 heap [k] = w; 752 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
552} 754}
553 755
554inline void 756void inline_size
555adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
556{ 758{
557 upheap (heap, k); 759 upheap (heap, k);
558 downheap (heap, N, k); 760 downheap (heap, N, k);
559} 761}
569static ANSIG *signals; 771static ANSIG *signals;
570static int signalmax; 772static int signalmax;
571 773
572static int sigpipe [2]; 774static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 776static ev_io sigev;
575 777
576static void 778void inline_size
577signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
578{ 780{
579 while (count--) 781 while (count--)
580 { 782 {
581 base->head = 0; 783 base->head = 0;
601 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
602 errno = old_errno; 804 errno = old_errno;
603 } 805 }
604} 806}
605 807
606void 808void noinline
607ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
608{ 810{
609 WL w; 811 WL w;
610 812
611#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 815#endif
614 816
615 --signum; 817 --signum;
616 818
617 if (signum < 0 || signum >= signalmax) 819 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 826}
625 827
626static void 828static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
628{ 830{
629 int signum; 831 int signum;
630 832
631 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 834 gotsig = 0;
634 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
637} 839}
638 840
639inline void 841void inline_speed
640fd_intern (int fd) 842fd_intern (int fd)
641{ 843{
642#ifdef _WIN32 844#ifdef _WIN32
643 int arg = 1; 845 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 848 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 849 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 850#endif
649} 851}
650 852
651static void 853static void noinline
652siginit (EV_P) 854siginit (EV_P)
653{ 855{
654 fd_intern (sigpipe [0]); 856 fd_intern (sigpipe [0]);
655 fd_intern (sigpipe [1]); 857 fd_intern (sigpipe [1]);
656 858
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 862}
661 863
662/*****************************************************************************/ 864/*****************************************************************************/
663 865
664static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
665 867
666#ifndef _WIN32 868#ifndef _WIN32
667 869
668static struct ev_signal childev; 870static ev_signal childev;
871
872#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0
874#endif
875
876void inline_speed
877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
878{
879 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
881
882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
883 {
884 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1)))
886 {
887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
888 w->rpid = pid;
889 w->rstatus = status;
890 ev_feed_event (EV_A_ (W)w, EV_CHILD);
891 }
892 }
893}
669 894
670#ifndef WCONTINUED 895#ifndef WCONTINUED
671# define WCONTINUED 0 896# define WCONTINUED 0
672#endif 897#endif
673 898
674static void 899static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 900childcb (EV_P_ ev_signal *sw, int revents)
691{ 901{
692 int pid, status; 902 int pid, status;
693 903
904 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 905 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 906 if (!WCONTINUED
907 || errno != EINVAL
908 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
909 return;
910
696 /* make sure we are called again until all childs have been reaped */ 911 /* make sure we are called again until all childs have been reaped */
912 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 913 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 914
699 child_reap (EV_A_ sw, pid, pid, status); 915 child_reap (EV_A_ sw, pid, pid, status);
916 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 917 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 918}
703 919
704#endif 920#endif
705 921
706/*****************************************************************************/ 922/*****************************************************************************/
707 923
924#if EV_USE_PORT
925# include "ev_port.c"
926#endif
708#if EV_USE_KQUEUE 927#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 928# include "ev_kqueue.c"
710#endif 929#endif
711#if EV_USE_EPOLL 930#if EV_USE_EPOLL
712# include "ev_epoll.c" 931# include "ev_epoll.c"
729{ 948{
730 return EV_VERSION_MINOR; 949 return EV_VERSION_MINOR;
731} 950}
732 951
733/* return true if we are running with elevated privileges and should ignore env variables */ 952/* return true if we are running with elevated privileges and should ignore env variables */
734static int 953int inline_size
735enable_secure (void) 954enable_secure (void)
736{ 955{
737#ifdef _WIN32 956#ifdef _WIN32
738 return 0; 957 return 0;
739#else 958#else
740 return getuid () != geteuid () 959 return getuid () != geteuid ()
741 || getgid () != getegid (); 960 || getgid () != getegid ();
742#endif 961#endif
743} 962}
744 963
745int 964unsigned int
746ev_method (EV_P) 965ev_supported_backends (void)
747{ 966{
748 return method; 967 unsigned int flags = 0;
749}
750 968
751static void 969 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 970 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
971 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
972 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
973 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
974
975 return flags;
976}
977
978unsigned int
979ev_recommended_backends (void)
753{ 980{
754 if (!method) 981 unsigned int flags = ev_supported_backends ();
982
983#ifndef __NetBSD__
984 /* kqueue is borked on everything but netbsd apparently */
985 /* it usually doesn't work correctly on anything but sockets and pipes */
986 flags &= ~EVBACKEND_KQUEUE;
987#endif
988#ifdef __APPLE__
989 // flags &= ~EVBACKEND_KQUEUE; for documentation
990 flags &= ~EVBACKEND_POLL;
991#endif
992
993 return flags;
994}
995
996unsigned int
997ev_embeddable_backends (void)
998{
999 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1000
1001 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1002 /* please fix it and tell me how to detect the fix */
1003 flags &= ~EVBACKEND_EPOLL;
1004
1005 return flags;
1006}
1007
1008unsigned int
1009ev_backend (EV_P)
1010{
1011 return backend;
1012}
1013
1014unsigned int
1015ev_loop_count (EV_P)
1016{
1017 return loop_count;
1018}
1019
1020void
1021ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1022{
1023 io_blocktime = interval;
1024}
1025
1026void
1027ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1028{
1029 timeout_blocktime = interval;
1030}
1031
1032static void noinline
1033loop_init (EV_P_ unsigned int flags)
1034{
1035 if (!backend)
755 { 1036 {
756#if EV_USE_MONOTONIC 1037#if EV_USE_MONOTONIC
757 { 1038 {
758 struct timespec ts; 1039 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1040 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 1045 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1046 mn_now = get_clock ();
766 now_floor = mn_now; 1047 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1048 rtmn_diff = ev_rt_now - mn_now;
768 1049
769 if (methods == EVMETHOD_AUTO) 1050 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1051 timeout_blocktime = 0.;
1052
1053 /* pid check not overridable via env */
1054#ifndef _WIN32
1055 if (flags & EVFLAG_FORKCHECK)
1056 curpid = getpid ();
1057#endif
1058
1059 if (!(flags & EVFLAG_NOENV)
1060 && !enable_secure ()
1061 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1062 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1063
775 method = 0; 1064 if (!(flags & 0x0000ffffUL))
1065 flags |= ev_recommended_backends ();
1066
1067 backend = 0;
1068 backend_fd = -1;
1069#if EV_USE_INOTIFY
1070 fs_fd = -2;
1071#endif
1072
1073#if EV_USE_PORT
1074 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1075#endif
776#if EV_USE_KQUEUE 1076#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1077 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1078#endif
779#if EV_USE_EPOLL 1079#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1080 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1081#endif
782#if EV_USE_POLL 1082#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1083 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1084#endif
785#if EV_USE_SELECT 1085#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1086 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1087#endif
788 1088
789 ev_init (&sigev, sigcb); 1089 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1090 ev_set_priority (&sigev, EV_MAXPRI);
791 } 1091 }
792} 1092}
793 1093
794void 1094static void noinline
795loop_destroy (EV_P) 1095loop_destroy (EV_P)
796{ 1096{
797 int i; 1097 int i;
798 1098
1099#if EV_USE_INOTIFY
1100 if (fs_fd >= 0)
1101 close (fs_fd);
1102#endif
1103
1104 if (backend_fd >= 0)
1105 close (backend_fd);
1106
1107#if EV_USE_PORT
1108 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1109#endif
799#if EV_USE_KQUEUE 1110#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1111 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1112#endif
802#if EV_USE_EPOLL 1113#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1114 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1115#endif
805#if EV_USE_POLL 1116#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1117 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1118#endif
808#if EV_USE_SELECT 1119#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1120 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1121#endif
811 1122
812 for (i = NUMPRI; i--; ) 1123 for (i = NUMPRI; i--; )
1124 {
813 array_free (pending, [i]); 1125 array_free (pending, [i]);
1126#if EV_IDLE_ENABLE
1127 array_free (idle, [i]);
1128#endif
1129 }
1130
1131 ev_free (anfds); anfdmax = 0;
814 1132
815 /* have to use the microsoft-never-gets-it-right macro */ 1133 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 1134 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1135 array_free (timer, EMPTY);
818#if EV_PERIODICS 1136#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1137 array_free (periodic, EMPTY);
820#endif 1138#endif
1139#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1140 array_free (fork, EMPTY);
1141#endif
822 array_free (prepare, EMPTY); 1142 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1143 array_free (check, EMPTY);
824 1144
825 method = 0; 1145 backend = 0;
826} 1146}
827 1147
828static void 1148void inline_size infy_fork (EV_P);
1149
1150void inline_size
829loop_fork (EV_P) 1151loop_fork (EV_P)
830{ 1152{
1153#if EV_USE_PORT
1154 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1155#endif
1156#if EV_USE_KQUEUE
1157 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1158#endif
831#if EV_USE_EPOLL 1159#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1160 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1161#endif
834#if EV_USE_KQUEUE 1162#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1163 infy_fork (EV_A);
836#endif 1164#endif
837 1165
838 if (ev_is_active (&sigev)) 1166 if (ev_is_active (&sigev))
839 { 1167 {
840 /* default loop */ 1168 /* default loop */
846 1174
847 while (pipe (sigpipe)) 1175 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe"); 1176 syserr ("(libev) error creating pipe");
849 1177
850 siginit (EV_A); 1178 siginit (EV_A);
1179 sigcb (EV_A_ &sigev, EV_READ);
851 } 1180 }
852 1181
853 postfork = 0; 1182 postfork = 0;
854} 1183}
855 1184
856#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
857struct ev_loop * 1186struct ev_loop *
858ev_loop_new (int methods) 1187ev_loop_new (unsigned int flags)
859{ 1188{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1189 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 1190
862 memset (loop, 0, sizeof (struct ev_loop)); 1191 memset (loop, 0, sizeof (struct ev_loop));
863 1192
864 loop_init (EV_A_ methods); 1193 loop_init (EV_A_ flags);
865 1194
866 if (ev_method (EV_A)) 1195 if (ev_backend (EV_A))
867 return loop; 1196 return loop;
868 1197
869 return 0; 1198 return 0;
870} 1199}
871 1200
877} 1206}
878 1207
879void 1208void
880ev_loop_fork (EV_P) 1209ev_loop_fork (EV_P)
881{ 1210{
882 postfork = 1; 1211 postfork = 1; /* must be in line with ev_default_fork */
883} 1212}
884 1213
885#endif 1214#endif
886 1215
887#if EV_MULTIPLICITY 1216#if EV_MULTIPLICITY
888struct ev_loop * 1217struct ev_loop *
1218ev_default_loop_init (unsigned int flags)
889#else 1219#else
890int 1220int
1221ev_default_loop (unsigned int flags)
891#endif 1222#endif
892ev_default_loop (int methods)
893{ 1223{
894 if (sigpipe [0] == sigpipe [1]) 1224 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 1225 if (pipe (sigpipe))
896 return 0; 1226 return 0;
897 1227
898 if (!default_loop) 1228 if (!ev_default_loop_ptr)
899 { 1229 {
900#if EV_MULTIPLICITY 1230#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1231 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1232#else
903 default_loop = 1; 1233 ev_default_loop_ptr = 1;
904#endif 1234#endif
905 1235
906 loop_init (EV_A_ methods); 1236 loop_init (EV_A_ flags);
907 1237
908 if (ev_method (EV_A)) 1238 if (ev_backend (EV_A))
909 { 1239 {
910 siginit (EV_A); 1240 siginit (EV_A);
911 1241
912#ifndef _WIN32 1242#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1243 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1245 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1246 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1247#endif
918 } 1248 }
919 else 1249 else
920 default_loop = 0; 1250 ev_default_loop_ptr = 0;
921 } 1251 }
922 1252
923 return default_loop; 1253 return ev_default_loop_ptr;
924} 1254}
925 1255
926void 1256void
927ev_default_destroy (void) 1257ev_default_destroy (void)
928{ 1258{
929#if EV_MULTIPLICITY 1259#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1260 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1261#endif
932 1262
933#ifndef _WIN32 1263#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1264 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1265 ev_signal_stop (EV_A_ &childev);
946 1276
947void 1277void
948ev_default_fork (void) 1278ev_default_fork (void)
949{ 1279{
950#if EV_MULTIPLICITY 1280#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1281 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1282#endif
953 1283
954 if (method) 1284 if (backend)
955 postfork = 1; 1285 postfork = 1; /* must be in line with ev_loop_fork */
956} 1286}
957 1287
958/*****************************************************************************/ 1288/*****************************************************************************/
959 1289
960static int 1290void
961any_pending (EV_P) 1291ev_invoke (EV_P_ void *w, int revents)
962{ 1292{
963 int pri; 1293 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1294}
971 1295
972static void 1296void inline_speed
973call_pending (EV_P) 1297call_pending (EV_P)
974{ 1298{
975 int pri; 1299 int pri;
976 1300
977 for (pri = NUMPRI; pri--; ) 1301 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1302 while (pendingcnt [pri])
979 { 1303 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1304 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1305
982 if (p->w) 1306 if (expect_true (p->w))
983 { 1307 {
1308 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1309
984 p->w->pending = 0; 1310 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1311 EV_CB_INVOKE (p->w, p->events);
986 } 1312 }
987 } 1313 }
988} 1314}
989 1315
990static void 1316void inline_size
991timers_reify (EV_P) 1317timers_reify (EV_P)
992{ 1318{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1320 {
995 struct ev_timer *w = timers [0]; 1321 ev_timer *w = (ev_timer *)timers [0];
996 1322
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
998 1324
999 /* first reschedule or stop timer */ 1325 /* first reschedule or stop timer */
1000 if (w->repeat) 1326 if (w->repeat)
1001 { 1327 {
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1328 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1329
1004 ((WT)w)->at += w->repeat; 1330 ((WT)w)->at += w->repeat;
1005 if (((WT)w)->at < mn_now) 1331 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now; 1332 ((WT)w)->at = mn_now;
1007 1333
1008 downheap ((WT *)timers, timercnt, 0); 1334 downheap (timers, timercnt, 0);
1009 } 1335 }
1010 else 1336 else
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1338
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1340 }
1015} 1341}
1016 1342
1017#if EV_PERIODICS 1343#if EV_PERIODIC_ENABLE
1018static void 1344void inline_size
1019periodics_reify (EV_P) 1345periodics_reify (EV_P)
1020{ 1346{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1348 {
1023 struct ev_periodic *w = periodics [0]; 1349 ev_periodic *w = (ev_periodic *)periodics [0];
1024 1350
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1352
1027 /* first reschedule or stop timer */ 1353 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1354 if (w->reschedule_cb)
1029 { 1355 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1358 downheap (periodics, periodiccnt, 0);
1034 } 1359 }
1035 else if (w->interval) 1360 else if (w->interval)
1036 { 1361 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1365 downheap (periodics, periodiccnt, 0);
1040 } 1366 }
1041 else 1367 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1369
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1371 }
1046} 1372}
1047 1373
1048static void 1374static void noinline
1049periodics_reschedule (EV_P) 1375periodics_reschedule (EV_P)
1050{ 1376{
1051 int i; 1377 int i;
1052 1378
1053 /* adjust periodics after time jump */ 1379 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1380 for (i = 0; i < periodiccnt; ++i)
1055 { 1381 {
1056 struct ev_periodic *w = periodics [i]; 1382 ev_periodic *w = (ev_periodic *)periodics [i];
1057 1383
1058 if (w->reschedule_cb) 1384 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1386 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1062 } 1388 }
1063 1389
1064 /* now rebuild the heap */ 1390 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; ) 1391 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1392 downheap (periodics, periodiccnt, i);
1067} 1393}
1068#endif 1394#endif
1069 1395
1070inline int 1396#if EV_IDLE_ENABLE
1071time_update_monotonic (EV_P) 1397void inline_size
1398idle_reify (EV_P)
1072{ 1399{
1400 if (expect_false (idleall))
1401 {
1402 int pri;
1403
1404 for (pri = NUMPRI; pri--; )
1405 {
1406 if (pendingcnt [pri])
1407 break;
1408
1409 if (idlecnt [pri])
1410 {
1411 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1412 break;
1413 }
1414 }
1415 }
1416}
1417#endif
1418
1419void inline_speed
1420time_update (EV_P_ ev_tstamp max_block)
1421{
1422 int i;
1423
1424#if EV_USE_MONOTONIC
1425 if (expect_true (have_monotonic))
1426 {
1427 ev_tstamp odiff = rtmn_diff;
1428
1073 mn_now = get_clock (); 1429 mn_now = get_clock ();
1074 1430
1431 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1432 /* interpolate in the meantime */
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1433 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 { 1434 {
1077 ev_rt_now = rtmn_diff + mn_now; 1435 ev_rt_now = rtmn_diff + mn_now;
1078 return 0; 1436 return;
1079 } 1437 }
1080 else 1438
1081 {
1082 now_floor = mn_now; 1439 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1440 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1441
1088static void 1442 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1443 * on the choice of "4": one iteration isn't enough,
1090{ 1444 * in case we get preempted during the calls to
1091 int i; 1445 * ev_time and get_clock. a second call is almost guaranteed
1092 1446 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1447 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1448 * in the unlikely event of having been preempted here.
1095 { 1449 */
1096 if (time_update_monotonic (EV_A)) 1450 for (i = 4; --i; )
1097 { 1451 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 1452 rtmn_diff = ev_rt_now - mn_now;
1103 1453
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1455 return; /* all is well */
1106 1456
1107 ev_rt_now = ev_time (); 1457 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1458 mn_now = get_clock ();
1109 now_floor = mn_now; 1459 now_floor = mn_now;
1110 } 1460 }
1111 1461
1112# if EV_PERIODICS 1462# if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A);
1464# endif
1465 /* no timer adjustment, as the monotonic clock doesn't jump */
1466 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1467 }
1468 else
1469#endif
1470 {
1471 ev_rt_now = ev_time ();
1472
1473 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1474 {
1475#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1476 periodics_reschedule (EV_A);
1114# endif 1477#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */ 1478 /* adjust timers. this is easy, as the offset is the same for all of them */
1131 for (i = 0; i < timercnt; ++i) 1479 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now; 1480 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 } 1481 }
1134 1482
1135 mn_now = ev_rt_now; 1483 mn_now = ev_rt_now;
1151static int loop_done; 1499static int loop_done;
1152 1500
1153void 1501void
1154ev_loop (EV_P_ int flags) 1502ev_loop (EV_P_ int flags)
1155{ 1503{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1504 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1505 ? EVUNLOOP_ONE
1506 : EVUNLOOP_CANCEL;
1507
1508 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1509
1159 do 1510 do
1160 { 1511 {
1512#ifndef _WIN32
1513 if (expect_false (curpid)) /* penalise the forking check even more */
1514 if (expect_false (getpid () != curpid))
1515 {
1516 curpid = getpid ();
1517 postfork = 1;
1518 }
1519#endif
1520
1521#if EV_FORK_ENABLE
1522 /* we might have forked, so queue fork handlers */
1523 if (expect_false (postfork))
1524 if (forkcnt)
1525 {
1526 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1527 call_pending (EV_A);
1528 }
1529#endif
1530
1161 /* queue check watchers (and execute them) */ 1531 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1532 if (expect_false (preparecnt))
1163 { 1533 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1534 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1535 call_pending (EV_A);
1166 } 1536 }
1167 1537
1538 if (expect_false (!activecnt))
1539 break;
1540
1168 /* we might have forked, so reify kernel state if necessary */ 1541 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 1542 if (expect_false (postfork))
1170 loop_fork (EV_A); 1543 loop_fork (EV_A);
1171 1544
1172 /* update fd-related kernel structures */ 1545 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1546 fd_reify (EV_A);
1174 1547
1175 /* calculate blocking time */ 1548 /* calculate blocking time */
1549 {
1550 ev_tstamp waittime = 0.;
1551 ev_tstamp sleeptime = 0.;
1176 1552
1177 /* we only need this for !monotonic clock or timers, but as we basically 1553 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 1554 {
1185 ev_rt_now = ev_time (); 1555 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 1556 time_update (EV_A_ 1e100);
1187 }
1188 1557
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1558 waittime = MAX_BLOCKTIME;
1194 1559
1195 if (timercnt) 1560 if (timercnt)
1196 { 1561 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1563 if (waittime > to) waittime = to;
1199 } 1564 }
1200 1565
1201#if EV_PERIODICS 1566#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1567 if (periodiccnt)
1203 { 1568 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1570 if (waittime > to) waittime = to;
1206 } 1571 }
1207#endif 1572#endif
1208 1573
1209 if (block < 0.) block = 0.; 1574 if (expect_false (waittime < timeout_blocktime))
1575 waittime = timeout_blocktime;
1576
1577 sleeptime = waittime - backend_fudge;
1578
1579 if (expect_true (sleeptime > io_blocktime))
1580 sleeptime = io_blocktime;
1581
1582 if (sleeptime)
1583 {
1584 ev_sleep (sleeptime);
1585 waittime -= sleeptime;
1586 }
1210 } 1587 }
1211 1588
1212 method_poll (EV_A_ block); 1589 ++loop_count;
1590 backend_poll (EV_A_ waittime);
1213 1591
1214 /* update ev_rt_now, do magic */ 1592 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1593 time_update (EV_A_ waittime + sleeptime);
1594 }
1216 1595
1217 /* queue pending timers and reschedule them */ 1596 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1597 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1598#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1599 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1600#endif
1222 1601
1602#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 1603 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1604 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1605#endif
1226 1606
1227 /* queue check watchers, to be executed first */ 1607 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1608 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1609 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1610
1231 call_pending (EV_A); 1611 call_pending (EV_A);
1612
1232 } 1613 }
1233 while (activecnt && !loop_done); 1614 while (expect_true (activecnt && !loop_done));
1234 1615
1235 if (loop_done != 2) 1616 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 1617 loop_done = EVUNLOOP_CANCEL;
1237} 1618}
1238 1619
1239void 1620void
1240ev_unloop (EV_P_ int how) 1621ev_unloop (EV_P_ int how)
1241{ 1622{
1242 loop_done = how; 1623 loop_done = how;
1243} 1624}
1244 1625
1245/*****************************************************************************/ 1626/*****************************************************************************/
1246 1627
1247inline void 1628void inline_size
1248wlist_add (WL *head, WL elem) 1629wlist_add (WL *head, WL elem)
1249{ 1630{
1250 elem->next = *head; 1631 elem->next = *head;
1251 *head = elem; 1632 *head = elem;
1252} 1633}
1253 1634
1254inline void 1635void inline_size
1255wlist_del (WL *head, WL elem) 1636wlist_del (WL *head, WL elem)
1256{ 1637{
1257 while (*head) 1638 while (*head)
1258 { 1639 {
1259 if (*head == elem) 1640 if (*head == elem)
1264 1645
1265 head = &(*head)->next; 1646 head = &(*head)->next;
1266 } 1647 }
1267} 1648}
1268 1649
1269inline void 1650void inline_speed
1270ev_clear_pending (EV_P_ W w) 1651clear_pending (EV_P_ W w)
1271{ 1652{
1272 if (w->pending) 1653 if (w->pending)
1273 { 1654 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1655 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1656 w->pending = 0;
1276 } 1657 }
1277} 1658}
1278 1659
1279inline void 1660int
1661ev_clear_pending (EV_P_ void *w)
1662{
1663 W w_ = (W)w;
1664 int pending = w_->pending;
1665
1666 if (expect_true (pending))
1667 {
1668 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1669 w_->pending = 0;
1670 p->w = 0;
1671 return p->events;
1672 }
1673 else
1674 return 0;
1675}
1676
1677void inline_size
1678pri_adjust (EV_P_ W w)
1679{
1680 int pri = w->priority;
1681 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1682 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1683 w->priority = pri;
1684}
1685
1686void inline_speed
1280ev_start (EV_P_ W w, int active) 1687ev_start (EV_P_ W w, int active)
1281{ 1688{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1689 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 1690 w->active = active;
1286 ev_ref (EV_A); 1691 ev_ref (EV_A);
1287} 1692}
1288 1693
1289inline void 1694void inline_size
1290ev_stop (EV_P_ W w) 1695ev_stop (EV_P_ W w)
1291{ 1696{
1292 ev_unref (EV_A); 1697 ev_unref (EV_A);
1293 w->active = 0; 1698 w->active = 0;
1294} 1699}
1295 1700
1296/*****************************************************************************/ 1701/*****************************************************************************/
1297 1702
1298void 1703void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 1704ev_io_start (EV_P_ ev_io *w)
1300{ 1705{
1301 int fd = w->fd; 1706 int fd = w->fd;
1302 1707
1303 if (ev_is_active (w)) 1708 if (expect_false (ev_is_active (w)))
1304 return; 1709 return;
1305 1710
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1711 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1712
1308 ev_start (EV_A_ (W)w, 1); 1713 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1715 wlist_add (&anfds[fd].head, (WL)w);
1311 1716
1312 fd_change (EV_A_ fd); 1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1718 w->events &= ~EV_IOFDSET;
1313} 1719}
1314 1720
1315void 1721void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 1722ev_io_stop (EV_P_ ev_io *w)
1317{ 1723{
1318 ev_clear_pending (EV_A_ (W)w); 1724 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1725 if (expect_false (!ev_is_active (w)))
1320 return; 1726 return;
1321 1727
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1729
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1730 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1326 1732
1327 fd_change (EV_A_ w->fd); 1733 fd_change (EV_A_ w->fd, 1);
1328} 1734}
1329 1735
1330void 1736void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 1737ev_timer_start (EV_P_ ev_timer *w)
1332{ 1738{
1333 if (ev_is_active (w)) 1739 if (expect_false (ev_is_active (w)))
1334 return; 1740 return;
1335 1741
1336 ((WT)w)->at += mn_now; 1742 ((WT)w)->at += mn_now;
1337 1743
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1745
1340 ev_start (EV_A_ (W)w, ++timercnt); 1746 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1748 timers [timercnt - 1] = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 1749 upheap (timers, timercnt - 1);
1344 1750
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1346} 1752}
1347 1753
1348void 1754void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1755ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1756{
1351 ev_clear_pending (EV_A_ (W)w); 1757 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1758 if (expect_false (!ev_is_active (w)))
1353 return; 1759 return;
1354 1760
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1356 1762
1357 if (((W)w)->active < timercnt--) 1763 {
1764 int active = ((W)w)->active;
1765
1766 if (expect_true (--active < --timercnt))
1358 { 1767 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1768 timers [active] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1769 adjustheap (timers, timercnt, active);
1361 } 1770 }
1771 }
1362 1772
1363 ((WT)w)->at -= mn_now; 1773 ((WT)w)->at -= mn_now;
1364 1774
1365 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1366} 1776}
1367 1777
1368void 1778void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 1779ev_timer_again (EV_P_ ev_timer *w)
1370{ 1780{
1371 if (ev_is_active (w)) 1781 if (ev_is_active (w))
1372 { 1782 {
1373 if (w->repeat) 1783 if (w->repeat)
1374 { 1784 {
1375 ((WT)w)->at = mn_now + w->repeat; 1785 ((WT)w)->at = mn_now + w->repeat;
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1786 adjustheap (timers, timercnt, ((W)w)->active - 1);
1377 } 1787 }
1378 else 1788 else
1379 ev_timer_stop (EV_A_ w); 1789 ev_timer_stop (EV_A_ w);
1380 } 1790 }
1381 else if (w->repeat) 1791 else if (w->repeat)
1792 {
1793 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1794 ev_timer_start (EV_A_ w);
1795 }
1383} 1796}
1384 1797
1385#if EV_PERIODICS 1798#if EV_PERIODIC_ENABLE
1386void 1799void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1800ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1801{
1389 if (ev_is_active (w)) 1802 if (expect_false (ev_is_active (w)))
1390 return; 1803 return;
1391 1804
1392 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1806 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1807 else if (w->interval)
1395 { 1808 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1809 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1810 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1811 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 1812 }
1813 else
1814 ((WT)w)->at = w->offset;
1400 1815
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1816 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1818 periodics [periodiccnt - 1] = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1819 upheap (periodics, periodiccnt - 1);
1405 1820
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1407} 1822}
1408 1823
1409void 1824void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1825ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1826{
1412 ev_clear_pending (EV_A_ (W)w); 1827 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1828 if (expect_false (!ev_is_active (w)))
1414 return; 1829 return;
1415 1830
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1417 1832
1418 if (((W)w)->active < periodiccnt--) 1833 {
1834 int active = ((W)w)->active;
1835
1836 if (expect_true (--active < --periodiccnt))
1419 { 1837 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1838 periodics [active] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1839 adjustheap (periodics, periodiccnt, active);
1422 } 1840 }
1841 }
1423 1842
1424 ev_stop (EV_A_ (W)w); 1843 ev_stop (EV_A_ (W)w);
1425} 1844}
1426 1845
1427void 1846void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1847ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1848{
1430 /* TODO: use adjustheap and recalculation */ 1849 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1850 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1851 ev_periodic_start (EV_A_ w);
1433} 1852}
1434#endif 1853#endif
1435 1854
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 1855#ifndef SA_RESTART
1503# define SA_RESTART 0 1856# define SA_RESTART 0
1504#endif 1857#endif
1505 1858
1506void 1859void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 1860ev_signal_start (EV_P_ ev_signal *w)
1508{ 1861{
1509#if EV_MULTIPLICITY 1862#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1863 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1864#endif
1512 if (ev_is_active (w)) 1865 if (expect_false (ev_is_active (w)))
1513 return; 1866 return;
1514 1867
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1869
1870 {
1871#ifndef _WIN32
1872 sigset_t full, prev;
1873 sigfillset (&full);
1874 sigprocmask (SIG_SETMASK, &full, &prev);
1875#endif
1876
1877 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1878
1879#ifndef _WIN32
1880 sigprocmask (SIG_SETMASK, &prev, 0);
1881#endif
1882 }
1883
1517 ev_start (EV_A_ (W)w, 1); 1884 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 1886
1521 if (!((WL)w)->next) 1887 if (!((WL)w)->next)
1522 { 1888 {
1523#if _WIN32 1889#if _WIN32
1524 signal (w->signum, sighandler); 1890 signal (w->signum, sighandler);
1530 sigaction (w->signum, &sa, 0); 1896 sigaction (w->signum, &sa, 0);
1531#endif 1897#endif
1532 } 1898 }
1533} 1899}
1534 1900
1535void 1901void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1902ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1903{
1538 ev_clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1905 if (expect_false (!ev_is_active (w)))
1540 return; 1906 return;
1541 1907
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1908 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1544 1910
1545 if (!signals [w->signum - 1].head) 1911 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1912 signal (w->signum, SIG_DFL);
1547} 1913}
1548 1914
1549void 1915void
1550ev_child_start (EV_P_ struct ev_child *w) 1916ev_child_start (EV_P_ ev_child *w)
1551{ 1917{
1552#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1919 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1920#endif
1555 if (ev_is_active (w)) 1921 if (expect_false (ev_is_active (w)))
1556 return; 1922 return;
1557 1923
1558 ev_start (EV_A_ (W)w, 1); 1924 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560} 1926}
1561 1927
1562void 1928void
1563ev_child_stop (EV_P_ struct ev_child *w) 1929ev_child_stop (EV_P_ ev_child *w)
1564{ 1930{
1565 ev_clear_pending (EV_A_ (W)w); 1931 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1932 if (expect_false (!ev_is_active (w)))
1567 return; 1933 return;
1568 1934
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1936 ev_stop (EV_A_ (W)w);
1571} 1937}
1572 1938
1939#if EV_STAT_ENABLE
1940
1941# ifdef _WIN32
1942# undef lstat
1943# define lstat(a,b) _stati64 (a,b)
1944# endif
1945
1946#define DEF_STAT_INTERVAL 5.0074891
1947#define MIN_STAT_INTERVAL 0.1074891
1948
1949static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1950
1951#if EV_USE_INOTIFY
1952# define EV_INOTIFY_BUFSIZE 8192
1953
1954static void noinline
1955infy_add (EV_P_ ev_stat *w)
1956{
1957 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1958
1959 if (w->wd < 0)
1960 {
1961 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1962
1963 /* monitor some parent directory for speedup hints */
1964 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1965 {
1966 char path [4096];
1967 strcpy (path, w->path);
1968
1969 do
1970 {
1971 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1972 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1973
1974 char *pend = strrchr (path, '/');
1975
1976 if (!pend)
1977 break; /* whoops, no '/', complain to your admin */
1978
1979 *pend = 0;
1980 w->wd = inotify_add_watch (fs_fd, path, mask);
1981 }
1982 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1983 }
1984 }
1985 else
1986 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1987
1988 if (w->wd >= 0)
1989 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1990}
1991
1992static void noinline
1993infy_del (EV_P_ ev_stat *w)
1994{
1995 int slot;
1996 int wd = w->wd;
1997
1998 if (wd < 0)
1999 return;
2000
2001 w->wd = -2;
2002 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2003 wlist_del (&fs_hash [slot].head, (WL)w);
2004
2005 /* remove this watcher, if others are watching it, they will rearm */
2006 inotify_rm_watch (fs_fd, wd);
2007}
2008
2009static void noinline
2010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2011{
2012 if (slot < 0)
2013 /* overflow, need to check for all hahs slots */
2014 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2015 infy_wd (EV_A_ slot, wd, ev);
2016 else
2017 {
2018 WL w_;
2019
2020 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2021 {
2022 ev_stat *w = (ev_stat *)w_;
2023 w_ = w_->next; /* lets us remove this watcher and all before it */
2024
2025 if (w->wd == wd || wd == -1)
2026 {
2027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2028 {
2029 w->wd = -1;
2030 infy_add (EV_A_ w); /* re-add, no matter what */
2031 }
2032
2033 stat_timer_cb (EV_A_ &w->timer, 0);
2034 }
2035 }
2036 }
2037}
2038
2039static void
2040infy_cb (EV_P_ ev_io *w, int revents)
2041{
2042 char buf [EV_INOTIFY_BUFSIZE];
2043 struct inotify_event *ev = (struct inotify_event *)buf;
2044 int ofs;
2045 int len = read (fs_fd, buf, sizeof (buf));
2046
2047 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2048 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2049}
2050
2051void inline_size
2052infy_init (EV_P)
2053{
2054 if (fs_fd != -2)
2055 return;
2056
2057 fs_fd = inotify_init ();
2058
2059 if (fs_fd >= 0)
2060 {
2061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2062 ev_set_priority (&fs_w, EV_MAXPRI);
2063 ev_io_start (EV_A_ &fs_w);
2064 }
2065}
2066
2067void inline_size
2068infy_fork (EV_P)
2069{
2070 int slot;
2071
2072 if (fs_fd < 0)
2073 return;
2074
2075 close (fs_fd);
2076 fs_fd = inotify_init ();
2077
2078 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2079 {
2080 WL w_ = fs_hash [slot].head;
2081 fs_hash [slot].head = 0;
2082
2083 while (w_)
2084 {
2085 ev_stat *w = (ev_stat *)w_;
2086 w_ = w_->next; /* lets us add this watcher */
2087
2088 w->wd = -1;
2089
2090 if (fs_fd >= 0)
2091 infy_add (EV_A_ w); /* re-add, no matter what */
2092 else
2093 ev_timer_start (EV_A_ &w->timer);
2094 }
2095
2096 }
2097}
2098
2099#endif
2100
2101void
2102ev_stat_stat (EV_P_ ev_stat *w)
2103{
2104 if (lstat (w->path, &w->attr) < 0)
2105 w->attr.st_nlink = 0;
2106 else if (!w->attr.st_nlink)
2107 w->attr.st_nlink = 1;
2108}
2109
2110static void noinline
2111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2112{
2113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2114
2115 /* we copy this here each the time so that */
2116 /* prev has the old value when the callback gets invoked */
2117 w->prev = w->attr;
2118 ev_stat_stat (EV_A_ w);
2119
2120 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2121 if (
2122 w->prev.st_dev != w->attr.st_dev
2123 || w->prev.st_ino != w->attr.st_ino
2124 || w->prev.st_mode != w->attr.st_mode
2125 || w->prev.st_nlink != w->attr.st_nlink
2126 || w->prev.st_uid != w->attr.st_uid
2127 || w->prev.st_gid != w->attr.st_gid
2128 || w->prev.st_rdev != w->attr.st_rdev
2129 || w->prev.st_size != w->attr.st_size
2130 || w->prev.st_atime != w->attr.st_atime
2131 || w->prev.st_mtime != w->attr.st_mtime
2132 || w->prev.st_ctime != w->attr.st_ctime
2133 ) {
2134 #if EV_USE_INOTIFY
2135 infy_del (EV_A_ w);
2136 infy_add (EV_A_ w);
2137 ev_stat_stat (EV_A_ w); /* avoid race... */
2138 #endif
2139
2140 ev_feed_event (EV_A_ w, EV_STAT);
2141 }
2142}
2143
2144void
2145ev_stat_start (EV_P_ ev_stat *w)
2146{
2147 if (expect_false (ev_is_active (w)))
2148 return;
2149
2150 /* since we use memcmp, we need to clear any padding data etc. */
2151 memset (&w->prev, 0, sizeof (ev_statdata));
2152 memset (&w->attr, 0, sizeof (ev_statdata));
2153
2154 ev_stat_stat (EV_A_ w);
2155
2156 if (w->interval < MIN_STAT_INTERVAL)
2157 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2158
2159 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2160 ev_set_priority (&w->timer, ev_priority (w));
2161
2162#if EV_USE_INOTIFY
2163 infy_init (EV_A);
2164
2165 if (fs_fd >= 0)
2166 infy_add (EV_A_ w);
2167 else
2168#endif
2169 ev_timer_start (EV_A_ &w->timer);
2170
2171 ev_start (EV_A_ (W)w, 1);
2172}
2173
2174void
2175ev_stat_stop (EV_P_ ev_stat *w)
2176{
2177 clear_pending (EV_A_ (W)w);
2178 if (expect_false (!ev_is_active (w)))
2179 return;
2180
2181#if EV_USE_INOTIFY
2182 infy_del (EV_A_ w);
2183#endif
2184 ev_timer_stop (EV_A_ &w->timer);
2185
2186 ev_stop (EV_A_ (W)w);
2187}
2188#endif
2189
2190#if EV_IDLE_ENABLE
2191void
2192ev_idle_start (EV_P_ ev_idle *w)
2193{
2194 if (expect_false (ev_is_active (w)))
2195 return;
2196
2197 pri_adjust (EV_A_ (W)w);
2198
2199 {
2200 int active = ++idlecnt [ABSPRI (w)];
2201
2202 ++idleall;
2203 ev_start (EV_A_ (W)w, active);
2204
2205 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2206 idles [ABSPRI (w)][active - 1] = w;
2207 }
2208}
2209
2210void
2211ev_idle_stop (EV_P_ ev_idle *w)
2212{
2213 clear_pending (EV_A_ (W)w);
2214 if (expect_false (!ev_is_active (w)))
2215 return;
2216
2217 {
2218 int active = ((W)w)->active;
2219
2220 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2221 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2222
2223 ev_stop (EV_A_ (W)w);
2224 --idleall;
2225 }
2226}
2227#endif
2228
2229void
2230ev_prepare_start (EV_P_ ev_prepare *w)
2231{
2232 if (expect_false (ev_is_active (w)))
2233 return;
2234
2235 ev_start (EV_A_ (W)w, ++preparecnt);
2236 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2237 prepares [preparecnt - 1] = w;
2238}
2239
2240void
2241ev_prepare_stop (EV_P_ ev_prepare *w)
2242{
2243 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w)))
2245 return;
2246
2247 {
2248 int active = ((W)w)->active;
2249 prepares [active - 1] = prepares [--preparecnt];
2250 ((W)prepares [active - 1])->active = active;
2251 }
2252
2253 ev_stop (EV_A_ (W)w);
2254}
2255
2256void
2257ev_check_start (EV_P_ ev_check *w)
2258{
2259 if (expect_false (ev_is_active (w)))
2260 return;
2261
2262 ev_start (EV_A_ (W)w, ++checkcnt);
2263 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2264 checks [checkcnt - 1] = w;
2265}
2266
2267void
2268ev_check_stop (EV_P_ ev_check *w)
2269{
2270 clear_pending (EV_A_ (W)w);
2271 if (expect_false (!ev_is_active (w)))
2272 return;
2273
2274 {
2275 int active = ((W)w)->active;
2276 checks [active - 1] = checks [--checkcnt];
2277 ((W)checks [active - 1])->active = active;
2278 }
2279
2280 ev_stop (EV_A_ (W)w);
2281}
2282
2283#if EV_EMBED_ENABLE
2284void noinline
2285ev_embed_sweep (EV_P_ ev_embed *w)
2286{
2287 ev_loop (w->other, EVLOOP_NONBLOCK);
2288}
2289
2290static void
2291embed_io_cb (EV_P_ ev_io *io, int revents)
2292{
2293 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2294
2295 if (ev_cb (w))
2296 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2297 else
2298 ev_loop (w->other, EVLOOP_NONBLOCK);
2299}
2300
2301static void
2302embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2303{
2304 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2305
2306 {
2307 struct ev_loop *loop = w->other;
2308
2309 while (fdchangecnt)
2310 {
2311 fd_reify (EV_A);
2312 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2313 }
2314 }
2315}
2316
2317#if 0
2318static void
2319embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2320{
2321 ev_idle_stop (EV_A_ idle);
2322}
2323#endif
2324
2325void
2326ev_embed_start (EV_P_ ev_embed *w)
2327{
2328 if (expect_false (ev_is_active (w)))
2329 return;
2330
2331 {
2332 struct ev_loop *loop = w->other;
2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2335 }
2336
2337 ev_set_priority (&w->io, ev_priority (w));
2338 ev_io_start (EV_A_ &w->io);
2339
2340 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare);
2343
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345
2346 ev_start (EV_A_ (W)w, 1);
2347}
2348
2349void
2350ev_embed_stop (EV_P_ ev_embed *w)
2351{
2352 clear_pending (EV_A_ (W)w);
2353 if (expect_false (!ev_is_active (w)))
2354 return;
2355
2356 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare);
2358
2359 ev_stop (EV_A_ (W)w);
2360}
2361#endif
2362
2363#if EV_FORK_ENABLE
2364void
2365ev_fork_start (EV_P_ ev_fork *w)
2366{
2367 if (expect_false (ev_is_active (w)))
2368 return;
2369
2370 ev_start (EV_A_ (W)w, ++forkcnt);
2371 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2372 forks [forkcnt - 1] = w;
2373}
2374
2375void
2376ev_fork_stop (EV_P_ ev_fork *w)
2377{
2378 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w)))
2380 return;
2381
2382 {
2383 int active = ((W)w)->active;
2384 forks [active - 1] = forks [--forkcnt];
2385 ((W)forks [active - 1])->active = active;
2386 }
2387
2388 ev_stop (EV_A_ (W)w);
2389}
2390#endif
2391
1573/*****************************************************************************/ 2392/*****************************************************************************/
1574 2393
1575struct ev_once 2394struct ev_once
1576{ 2395{
1577 struct ev_io io; 2396 ev_io io;
1578 struct ev_timer to; 2397 ev_timer to;
1579 void (*cb)(int revents, void *arg); 2398 void (*cb)(int revents, void *arg);
1580 void *arg; 2399 void *arg;
1581}; 2400};
1582 2401
1583static void 2402static void
1592 2411
1593 cb (revents, arg); 2412 cb (revents, arg);
1594} 2413}
1595 2414
1596static void 2415static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 2416once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 2417{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2418 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 2419}
1601 2420
1602static void 2421static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 2422once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 2423{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2424 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 2425}
1607 2426
1608void 2427void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2428ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 2429{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2430 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 2431
1613 if (!once) 2432 if (expect_false (!once))
2433 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2434 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 2435 return;
1616 { 2436 }
2437
1617 once->cb = cb; 2438 once->cb = cb;
1618 once->arg = arg; 2439 once->arg = arg;
1619 2440
1620 ev_init (&once->io, once_cb_io); 2441 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 2442 if (fd >= 0)
1622 { 2443 {
1623 ev_io_set (&once->io, fd, events); 2444 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 2445 ev_io_start (EV_A_ &once->io);
1625 } 2446 }
1626 2447
1627 ev_init (&once->to, once_cb_to); 2448 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 2449 if (timeout >= 0.)
1629 { 2450 {
1630 ev_timer_set (&once->to, timeout, 0.); 2451 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 2452 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 2453 }
1634} 2454}
2455
2456#if EV_MULTIPLICITY
2457 #include "ev_wrap.h"
2458#endif
1635 2459
1636#ifdef __cplusplus 2460#ifdef __cplusplus
1637} 2461}
1638#endif 2462#endif
1639 2463

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines