ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 255
217#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
220#endif 259#endif
241 280
242#if EV_SELECT_IS_WINSOCKET 281#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 282# include <winsock.h>
244#endif 283#endif
245 284
285#if EV_USE_EVENTFD
286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
290# endif
291int eventfd (unsigned int initval, int flags);
292# ifdef __cplusplus
293}
294# endif
295#endif
296
246/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
247 309
248/* 310/*
249 * This is used to avoid floating point rounding problems. 311 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 312 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 313 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 325# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 326# define noinline __attribute__ ((noinline))
265#else 327#else
266# define expect(expr,value) (expr) 328# define expect(expr,value) (expr)
267# define noinline 329# define noinline
268# if __STDC_VERSION__ < 199901L 330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 331# define inline
270# endif 332# endif
271#endif 333#endif
272 334
273#define expect_false(expr) expect ((expr) != 0, 0) 335#define expect_false(expr) expect ((expr) != 0, 0)
288 350
289typedef ev_watcher *W; 351typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
292 354
355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
293#if EV_USE_MONOTONIC 358#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 360/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 362#endif
298 363
299#ifdef _WIN32 364#ifdef _WIN32
300# include "ev_win32.c" 365# include "ev_win32.c"
301#endif 366#endif
323 perror (msg); 388 perror (msg);
324 abort (); 389 abort ();
325 } 390 }
326} 391}
327 392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
328static void *(*alloc)(void *ptr, long size); 408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 409
330void 410void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 411ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 412{
333 alloc = cb; 413 alloc = cb;
334} 414}
335 415
336inline_speed void * 416inline_speed void *
337ev_realloc (void *ptr, long size) 417ev_realloc (void *ptr, long size)
338{ 418{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 419 ptr = alloc (ptr, size);
340 420
341 if (!ptr && size) 421 if (!ptr && size)
342 { 422 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 424 abort ();
367 W w; 447 W w;
368 int events; 448 int events;
369} ANPENDING; 449} ANPENDING;
370 450
371#if EV_USE_INOTIFY 451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
372typedef struct 453typedef struct
373{ 454{
374 WL head; 455 WL head;
375} ANFS; 456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
376#endif 475#endif
377 476
378#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
379 478
380 struct ev_loop 479 struct ev_loop
451 ts.tv_sec = (time_t)delay; 550 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 552
454 nanosleep (&ts, 0); 553 nanosleep (&ts, 0);
455#elif defined(_WIN32) 554#elif defined(_WIN32)
456 Sleep (delay * 1e3); 555 Sleep ((unsigned long)(delay * 1e3));
457#else 556#else
458 struct timeval tv; 557 struct timeval tv;
459 558
460 tv.tv_sec = (time_t)delay; 559 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 563#endif
465 } 564 }
466} 565}
467 566
468/*****************************************************************************/ 567/*****************************************************************************/
568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 570
470int inline_size 571int inline_size
471array_nextsize (int elem, int cur, int cnt) 572array_nextsize (int elem, int cur, int cnt)
472{ 573{
473 int ncur = cur + 1; 574 int ncur = cur + 1;
474 575
475 do 576 do
476 ncur <<= 1; 577 ncur <<= 1;
477 while (cnt > ncur); 578 while (cnt > ncur);
478 579
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 582 {
482 ncur *= elem; 583 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 585 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 586 ncur /= elem;
486 } 587 }
487 588
488 return ncur; 589 return ncur;
702 } 803 }
703} 804}
704 805
705/*****************************************************************************/ 806/*****************************************************************************/
706 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
707void inline_speed 828void inline_speed
708upheap (WT *heap, int k) 829downheap (ANHE *heap, int N, int k)
709{ 830{
710 WT w = heap [k]; 831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
711 833
712 while (k) 834 for (;;)
713 { 835 {
714 int p = (k - 1) >> 1; 836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 839
716 if (heap [p]->at <= w->at) 840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
717 break; 856 break;
718 857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
867 heap [k] = he;
868 ev_active (ANHE_w (he)) = k;
869}
870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
878void inline_speed
879downheap (ANHE *heap, int N, int k)
880{
881 ANHE he = heap [k];
882
883 for (;;)
884 {
885 int c = k << 1;
886
887 if (c > N + HEAP0 - 1)
888 break;
889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
896 heap [k] = heap [c];
897 ev_active (ANHE_w (heap [k])) = k;
898
899 k = c;
900 }
901
902 heap [k] = he;
903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
719 heap [k] = heap [p]; 920 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 922 k = p;
722 } 923 }
723 924
724 heap [k] = w; 925 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 926 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 927}
755 928
756void inline_size 929void inline_size
757adjustheap (WT *heap, int N, int k) 930adjustheap (ANHE *heap, int N, int k)
758{ 931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 933 upheap (heap, k);
934 else
760 downheap (heap, N, k); 935 downheap (heap, N, k);
761} 936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
762 963
763/*****************************************************************************/ 964/*****************************************************************************/
764 965
765typedef struct 966typedef struct
766{ 967{
767 WL head; 968 WL head;
768 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
769} ANSIG; 970} ANSIG;
770 971
771static ANSIG *signals; 972static ANSIG *signals;
772static int signalmax; 973static int signalmax;
773 974
774static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 976
778void inline_size 977void inline_size
779signals_init (ANSIG *base, int count) 978signals_init (ANSIG *base, int count)
780{ 979{
781 while (count--) 980 while (count--)
785 984
786 ++base; 985 ++base;
787 } 986 }
788} 987}
789 988
790static void 989/*****************************************************************************/
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 990
841void inline_speed 991void inline_speed
842fd_intern (int fd) 992fd_intern (int fd)
843{ 993{
844#ifdef _WIN32 994#ifdef _WIN32
849 fcntl (fd, F_SETFL, O_NONBLOCK); 999 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1000#endif
851} 1001}
852 1002
853static void noinline 1003static void noinline
854siginit (EV_P) 1004evpipe_init (EV_P)
855{ 1005{
1006 if (!ev_is_active (&pipeev))
1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
1018 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe");
1020
856 fd_intern (sigpipe [0]); 1021 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1022 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
858 1025
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1026 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1027 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 }
1029}
1030
1031void inline_size
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{
1034 if (!*flag)
1035 {
1036 int old_errno = errno; /* save errno because write might clobber it */
1037
1038 *flag = 1;
1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 write (evpipe [1], &old_errno, 1);
1049
1050 errno = old_errno;
1051 }
1052}
1053
1054static void
1055pipecb (EV_P_ ev_io *iow, int revents)
1056{
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
1067 read (evpipe [0], &dummy, 1);
1068 }
1069
1070 if (gotsig && ev_is_default_loop (EV_A))
1071 {
1072 int signum;
1073 gotsig = 0;
1074
1075 for (signum = signalmax; signum--; )
1076 if (signals [signum].gotsig)
1077 ev_feed_signal_event (EV_A_ signum + 1);
1078 }
1079
1080#if EV_ASYNC_ENABLE
1081 if (gotasync)
1082 {
1083 int i;
1084 gotasync = 0;
1085
1086 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent)
1088 {
1089 asyncs [i]->sent = 0;
1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1091 }
1092 }
1093#endif
1094}
1095
1096/*****************************************************************************/
1097
1098static void
1099ev_sighandler (int signum)
1100{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32
1106 signal (signum, ev_sighandler);
1107#endif
1108
1109 signals [signum - 1].gotsig = 1;
1110 evpipe_write (EV_A_ &gotsig);
1111}
1112
1113void noinline
1114ev_feed_signal_event (EV_P_ int signum)
1115{
1116 WL w;
1117
1118#if EV_MULTIPLICITY
1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1120#endif
1121
1122 --signum;
1123
1124 if (signum < 0 || signum >= signalmax)
1125 return;
1126
1127 signals [signum].gotsig = 0;
1128
1129 for (w = signals [signum].head; w; w = w->next)
1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
862} 1131}
863 1132
864/*****************************************************************************/ 1133/*****************************************************************************/
865 1134
866static WL childs [EV_PID_HASHSIZE]; 1135static WL childs [EV_PID_HASHSIZE];
872#ifndef WIFCONTINUED 1141#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0 1142# define WIFCONTINUED(status) 0
874#endif 1143#endif
875 1144
876void inline_speed 1145void inline_speed
877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1146child_reap (EV_P_ int chain, int pid, int status)
878{ 1147{
879 ev_child *w; 1148 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
881 1150
882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
883 { 1152 {
884 if ((w->pid == pid || !w->pid) 1153 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1))) 1154 && (!traced || (w->flags & 1)))
886 { 1155 {
887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
888 w->rpid = pid; 1157 w->rpid = pid;
889 w->rstatus = status; 1158 w->rstatus = status;
890 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
891 } 1160 }
892 } 1161 }
906 if (!WCONTINUED 1175 if (!WCONTINUED
907 || errno != EINVAL 1176 || errno != EINVAL
908 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
909 return; 1178 return;
910 1179
911 /* make sure we are called again until all childs have been reaped */ 1180 /* make sure we are called again until all children have been reaped */
912 /* we need to do it this way so that the callback gets called before we continue */ 1181 /* we need to do it this way so that the callback gets called before we continue */
913 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
914 1183
915 child_reap (EV_A_ sw, pid, pid, status); 1184 child_reap (EV_A_ pid, pid, status);
916 if (EV_PID_HASHSIZE > 1) 1185 if (EV_PID_HASHSIZE > 1)
917 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
918} 1187}
919 1188
920#endif 1189#endif
921 1190
922/*****************************************************************************/ 1191/*****************************************************************************/
1040 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1041 have_monotonic = 1; 1310 have_monotonic = 1;
1042 } 1311 }
1043#endif 1312#endif
1044 1313
1045 ev_rt_now = ev_time (); 1314 ev_rt_now = ev_time ();
1046 mn_now = get_clock (); 1315 mn_now = get_clock ();
1047 now_floor = mn_now; 1316 now_floor = mn_now;
1048 rtmn_diff = ev_rt_now - mn_now; 1317 rtmn_diff = ev_rt_now - mn_now;
1049 1318
1050 io_blocktime = 0.; 1319 io_blocktime = 0.;
1051 timeout_blocktime = 0.; 1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
1052 1327
1053 /* pid check not overridable via env */ 1328 /* pid check not overridable via env */
1054#ifndef _WIN32 1329#ifndef _WIN32
1055 if (flags & EVFLAG_FORKCHECK) 1330 if (flags & EVFLAG_FORKCHECK)
1056 curpid = getpid (); 1331 curpid = getpid ();
1059 if (!(flags & EVFLAG_NOENV) 1334 if (!(flags & EVFLAG_NOENV)
1060 && !enable_secure () 1335 && !enable_secure ()
1061 && getenv ("LIBEV_FLAGS")) 1336 && getenv ("LIBEV_FLAGS"))
1062 flags = atoi (getenv ("LIBEV_FLAGS")); 1337 flags = atoi (getenv ("LIBEV_FLAGS"));
1063 1338
1064 if (!(flags & 0x0000ffffUL)) 1339 if (!(flags & 0x0000ffffU))
1065 flags |= ev_recommended_backends (); 1340 flags |= ev_recommended_backends ();
1066
1067 backend = 0;
1068 backend_fd = -1;
1069#if EV_USE_INOTIFY
1070 fs_fd = -2;
1071#endif
1072 1341
1073#if EV_USE_PORT 1342#if EV_USE_PORT
1074 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1075#endif 1344#endif
1076#if EV_USE_KQUEUE 1345#if EV_USE_KQUEUE
1084#endif 1353#endif
1085#if EV_USE_SELECT 1354#if EV_USE_SELECT
1086 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1087#endif 1356#endif
1088 1357
1089 ev_init (&sigev, sigcb); 1358 ev_init (&pipeev, pipecb);
1090 ev_set_priority (&sigev, EV_MAXPRI); 1359 ev_set_priority (&pipeev, EV_MAXPRI);
1091 } 1360 }
1092} 1361}
1093 1362
1094static void noinline 1363static void noinline
1095loop_destroy (EV_P) 1364loop_destroy (EV_P)
1096{ 1365{
1097 int i; 1366 int i;
1367
1368 if (ev_is_active (&pipeev))
1369 {
1370 ev_ref (EV_A); /* signal watcher */
1371 ev_io_stop (EV_A_ &pipeev);
1372
1373#if EV_USE_EVENTFD
1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
1379 {
1380 close (evpipe [0]);
1381 close (evpipe [1]);
1382 }
1383 }
1098 1384
1099#if EV_USE_INOTIFY 1385#if EV_USE_INOTIFY
1100 if (fs_fd >= 0) 1386 if (fs_fd >= 0)
1101 close (fs_fd); 1387 close (fs_fd);
1102#endif 1388#endif
1139#if EV_FORK_ENABLE 1425#if EV_FORK_ENABLE
1140 array_free (fork, EMPTY); 1426 array_free (fork, EMPTY);
1141#endif 1427#endif
1142 array_free (prepare, EMPTY); 1428 array_free (prepare, EMPTY);
1143 array_free (check, EMPTY); 1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
1144 1433
1145 backend = 0; 1434 backend = 0;
1146} 1435}
1147 1436
1437#if EV_USE_INOTIFY
1148void inline_size infy_fork (EV_P); 1438void inline_size infy_fork (EV_P);
1439#endif
1149 1440
1150void inline_size 1441void inline_size
1151loop_fork (EV_P) 1442loop_fork (EV_P)
1152{ 1443{
1153#if EV_USE_PORT 1444#if EV_USE_PORT
1161#endif 1452#endif
1162#if EV_USE_INOTIFY 1453#if EV_USE_INOTIFY
1163 infy_fork (EV_A); 1454 infy_fork (EV_A);
1164#endif 1455#endif
1165 1456
1166 if (ev_is_active (&sigev)) 1457 if (ev_is_active (&pipeev))
1167 { 1458 {
1168 /* default loop */ 1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1463 gotasync = 1;
1464#endif
1169 1465
1170 ev_ref (EV_A); 1466 ev_ref (EV_A);
1171 ev_io_stop (EV_A_ &sigev); 1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1172 close (sigpipe [0]); 1476 close (evpipe [0]);
1173 close (sigpipe [1]); 1477 close (evpipe [1]);
1478 }
1174 1479
1175 while (pipe (sigpipe))
1176 syserr ("(libev) error creating pipe");
1177
1178 siginit (EV_A); 1480 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */
1179 sigcb (EV_A_ &sigev, EV_READ); 1482 pipecb (EV_A_ &pipeev, EV_READ);
1180 } 1483 }
1181 1484
1182 postfork = 0; 1485 postfork = 0;
1183} 1486}
1184 1487
1208void 1511void
1209ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1210{ 1513{
1211 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1212} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1213 1549
1214#endif 1550#endif
1215 1551
1216#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
1217struct ev_loop * 1553struct ev_loop *
1219#else 1555#else
1220int 1556int
1221ev_default_loop (unsigned int flags) 1557ev_default_loop (unsigned int flags)
1222#endif 1558#endif
1223{ 1559{
1224 if (sigpipe [0] == sigpipe [1])
1225 if (pipe (sigpipe))
1226 return 0;
1227
1228 if (!ev_default_loop_ptr) 1560 if (!ev_default_loop_ptr)
1229 { 1561 {
1230#if EV_MULTIPLICITY 1562#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1232#else 1564#else
1235 1567
1236 loop_init (EV_A_ flags); 1568 loop_init (EV_A_ flags);
1237 1569
1238 if (ev_backend (EV_A)) 1570 if (ev_backend (EV_A))
1239 { 1571 {
1240 siginit (EV_A);
1241
1242#ifndef _WIN32 1572#ifndef _WIN32
1243 ev_signal_init (&childev, childcb, SIGCHLD); 1573 ev_signal_init (&childev, childcb, SIGCHLD);
1244 ev_set_priority (&childev, EV_MAXPRI); 1574 ev_set_priority (&childev, EV_MAXPRI);
1245 ev_signal_start (EV_A_ &childev); 1575 ev_signal_start (EV_A_ &childev);
1246 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1576 ev_unref (EV_A); /* child watcher should not keep loop alive */
1263#ifndef _WIN32 1593#ifndef _WIN32
1264 ev_ref (EV_A); /* child watcher */ 1594 ev_ref (EV_A); /* child watcher */
1265 ev_signal_stop (EV_A_ &childev); 1595 ev_signal_stop (EV_A_ &childev);
1266#endif 1596#endif
1267 1597
1268 ev_ref (EV_A); /* signal watcher */
1269 ev_io_stop (EV_A_ &sigev);
1270
1271 close (sigpipe [0]); sigpipe [0] = 0;
1272 close (sigpipe [1]); sigpipe [1] = 0;
1273
1274 loop_destroy (EV_A); 1598 loop_destroy (EV_A);
1275} 1599}
1276 1600
1277void 1601void
1278ev_default_fork (void) 1602ev_default_fork (void)
1295 1619
1296void inline_speed 1620void inline_speed
1297call_pending (EV_P) 1621call_pending (EV_P)
1298{ 1622{
1299 int pri; 1623 int pri;
1624
1625 EV_FREQUENT_CHECK;
1300 1626
1301 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1302 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1303 { 1629 {
1304 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1309 1635
1310 p->w->pending = 0; 1636 p->w->pending = 0;
1311 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1312 } 1638 }
1313 } 1639 }
1314}
1315 1640
1316void inline_size 1641 EV_FREQUENT_CHECK;
1317timers_reify (EV_P)
1318{
1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
1320 {
1321 ev_timer *w = (ev_timer *)timers [0];
1322
1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1324
1325 /* first reschedule or stop timer */
1326 if (w->repeat)
1327 {
1328 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1329
1330 ((WT)w)->at += w->repeat;
1331 if (((WT)w)->at < mn_now)
1332 ((WT)w)->at = mn_now;
1333
1334 downheap (timers, timercnt, 0);
1335 }
1336 else
1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1338
1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1340 }
1341} 1642}
1342
1343#if EV_PERIODIC_ENABLE
1344void inline_size
1345periodics_reify (EV_P)
1346{
1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1348 {
1349 ev_periodic *w = (ev_periodic *)periodics [0];
1350
1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1352
1353 /* first reschedule or stop timer */
1354 if (w->reschedule_cb)
1355 {
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1358 downheap (periodics, periodiccnt, 0);
1359 }
1360 else if (w->interval)
1361 {
1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1365 downheap (periodics, periodiccnt, 0);
1366 }
1367 else
1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1369
1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1371 }
1372}
1373
1374static void noinline
1375periodics_reschedule (EV_P)
1376{
1377 int i;
1378
1379 /* adjust periodics after time jump */
1380 for (i = 0; i < periodiccnt; ++i)
1381 {
1382 ev_periodic *w = (ev_periodic *)periodics [i];
1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1388 }
1389
1390 /* now rebuild the heap */
1391 for (i = periodiccnt >> 1; i--; )
1392 downheap (periodics, periodiccnt, i);
1393}
1394#endif
1395 1643
1396#if EV_IDLE_ENABLE 1644#if EV_IDLE_ENABLE
1397void inline_size 1645void inline_size
1398idle_reify (EV_P) 1646idle_reify (EV_P)
1399{ 1647{
1411 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1659 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1412 break; 1660 break;
1413 } 1661 }
1414 } 1662 }
1415 } 1663 }
1664}
1665#endif
1666
1667void inline_size
1668timers_reify (EV_P)
1669{
1670 EV_FREQUENT_CHECK;
1671
1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1673 {
1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1677
1678 /* first reschedule or stop timer */
1679 if (w->repeat)
1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1686
1687 ANHE_at_cache (timers [HEAP0]);
1688 downheap (timers, timercnt, HEAP0);
1689 }
1690 else
1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1692
1693 EV_FREQUENT_CHECK;
1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1695 }
1696}
1697
1698#if EV_PERIODIC_ENABLE
1699void inline_size
1700periodics_reify (EV_P)
1701{
1702 EV_FREQUENT_CHECK;
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1719 }
1720 else if (w->interval)
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
1738 }
1739 else
1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1744 }
1745}
1746
1747static void noinline
1748periodics_reschedule (EV_P)
1749{
1750 int i;
1751
1752 /* adjust periodics after time jump */
1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1756
1757 if (w->reschedule_cb)
1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1759 else if (w->interval)
1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1416} 1766}
1417#endif 1767#endif
1418 1768
1419void inline_speed 1769void inline_speed
1420time_update (EV_P_ ev_tstamp max_block) 1770time_update (EV_P_ ev_tstamp max_block)
1449 */ 1799 */
1450 for (i = 4; --i; ) 1800 for (i = 4; --i; )
1451 { 1801 {
1452 rtmn_diff = ev_rt_now - mn_now; 1802 rtmn_diff = ev_rt_now - mn_now;
1453 1803
1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1455 return; /* all is well */ 1805 return; /* all is well */
1456 1806
1457 ev_rt_now = ev_time (); 1807 ev_rt_now = ev_time ();
1458 mn_now = get_clock (); 1808 mn_now = get_clock ();
1459 now_floor = mn_now; 1809 now_floor = mn_now;
1475#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1476 periodics_reschedule (EV_A); 1826 periodics_reschedule (EV_A);
1477#endif 1827#endif
1478 /* adjust timers. this is easy, as the offset is the same for all of them */ 1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1479 for (i = 0; i < timercnt; ++i) 1829 for (i = 0; i < timercnt; ++i)
1830 {
1831 ANHE *he = timers + i + HEAP0;
1480 ((WT)timers [i])->at += ev_rt_now - mn_now; 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1481 } 1835 }
1482 1836
1483 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1484 } 1838 }
1485} 1839}
1499static int loop_done; 1853static int loop_done;
1500 1854
1501void 1855void
1502ev_loop (EV_P_ int flags) 1856ev_loop (EV_P_ int flags)
1503{ 1857{
1504 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1858 loop_done = EVUNLOOP_CANCEL;
1505 ? EVUNLOOP_ONE
1506 : EVUNLOOP_CANCEL;
1507 1859
1508 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1509 1861
1510 do 1862 do
1511 { 1863 {
1557 1909
1558 waittime = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1559 1911
1560 if (timercnt) 1912 if (timercnt)
1561 { 1913 {
1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1563 if (waittime > to) waittime = to; 1915 if (waittime > to) waittime = to;
1564 } 1916 }
1565 1917
1566#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1567 if (periodiccnt) 1919 if (periodiccnt)
1568 { 1920 {
1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1570 if (waittime > to) waittime = to; 1922 if (waittime > to) waittime = to;
1571 } 1923 }
1572#endif 1924#endif
1573 1925
1574 if (expect_false (waittime < timeout_blocktime)) 1926 if (expect_false (waittime < timeout_blocktime))
1607 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
1608 if (expect_false (checkcnt)) 1960 if (expect_false (checkcnt))
1609 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1610 1962
1611 call_pending (EV_A); 1963 call_pending (EV_A);
1612
1613 } 1964 }
1614 while (expect_true (activecnt && !loop_done)); 1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
1615 1970
1616 if (loop_done == EVUNLOOP_ONE) 1971 if (loop_done == EVUNLOOP_ONE)
1617 loop_done = EVUNLOOP_CANCEL; 1972 loop_done = EVUNLOOP_CANCEL;
1618} 1973}
1619 1974
1708 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1709 return; 2064 return;
1710 2065
1711 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1712 2067
2068 EV_FREQUENT_CHECK;
2069
1713 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1715 wlist_add (&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1716 2073
1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1718 w->events &= ~EV_IOFDSET; 2075 w->events &= ~EV_IOFDSET;
2076
2077 EV_FREQUENT_CHECK;
1719} 2078}
1720 2079
1721void noinline 2080void noinline
1722ev_io_stop (EV_P_ ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1723{ 2082{
1724 clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1726 return; 2085 return;
1727 2086
1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2088
2089 EV_FREQUENT_CHECK;
1729 2090
1730 wlist_del (&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1731 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1732 2093
1733 fd_change (EV_A_ w->fd, 1); 2094 fd_change (EV_A_ w->fd, 1);
2095
2096 EV_FREQUENT_CHECK;
1734} 2097}
1735 2098
1736void noinline 2099void noinline
1737ev_timer_start (EV_P_ ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1738{ 2101{
1739 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1740 return; 2103 return;
1741 2104
1742 ((WT)w)->at += mn_now; 2105 ev_at (w) += mn_now;
1743 2106
1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1745 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1746 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1748 timers [timercnt - 1] = (WT)w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
1749 upheap (timers, timercnt - 1); 2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
1750 2117
2118 EV_FREQUENT_CHECK;
2119
1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1752} 2121}
1753 2122
1754void noinline 2123void noinline
1755ev_timer_stop (EV_P_ ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1756{ 2125{
1757 clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1758 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1759 return; 2128 return;
1760 2129
1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2130 EV_FREQUENT_CHECK;
1762 2131
1763 { 2132 {
1764 int active = ((W)w)->active; 2133 int active = ev_active (w);
1765 2134
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136
2137 --timercnt;
2138
1766 if (expect_true (--active < --timercnt)) 2139 if (expect_true (active < timercnt + HEAP0))
1767 { 2140 {
1768 timers [active] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1769 adjustheap (timers, timercnt, active); 2142 adjustheap (timers, timercnt, active);
1770 } 2143 }
1771 } 2144 }
1772 2145
1773 ((WT)w)->at -= mn_now; 2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now;
1774 2149
1775 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1776} 2151}
1777 2152
1778void noinline 2153void noinline
1779ev_timer_again (EV_P_ ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1780{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1781 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1782 { 2159 {
1783 if (w->repeat) 2160 if (w->repeat)
1784 { 2161 {
1785 ((WT)w)->at = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1786 adjustheap (timers, timercnt, ((W)w)->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
1787 } 2165 }
1788 else 2166 else
1789 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1790 } 2168 }
1791 else if (w->repeat) 2169 else if (w->repeat)
1792 { 2170 {
1793 w->at = w->repeat; 2171 ev_at (w) = w->repeat;
1794 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1795 } 2173 }
2174
2175 EV_FREQUENT_CHECK;
1796} 2176}
1797 2177
1798#if EV_PERIODIC_ENABLE 2178#if EV_PERIODIC_ENABLE
1799void noinline 2179void noinline
1800ev_periodic_start (EV_P_ ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1801{ 2181{
1802 if (expect_false (ev_is_active (w))) 2182 if (expect_false (ev_is_active (w)))
1803 return; 2183 return;
1804 2184
1805 if (w->reschedule_cb) 2185 if (w->reschedule_cb)
1806 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval) 2187 else if (w->interval)
1808 { 2188 {
1809 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1810 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
1811 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1812 } 2192 }
1813 else 2193 else
1814 ((WT)w)->at = w->offset; 2194 ev_at (w) = w->offset;
1815 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1816 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1818 periodics [periodiccnt - 1] = (WT)w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1819 upheap (periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1820 2204
2205 EV_FREQUENT_CHECK;
2206
1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1822} 2208}
1823 2209
1824void noinline 2210void noinline
1825ev_periodic_stop (EV_P_ ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1826{ 2212{
1827 clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1828 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1829 return; 2215 return;
1830 2216
1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2217 EV_FREQUENT_CHECK;
1832 2218
1833 { 2219 {
1834 int active = ((W)w)->active; 2220 int active = ev_active (w);
1835 2221
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223
2224 --periodiccnt;
2225
1836 if (expect_true (--active < --periodiccnt)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1837 { 2227 {
1838 periodics [active] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1839 adjustheap (periodics, periodiccnt, active); 2229 adjustheap (periodics, periodiccnt, active);
1840 } 2230 }
1841 } 2231 }
1842 2232
2233 EV_FREQUENT_CHECK;
2234
1843 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1844} 2236}
1845 2237
1846void noinline 2238void noinline
1847ev_periodic_again (EV_P_ ev_periodic *w) 2239ev_periodic_again (EV_P_ ev_periodic *w)
1864#endif 2256#endif
1865 if (expect_false (ev_is_active (w))) 2257 if (expect_false (ev_is_active (w)))
1866 return; 2258 return;
1867 2259
1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2261
2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
1869 2265
1870 { 2266 {
1871#ifndef _WIN32 2267#ifndef _WIN32
1872 sigset_t full, prev; 2268 sigset_t full, prev;
1873 sigfillset (&full); 2269 sigfillset (&full);
1885 wlist_add (&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
1886 2282
1887 if (!((WL)w)->next) 2283 if (!((WL)w)->next)
1888 { 2284 {
1889#if _WIN32 2285#if _WIN32
1890 signal (w->signum, sighandler); 2286 signal (w->signum, ev_sighandler);
1891#else 2287#else
1892 struct sigaction sa; 2288 struct sigaction sa;
1893 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
1894 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
1895 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1896 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
1897#endif 2293#endif
1898 } 2294 }
2295
2296 EV_FREQUENT_CHECK;
1899} 2297}
1900 2298
1901void noinline 2299void noinline
1902ev_signal_stop (EV_P_ ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
1903{ 2301{
1904 clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
1906 return; 2304 return;
1907 2305
2306 EV_FREQUENT_CHECK;
2307
1908 wlist_del (&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
1909 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
1910 2310
1911 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
1912 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
2313
2314 EV_FREQUENT_CHECK;
1913} 2315}
1914 2316
1915void 2317void
1916ev_child_start (EV_P_ ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
1917{ 2319{
1919 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1920#endif 2322#endif
1921 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1922 return; 2324 return;
1923 2325
2326 EV_FREQUENT_CHECK;
2327
1924 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
1926} 2332}
1927 2333
1928void 2334void
1929ev_child_stop (EV_P_ ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
1930{ 2336{
1931 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1932 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1933 return; 2339 return;
1934 2340
2341 EV_FREQUENT_CHECK;
2342
1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1936 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
1937} 2347}
1938 2348
1939#if EV_STAT_ENABLE 2349#if EV_STAT_ENABLE
1940 2350
1941# ifdef _WIN32 2351# ifdef _WIN32
1959 if (w->wd < 0) 2369 if (w->wd < 0)
1960 { 2370 {
1961 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1962 2372
1963 /* monitor some parent directory for speedup hints */ 2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
1964 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1965 { 2377 {
1966 char path [4096]; 2378 char path [4096];
1967 strcpy (path, w->path); 2379 strcpy (path, w->path);
1968 2380
2167 else 2579 else
2168#endif 2580#endif
2169 ev_timer_start (EV_A_ &w->timer); 2581 ev_timer_start (EV_A_ &w->timer);
2170 2582
2171 ev_start (EV_A_ (W)w, 1); 2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2172} 2586}
2173 2587
2174void 2588void
2175ev_stat_stop (EV_P_ ev_stat *w) 2589ev_stat_stop (EV_P_ ev_stat *w)
2176{ 2590{
2177 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2178 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2179 return; 2593 return;
2180 2594
2595 EV_FREQUENT_CHECK;
2596
2181#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2182 infy_del (EV_A_ w); 2598 infy_del (EV_A_ w);
2183#endif 2599#endif
2184 ev_timer_stop (EV_A_ &w->timer); 2600 ev_timer_stop (EV_A_ &w->timer);
2185 2601
2186 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2187} 2605}
2188#endif 2606#endif
2189 2607
2190#if EV_IDLE_ENABLE 2608#if EV_IDLE_ENABLE
2191void 2609void
2193{ 2611{
2194 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2195 return; 2613 return;
2196 2614
2197 pri_adjust (EV_A_ (W)w); 2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2198 2618
2199 { 2619 {
2200 int active = ++idlecnt [ABSPRI (w)]; 2620 int active = ++idlecnt [ABSPRI (w)];
2201 2621
2202 ++idleall; 2622 ++idleall;
2203 ev_start (EV_A_ (W)w, active); 2623 ev_start (EV_A_ (W)w, active);
2204 2624
2205 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2206 idles [ABSPRI (w)][active - 1] = w; 2626 idles [ABSPRI (w)][active - 1] = w;
2207 } 2627 }
2628
2629 EV_FREQUENT_CHECK;
2208} 2630}
2209 2631
2210void 2632void
2211ev_idle_stop (EV_P_ ev_idle *w) 2633ev_idle_stop (EV_P_ ev_idle *w)
2212{ 2634{
2213 clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
2214 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
2215 return; 2637 return;
2216 2638
2639 EV_FREQUENT_CHECK;
2640
2217 { 2641 {
2218 int active = ((W)w)->active; 2642 int active = ev_active (w);
2219 2643
2220 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2221 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2222 2646
2223 ev_stop (EV_A_ (W)w); 2647 ev_stop (EV_A_ (W)w);
2224 --idleall; 2648 --idleall;
2225 } 2649 }
2650
2651 EV_FREQUENT_CHECK;
2226} 2652}
2227#endif 2653#endif
2228 2654
2229void 2655void
2230ev_prepare_start (EV_P_ ev_prepare *w) 2656ev_prepare_start (EV_P_ ev_prepare *w)
2231{ 2657{
2232 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
2233 return; 2659 return;
2660
2661 EV_FREQUENT_CHECK;
2234 2662
2235 ev_start (EV_A_ (W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
2236 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2237 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2238} 2668}
2239 2669
2240void 2670void
2241ev_prepare_stop (EV_P_ ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
2242{ 2672{
2243 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2245 return; 2675 return;
2246 2676
2677 EV_FREQUENT_CHECK;
2678
2247 { 2679 {
2248 int active = ((W)w)->active; 2680 int active = ev_active (w);
2681
2249 prepares [active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2250 ((W)prepares [active - 1])->active = active; 2683 ev_active (prepares [active - 1]) = active;
2251 } 2684 }
2252 2685
2253 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2254} 2689}
2255 2690
2256void 2691void
2257ev_check_start (EV_P_ ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
2258{ 2693{
2259 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2260 return; 2695 return;
2696
2697 EV_FREQUENT_CHECK;
2261 2698
2262 ev_start (EV_A_ (W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
2263 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2264 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2265} 2704}
2266 2705
2267void 2706void
2268ev_check_stop (EV_P_ ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
2269{ 2708{
2270 clear_pending (EV_A_ (W)w); 2709 clear_pending (EV_A_ (W)w);
2271 if (expect_false (!ev_is_active (w))) 2710 if (expect_false (!ev_is_active (w)))
2272 return; 2711 return;
2273 2712
2713 EV_FREQUENT_CHECK;
2714
2274 { 2715 {
2275 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2276 checks [active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2277 ((W)checks [active - 1])->active = active; 2719 ev_active (checks [active - 1]) = active;
2278 } 2720 }
2279 2721
2280 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2281} 2725}
2282 2726
2283#if EV_EMBED_ENABLE 2727#if EV_EMBED_ENABLE
2284void noinline 2728void noinline
2285ev_embed_sweep (EV_P_ ev_embed *w) 2729ev_embed_sweep (EV_P_ ev_embed *w)
2332 struct ev_loop *loop = w->other; 2776 struct ev_loop *loop = w->other;
2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2335 } 2779 }
2336 2780
2781 EV_FREQUENT_CHECK;
2782
2337 ev_set_priority (&w->io, ev_priority (w)); 2783 ev_set_priority (&w->io, ev_priority (w));
2338 ev_io_start (EV_A_ &w->io); 2784 ev_io_start (EV_A_ &w->io);
2339 2785
2340 ev_prepare_init (&w->prepare, embed_prepare_cb); 2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI); 2787 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare); 2788 ev_prepare_start (EV_A_ &w->prepare);
2343 2789
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345 2791
2346 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2347} 2795}
2348 2796
2349void 2797void
2350ev_embed_stop (EV_P_ ev_embed *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
2351{ 2799{
2352 clear_pending (EV_A_ (W)w); 2800 clear_pending (EV_A_ (W)w);
2353 if (expect_false (!ev_is_active (w))) 2801 if (expect_false (!ev_is_active (w)))
2354 return; 2802 return;
2355 2803
2804 EV_FREQUENT_CHECK;
2805
2356 ev_io_stop (EV_A_ &w->io); 2806 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare); 2807 ev_prepare_stop (EV_A_ &w->prepare);
2358 2808
2359 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2360} 2812}
2361#endif 2813#endif
2362 2814
2363#if EV_FORK_ENABLE 2815#if EV_FORK_ENABLE
2364void 2816void
2365ev_fork_start (EV_P_ ev_fork *w) 2817ev_fork_start (EV_P_ ev_fork *w)
2366{ 2818{
2367 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2368 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2369 2823
2370 ev_start (EV_A_ (W)w, ++forkcnt); 2824 ev_start (EV_A_ (W)w, ++forkcnt);
2371 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2372 forks [forkcnt - 1] = w; 2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2373} 2829}
2374 2830
2375void 2831void
2376ev_fork_stop (EV_P_ ev_fork *w) 2832ev_fork_stop (EV_P_ ev_fork *w)
2377{ 2833{
2378 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2380 return; 2836 return;
2381 2837
2838 EV_FREQUENT_CHECK;
2839
2382 { 2840 {
2383 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2384 forks [active - 1] = forks [--forkcnt]; 2843 forks [active - 1] = forks [--forkcnt];
2385 ((W)forks [active - 1])->active = active; 2844 ev_active (forks [active - 1]) = active;
2386 } 2845 }
2387 2846
2388 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851#endif
2852
2853#if EV_ASYNC_ENABLE
2854void
2855ev_async_start (EV_P_ ev_async *w)
2856{
2857 if (expect_false (ev_is_active (w)))
2858 return;
2859
2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2863
2864 ev_start (EV_A_ (W)w, ++asynccnt);
2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871void
2872ev_async_stop (EV_P_ ev_async *w)
2873{
2874 clear_pending (EV_A_ (W)w);
2875 if (expect_false (!ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
2883 asyncs [active - 1] = asyncs [--asynccnt];
2884 ev_active (asyncs [active - 1]) = active;
2885 }
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_async_send (EV_P_ ev_async *w)
2894{
2895 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync);
2389} 2897}
2390#endif 2898#endif
2391 2899
2392/*****************************************************************************/ 2900/*****************************************************************************/
2393 2901

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines