ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
513 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 611 }
516#endif 612#endif
517 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
518 anfd->reify = 0; 618 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
522 } 624 }
523 625
524 fdchangecnt = 0; 626 fdchangecnt = 0;
525} 627}
526 628
527void inline_size 629void inline_size
528fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
529{ 631{
530 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
534 634
635 if (expect_true (!reify))
636 {
535 ++fdchangecnt; 637 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
538} 641}
539 642
540void inline_speed 643void inline_speed
541fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
542{ 645{
593 696
594 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 698 if (anfds [fd].events)
596 { 699 {
597 anfds [fd].events = 0; 700 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 702 }
600} 703}
601 704
602/*****************************************************************************/ 705/*****************************************************************************/
603 706
604void inline_speed 707void inline_speed
605upheap (WT *heap, int k) 708upheap (WT *heap, int k)
606{ 709{
607 WT w = heap [k]; 710 WT w = heap [k];
608 711
609 while (k && heap [k >> 1]->at > w->at) 712 while (k)
610 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
611 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
613 k >>= 1; 721 k = p;
614 } 722 }
615 723
616 heap [k] = w; 724 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
618
619} 726}
620 727
621void inline_speed 728void inline_speed
622downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
623{ 730{
624 WT w = heap [k]; 731 WT w = heap [k];
625 732
626 while (k < (N >> 1)) 733 for (;;)
627 { 734 {
628 int j = k << 1; 735 int c = (k << 1) + 1;
629 736
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 738 break;
635 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
636 heap [k] = heap [j]; 746 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
638 k = j; 749 k = c;
639 } 750 }
640 751
641 heap [k] = w; 752 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
643} 754}
725 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
728} 839}
729 840
730void inline_size 841void inline_speed
731fd_intern (int fd) 842fd_intern (int fd)
732{ 843{
733#ifdef _WIN32 844#ifdef _WIN32
734 int arg = 1; 845 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 862}
752 863
753/*****************************************************************************/ 864/*****************************************************************************/
754 865
755static ev_child *childs [EV_PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
756 867
757#ifndef _WIN32 868#ifndef _WIN32
758 869
759static ev_signal childev; 870static ev_signal childev;
871
872#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0
874#endif
760 875
761void inline_speed 876void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
763{ 878{
764 ev_child *w; 879 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 881
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
883 {
767 if (w->pid == pid || !w->pid) 884 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1)))
768 { 886 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 888 w->rpid = pid;
771 w->rstatus = status; 889 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 890 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 891 }
892 }
774} 893}
775 894
776#ifndef WCONTINUED 895#ifndef WCONTINUED
777# define WCONTINUED 0 896# define WCONTINUED 0
778#endif 897#endif
875} 994}
876 995
877unsigned int 996unsigned int
878ev_embeddable_backends (void) 997ev_embeddable_backends (void)
879{ 998{
880 return EVBACKEND_EPOLL 999 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1000
882 | EVBACKEND_PORT; 1001 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1002 /* please fix it and tell me how to detect the fix */
1003 flags &= ~EVBACKEND_EPOLL;
1004
1005 return flags;
883} 1006}
884 1007
885unsigned int 1008unsigned int
886ev_backend (EV_P) 1009ev_backend (EV_P)
887{ 1010{
888 return backend; 1011 return backend;
1012}
1013
1014unsigned int
1015ev_loop_count (EV_P)
1016{
1017 return loop_count;
1018}
1019
1020void
1021ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1022{
1023 io_blocktime = interval;
1024}
1025
1026void
1027ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1028{
1029 timeout_blocktime = interval;
889} 1030}
890 1031
891static void noinline 1032static void noinline
892loop_init (EV_P_ unsigned int flags) 1033loop_init (EV_P_ unsigned int flags)
893{ 1034{
904 ev_rt_now = ev_time (); 1045 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1046 mn_now = get_clock ();
906 now_floor = mn_now; 1047 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1048 rtmn_diff = ev_rt_now - mn_now;
908 1049
1050 io_blocktime = 0.;
1051 timeout_blocktime = 0.;
1052
909 /* pid check not overridable via env */ 1053 /* pid check not overridable via env */
910#ifndef _WIN32 1054#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1055 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1056 curpid = getpid ();
913#endif 1057#endif
975#if EV_USE_SELECT 1119#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1120 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1121#endif
978 1122
979 for (i = NUMPRI; i--; ) 1123 for (i = NUMPRI; i--; )
1124 {
980 array_free (pending, [i]); 1125 array_free (pending, [i]);
1126#if EV_IDLE_ENABLE
1127 array_free (idle, [i]);
1128#endif
1129 }
1130
1131 ev_free (anfds); anfdmax = 0;
981 1132
982 /* have to use the microsoft-never-gets-it-right macro */ 1133 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1134 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1135 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1136#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1137 array_free (periodic, EMPTY);
987#endif 1138#endif
1139#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1140 array_free (fork, EMPTY);
1141#endif
989 array_free (prepare, EMPTY0); 1142 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1143 array_free (check, EMPTY);
991 1144
992 backend = 0; 1145 backend = 0;
993} 1146}
994 1147
995void inline_size infy_fork (EV_P); 1148void inline_size infy_fork (EV_P);
1021 1174
1022 while (pipe (sigpipe)) 1175 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe"); 1176 syserr ("(libev) error creating pipe");
1024 1177
1025 siginit (EV_A); 1178 siginit (EV_A);
1179 sigcb (EV_A_ &sigev, EV_READ);
1026 } 1180 }
1027 1181
1028 postfork = 0; 1182 postfork = 0;
1029} 1183}
1030 1184
1052} 1206}
1053 1207
1054void 1208void
1055ev_loop_fork (EV_P) 1209ev_loop_fork (EV_P)
1056{ 1210{
1057 postfork = 1; 1211 postfork = 1; /* must be in line with ev_default_fork */
1058} 1212}
1059 1213
1060#endif 1214#endif
1061 1215
1062#if EV_MULTIPLICITY 1216#if EV_MULTIPLICITY
1126#if EV_MULTIPLICITY 1280#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1281 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1282#endif
1129 1283
1130 if (backend) 1284 if (backend)
1131 postfork = 1; 1285 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1286}
1133 1287
1134/*****************************************************************************/ 1288/*****************************************************************************/
1135 1289
1136int inline_size 1290void
1137any_pending (EV_P) 1291ev_invoke (EV_P_ void *w, int revents)
1138{ 1292{
1139 int pri; 1293 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1294}
1147 1295
1148void inline_speed 1296void inline_speed
1149call_pending (EV_P) 1297call_pending (EV_P)
1150{ 1298{
1168void inline_size 1316void inline_size
1169timers_reify (EV_P) 1317timers_reify (EV_P)
1170{ 1318{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1320 {
1173 ev_timer *w = timers [0]; 1321 ev_timer *w = (ev_timer *)timers [0];
1174 1322
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1324
1177 /* first reschedule or stop timer */ 1325 /* first reschedule or stop timer */
1178 if (w->repeat) 1326 if (w->repeat)
1181 1329
1182 ((WT)w)->at += w->repeat; 1330 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1331 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1332 ((WT)w)->at = mn_now;
1185 1333
1186 downheap ((WT *)timers, timercnt, 0); 1334 downheap (timers, timercnt, 0);
1187 } 1335 }
1188 else 1336 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1338
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1344void inline_size
1197periodics_reify (EV_P) 1345periodics_reify (EV_P)
1198{ 1346{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1348 {
1201 ev_periodic *w = periodics [0]; 1349 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1350
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1352
1205 /* first reschedule or stop timer */ 1353 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1354 if (w->reschedule_cb)
1207 { 1355 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1358 downheap (periodics, periodiccnt, 0);
1211 } 1359 }
1212 else if (w->interval) 1360 else if (w->interval)
1213 { 1361 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1365 downheap (periodics, periodiccnt, 0);
1217 } 1366 }
1218 else 1367 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1369
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1377 int i;
1229 1378
1230 /* adjust periodics after time jump */ 1379 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1380 for (i = 0; i < periodiccnt; ++i)
1232 { 1381 {
1233 ev_periodic *w = periodics [i]; 1382 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1383
1235 if (w->reschedule_cb) 1384 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1386 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1388 }
1240 1389
1241 /* now rebuild the heap */ 1390 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1391 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1392 downheap (periodics, periodiccnt, i);
1244} 1393}
1245#endif 1394#endif
1246 1395
1396#if EV_IDLE_ENABLE
1247int inline_size 1397void inline_size
1248time_update_monotonic (EV_P) 1398idle_reify (EV_P)
1249{ 1399{
1400 if (expect_false (idleall))
1401 {
1402 int pri;
1403
1404 for (pri = NUMPRI; pri--; )
1405 {
1406 if (pendingcnt [pri])
1407 break;
1408
1409 if (idlecnt [pri])
1410 {
1411 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1412 break;
1413 }
1414 }
1415 }
1416}
1417#endif
1418
1419void inline_speed
1420time_update (EV_P_ ev_tstamp max_block)
1421{
1422 int i;
1423
1424#if EV_USE_MONOTONIC
1425 if (expect_true (have_monotonic))
1426 {
1427 ev_tstamp odiff = rtmn_diff;
1428
1250 mn_now = get_clock (); 1429 mn_now = get_clock ();
1251 1430
1431 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1432 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1433 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1434 {
1254 ev_rt_now = rtmn_diff + mn_now; 1435 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1436 return;
1256 } 1437 }
1257 else 1438
1258 {
1259 now_floor = mn_now; 1439 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1440 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1441
1265void inline_size 1442 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1443 * on the choice of "4": one iteration isn't enough,
1267{ 1444 * in case we get preempted during the calls to
1268 int i; 1445 * ev_time and get_clock. a second call is almost guaranteed
1269 1446 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1447 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1448 * in the unlikely event of having been preempted here.
1272 { 1449 */
1273 if (time_update_monotonic (EV_A)) 1450 for (i = 4; --i; )
1274 { 1451 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1452 rtmn_diff = ev_rt_now - mn_now;
1288 1453
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1455 return; /* all is well */
1291 1456
1292 ev_rt_now = ev_time (); 1457 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1458 mn_now = get_clock ();
1294 now_floor = mn_now; 1459 now_floor = mn_now;
1295 } 1460 }
1296 1461
1297# if EV_PERIODIC_ENABLE 1462# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1299# endif 1464# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1465 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1466 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1467 }
1304 else 1468 else
1305#endif 1469#endif
1306 { 1470 {
1307 ev_rt_now = ev_time (); 1471 ev_rt_now = ev_time ();
1308 1472
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1473 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1474 {
1311#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1476 periodics_reschedule (EV_A);
1313#endif 1477#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1478 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1479 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1480 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1481 }
1319 1482
1342 ? EVUNLOOP_ONE 1505 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1506 : EVUNLOOP_CANCEL;
1344 1507
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1508 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1509
1347 while (activecnt) 1510 do
1348 { 1511 {
1349#ifndef _WIN32 1512#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1513 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1514 if (expect_false (getpid () != curpid))
1352 { 1515 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1526 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1527 call_pending (EV_A);
1365 } 1528 }
1366#endif 1529#endif
1367 1530
1368 /* queue check watchers (and execute them) */ 1531 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1532 if (expect_false (preparecnt))
1370 { 1533 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1534 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1535 call_pending (EV_A);
1373 } 1536 }
1374 1537
1538 if (expect_false (!activecnt))
1539 break;
1540
1375 /* we might have forked, so reify kernel state if necessary */ 1541 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1542 if (expect_false (postfork))
1377 loop_fork (EV_A); 1543 loop_fork (EV_A);
1378 1544
1379 /* update fd-related kernel structures */ 1545 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1546 fd_reify (EV_A);
1381 1547
1382 /* calculate blocking time */ 1548 /* calculate blocking time */
1383 { 1549 {
1384 ev_tstamp block; 1550 ev_tstamp waittime = 0.;
1551 ev_tstamp sleeptime = 0.;
1385 1552
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1553 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1554 {
1390 /* update time to cancel out callback processing overhead */ 1555 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1556 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1557
1401 block = MAX_BLOCKTIME; 1558 waittime = MAX_BLOCKTIME;
1402 1559
1403 if (timercnt) 1560 if (timercnt)
1404 { 1561 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1406 if (block > to) block = to; 1563 if (waittime > to) waittime = to;
1407 } 1564 }
1408 1565
1409#if EV_PERIODIC_ENABLE 1566#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1567 if (periodiccnt)
1411 { 1568 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1570 if (waittime > to) waittime = to;
1414 } 1571 }
1415#endif 1572#endif
1416 1573
1417 if (expect_false (block < 0.)) block = 0.; 1574 if (expect_false (waittime < timeout_blocktime))
1575 waittime = timeout_blocktime;
1576
1577 sleeptime = waittime - backend_fudge;
1578
1579 if (expect_true (sleeptime > io_blocktime))
1580 sleeptime = io_blocktime;
1581
1582 if (sleeptime)
1583 {
1584 ev_sleep (sleeptime);
1585 waittime -= sleeptime;
1586 }
1418 } 1587 }
1419 1588
1589 ++loop_count;
1420 backend_poll (EV_A_ block); 1590 backend_poll (EV_A_ waittime);
1591
1592 /* update ev_rt_now, do magic */
1593 time_update (EV_A_ waittime + sleeptime);
1421 } 1594 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1595
1426 /* queue pending timers and reschedule them */ 1596 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1597 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1598#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1599 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1600#endif
1431 1601
1602#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1603 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1604 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1605#endif
1435 1606
1436 /* queue check watchers, to be executed first */ 1607 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1608 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1609 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1610
1440 call_pending (EV_A); 1611 call_pending (EV_A);
1441 1612
1442 if (expect_false (loop_done))
1443 break;
1444 } 1613 }
1614 while (expect_true (activecnt && !loop_done));
1445 1615
1446 if (loop_done == EVUNLOOP_ONE) 1616 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1617 loop_done = EVUNLOOP_CANCEL;
1448} 1618}
1449 1619
1476 head = &(*head)->next; 1646 head = &(*head)->next;
1477 } 1647 }
1478} 1648}
1479 1649
1480void inline_speed 1650void inline_speed
1481ev_clear_pending (EV_P_ W w) 1651clear_pending (EV_P_ W w)
1482{ 1652{
1483 if (w->pending) 1653 if (w->pending)
1484 { 1654 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1655 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1656 w->pending = 0;
1487 } 1657 }
1488} 1658}
1489 1659
1660int
1661ev_clear_pending (EV_P_ void *w)
1662{
1663 W w_ = (W)w;
1664 int pending = w_->pending;
1665
1666 if (expect_true (pending))
1667 {
1668 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1669 w_->pending = 0;
1670 p->w = 0;
1671 return p->events;
1672 }
1673 else
1674 return 0;
1675}
1676
1677void inline_size
1678pri_adjust (EV_P_ W w)
1679{
1680 int pri = w->priority;
1681 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1682 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1683 w->priority = pri;
1684}
1685
1490void inline_speed 1686void inline_speed
1491ev_start (EV_P_ W w, int active) 1687ev_start (EV_P_ W w, int active)
1492{ 1688{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1689 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1690 w->active = active;
1497 ev_ref (EV_A); 1691 ev_ref (EV_A);
1498} 1692}
1499 1693
1500void inline_size 1694void inline_size
1504 w->active = 0; 1698 w->active = 0;
1505} 1699}
1506 1700
1507/*****************************************************************************/ 1701/*****************************************************************************/
1508 1702
1509void 1703void noinline
1510ev_io_start (EV_P_ ev_io *w) 1704ev_io_start (EV_P_ ev_io *w)
1511{ 1705{
1512 int fd = w->fd; 1706 int fd = w->fd;
1513 1707
1514 if (expect_false (ev_is_active (w))) 1708 if (expect_false (ev_is_active (w)))
1516 1710
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1711 assert (("ev_io_start called with negative fd", fd >= 0));
1518 1712
1519 ev_start (EV_A_ (W)w, 1); 1713 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1715 wlist_add (&anfds[fd].head, (WL)w);
1522 1716
1523 fd_change (EV_A_ fd); 1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1718 w->events &= ~EV_IOFDSET;
1524} 1719}
1525 1720
1526void 1721void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1722ev_io_stop (EV_P_ ev_io *w)
1528{ 1723{
1529 ev_clear_pending (EV_A_ (W)w); 1724 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1725 if (expect_false (!ev_is_active (w)))
1531 return; 1726 return;
1532 1727
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1729
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1730 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1537 1732
1538 fd_change (EV_A_ w->fd); 1733 fd_change (EV_A_ w->fd, 1);
1539} 1734}
1540 1735
1541void 1736void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 1737ev_timer_start (EV_P_ ev_timer *w)
1543{ 1738{
1544 if (expect_false (ev_is_active (w))) 1739 if (expect_false (ev_is_active (w)))
1545 return; 1740 return;
1546 1741
1547 ((WT)w)->at += mn_now; 1742 ((WT)w)->at += mn_now;
1548 1743
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 1745
1551 ev_start (EV_A_ (W)w, ++timercnt); 1746 ev_start (EV_A_ (W)w, ++timercnt);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1553 timers [timercnt - 1] = w; 1748 timers [timercnt - 1] = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 1749 upheap (timers, timercnt - 1);
1555 1750
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1557} 1752}
1558 1753
1559void 1754void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 1755ev_timer_stop (EV_P_ ev_timer *w)
1561{ 1756{
1562 ev_clear_pending (EV_A_ (W)w); 1757 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 1758 if (expect_false (!ev_is_active (w)))
1564 return; 1759 return;
1565 1760
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1567 1762
1568 { 1763 {
1569 int active = ((W)w)->active; 1764 int active = ((W)w)->active;
1570 1765
1571 if (expect_true (--active < --timercnt)) 1766 if (expect_true (--active < --timercnt))
1572 { 1767 {
1573 timers [active] = timers [timercnt]; 1768 timers [active] = timers [timercnt];
1574 adjustheap ((WT *)timers, timercnt, active); 1769 adjustheap (timers, timercnt, active);
1575 } 1770 }
1576 } 1771 }
1577 1772
1578 ((WT)w)->at -= mn_now; 1773 ((WT)w)->at -= mn_now;
1579 1774
1580 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1581} 1776}
1582 1777
1583void 1778void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 1779ev_timer_again (EV_P_ ev_timer *w)
1585{ 1780{
1586 if (ev_is_active (w)) 1781 if (ev_is_active (w))
1587 { 1782 {
1588 if (w->repeat) 1783 if (w->repeat)
1589 { 1784 {
1590 ((WT)w)->at = mn_now + w->repeat; 1785 ((WT)w)->at = mn_now + w->repeat;
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1786 adjustheap (timers, timercnt, ((W)w)->active - 1);
1592 } 1787 }
1593 else 1788 else
1594 ev_timer_stop (EV_A_ w); 1789 ev_timer_stop (EV_A_ w);
1595 } 1790 }
1596 else if (w->repeat) 1791 else if (w->repeat)
1599 ev_timer_start (EV_A_ w); 1794 ev_timer_start (EV_A_ w);
1600 } 1795 }
1601} 1796}
1602 1797
1603#if EV_PERIODIC_ENABLE 1798#if EV_PERIODIC_ENABLE
1604void 1799void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 1800ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 1801{
1607 if (expect_false (ev_is_active (w))) 1802 if (expect_false (ev_is_active (w)))
1608 return; 1803 return;
1609 1804
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1806 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 1807 else if (w->interval)
1613 { 1808 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1809 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 1810 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1811 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 1812 }
1813 else
1814 ((WT)w)->at = w->offset;
1618 1815
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 1816 ev_start (EV_A_ (W)w, ++periodiccnt);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 1818 periodics [periodiccnt - 1] = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 1819 upheap (periodics, periodiccnt - 1);
1623 1820
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1625} 1822}
1626 1823
1627void 1824void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 1825ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 1826{
1630 ev_clear_pending (EV_A_ (W)w); 1827 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 1828 if (expect_false (!ev_is_active (w)))
1632 return; 1829 return;
1633 1830
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1635 1832
1636 { 1833 {
1637 int active = ((W)w)->active; 1834 int active = ((W)w)->active;
1638 1835
1639 if (expect_true (--active < --periodiccnt)) 1836 if (expect_true (--active < --periodiccnt))
1640 { 1837 {
1641 periodics [active] = periodics [periodiccnt]; 1838 periodics [active] = periodics [periodiccnt];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 1839 adjustheap (periodics, periodiccnt, active);
1643 } 1840 }
1644 } 1841 }
1645 1842
1646 ev_stop (EV_A_ (W)w); 1843 ev_stop (EV_A_ (W)w);
1647} 1844}
1648 1845
1649void 1846void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 1847ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 1848{
1652 /* TODO: use adjustheap and recalculation */ 1849 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 1850 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 1851 ev_periodic_start (EV_A_ w);
1657 1854
1658#ifndef SA_RESTART 1855#ifndef SA_RESTART
1659# define SA_RESTART 0 1856# define SA_RESTART 0
1660#endif 1857#endif
1661 1858
1662void 1859void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 1860ev_signal_start (EV_P_ ev_signal *w)
1664{ 1861{
1665#if EV_MULTIPLICITY 1862#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1863 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 1864#endif
1668 if (expect_false (ev_is_active (w))) 1865 if (expect_false (ev_is_active (w)))
1669 return; 1866 return;
1670 1867
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 1869
1870 {
1871#ifndef _WIN32
1872 sigset_t full, prev;
1873 sigfillset (&full);
1874 sigprocmask (SIG_SETMASK, &full, &prev);
1875#endif
1876
1877 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1878
1879#ifndef _WIN32
1880 sigprocmask (SIG_SETMASK, &prev, 0);
1881#endif
1882 }
1883
1673 ev_start (EV_A_ (W)w, 1); 1884 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 1886
1677 if (!((WL)w)->next) 1887 if (!((WL)w)->next)
1678 { 1888 {
1679#if _WIN32 1889#if _WIN32
1680 signal (w->signum, sighandler); 1890 signal (w->signum, sighandler);
1686 sigaction (w->signum, &sa, 0); 1896 sigaction (w->signum, &sa, 0);
1687#endif 1897#endif
1688 } 1898 }
1689} 1899}
1690 1900
1691void 1901void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 1902ev_signal_stop (EV_P_ ev_signal *w)
1693{ 1903{
1694 ev_clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 1905 if (expect_false (!ev_is_active (w)))
1696 return; 1906 return;
1697 1907
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1908 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1700 1910
1701 if (!signals [w->signum - 1].head) 1911 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 1912 signal (w->signum, SIG_DFL);
1703} 1913}
1710#endif 1920#endif
1711 if (expect_false (ev_is_active (w))) 1921 if (expect_false (ev_is_active (w)))
1712 return; 1922 return;
1713 1923
1714 ev_start (EV_A_ (W)w, 1); 1924 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 1926}
1717 1927
1718void 1928void
1719ev_child_stop (EV_P_ ev_child *w) 1929ev_child_stop (EV_P_ ev_child *w)
1720{ 1930{
1721 ev_clear_pending (EV_A_ (W)w); 1931 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1932 if (expect_false (!ev_is_active (w)))
1723 return; 1933 return;
1724 1934
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 1936 ev_stop (EV_A_ (W)w);
1727} 1937}
1728 1938
1729#if EV_STAT_ENABLE 1939#if EV_STAT_ENABLE
1730 1940
1962} 2172}
1963 2173
1964void 2174void
1965ev_stat_stop (EV_P_ ev_stat *w) 2175ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2176{
1967 ev_clear_pending (EV_A_ (W)w); 2177 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2178 if (expect_false (!ev_is_active (w)))
1969 return; 2179 return;
1970 2180
1971#if EV_USE_INOTIFY 2181#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2182 infy_del (EV_A_ w);
1975 2185
1976 ev_stop (EV_A_ (W)w); 2186 ev_stop (EV_A_ (W)w);
1977} 2187}
1978#endif 2188#endif
1979 2189
2190#if EV_IDLE_ENABLE
1980void 2191void
1981ev_idle_start (EV_P_ ev_idle *w) 2192ev_idle_start (EV_P_ ev_idle *w)
1982{ 2193{
1983 if (expect_false (ev_is_active (w))) 2194 if (expect_false (ev_is_active (w)))
1984 return; 2195 return;
1985 2196
2197 pri_adjust (EV_A_ (W)w);
2198
2199 {
2200 int active = ++idlecnt [ABSPRI (w)];
2201
2202 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2203 ev_start (EV_A_ (W)w, active);
2204
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2205 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2206 idles [ABSPRI (w)][active - 1] = w;
2207 }
1989} 2208}
1990 2209
1991void 2210void
1992ev_idle_stop (EV_P_ ev_idle *w) 2211ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2212{
1994 ev_clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1996 return; 2215 return;
1997 2216
1998 { 2217 {
1999 int active = ((W)w)->active; 2218 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt]; 2219
2220 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2001 ((W)idles [active - 1])->active = active; 2221 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2222
2223 ev_stop (EV_A_ (W)w);
2224 --idleall;
2002 } 2225 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2226}
2227#endif
2006 2228
2007void 2229void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2230ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2231{
2010 if (expect_false (ev_is_active (w))) 2232 if (expect_false (ev_is_active (w)))
2016} 2238}
2017 2239
2018void 2240void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2241ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2242{
2021 ev_clear_pending (EV_A_ (W)w); 2243 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2244 if (expect_false (!ev_is_active (w)))
2023 return; 2245 return;
2024 2246
2025 { 2247 {
2026 int active = ((W)w)->active; 2248 int active = ((W)w)->active;
2043} 2265}
2044 2266
2045void 2267void
2046ev_check_stop (EV_P_ ev_check *w) 2268ev_check_stop (EV_P_ ev_check *w)
2047{ 2269{
2048 ev_clear_pending (EV_A_ (W)w); 2270 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2271 if (expect_false (!ev_is_active (w)))
2050 return; 2272 return;
2051 2273
2052 { 2274 {
2053 int active = ((W)w)->active; 2275 int active = ((W)w)->active;
2060 2282
2061#if EV_EMBED_ENABLE 2283#if EV_EMBED_ENABLE
2062void noinline 2284void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2285ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2286{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2287 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2288}
2067 2289
2068static void 2290static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2291embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2292{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2293 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2294
2073 if (ev_cb (w)) 2295 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2296 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2297 else
2076 ev_embed_sweep (loop, w); 2298 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2299}
2300
2301static void
2302embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2303{
2304 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2305
2306 {
2307 struct ev_loop *loop = w->other;
2308
2309 while (fdchangecnt)
2310 {
2311 fd_reify (EV_A);
2312 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2313 }
2314 }
2315}
2316
2317#if 0
2318static void
2319embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2320{
2321 ev_idle_stop (EV_A_ idle);
2322}
2323#endif
2078 2324
2079void 2325void
2080ev_embed_start (EV_P_ ev_embed *w) 2326ev_embed_start (EV_P_ ev_embed *w)
2081{ 2327{
2082 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
2083 return; 2329 return;
2084 2330
2085 { 2331 {
2086 struct ev_loop *loop = w->loop; 2332 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2335 }
2090 2336
2091 ev_set_priority (&w->io, ev_priority (w)); 2337 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2338 ev_io_start (EV_A_ &w->io);
2093 2339
2340 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare);
2343
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345
2094 ev_start (EV_A_ (W)w, 1); 2346 ev_start (EV_A_ (W)w, 1);
2095} 2347}
2096 2348
2097void 2349void
2098ev_embed_stop (EV_P_ ev_embed *w) 2350ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2351{
2100 ev_clear_pending (EV_A_ (W)w); 2352 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2353 if (expect_false (!ev_is_active (w)))
2102 return; 2354 return;
2103 2355
2104 ev_io_stop (EV_A_ &w->io); 2356 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare);
2105 2358
2106 ev_stop (EV_A_ (W)w); 2359 ev_stop (EV_A_ (W)w);
2107} 2360}
2108#endif 2361#endif
2109 2362
2120} 2373}
2121 2374
2122void 2375void
2123ev_fork_stop (EV_P_ ev_fork *w) 2376ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2377{
2125 ev_clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
2127 return; 2380 return;
2128 2381
2129 { 2382 {
2130 int active = ((W)w)->active; 2383 int active = ((W)w)->active;
2198 ev_timer_set (&once->to, timeout, 0.); 2451 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2452 ev_timer_start (EV_A_ &once->to);
2200 } 2453 }
2201} 2454}
2202 2455
2456#if EV_MULTIPLICITY
2457 #include "ev_wrap.h"
2458#endif
2459
2203#ifdef __cplusplus 2460#ifdef __cplusplus
2204} 2461}
2205#endif 2462#endif
2206 2463

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines