ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif 244#endif
218 245
219/**/ 246/**/
220 247
221/* 248/*
222 * This is used to avoid floating point rounding problems. 249 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 250 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 251 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 252 * errors are against us.
226 * This value is good at least till the year 4000 253 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 254 * Better solutions welcome.
229 */ 255 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 257
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 261
236#if __GNUC__ >= 3 262#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
239#else 265#else
240# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
241# define noinline 267# define noinline
262 288
263typedef ev_watcher *W; 289typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
266 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
268 298
269#ifdef _WIN32 299#ifdef _WIN32
270# include "ev_win32.c" 300# include "ev_win32.c"
271#endif 301#endif
272 302
408{ 438{
409 return ev_rt_now; 439 return ev_rt_now;
410} 440}
411#endif 441#endif
412 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
413int inline_size 470int inline_size
414array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
415{ 472{
416 int ncur = cur + 1; 473 int ncur = cur + 1;
417 474
477 pendings [pri][w_->pending - 1].w = w_; 534 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 535 pendings [pri][w_->pending - 1].events = revents;
479 } 536 }
480} 537}
481 538
482void inline_size 539void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 541{
485 int i; 542 int i;
486 543
487 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
534 { 591 {
535 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
537 ev_io *w; 594 ev_io *w;
538 595
539 int events = 0; 596 unsigned char events = 0;
540 597
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 599 events |= (unsigned char)w->events;
543 600
544#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
545 if (events) 602 if (events)
546 { 603 {
547 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
548 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 611 }
551#endif 612#endif
552 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
553 anfd->reify = 0; 618 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
557 } 624 }
558 625
559 fdchangecnt = 0; 626 fdchangecnt = 0;
560} 627}
561 628
562void inline_size 629void inline_size
563fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
564{ 631{
565 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
569 634
635 if (expect_true (!reify))
636 {
570 ++fdchangecnt; 637 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
573} 641}
574 642
575void inline_speed 643void inline_speed
576fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
577{ 645{
628 696
629 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 698 if (anfds [fd].events)
631 { 699 {
632 anfds [fd].events = 0; 700 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 702 }
635} 703}
636 704
637/*****************************************************************************/ 705/*****************************************************************************/
638 706
639void inline_speed 707void inline_speed
640upheap (WT *heap, int k) 708upheap (WT *heap, int k)
641{ 709{
642 WT w = heap [k]; 710 WT w = heap [k];
643 711
644 while (k && heap [k >> 1]->at > w->at) 712 while (k)
645 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
646 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
648 k >>= 1; 721 k = p;
649 } 722 }
650 723
651 heap [k] = w; 724 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
653
654} 726}
655 727
656void inline_speed 728void inline_speed
657downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
658{ 730{
659 WT w = heap [k]; 731 WT w = heap [k];
660 732
661 while (k < (N >> 1)) 733 for (;;)
662 { 734 {
663 int j = k << 1; 735 int c = (k << 1) + 1;
664 736
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 738 break;
670 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
671 heap [k] = heap [j]; 746 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
673 k = j; 749 k = c;
674 } 750 }
675 751
676 heap [k] = w; 752 heap [k] = w;
677 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
678} 754}
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
786} 862}
787 863
788/*****************************************************************************/ 864/*****************************************************************************/
789 865
790static ev_child *childs [EV_PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
791 867
792#ifndef _WIN32 868#ifndef _WIN32
793 869
794static ev_signal childev; 870static ev_signal childev;
871
872#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0
874#endif
795 875
796void inline_speed 876void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{ 878{
799 ev_child *w; 879 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 881
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
883 {
802 if (w->pid == pid || !w->pid) 884 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1)))
803 { 886 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid; 888 w->rpid = pid;
806 w->rstatus = status; 889 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 890 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 891 }
892 }
809} 893}
810 894
811#ifndef WCONTINUED 895#ifndef WCONTINUED
812# define WCONTINUED 0 896# define WCONTINUED 0
813#endif 897#endif
910} 994}
911 995
912unsigned int 996unsigned int
913ev_embeddable_backends (void) 997ev_embeddable_backends (void)
914{ 998{
915 return EVBACKEND_EPOLL 999 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1000
917 | EVBACKEND_PORT; 1001 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1002 /* please fix it and tell me how to detect the fix */
1003 flags &= ~EVBACKEND_EPOLL;
1004
1005 return flags;
918} 1006}
919 1007
920unsigned int 1008unsigned int
921ev_backend (EV_P) 1009ev_backend (EV_P)
922{ 1010{
925 1013
926unsigned int 1014unsigned int
927ev_loop_count (EV_P) 1015ev_loop_count (EV_P)
928{ 1016{
929 return loop_count; 1017 return loop_count;
1018}
1019
1020void
1021ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1022{
1023 io_blocktime = interval;
1024}
1025
1026void
1027ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1028{
1029 timeout_blocktime = interval;
930} 1030}
931 1031
932static void noinline 1032static void noinline
933loop_init (EV_P_ unsigned int flags) 1033loop_init (EV_P_ unsigned int flags)
934{ 1034{
945 ev_rt_now = ev_time (); 1045 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1046 mn_now = get_clock ();
947 now_floor = mn_now; 1047 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1048 rtmn_diff = ev_rt_now - mn_now;
949 1049
1050 io_blocktime = 0.;
1051 timeout_blocktime = 0.;
1052
950 /* pid check not overridable via env */ 1053 /* pid check not overridable via env */
951#ifndef _WIN32 1054#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1055 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1056 curpid = getpid ();
954#endif 1057#endif
1022 array_free (pending, [i]); 1125 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1126#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1127 array_free (idle, [i]);
1025#endif 1128#endif
1026 } 1129 }
1130
1131 ev_free (anfds); anfdmax = 0;
1027 1132
1028 /* have to use the microsoft-never-gets-it-right macro */ 1133 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1134 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1135 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1136#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1137 array_free (periodic, EMPTY);
1033#endif 1138#endif
1139#if EV_FORK_ENABLE
1140 array_free (fork, EMPTY);
1141#endif
1034 array_free (prepare, EMPTY); 1142 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1143 array_free (check, EMPTY);
1036 1144
1037 backend = 0; 1145 backend = 0;
1038} 1146}
1066 1174
1067 while (pipe (sigpipe)) 1175 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe"); 1176 syserr ("(libev) error creating pipe");
1069 1177
1070 siginit (EV_A); 1178 siginit (EV_A);
1179 sigcb (EV_A_ &sigev, EV_READ);
1071 } 1180 }
1072 1181
1073 postfork = 0; 1182 postfork = 0;
1074} 1183}
1075 1184
1097} 1206}
1098 1207
1099void 1208void
1100ev_loop_fork (EV_P) 1209ev_loop_fork (EV_P)
1101{ 1210{
1102 postfork = 1; 1211 postfork = 1; /* must be in line with ev_default_fork */
1103} 1212}
1104 1213
1105#endif 1214#endif
1106 1215
1107#if EV_MULTIPLICITY 1216#if EV_MULTIPLICITY
1171#if EV_MULTIPLICITY 1280#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1281 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1282#endif
1174 1283
1175 if (backend) 1284 if (backend)
1176 postfork = 1; 1285 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1286}
1178 1287
1179/*****************************************************************************/ 1288/*****************************************************************************/
1180 1289
1181void 1290void
1207void inline_size 1316void inline_size
1208timers_reify (EV_P) 1317timers_reify (EV_P)
1209{ 1318{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now) 1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 { 1320 {
1212 ev_timer *w = timers [0]; 1321 ev_timer *w = (ev_timer *)timers [0];
1213 1322
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215 1324
1216 /* first reschedule or stop timer */ 1325 /* first reschedule or stop timer */
1217 if (w->repeat) 1326 if (w->repeat)
1220 1329
1221 ((WT)w)->at += w->repeat; 1330 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now) 1331 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now; 1332 ((WT)w)->at = mn_now;
1224 1333
1225 downheap ((WT *)timers, timercnt, 0); 1334 downheap (timers, timercnt, 0);
1226 } 1335 }
1227 else 1336 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229 1338
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1235void inline_size 1344void inline_size
1236periodics_reify (EV_P) 1345periodics_reify (EV_P)
1237{ 1346{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 { 1348 {
1240 ev_periodic *w = periodics [0]; 1349 ev_periodic *w = (ev_periodic *)periodics [0];
1241 1350
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243 1352
1244 /* first reschedule or stop timer */ 1353 /* first reschedule or stop timer */
1245 if (w->reschedule_cb) 1354 if (w->reschedule_cb)
1246 { 1355 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0); 1358 downheap (periodics, periodiccnt, 0);
1250 } 1359 }
1251 else if (w->interval) 1360 else if (w->interval)
1252 { 1361 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval; 1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1365 downheap (periodics, periodiccnt, 0);
1256 } 1366 }
1257 else 1367 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1369
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1377 int i;
1268 1378
1269 /* adjust periodics after time jump */ 1379 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1380 for (i = 0; i < periodiccnt; ++i)
1271 { 1381 {
1272 ev_periodic *w = periodics [i]; 1382 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1383
1274 if (w->reschedule_cb) 1384 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1386 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1388 }
1279 1389
1280 /* now rebuild the heap */ 1390 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1391 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1392 downheap (periodics, periodiccnt, i);
1283} 1393}
1284#endif 1394#endif
1285 1395
1286#if EV_IDLE_ENABLE 1396#if EV_IDLE_ENABLE
1287void inline_size 1397void inline_size
1304 } 1414 }
1305 } 1415 }
1306} 1416}
1307#endif 1417#endif
1308 1418
1309int inline_size 1419void inline_speed
1310time_update_monotonic (EV_P) 1420time_update (EV_P_ ev_tstamp max_block)
1311{ 1421{
1422 int i;
1423
1424#if EV_USE_MONOTONIC
1425 if (expect_true (have_monotonic))
1426 {
1427 ev_tstamp odiff = rtmn_diff;
1428
1312 mn_now = get_clock (); 1429 mn_now = get_clock ();
1313 1430
1431 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1432 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1433 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1434 {
1316 ev_rt_now = rtmn_diff + mn_now; 1435 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1436 return;
1318 } 1437 }
1319 else 1438
1320 {
1321 now_floor = mn_now; 1439 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1440 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1441
1327void inline_size 1442 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1443 * on the choice of "4": one iteration isn't enough,
1329{ 1444 * in case we get preempted during the calls to
1330 int i; 1445 * ev_time and get_clock. a second call is almost guaranteed
1331 1446 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1447 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1448 * in the unlikely event of having been preempted here.
1334 { 1449 */
1335 if (time_update_monotonic (EV_A)) 1450 for (i = 4; --i; )
1336 { 1451 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1452 rtmn_diff = ev_rt_now - mn_now;
1350 1453
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1455 return; /* all is well */
1353 1456
1354 ev_rt_now = ev_time (); 1457 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1458 mn_now = get_clock ();
1356 now_floor = mn_now; 1459 now_floor = mn_now;
1357 } 1460 }
1358 1461
1359# if EV_PERIODIC_ENABLE 1462# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1361# endif 1464# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1465 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1466 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1467 }
1366 else 1468 else
1367#endif 1469#endif
1368 { 1470 {
1369 ev_rt_now = ev_time (); 1471 ev_rt_now = ev_time ();
1370 1472
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1473 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1474 {
1373#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1476 periodics_reschedule (EV_A);
1375#endif 1477#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1478 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1479 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1480 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1481 }
1381 1482
1444 /* update fd-related kernel structures */ 1545 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1546 fd_reify (EV_A);
1446 1547
1447 /* calculate blocking time */ 1548 /* calculate blocking time */
1448 { 1549 {
1449 ev_tstamp block; 1550 ev_tstamp waittime = 0.;
1551 ev_tstamp sleeptime = 0.;
1450 1552
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1553 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1554 {
1455 /* update time to cancel out callback processing overhead */ 1555 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1556 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1557
1466 block = MAX_BLOCKTIME; 1558 waittime = MAX_BLOCKTIME;
1467 1559
1468 if (timercnt) 1560 if (timercnt)
1469 { 1561 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1471 if (block > to) block = to; 1563 if (waittime > to) waittime = to;
1472 } 1564 }
1473 1565
1474#if EV_PERIODIC_ENABLE 1566#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1567 if (periodiccnt)
1476 { 1568 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1570 if (waittime > to) waittime = to;
1479 } 1571 }
1480#endif 1572#endif
1481 1573
1482 if (expect_false (block < 0.)) block = 0.; 1574 if (expect_false (waittime < timeout_blocktime))
1575 waittime = timeout_blocktime;
1576
1577 sleeptime = waittime - backend_fudge;
1578
1579 if (expect_true (sleeptime > io_blocktime))
1580 sleeptime = io_blocktime;
1581
1582 if (sleeptime)
1583 {
1584 ev_sleep (sleeptime);
1585 waittime -= sleeptime;
1586 }
1483 } 1587 }
1484 1588
1485 ++loop_count; 1589 ++loop_count;
1486 backend_poll (EV_A_ block); 1590 backend_poll (EV_A_ waittime);
1591
1592 /* update ev_rt_now, do magic */
1593 time_update (EV_A_ waittime + sleeptime);
1487 } 1594 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1595
1492 /* queue pending timers and reschedule them */ 1596 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1597 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1598#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1599 periodics_reify (EV_A); /* absolute timers called first */
1606 1710
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1711 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1712
1609 ev_start (EV_A_ (W)w, 1); 1713 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1715 wlist_add (&anfds[fd].head, (WL)w);
1612 1716
1613 fd_change (EV_A_ fd); 1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1718 w->events &= ~EV_IOFDSET;
1614} 1719}
1615 1720
1616void noinline 1721void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1722ev_io_stop (EV_P_ ev_io *w)
1618{ 1723{
1620 if (expect_false (!ev_is_active (w))) 1725 if (expect_false (!ev_is_active (w)))
1621 return; 1726 return;
1622 1727
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1729
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1730 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1627 1732
1628 fd_change (EV_A_ w->fd); 1733 fd_change (EV_A_ w->fd, 1);
1629} 1734}
1630 1735
1631void noinline 1736void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 1737ev_timer_start (EV_P_ ev_timer *w)
1633{ 1738{
1637 ((WT)w)->at += mn_now; 1742 ((WT)w)->at += mn_now;
1638 1743
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 1745
1641 ev_start (EV_A_ (W)w, ++timercnt); 1746 ev_start (EV_A_ (W)w, ++timercnt);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1643 timers [timercnt - 1] = w; 1748 timers [timercnt - 1] = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 1749 upheap (timers, timercnt - 1);
1645 1750
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647} 1752}
1648 1753
1649void noinline 1754void noinline
1651{ 1756{
1652 clear_pending (EV_A_ (W)w); 1757 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1758 if (expect_false (!ev_is_active (w)))
1654 return; 1759 return;
1655 1760
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1657 1762
1658 { 1763 {
1659 int active = ((W)w)->active; 1764 int active = ((W)w)->active;
1660 1765
1661 if (expect_true (--active < --timercnt)) 1766 if (expect_true (--active < --timercnt))
1662 { 1767 {
1663 timers [active] = timers [timercnt]; 1768 timers [active] = timers [timercnt];
1664 adjustheap ((WT *)timers, timercnt, active); 1769 adjustheap (timers, timercnt, active);
1665 } 1770 }
1666 } 1771 }
1667 1772
1668 ((WT)w)->at -= mn_now; 1773 ((WT)w)->at -= mn_now;
1669 1774
1676 if (ev_is_active (w)) 1781 if (ev_is_active (w))
1677 { 1782 {
1678 if (w->repeat) 1783 if (w->repeat)
1679 { 1784 {
1680 ((WT)w)->at = mn_now + w->repeat; 1785 ((WT)w)->at = mn_now + w->repeat;
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1786 adjustheap (timers, timercnt, ((W)w)->active - 1);
1682 } 1787 }
1683 else 1788 else
1684 ev_timer_stop (EV_A_ w); 1789 ev_timer_stop (EV_A_ w);
1685 } 1790 }
1686 else if (w->repeat) 1791 else if (w->repeat)
1707 } 1812 }
1708 else 1813 else
1709 ((WT)w)->at = w->offset; 1814 ((WT)w)->at = w->offset;
1710 1815
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 1816 ev_start (EV_A_ (W)w, ++periodiccnt);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 1818 periodics [periodiccnt - 1] = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 1819 upheap (periodics, periodiccnt - 1);
1715 1820
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717} 1822}
1718 1823
1719void noinline 1824void noinline
1721{ 1826{
1722 clear_pending (EV_A_ (W)w); 1827 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 1828 if (expect_false (!ev_is_active (w)))
1724 return; 1829 return;
1725 1830
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1727 1832
1728 { 1833 {
1729 int active = ((W)w)->active; 1834 int active = ((W)w)->active;
1730 1835
1731 if (expect_true (--active < --periodiccnt)) 1836 if (expect_true (--active < --periodiccnt))
1732 { 1837 {
1733 periodics [active] = periodics [periodiccnt]; 1838 periodics [active] = periodics [periodiccnt];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 1839 adjustheap (periodics, periodiccnt, active);
1735 } 1840 }
1736 } 1841 }
1737 1842
1738 ev_stop (EV_A_ (W)w); 1843 ev_stop (EV_A_ (W)w);
1739} 1844}
1760 if (expect_false (ev_is_active (w))) 1865 if (expect_false (ev_is_active (w)))
1761 return; 1866 return;
1762 1867
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 1869
1870 {
1871#ifndef _WIN32
1872 sigset_t full, prev;
1873 sigfillset (&full);
1874 sigprocmask (SIG_SETMASK, &full, &prev);
1875#endif
1876
1877 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1878
1879#ifndef _WIN32
1880 sigprocmask (SIG_SETMASK, &prev, 0);
1881#endif
1882 }
1883
1765 ev_start (EV_A_ (W)w, 1); 1884 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 1886
1769 if (!((WL)w)->next) 1887 if (!((WL)w)->next)
1770 { 1888 {
1771#if _WIN32 1889#if _WIN32
1772 signal (w->signum, sighandler); 1890 signal (w->signum, sighandler);
1785{ 1903{
1786 clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 1905 if (expect_false (!ev_is_active (w)))
1788 return; 1906 return;
1789 1907
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1908 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1792 1910
1793 if (!signals [w->signum - 1].head) 1911 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 1912 signal (w->signum, SIG_DFL);
1795} 1913}
1802#endif 1920#endif
1803 if (expect_false (ev_is_active (w))) 1921 if (expect_false (ev_is_active (w)))
1804 return; 1922 return;
1805 1923
1806 ev_start (EV_A_ (W)w, 1); 1924 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 1926}
1809 1927
1810void 1928void
1811ev_child_stop (EV_P_ ev_child *w) 1929ev_child_stop (EV_P_ ev_child *w)
1812{ 1930{
1813 clear_pending (EV_A_ (W)w); 1931 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 1932 if (expect_false (!ev_is_active (w)))
1815 return; 1933 return;
1816 1934
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 1936 ev_stop (EV_A_ (W)w);
1819} 1937}
1820 1938
1821#if EV_STAT_ENABLE 1939#if EV_STAT_ENABLE
1822 1940
2164 2282
2165#if EV_EMBED_ENABLE 2283#if EV_EMBED_ENABLE
2166void noinline 2284void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2285ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2286{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2287 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2288}
2171 2289
2172static void 2290static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2291embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2292{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2293 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2294
2177 if (ev_cb (w)) 2295 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2296 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2297 else
2180 ev_embed_sweep (loop, w); 2298 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2299}
2300
2301static void
2302embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2303{
2304 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2305
2306 {
2307 struct ev_loop *loop = w->other;
2308
2309 while (fdchangecnt)
2310 {
2311 fd_reify (EV_A);
2312 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2313 }
2314 }
2315}
2316
2317#if 0
2318static void
2319embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2320{
2321 ev_idle_stop (EV_A_ idle);
2322}
2323#endif
2182 2324
2183void 2325void
2184ev_embed_start (EV_P_ ev_embed *w) 2326ev_embed_start (EV_P_ ev_embed *w)
2185{ 2327{
2186 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
2187 return; 2329 return;
2188 2330
2189 { 2331 {
2190 struct ev_loop *loop = w->loop; 2332 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2335 }
2194 2336
2195 ev_set_priority (&w->io, ev_priority (w)); 2337 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2338 ev_io_start (EV_A_ &w->io);
2197 2339
2340 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare);
2343
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345
2198 ev_start (EV_A_ (W)w, 1); 2346 ev_start (EV_A_ (W)w, 1);
2199} 2347}
2200 2348
2201void 2349void
2202ev_embed_stop (EV_P_ ev_embed *w) 2350ev_embed_stop (EV_P_ ev_embed *w)
2204 clear_pending (EV_A_ (W)w); 2352 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2353 if (expect_false (!ev_is_active (w)))
2206 return; 2354 return;
2207 2355
2208 ev_io_stop (EV_A_ &w->io); 2356 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare);
2209 2358
2210 ev_stop (EV_A_ (W)w); 2359 ev_stop (EV_A_ (W)w);
2211} 2360}
2212#endif 2361#endif
2213 2362
2302 ev_timer_set (&once->to, timeout, 0.); 2451 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2452 ev_timer_start (EV_A_ &once->to);
2304 } 2453 }
2305} 2454}
2306 2455
2456#if EV_MULTIPLICITY
2457 #include "ev_wrap.h"
2458#endif
2459
2307#ifdef __cplusplus 2460#ifdef __cplusplus
2308} 2461}
2309#endif 2462#endif
2310 2463

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines