ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC vs.
Revision 1.449 by root, Sun Sep 23 21:21:58 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
240#endif 413# endif
414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
244#endif 452#endif
245 453
246/**/ 454/**/
247 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 465 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 468
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
265#else 536#else
266# define expect(expr,value) (expr) 537 #include <inttypes.h>
267# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
269# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
270# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 557 #endif
558#endif
272 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
275#define inline_size static inline 1013#define inline_size ecb_inline
276 1014
277#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
278# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
279#else 1025#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
285 1028
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
288 1031
289typedef ev_watcher *W; 1032typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
292 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
293#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1057#endif
298 1058
299#ifdef _WIN32 1059#ifdef _WIN32
300# include "ev_win32.c" 1060# include "ev_win32.c"
301#endif 1061#endif
302 1062
303/*****************************************************************************/ 1063/*****************************************************************************/
304 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
305static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
306 1164
307void 1165void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1167{
310 syserr_cb = cb; 1168 syserr_cb = cb;
311} 1169}
312 1170
313static void noinline 1171static void noinline ecb_cold
314syserr (const char *msg) 1172ev_syserr (const char *msg)
315{ 1173{
316 if (!msg) 1174 if (!msg)
317 msg = "(libev) system error"; 1175 msg = "(libev) system error";
318 1176
319 if (syserr_cb) 1177 if (syserr_cb)
320 syserr_cb (msg); 1178 syserr_cb (msg);
321 else 1179 else
322 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
323 perror (msg); 1187 perror (msg);
1188#endif
324 abort (); 1189 abort ();
325 } 1190 }
326} 1191}
327 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
1201 */
1202
1203 if (size)
1204 return realloc (ptr, size);
1205
1206 free (ptr);
1207 return 0;
1208}
1209
328static void *(*alloc)(void *ptr, long size); 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1211
330void 1212void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1214{
333 alloc = cb; 1215 alloc = cb;
334} 1216}
335 1217
336inline_speed void * 1218inline_speed void *
337ev_realloc (void *ptr, long size) 1219ev_realloc (void *ptr, long size)
338{ 1220{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1221 ptr = alloc (ptr, size);
340 1222
341 if (!ptr && size) 1223 if (!ptr && size)
342 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
344 abort (); 1230 abort ();
345 } 1231 }
346 1232
347 return ptr; 1233 return ptr;
348} 1234}
350#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1238
353/*****************************************************************************/ 1239/*****************************************************************************/
354 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
355typedef struct 1245typedef struct
356{ 1246{
357 WL head; 1247 WL head;
358 unsigned char events; 1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1251 unsigned char unused;
1252#if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254#endif
360#if EV_SELECT_IS_WINSOCKET 1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1256 SOCKET handle;
362#endif 1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
363} ANFD; 1261} ANFD;
364 1262
1263/* stores the pending event set for a given watcher */
365typedef struct 1264typedef struct
366{ 1265{
367 W w; 1266 W w;
368 int events; 1267 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1268} ANPENDING;
370 1269
371#if EV_USE_INOTIFY 1270#if EV_USE_INOTIFY
1271/* hash table entry per inotify-id */
372typedef struct 1272typedef struct
373{ 1273{
374 WL head; 1274 WL head;
375} ANFS; 1275} ANFS;
1276#endif
1277
1278/* Heap Entry */
1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
1281 typedef struct {
1282 ev_tstamp at;
1283 WT w;
1284 } ANHE;
1285
1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1289#else
1290 /* a heap element */
1291 typedef WT ANHE;
1292
1293 #define ANHE_w(he) (he)
1294 #define ANHE_at(he) (he)->at
1295 #define ANHE_at_cache(he)
376#endif 1296#endif
377 1297
378#if EV_MULTIPLICITY 1298#if EV_MULTIPLICITY
379 1299
380 struct ev_loop 1300 struct ev_loop
386 #undef VAR 1306 #undef VAR
387 }; 1307 };
388 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
389 1309
390 static struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1312
393#else 1313#else
394 1314
395 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1317 #include "ev_vars.h"
398 #undef VAR 1318 #undef VAR
399 1319
400 static int ev_default_loop_ptr; 1320 static int ev_default_loop_ptr;
401 1321
402#endif 1322#endif
403 1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
1335
404/*****************************************************************************/ 1336/*****************************************************************************/
405 1337
1338#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1339ev_tstamp
407ev_time (void) 1340ev_time (void) EV_THROW
408{ 1341{
409#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
410 struct timespec ts; 1345 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1346 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1348 }
1349#endif
1350
414 struct timeval tv; 1351 struct timeval tv;
415 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1354}
1355#endif
419 1356
420ev_tstamp inline_size 1357inline_size ev_tstamp
421get_clock (void) 1358get_clock (void)
422{ 1359{
423#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
425 { 1362 {
432 return ev_time (); 1369 return ev_time ();
433} 1370}
434 1371
435#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
436ev_tstamp 1373ev_tstamp
437ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
438{ 1375{
439 return ev_rt_now; 1376 return ev_rt_now;
440} 1377}
441#endif 1378#endif
442 1379
443void 1380void
444ev_sleep (ev_tstamp delay) 1381ev_sleep (ev_tstamp delay) EV_THROW
445{ 1382{
446 if (delay > 0.) 1383 if (delay > 0.)
447 { 1384 {
448#if EV_USE_NANOSLEEP 1385#if EV_USE_NANOSLEEP
449 struct timespec ts; 1386 struct timespec ts;
450 1387
451 ts.tv_sec = (time_t)delay; 1388 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1389 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1390#elif defined _WIN32
456 Sleep (delay * 1e3); 1391 Sleep ((unsigned long)(delay * 1e3));
457#else 1392#else
458 struct timeval tv; 1393 struct timeval tv;
459 1394
460 tv.tv_sec = (time_t)delay; 1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1396 /* something not guaranteed by newer posix versions, but guaranteed */
462 1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1399 select (0, 0, 0, 0, &tv);
464#endif 1400#endif
465 } 1401 }
466} 1402}
467 1403
468/*****************************************************************************/ 1404/*****************************************************************************/
469 1405
470int inline_size 1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1407
1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
471array_nextsize (int elem, int cur, int cnt) 1411array_nextsize (int elem, int cur, int cnt)
472{ 1412{
473 int ncur = cur + 1; 1413 int ncur = cur + 1;
474 1414
475 do 1415 do
476 ncur <<= 1; 1416 ncur <<= 1;
477 while (cnt > ncur); 1417 while (cnt > ncur);
478 1418
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1421 {
482 ncur *= elem; 1422 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1424 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1425 ncur /= elem;
486 } 1426 }
487 1427
488 return ncur; 1428 return ncur;
489} 1429}
490 1430
491static noinline void * 1431static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1432array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1433{
494 *cur = array_nextsize (elem, *cur, cnt); 1434 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1435 return ev_realloc (base, elem * *cur);
496} 1436}
1437
1438#define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1440
498#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1442 if (expect_false ((cnt) > (cur))) \
500 { \ 1443 { \
501 int ocur_ = (cur); \ 1444 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1445 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1448 }
506 1449
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1457 }
515#endif 1458#endif
516 1459
517#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1462
520/*****************************************************************************/ 1463/*****************************************************************************/
521 1464
1465/* dummy callback for pending events */
1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
1468{
1469}
1470
522void noinline 1471void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1473{
525 W w_ = (W)w; 1474 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1475 int pri = ABSPRI (w_);
527 1476
528 if (expect_false (w_->pending)) 1477 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1481 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1483 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1484 pendings [pri][w_->pending - 1].events = revents;
536 } 1485 }
537}
538 1486
539void inline_speed 1487 pendingpri = NUMPRI - 1;
1488}
1489
1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1507{
542 int i; 1508 int i;
543 1509
544 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
546} 1512}
547 1513
548/*****************************************************************************/ 1514/*****************************************************************************/
549 1515
550void inline_size 1516inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1518{
566 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
567 ev_io *w; 1520 ev_io *w;
568 1521
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1526 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
575 } 1528 }
576} 1529}
577 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
578void 1542void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1544{
581 if (fd >= 0 && fd < anfdmax) 1545 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
583} 1547}
584 1548
585void inline_size 1549/* make sure the external fd watch events are in-sync */
1550/* with the kernel/libev internal state */
1551inline_size void
586fd_reify (EV_P) 1552fd_reify (EV_P)
587{ 1553{
588 int i; 1554 int i;
1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
589 1580
590 for (i = 0; i < fdchangecnt; ++i) 1581 for (i = 0; i < fdchangecnt; ++i)
591 { 1582 {
592 int fd = fdchanges [i]; 1583 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1584 ANFD *anfd = anfds + fd;
594 ev_io *w; 1585 ev_io *w;
595 1586
596 unsigned char events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
597 1589
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1590 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1591
601#if EV_SELECT_IS_WINSOCKET 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1593 {
604 unsigned long argp; 1594 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1595
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1597 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1598
609 #endif 1599 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1600 o_reify = EV__IOFDSET; /* actually |= */
611 } 1601 }
612#endif
613 1602
614 { 1603 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1604 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1605 }
625 1606
626 fdchangecnt = 0; 1607 fdchangecnt = 0;
627} 1608}
628 1609
629void inline_size 1610/* something about the given fd changed */
1611inline_size void
630fd_change (EV_P_ int fd, int flags) 1612fd_change (EV_P_ int fd, int flags)
631{ 1613{
632 unsigned char reify = anfds [fd].reify; 1614 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1615 anfds [fd].reify |= flags;
634 1616
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
640 } 1622 }
641} 1623}
642 1624
643void inline_speed 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
645{ 1628{
646 ev_io *w; 1629 ev_io *w;
647 1630
648 while ((w = (ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1635 }
653} 1636}
654 1637
655int inline_size 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
656fd_valid (int fd) 1640fd_valid (int fd)
657{ 1641{
658#ifdef _WIN32 1642#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1644#else
661 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
662#endif 1646#endif
663} 1647}
664 1648
665/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
666static void noinline 1650static void noinline ecb_cold
667fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
668{ 1652{
669 int fd; 1653 int fd;
670 1654
671 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1656 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
675} 1659}
676 1660
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1662static void noinline ecb_cold
679fd_enomem (EV_P) 1663fd_enomem (EV_P)
680{ 1664{
681 int fd; 1665 int fd;
682 1666
683 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1668 if (anfds [fd].events)
685 { 1669 {
686 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
687 return; 1671 break;
688 } 1672 }
689} 1673}
690 1674
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1676static void noinline
696 1680
697 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1682 if (anfds [fd].events)
699 { 1683 {
700 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
1685 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1687 }
703} 1688}
704 1689
705/*****************************************************************************/ 1690/* used to prepare libev internal fd's */
706 1691/* this is not fork-safe */
707void inline_speed 1692inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static int sigpipe [2];
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777
778void inline_size
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1693fd_intern (int fd)
843{ 1694{
844#ifdef _WIN32 1695#ifdef _WIN32
845 int arg = 1; 1696 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 1698#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1700 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1701#endif
851} 1702}
852 1703
853static void noinline
854siginit (EV_P)
855{
856 fd_intern (sigpipe [0]);
857 fd_intern (sigpipe [1]);
858
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */
862}
863
864/*****************************************************************************/ 1704/*****************************************************************************/
865 1705
1706/*
1707 * the heap functions want a real array index. array index 0 is guaranteed to not
1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1709 * the branching factor of the d-tree.
1710 */
1711
1712/*
1713 * at the moment we allow libev the luxury of two heaps,
1714 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1715 * which is more cache-efficient.
1716 * the difference is about 5% with 50000+ watchers.
1717 */
1718#if EV_USE_4HEAP
1719
1720#define DHEAP 4
1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1723#define UPHEAP_DONE(p,k) ((p) == (k))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730 ANHE *E = heap + N + HEAP0;
1731
1732 for (;;)
1733 {
1734 ev_tstamp minat;
1735 ANHE *minpos;
1736 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1737
1738 /* find minimum child */
1739 if (expect_true (pos + DHEAP - 1 < E))
1740 {
1741 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1745 }
1746 else if (pos < E)
1747 {
1748 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1749 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1750 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1751 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1752 }
1753 else
1754 break;
1755
1756 if (ANHE_at (he) <= minat)
1757 break;
1758
1759 heap [k] = *minpos;
1760 ev_active (ANHE_w (*minpos)) = k;
1761
1762 k = minpos - heap;
1763 }
1764
1765 heap [k] = he;
1766 ev_active (ANHE_w (he)) = k;
1767}
1768
1769#else /* 4HEAP */
1770
1771#define HEAP0 1
1772#define HPARENT(k) ((k) >> 1)
1773#define UPHEAP_DONE(p,k) (!(p))
1774
1775/* away from the root */
1776inline_speed void
1777downheap (ANHE *heap, int N, int k)
1778{
1779 ANHE he = heap [k];
1780
1781 for (;;)
1782 {
1783 int c = k << 1;
1784
1785 if (c >= N + HEAP0)
1786 break;
1787
1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1789 ? 1 : 0;
1790
1791 if (ANHE_at (he) <= ANHE_at (heap [c]))
1792 break;
1793
1794 heap [k] = heap [c];
1795 ev_active (ANHE_w (heap [k])) = k;
1796
1797 k = c;
1798 }
1799
1800 heap [k] = he;
1801 ev_active (ANHE_w (he)) = k;
1802}
1803#endif
1804
1805/* towards the root */
1806inline_speed void
1807upheap (ANHE *heap, int k)
1808{
1809 ANHE he = heap [k];
1810
1811 for (;;)
1812 {
1813 int p = HPARENT (k);
1814
1815 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1816 break;
1817
1818 heap [k] = heap [p];
1819 ev_active (ANHE_w (heap [k])) = k;
1820 k = p;
1821 }
1822
1823 heap [k] = he;
1824 ev_active (ANHE_w (he)) = k;
1825}
1826
1827/* move an element suitably so it is in a correct place */
1828inline_size void
1829adjustheap (ANHE *heap, int N, int k)
1830{
1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1832 upheap (heap, k);
1833 else
1834 downheap (heap, N, k);
1835}
1836
1837/* rebuild the heap: this function is used only once and executed rarely */
1838inline_size void
1839reheap (ANHE *heap, int N)
1840{
1841 int i;
1842
1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1844 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1845 for (i = 0; i < N; ++i)
1846 upheap (heap, i + HEAP0);
1847}
1848
1849/*****************************************************************************/
1850
1851/* associate signal watchers to a signal signal */
1852typedef struct
1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1858 WL head;
1859} ANSIG;
1860
1861static ANSIG signals [EV_NSIG - 1];
1862
1863/*****************************************************************************/
1864
1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
1867static void noinline ecb_cold
1868evpipe_init (EV_P)
1869{
1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874# if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881# endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1909 }
1910}
1911
1912inline_speed void
1913evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1914{
1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1916
1917 if (expect_true (*flag))
1918 return;
1919
1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1936#if EV_USE_EVENTFD
1937 if (evpipe [0] < 0)
1938 {
1939 uint64_t counter = 1;
1940 write (evpipe [1], &counter, sizeof (uint64_t));
1941 }
1942 else
1943#endif
1944 {
1945#ifdef _WIN32
1946 WSABUF buf;
1947 DWORD sent;
1948 buf.buf = &buf;
1949 buf.len = 1;
1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951#else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953#endif
1954 }
1955
1956 errno = old_errno;
1957 }
1958}
1959
1960/* called whenever the libev signal pipe */
1961/* got some events (signal, async) */
1962static void
1963pipecb (EV_P_ ev_io *iow, int revents)
1964{
1965 int i;
1966
1967 if (revents & EV_READ)
1968 {
1969#if EV_USE_EVENTFD
1970 if (evpipe [0] < 0)
1971 {
1972 uint64_t counter;
1973 read (evpipe [1], &counter, sizeof (uint64_t));
1974 }
1975 else
1976#endif
1977 {
1978 char dummy[4];
1979#ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986#else
1987 read (evpipe [0], &dummy, sizeof (dummy));
1988#endif
1989 }
1990 }
1991
1992 pipe_write_skipped = 0;
1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996#if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1998 {
1999 sig_pending = 0;
2000
2001 ECB_MEMORY_FENCE;
2002
2003 for (i = EV_NSIG - 1; i--; )
2004 if (expect_false (signals [i].pending))
2005 ev_feed_signal_event (EV_A_ i + 1);
2006 }
2007#endif
2008
2009#if EV_ASYNC_ENABLE
2010 if (async_pending)
2011 {
2012 async_pending = 0;
2013
2014 ECB_MEMORY_FENCE;
2015
2016 for (i = asynccnt; i--; )
2017 if (asyncs [i]->sent)
2018 {
2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2022 }
2023 }
2024#endif
2025}
2026
2027/*****************************************************************************/
2028
2029void
2030ev_feed_signal (int signum) EV_THROW
2031{
2032#if EV_MULTIPLICITY
2033 ECB_MEMORY_FENCE_ACQUIRE;
2034 EV_P = signals [signum - 1].loop;
2035
2036 if (!EV_A)
2037 return;
2038#endif
2039
2040 signals [signum - 1].pending = 1;
2041 evpipe_write (EV_A_ &sig_pending);
2042}
2043
2044static void
2045ev_sighandler (int signum)
2046{
2047#ifdef _WIN32
2048 signal (signum, ev_sighandler);
2049#endif
2050
2051 ev_feed_signal (signum);
2052}
2053
2054void noinline
2055ev_feed_signal_event (EV_P_ int signum) EV_THROW
2056{
2057 WL w;
2058
2059 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2060 return;
2061
2062 --signum;
2063
2064#if EV_MULTIPLICITY
2065 /* it is permissible to try to feed a signal to the wrong loop */
2066 /* or, likely more useful, feeding a signal nobody is waiting for */
2067
2068 if (expect_false (signals [signum].loop != EV_A))
2069 return;
2070#endif
2071
2072 signals [signum].pending = 0;
2073 ECB_MEMORY_FENCE_RELEASE;
2074
2075 for (w = signals [signum].head; w; w = w->next)
2076 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2077}
2078
2079#if EV_USE_SIGNALFD
2080static void
2081sigfdcb (EV_P_ ev_io *iow, int revents)
2082{
2083 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2084
2085 for (;;)
2086 {
2087 ssize_t res = read (sigfd, si, sizeof (si));
2088
2089 /* not ISO-C, as res might be -1, but works with SuS */
2090 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2091 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2092
2093 if (res < (ssize_t)sizeof (si))
2094 break;
2095 }
2096}
2097#endif
2098
2099#endif
2100
2101/*****************************************************************************/
2102
2103#if EV_CHILD_ENABLE
866static WL childs [EV_PID_HASHSIZE]; 2104static WL childs [EV_PID_HASHSIZE];
867
868#ifndef _WIN32
869 2105
870static ev_signal childev; 2106static ev_signal childev;
871 2107
872#ifndef WIFCONTINUED 2108#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0 2109# define WIFCONTINUED(status) 0
874#endif 2110#endif
875 2111
876void inline_speed 2112/* handle a single child status event */
2113inline_speed void
877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2114child_reap (EV_P_ int chain, int pid, int status)
878{ 2115{
879 ev_child *w; 2116 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
881 2118
882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
883 { 2120 {
884 if ((w->pid == pid || !w->pid) 2121 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1))) 2122 && (!traced || (w->flags & 1)))
886 { 2123 {
887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
888 w->rpid = pid; 2125 w->rpid = pid;
889 w->rstatus = status; 2126 w->rstatus = status;
890 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
891 } 2128 }
892 } 2129 }
894 2131
895#ifndef WCONTINUED 2132#ifndef WCONTINUED
896# define WCONTINUED 0 2133# define WCONTINUED 0
897#endif 2134#endif
898 2135
2136/* called on sigchld etc., calls waitpid */
899static void 2137static void
900childcb (EV_P_ ev_signal *sw, int revents) 2138childcb (EV_P_ ev_signal *sw, int revents)
901{ 2139{
902 int pid, status; 2140 int pid, status;
903 2141
906 if (!WCONTINUED 2144 if (!WCONTINUED
907 || errno != EINVAL 2145 || errno != EINVAL
908 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2146 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
909 return; 2147 return;
910 2148
911 /* make sure we are called again until all childs have been reaped */ 2149 /* make sure we are called again until all children have been reaped */
912 /* we need to do it this way so that the callback gets called before we continue */ 2150 /* we need to do it this way so that the callback gets called before we continue */
913 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2151 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
914 2152
915 child_reap (EV_A_ sw, pid, pid, status); 2153 child_reap (EV_A_ pid, pid, status);
916 if (EV_PID_HASHSIZE > 1) 2154 if ((EV_PID_HASHSIZE) > 1)
917 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2155 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
918} 2156}
919 2157
920#endif 2158#endif
921 2159
922/*****************************************************************************/ 2160/*****************************************************************************/
923 2161
2162#if EV_USE_IOCP
2163# include "ev_iocp.c"
2164#endif
924#if EV_USE_PORT 2165#if EV_USE_PORT
925# include "ev_port.c" 2166# include "ev_port.c"
926#endif 2167#endif
927#if EV_USE_KQUEUE 2168#if EV_USE_KQUEUE
928# include "ev_kqueue.c" 2169# include "ev_kqueue.c"
935#endif 2176#endif
936#if EV_USE_SELECT 2177#if EV_USE_SELECT
937# include "ev_select.c" 2178# include "ev_select.c"
938#endif 2179#endif
939 2180
940int 2181int ecb_cold
941ev_version_major (void) 2182ev_version_major (void) EV_THROW
942{ 2183{
943 return EV_VERSION_MAJOR; 2184 return EV_VERSION_MAJOR;
944} 2185}
945 2186
946int 2187int ecb_cold
947ev_version_minor (void) 2188ev_version_minor (void) EV_THROW
948{ 2189{
949 return EV_VERSION_MINOR; 2190 return EV_VERSION_MINOR;
950} 2191}
951 2192
952/* return true if we are running with elevated privileges and should ignore env variables */ 2193/* return true if we are running with elevated privileges and should ignore env variables */
953int inline_size 2194int inline_size ecb_cold
954enable_secure (void) 2195enable_secure (void)
955{ 2196{
956#ifdef _WIN32 2197#ifdef _WIN32
957 return 0; 2198 return 0;
958#else 2199#else
959 return getuid () != geteuid () 2200 return getuid () != geteuid ()
960 || getgid () != getegid (); 2201 || getgid () != getegid ();
961#endif 2202#endif
962} 2203}
963 2204
964unsigned int 2205unsigned int ecb_cold
965ev_supported_backends (void) 2206ev_supported_backends (void) EV_THROW
966{ 2207{
967 unsigned int flags = 0; 2208 unsigned int flags = 0;
968 2209
969 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2210 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
970 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2211 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
973 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2214 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
974 2215
975 return flags; 2216 return flags;
976} 2217}
977 2218
978unsigned int 2219unsigned int ecb_cold
979ev_recommended_backends (void) 2220ev_recommended_backends (void) EV_THROW
980{ 2221{
981 unsigned int flags = ev_supported_backends (); 2222 unsigned int flags = ev_supported_backends ();
982 2223
983#ifndef __NetBSD__ 2224#ifndef __NetBSD__
984 /* kqueue is borked on everything but netbsd apparently */ 2225 /* kqueue is borked on everything but netbsd apparently */
985 /* it usually doesn't work correctly on anything but sockets and pipes */ 2226 /* it usually doesn't work correctly on anything but sockets and pipes */
986 flags &= ~EVBACKEND_KQUEUE; 2227 flags &= ~EVBACKEND_KQUEUE;
987#endif 2228#endif
988#ifdef __APPLE__ 2229#ifdef __APPLE__
989 // flags &= ~EVBACKEND_KQUEUE; for documentation 2230 /* only select works correctly on that "unix-certified" platform */
990 flags &= ~EVBACKEND_POLL; 2231 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2232 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2233#endif
2234#ifdef __FreeBSD__
2235 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
991#endif 2236#endif
992 2237
993 return flags; 2238 return flags;
994} 2239}
995 2240
2241unsigned int ecb_cold
2242ev_embeddable_backends (void) EV_THROW
2243{
2244 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2245
2246 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2247 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2248 flags &= ~EVBACKEND_EPOLL;
2249
2250 return flags;
2251}
2252
996unsigned int 2253unsigned int
997ev_embeddable_backends (void) 2254ev_backend (EV_P) EV_THROW
998{ 2255{
999 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2256 return backend;
1000
1001 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1002 /* please fix it and tell me how to detect the fix */
1003 flags &= ~EVBACKEND_EPOLL;
1004
1005 return flags;
1006} 2257}
1007 2258
2259#if EV_FEATURE_API
1008unsigned int 2260unsigned int
1009ev_backend (EV_P) 2261ev_iteration (EV_P) EV_THROW
1010{ 2262{
1011 return backend; 2263 return loop_count;
1012} 2264}
1013 2265
1014unsigned int 2266unsigned int
1015ev_loop_count (EV_P) 2267ev_depth (EV_P) EV_THROW
1016{ 2268{
1017 return loop_count; 2269 return loop_depth;
1018} 2270}
1019 2271
1020void 2272void
1021ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1022{ 2274{
1023 io_blocktime = interval; 2275 io_blocktime = interval;
1024} 2276}
1025 2277
1026void 2278void
1027ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1028{ 2280{
1029 timeout_blocktime = interval; 2281 timeout_blocktime = interval;
1030} 2282}
1031 2283
2284void
2285ev_set_userdata (EV_P_ void *data) EV_THROW
2286{
2287 userdata = data;
2288}
2289
2290void *
2291ev_userdata (EV_P) EV_THROW
2292{
2293 return userdata;
2294}
2295
2296void
2297ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2298{
2299 invoke_cb = invoke_pending_cb;
2300}
2301
2302void
2303ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2304{
2305 release_cb = release;
2306 acquire_cb = acquire;
2307}
2308#endif
2309
2310/* initialise a loop structure, must be zero-initialised */
1032static void noinline 2311static void noinline ecb_cold
1033loop_init (EV_P_ unsigned int flags) 2312loop_init (EV_P_ unsigned int flags) EV_THROW
1034{ 2313{
1035 if (!backend) 2314 if (!backend)
1036 { 2315 {
2316 origflags = flags;
2317
2318#if EV_USE_REALTIME
2319 if (!have_realtime)
2320 {
2321 struct timespec ts;
2322
2323 if (!clock_gettime (CLOCK_REALTIME, &ts))
2324 have_realtime = 1;
2325 }
2326#endif
2327
1037#if EV_USE_MONOTONIC 2328#if EV_USE_MONOTONIC
2329 if (!have_monotonic)
1038 { 2330 {
1039 struct timespec ts; 2331 struct timespec ts;
2332
1040 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2333 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1041 have_monotonic = 1; 2334 have_monotonic = 1;
1042 } 2335 }
1043#endif 2336#endif
1044
1045 ev_rt_now = ev_time ();
1046 mn_now = get_clock ();
1047 now_floor = mn_now;
1048 rtmn_diff = ev_rt_now - mn_now;
1049
1050 io_blocktime = 0.;
1051 timeout_blocktime = 0.;
1052 2337
1053 /* pid check not overridable via env */ 2338 /* pid check not overridable via env */
1054#ifndef _WIN32 2339#ifndef _WIN32
1055 if (flags & EVFLAG_FORKCHECK) 2340 if (flags & EVFLAG_FORKCHECK)
1056 curpid = getpid (); 2341 curpid = getpid ();
1059 if (!(flags & EVFLAG_NOENV) 2344 if (!(flags & EVFLAG_NOENV)
1060 && !enable_secure () 2345 && !enable_secure ()
1061 && getenv ("LIBEV_FLAGS")) 2346 && getenv ("LIBEV_FLAGS"))
1062 flags = atoi (getenv ("LIBEV_FLAGS")); 2347 flags = atoi (getenv ("LIBEV_FLAGS"));
1063 2348
1064 if (!(flags & 0x0000ffffUL)) 2349 ev_rt_now = ev_time ();
2350 mn_now = get_clock ();
2351 now_floor = mn_now;
2352 rtmn_diff = ev_rt_now - mn_now;
2353#if EV_FEATURE_API
2354 invoke_cb = ev_invoke_pending;
2355#endif
2356
2357 io_blocktime = 0.;
2358 timeout_blocktime = 0.;
2359 backend = 0;
2360 backend_fd = -1;
2361 sig_pending = 0;
2362#if EV_ASYNC_ENABLE
2363 async_pending = 0;
2364#endif
2365 pipe_write_skipped = 0;
2366 pipe_write_wanted = 0;
2367 evpipe [0] = -1;
2368 evpipe [1] = -1;
2369#if EV_USE_INOTIFY
2370 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2371#endif
2372#if EV_USE_SIGNALFD
2373 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2374#endif
2375
2376 if (!(flags & EVBACKEND_MASK))
1065 flags |= ev_recommended_backends (); 2377 flags |= ev_recommended_backends ();
1066 2378
1067 backend = 0;
1068 backend_fd = -1;
1069#if EV_USE_INOTIFY 2379#if EV_USE_IOCP
1070 fs_fd = -2; 2380 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1071#endif 2381#endif
1072
1073#if EV_USE_PORT 2382#if EV_USE_PORT
1074 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2383 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1075#endif 2384#endif
1076#if EV_USE_KQUEUE 2385#if EV_USE_KQUEUE
1077 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2386 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1084#endif 2393#endif
1085#if EV_USE_SELECT 2394#if EV_USE_SELECT
1086 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2395 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1087#endif 2396#endif
1088 2397
2398 ev_prepare_init (&pending_w, pendingcb);
2399
2400#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1089 ev_init (&sigev, sigcb); 2401 ev_init (&pipe_w, pipecb);
1090 ev_set_priority (&sigev, EV_MAXPRI); 2402 ev_set_priority (&pipe_w, EV_MAXPRI);
2403#endif
1091 } 2404 }
1092} 2405}
1093 2406
1094static void noinline 2407/* free up a loop structure */
2408void ecb_cold
1095loop_destroy (EV_P) 2409ev_loop_destroy (EV_P)
1096{ 2410{
1097 int i; 2411 int i;
2412
2413#if EV_MULTIPLICITY
2414 /* mimic free (0) */
2415 if (!EV_A)
2416 return;
2417#endif
2418
2419#if EV_CLEANUP_ENABLE
2420 /* queue cleanup watchers (and execute them) */
2421 if (expect_false (cleanupcnt))
2422 {
2423 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2424 EV_INVOKE_PENDING;
2425 }
2426#endif
2427
2428#if EV_CHILD_ENABLE
2429 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2430 {
2431 ev_ref (EV_A); /* child watcher */
2432 ev_signal_stop (EV_A_ &childev);
2433 }
2434#endif
2435
2436 if (ev_is_active (&pipe_w))
2437 {
2438 /*ev_ref (EV_A);*/
2439 /*ev_io_stop (EV_A_ &pipe_w);*/
2440
2441 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2442 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2443 }
2444
2445#if EV_USE_SIGNALFD
2446 if (ev_is_active (&sigfd_w))
2447 close (sigfd);
2448#endif
1098 2449
1099#if EV_USE_INOTIFY 2450#if EV_USE_INOTIFY
1100 if (fs_fd >= 0) 2451 if (fs_fd >= 0)
1101 close (fs_fd); 2452 close (fs_fd);
1102#endif 2453#endif
1103 2454
1104 if (backend_fd >= 0) 2455 if (backend_fd >= 0)
1105 close (backend_fd); 2456 close (backend_fd);
1106 2457
2458#if EV_USE_IOCP
2459 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2460#endif
1107#if EV_USE_PORT 2461#if EV_USE_PORT
1108 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2462 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1109#endif 2463#endif
1110#if EV_USE_KQUEUE 2464#if EV_USE_KQUEUE
1111 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2465 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1126#if EV_IDLE_ENABLE 2480#if EV_IDLE_ENABLE
1127 array_free (idle, [i]); 2481 array_free (idle, [i]);
1128#endif 2482#endif
1129 } 2483 }
1130 2484
1131 ev_free (anfds); anfdmax = 0; 2485 ev_free (anfds); anfds = 0; anfdmax = 0;
1132 2486
1133 /* have to use the microsoft-never-gets-it-right macro */ 2487 /* have to use the microsoft-never-gets-it-right macro */
2488 array_free (rfeed, EMPTY);
1134 array_free (fdchange, EMPTY); 2489 array_free (fdchange, EMPTY);
1135 array_free (timer, EMPTY); 2490 array_free (timer, EMPTY);
1136#if EV_PERIODIC_ENABLE 2491#if EV_PERIODIC_ENABLE
1137 array_free (periodic, EMPTY); 2492 array_free (periodic, EMPTY);
1138#endif 2493#endif
1139#if EV_FORK_ENABLE 2494#if EV_FORK_ENABLE
1140 array_free (fork, EMPTY); 2495 array_free (fork, EMPTY);
1141#endif 2496#endif
2497#if EV_CLEANUP_ENABLE
2498 array_free (cleanup, EMPTY);
2499#endif
1142 array_free (prepare, EMPTY); 2500 array_free (prepare, EMPTY);
1143 array_free (check, EMPTY); 2501 array_free (check, EMPTY);
2502#if EV_ASYNC_ENABLE
2503 array_free (async, EMPTY);
2504#endif
1144 2505
1145 backend = 0; 2506 backend = 0;
1146}
1147 2507
2508#if EV_MULTIPLICITY
2509 if (ev_is_default_loop (EV_A))
2510#endif
2511 ev_default_loop_ptr = 0;
2512#if EV_MULTIPLICITY
2513 else
2514 ev_free (EV_A);
2515#endif
2516}
2517
2518#if EV_USE_INOTIFY
1148void inline_size infy_fork (EV_P); 2519inline_size void infy_fork (EV_P);
2520#endif
1149 2521
1150void inline_size 2522inline_size void
1151loop_fork (EV_P) 2523loop_fork (EV_P)
1152{ 2524{
1153#if EV_USE_PORT 2525#if EV_USE_PORT
1154 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2526 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1155#endif 2527#endif
1161#endif 2533#endif
1162#if EV_USE_INOTIFY 2534#if EV_USE_INOTIFY
1163 infy_fork (EV_A); 2535 infy_fork (EV_A);
1164#endif 2536#endif
1165 2537
2538#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1166 if (ev_is_active (&sigev)) 2539 if (ev_is_active (&pipe_w))
1167 { 2540 {
1168 /* default loop */ 2541 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1169 2542
1170 ev_ref (EV_A); 2543 ev_ref (EV_A);
1171 ev_io_stop (EV_A_ &sigev); 2544 ev_io_stop (EV_A_ &pipe_w);
1172 close (sigpipe [0]);
1173 close (sigpipe [1]);
1174 2545
1175 while (pipe (sigpipe)) 2546 if (evpipe [0] >= 0)
1176 syserr ("(libev) error creating pipe"); 2547 EV_WIN32_CLOSE_FD (evpipe [0]);
1177 2548
1178 siginit (EV_A); 2549 evpipe_init (EV_A);
1179 sigcb (EV_A_ &sigev, EV_READ); 2550 /* iterate over everything, in case we missed something before */
2551 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1180 } 2552 }
2553#endif
1181 2554
1182 postfork = 0; 2555 postfork = 0;
1183} 2556}
1184 2557
1185#if EV_MULTIPLICITY 2558#if EV_MULTIPLICITY
2559
1186struct ev_loop * 2560struct ev_loop * ecb_cold
1187ev_loop_new (unsigned int flags) 2561ev_loop_new (unsigned int flags) EV_THROW
1188{ 2562{
1189 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2563 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1190 2564
1191 memset (loop, 0, sizeof (struct ev_loop)); 2565 memset (EV_A, 0, sizeof (struct ev_loop));
1192
1193 loop_init (EV_A_ flags); 2566 loop_init (EV_A_ flags);
1194 2567
1195 if (ev_backend (EV_A)) 2568 if (ev_backend (EV_A))
1196 return loop; 2569 return EV_A;
1197 2570
2571 ev_free (EV_A);
1198 return 0; 2572 return 0;
1199} 2573}
1200 2574
1201void 2575#endif /* multiplicity */
1202ev_loop_destroy (EV_P)
1203{
1204 loop_destroy (EV_A);
1205 ev_free (loop);
1206}
1207 2576
1208void 2577#if EV_VERIFY
1209ev_loop_fork (EV_P) 2578static void noinline ecb_cold
2579verify_watcher (EV_P_ W w)
1210{ 2580{
1211 postfork = 1; /* must be in line with ev_default_fork */ 2581 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1212}
1213 2582
2583 if (w->pending)
2584 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2585}
2586
2587static void noinline ecb_cold
2588verify_heap (EV_P_ ANHE *heap, int N)
2589{
2590 int i;
2591
2592 for (i = HEAP0; i < N + HEAP0; ++i)
2593 {
2594 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2595 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2596 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2597
2598 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2599 }
2600}
2601
2602static void noinline ecb_cold
2603array_verify (EV_P_ W *ws, int cnt)
2604{
2605 while (cnt--)
2606 {
2607 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2608 verify_watcher (EV_A_ ws [cnt]);
2609 }
2610}
2611#endif
2612
2613#if EV_FEATURE_API
2614void ecb_cold
2615ev_verify (EV_P) EV_THROW
2616{
2617#if EV_VERIFY
2618 int i;
2619 WL w, w2;
2620
2621 assert (activecnt >= -1);
2622
2623 assert (fdchangemax >= fdchangecnt);
2624 for (i = 0; i < fdchangecnt; ++i)
2625 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2626
2627 assert (anfdmax >= 0);
2628 for (i = 0; i < anfdmax; ++i)
2629 {
2630 int j = 0;
2631
2632 for (w = w2 = anfds [i].head; w; w = w->next)
2633 {
2634 verify_watcher (EV_A_ (W)w);
2635
2636 if (j++ & 1)
2637 {
2638 assert (("libev: io watcher list contains a loop", w != w2));
2639 w2 = w2->next;
2640 }
2641
2642 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2643 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2644 }
2645 }
2646
2647 assert (timermax >= timercnt);
2648 verify_heap (EV_A_ timers, timercnt);
2649
2650#if EV_PERIODIC_ENABLE
2651 assert (periodicmax >= periodiccnt);
2652 verify_heap (EV_A_ periodics, periodiccnt);
2653#endif
2654
2655 for (i = NUMPRI; i--; )
2656 {
2657 assert (pendingmax [i] >= pendingcnt [i]);
2658#if EV_IDLE_ENABLE
2659 assert (idleall >= 0);
2660 assert (idlemax [i] >= idlecnt [i]);
2661 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2662#endif
2663 }
2664
2665#if EV_FORK_ENABLE
2666 assert (forkmax >= forkcnt);
2667 array_verify (EV_A_ (W *)forks, forkcnt);
2668#endif
2669
2670#if EV_CLEANUP_ENABLE
2671 assert (cleanupmax >= cleanupcnt);
2672 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2673#endif
2674
2675#if EV_ASYNC_ENABLE
2676 assert (asyncmax >= asynccnt);
2677 array_verify (EV_A_ (W *)asyncs, asynccnt);
2678#endif
2679
2680#if EV_PREPARE_ENABLE
2681 assert (preparemax >= preparecnt);
2682 array_verify (EV_A_ (W *)prepares, preparecnt);
2683#endif
2684
2685#if EV_CHECK_ENABLE
2686 assert (checkmax >= checkcnt);
2687 array_verify (EV_A_ (W *)checks, checkcnt);
2688#endif
2689
2690# if 0
2691#if EV_CHILD_ENABLE
2692 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2693 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2694#endif
2695# endif
2696#endif
2697}
1214#endif 2698#endif
1215 2699
1216#if EV_MULTIPLICITY 2700#if EV_MULTIPLICITY
1217struct ev_loop * 2701struct ev_loop * ecb_cold
1218ev_default_loop_init (unsigned int flags)
1219#else 2702#else
1220int 2703int
2704#endif
1221ev_default_loop (unsigned int flags) 2705ev_default_loop (unsigned int flags) EV_THROW
1222#endif
1223{ 2706{
1224 if (sigpipe [0] == sigpipe [1])
1225 if (pipe (sigpipe))
1226 return 0;
1227
1228 if (!ev_default_loop_ptr) 2707 if (!ev_default_loop_ptr)
1229 { 2708 {
1230#if EV_MULTIPLICITY 2709#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2710 EV_P = ev_default_loop_ptr = &default_loop_struct;
1232#else 2711#else
1233 ev_default_loop_ptr = 1; 2712 ev_default_loop_ptr = 1;
1234#endif 2713#endif
1235 2714
1236 loop_init (EV_A_ flags); 2715 loop_init (EV_A_ flags);
1237 2716
1238 if (ev_backend (EV_A)) 2717 if (ev_backend (EV_A))
1239 { 2718 {
1240 siginit (EV_A); 2719#if EV_CHILD_ENABLE
1241
1242#ifndef _WIN32
1243 ev_signal_init (&childev, childcb, SIGCHLD); 2720 ev_signal_init (&childev, childcb, SIGCHLD);
1244 ev_set_priority (&childev, EV_MAXPRI); 2721 ev_set_priority (&childev, EV_MAXPRI);
1245 ev_signal_start (EV_A_ &childev); 2722 ev_signal_start (EV_A_ &childev);
1246 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2723 ev_unref (EV_A); /* child watcher should not keep loop alive */
1247#endif 2724#endif
1252 2729
1253 return ev_default_loop_ptr; 2730 return ev_default_loop_ptr;
1254} 2731}
1255 2732
1256void 2733void
1257ev_default_destroy (void) 2734ev_loop_fork (EV_P) EV_THROW
1258{ 2735{
1259#if EV_MULTIPLICITY 2736 postfork = 1;
1260 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif
1262
1263#ifndef _WIN32
1264 ev_ref (EV_A); /* child watcher */
1265 ev_signal_stop (EV_A_ &childev);
1266#endif
1267
1268 ev_ref (EV_A); /* signal watcher */
1269 ev_io_stop (EV_A_ &sigev);
1270
1271 close (sigpipe [0]); sigpipe [0] = 0;
1272 close (sigpipe [1]); sigpipe [1] = 0;
1273
1274 loop_destroy (EV_A);
1275}
1276
1277void
1278ev_default_fork (void)
1279{
1280#if EV_MULTIPLICITY
1281 struct ev_loop *loop = ev_default_loop_ptr;
1282#endif
1283
1284 if (backend)
1285 postfork = 1; /* must be in line with ev_loop_fork */
1286} 2737}
1287 2738
1288/*****************************************************************************/ 2739/*****************************************************************************/
1289 2740
1290void 2741void
1291ev_invoke (EV_P_ void *w, int revents) 2742ev_invoke (EV_P_ void *w, int revents)
1292{ 2743{
1293 EV_CB_INVOKE ((W)w, revents); 2744 EV_CB_INVOKE ((W)w, revents);
1294} 2745}
1295 2746
1296void inline_speed 2747unsigned int
1297call_pending (EV_P) 2748ev_pending_count (EV_P) EV_THROW
1298{ 2749{
1299 int pri; 2750 int pri;
2751 unsigned int count = 0;
1300 2752
1301 for (pri = NUMPRI; pri--; ) 2753 for (pri = NUMPRI; pri--; )
2754 count += pendingcnt [pri];
2755
2756 return count;
2757}
2758
2759void noinline
2760ev_invoke_pending (EV_P)
2761{
2762 pendingpri = NUMPRI;
2763
2764 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2765 {
2766 --pendingpri;
2767
1302 while (pendingcnt [pri]) 2768 while (pendingcnt [pendingpri])
1303 {
1304 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1305
1306 if (expect_true (p->w))
1307 {
1308 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1309
1310 p->w->pending = 0;
1311 EV_CB_INVOKE (p->w, p->events);
1312 }
1313 }
1314}
1315
1316void inline_size
1317timers_reify (EV_P)
1318{
1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
1320 {
1321 ev_timer *w = (ev_timer *)timers [0];
1322
1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1324
1325 /* first reschedule or stop timer */
1326 if (w->repeat)
1327 { 2769 {
1328 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1329 2771
1330 ((WT)w)->at += w->repeat; 2772 p->w->pending = 0;
1331 if (((WT)w)->at < mn_now) 2773 EV_CB_INVOKE (p->w, p->events);
1332 ((WT)w)->at = mn_now; 2774 EV_FREQUENT_CHECK;
1333
1334 downheap (timers, timercnt, 0);
1335 } 2775 }
1336 else
1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1338
1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1340 }
1341}
1342
1343#if EV_PERIODIC_ENABLE
1344void inline_size
1345periodics_reify (EV_P)
1346{
1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1348 { 2776 }
1349 ev_periodic *w = (ev_periodic *)periodics [0];
1350
1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1352
1353 /* first reschedule or stop timer */
1354 if (w->reschedule_cb)
1355 {
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1358 downheap (periodics, periodiccnt, 0);
1359 }
1360 else if (w->interval)
1361 {
1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1365 downheap (periodics, periodiccnt, 0);
1366 }
1367 else
1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1369
1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1371 }
1372} 2777}
1373
1374static void noinline
1375periodics_reschedule (EV_P)
1376{
1377 int i;
1378
1379 /* adjust periodics after time jump */
1380 for (i = 0; i < periodiccnt; ++i)
1381 {
1382 ev_periodic *w = (ev_periodic *)periodics [i];
1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1388 }
1389
1390 /* now rebuild the heap */
1391 for (i = periodiccnt >> 1; i--; )
1392 downheap (periodics, periodiccnt, i);
1393}
1394#endif
1395 2778
1396#if EV_IDLE_ENABLE 2779#if EV_IDLE_ENABLE
1397void inline_size 2780/* make idle watchers pending. this handles the "call-idle */
2781/* only when higher priorities are idle" logic */
2782inline_size void
1398idle_reify (EV_P) 2783idle_reify (EV_P)
1399{ 2784{
1400 if (expect_false (idleall)) 2785 if (expect_false (idleall))
1401 { 2786 {
1402 int pri; 2787 int pri;
1414 } 2799 }
1415 } 2800 }
1416} 2801}
1417#endif 2802#endif
1418 2803
1419void inline_speed 2804/* make timers pending */
2805inline_size void
2806timers_reify (EV_P)
2807{
2808 EV_FREQUENT_CHECK;
2809
2810 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2811 {
2812 do
2813 {
2814 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2815
2816 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2817
2818 /* first reschedule or stop timer */
2819 if (w->repeat)
2820 {
2821 ev_at (w) += w->repeat;
2822 if (ev_at (w) < mn_now)
2823 ev_at (w) = mn_now;
2824
2825 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2826
2827 ANHE_at_cache (timers [HEAP0]);
2828 downheap (timers, timercnt, HEAP0);
2829 }
2830 else
2831 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2832
2833 EV_FREQUENT_CHECK;
2834 feed_reverse (EV_A_ (W)w);
2835 }
2836 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2837
2838 feed_reverse_done (EV_A_ EV_TIMER);
2839 }
2840}
2841
2842#if EV_PERIODIC_ENABLE
2843
2844static void noinline
2845periodic_recalc (EV_P_ ev_periodic *w)
2846{
2847 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2848 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2849
2850 /* the above almost always errs on the low side */
2851 while (at <= ev_rt_now)
2852 {
2853 ev_tstamp nat = at + w->interval;
2854
2855 /* when resolution fails us, we use ev_rt_now */
2856 if (expect_false (nat == at))
2857 {
2858 at = ev_rt_now;
2859 break;
2860 }
2861
2862 at = nat;
2863 }
2864
2865 ev_at (w) = at;
2866}
2867
2868/* make periodics pending */
2869inline_size void
2870periodics_reify (EV_P)
2871{
2872 EV_FREQUENT_CHECK;
2873
2874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2875 {
2876 do
2877 {
2878 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2879
2880 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2881
2882 /* first reschedule or stop timer */
2883 if (w->reschedule_cb)
2884 {
2885 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2886
2887 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2888
2889 ANHE_at_cache (periodics [HEAP0]);
2890 downheap (periodics, periodiccnt, HEAP0);
2891 }
2892 else if (w->interval)
2893 {
2894 periodic_recalc (EV_A_ w);
2895 ANHE_at_cache (periodics [HEAP0]);
2896 downheap (periodics, periodiccnt, HEAP0);
2897 }
2898 else
2899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2900
2901 EV_FREQUENT_CHECK;
2902 feed_reverse (EV_A_ (W)w);
2903 }
2904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2905
2906 feed_reverse_done (EV_A_ EV_PERIODIC);
2907 }
2908}
2909
2910/* simply recalculate all periodics */
2911/* TODO: maybe ensure that at least one event happens when jumping forward? */
2912static void noinline ecb_cold
2913periodics_reschedule (EV_P)
2914{
2915 int i;
2916
2917 /* adjust periodics after time jump */
2918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2919 {
2920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2921
2922 if (w->reschedule_cb)
2923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2924 else if (w->interval)
2925 periodic_recalc (EV_A_ w);
2926
2927 ANHE_at_cache (periodics [i]);
2928 }
2929
2930 reheap (periodics, periodiccnt);
2931}
2932#endif
2933
2934/* adjust all timers by a given offset */
2935static void noinline ecb_cold
2936timers_reschedule (EV_P_ ev_tstamp adjust)
2937{
2938 int i;
2939
2940 for (i = 0; i < timercnt; ++i)
2941 {
2942 ANHE *he = timers + i + HEAP0;
2943 ANHE_w (*he)->at += adjust;
2944 ANHE_at_cache (*he);
2945 }
2946}
2947
2948/* fetch new monotonic and realtime times from the kernel */
2949/* also detect if there was a timejump, and act accordingly */
2950inline_speed void
1420time_update (EV_P_ ev_tstamp max_block) 2951time_update (EV_P_ ev_tstamp max_block)
1421{ 2952{
1422 int i;
1423
1424#if EV_USE_MONOTONIC 2953#if EV_USE_MONOTONIC
1425 if (expect_true (have_monotonic)) 2954 if (expect_true (have_monotonic))
1426 { 2955 {
2956 int i;
1427 ev_tstamp odiff = rtmn_diff; 2957 ev_tstamp odiff = rtmn_diff;
1428 2958
1429 mn_now = get_clock (); 2959 mn_now = get_clock ();
1430 2960
1431 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1447 * doesn't hurt either as we only do this on time-jumps or 2977 * doesn't hurt either as we only do this on time-jumps or
1448 * in the unlikely event of having been preempted here. 2978 * in the unlikely event of having been preempted here.
1449 */ 2979 */
1450 for (i = 4; --i; ) 2980 for (i = 4; --i; )
1451 { 2981 {
2982 ev_tstamp diff;
1452 rtmn_diff = ev_rt_now - mn_now; 2983 rtmn_diff = ev_rt_now - mn_now;
1453 2984
1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2985 diff = odiff - rtmn_diff;
2986
2987 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1455 return; /* all is well */ 2988 return; /* all is well */
1456 2989
1457 ev_rt_now = ev_time (); 2990 ev_rt_now = ev_time ();
1458 mn_now = get_clock (); 2991 mn_now = get_clock ();
1459 now_floor = mn_now; 2992 now_floor = mn_now;
1460 } 2993 }
1461 2994
2995 /* no timer adjustment, as the monotonic clock doesn't jump */
2996 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1462# if EV_PERIODIC_ENABLE 2997# if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2998 periodics_reschedule (EV_A);
1464# endif 2999# endif
1465 /* no timer adjustment, as the monotonic clock doesn't jump */
1466 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1467 } 3000 }
1468 else 3001 else
1469#endif 3002#endif
1470 { 3003 {
1471 ev_rt_now = ev_time (); 3004 ev_rt_now = ev_time ();
1472 3005
1473 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3006 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1474 { 3007 {
3008 /* adjust timers. this is easy, as the offset is the same for all of them */
3009 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1475#if EV_PERIODIC_ENABLE 3010#if EV_PERIODIC_ENABLE
1476 periodics_reschedule (EV_A); 3011 periodics_reschedule (EV_A);
1477#endif 3012#endif
1478 /* adjust timers. this is easy, as the offset is the same for all of them */
1479 for (i = 0; i < timercnt; ++i)
1480 ((WT)timers [i])->at += ev_rt_now - mn_now;
1481 } 3013 }
1482 3014
1483 mn_now = ev_rt_now; 3015 mn_now = ev_rt_now;
1484 } 3016 }
1485} 3017}
1486 3018
1487void 3019int
1488ev_ref (EV_P)
1489{
1490 ++activecnt;
1491}
1492
1493void
1494ev_unref (EV_P)
1495{
1496 --activecnt;
1497}
1498
1499static int loop_done;
1500
1501void
1502ev_loop (EV_P_ int flags) 3020ev_run (EV_P_ int flags)
1503{ 3021{
1504 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3022#if EV_FEATURE_API
1505 ? EVUNLOOP_ONE 3023 ++loop_depth;
1506 : EVUNLOOP_CANCEL; 3024#endif
1507 3025
3026 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3027
3028 loop_done = EVBREAK_CANCEL;
3029
1508 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3030 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1509 3031
1510 do 3032 do
1511 { 3033 {
3034#if EV_VERIFY >= 2
3035 ev_verify (EV_A);
3036#endif
3037
1512#ifndef _WIN32 3038#ifndef _WIN32
1513 if (expect_false (curpid)) /* penalise the forking check even more */ 3039 if (expect_false (curpid)) /* penalise the forking check even more */
1514 if (expect_false (getpid () != curpid)) 3040 if (expect_false (getpid () != curpid))
1515 { 3041 {
1516 curpid = getpid (); 3042 curpid = getpid ();
1522 /* we might have forked, so queue fork handlers */ 3048 /* we might have forked, so queue fork handlers */
1523 if (expect_false (postfork)) 3049 if (expect_false (postfork))
1524 if (forkcnt) 3050 if (forkcnt)
1525 { 3051 {
1526 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1527 call_pending (EV_A); 3053 EV_INVOKE_PENDING;
1528 } 3054 }
1529#endif 3055#endif
1530 3056
3057#if EV_PREPARE_ENABLE
1531 /* queue prepare watchers (and execute them) */ 3058 /* queue prepare watchers (and execute them) */
1532 if (expect_false (preparecnt)) 3059 if (expect_false (preparecnt))
1533 { 3060 {
1534 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3061 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1535 call_pending (EV_A); 3062 EV_INVOKE_PENDING;
1536 } 3063 }
3064#endif
1537 3065
1538 if (expect_false (!activecnt)) 3066 if (expect_false (loop_done))
1539 break; 3067 break;
1540 3068
1541 /* we might have forked, so reify kernel state if necessary */ 3069 /* we might have forked, so reify kernel state if necessary */
1542 if (expect_false (postfork)) 3070 if (expect_false (postfork))
1543 loop_fork (EV_A); 3071 loop_fork (EV_A);
1548 /* calculate blocking time */ 3076 /* calculate blocking time */
1549 { 3077 {
1550 ev_tstamp waittime = 0.; 3078 ev_tstamp waittime = 0.;
1551 ev_tstamp sleeptime = 0.; 3079 ev_tstamp sleeptime = 0.;
1552 3080
3081 /* remember old timestamp for io_blocktime calculation */
3082 ev_tstamp prev_mn_now = mn_now;
3083
3084 /* update time to cancel out callback processing overhead */
3085 time_update (EV_A_ 1e100);
3086
3087 /* from now on, we want a pipe-wake-up */
3088 pipe_write_wanted = 1;
3089
3090 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3091
1553 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3092 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1554 { 3093 {
1555 /* update time to cancel out callback processing overhead */
1556 time_update (EV_A_ 1e100);
1557
1558 waittime = MAX_BLOCKTIME; 3094 waittime = MAX_BLOCKTIME;
1559 3095
1560 if (timercnt) 3096 if (timercnt)
1561 { 3097 {
1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3098 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1563 if (waittime > to) waittime = to; 3099 if (waittime > to) waittime = to;
1564 } 3100 }
1565 3101
1566#if EV_PERIODIC_ENABLE 3102#if EV_PERIODIC_ENABLE
1567 if (periodiccnt) 3103 if (periodiccnt)
1568 { 3104 {
1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3105 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1570 if (waittime > to) waittime = to; 3106 if (waittime > to) waittime = to;
1571 } 3107 }
1572#endif 3108#endif
1573 3109
3110 /* don't let timeouts decrease the waittime below timeout_blocktime */
1574 if (expect_false (waittime < timeout_blocktime)) 3111 if (expect_false (waittime < timeout_blocktime))
1575 waittime = timeout_blocktime; 3112 waittime = timeout_blocktime;
1576 3113
1577 sleeptime = waittime - backend_fudge; 3114 /* at this point, we NEED to wait, so we have to ensure */
3115 /* to pass a minimum nonzero value to the backend */
3116 if (expect_false (waittime < backend_mintime))
3117 waittime = backend_mintime;
1578 3118
3119 /* extra check because io_blocktime is commonly 0 */
1579 if (expect_true (sleeptime > io_blocktime)) 3120 if (expect_false (io_blocktime))
1580 sleeptime = io_blocktime;
1581
1582 if (sleeptime)
1583 { 3121 {
3122 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3123
3124 if (sleeptime > waittime - backend_mintime)
3125 sleeptime = waittime - backend_mintime;
3126
3127 if (expect_true (sleeptime > 0.))
3128 {
1584 ev_sleep (sleeptime); 3129 ev_sleep (sleeptime);
1585 waittime -= sleeptime; 3130 waittime -= sleeptime;
3131 }
1586 } 3132 }
1587 } 3133 }
1588 3134
3135#if EV_FEATURE_API
1589 ++loop_count; 3136 ++loop_count;
3137#endif
3138 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1590 backend_poll (EV_A_ waittime); 3139 backend_poll (EV_A_ waittime);
3140 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3141
3142 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3143
3144 ECB_MEMORY_FENCE_ACQUIRE;
3145 if (pipe_write_skipped)
3146 {
3147 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3148 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3149 }
3150
1591 3151
1592 /* update ev_rt_now, do magic */ 3152 /* update ev_rt_now, do magic */
1593 time_update (EV_A_ waittime + sleeptime); 3153 time_update (EV_A_ waittime + sleeptime);
1594 } 3154 }
1595 3155
1602#if EV_IDLE_ENABLE 3162#if EV_IDLE_ENABLE
1603 /* queue idle watchers unless other events are pending */ 3163 /* queue idle watchers unless other events are pending */
1604 idle_reify (EV_A); 3164 idle_reify (EV_A);
1605#endif 3165#endif
1606 3166
3167#if EV_CHECK_ENABLE
1607 /* queue check watchers, to be executed first */ 3168 /* queue check watchers, to be executed first */
1608 if (expect_false (checkcnt)) 3169 if (expect_false (checkcnt))
1609 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3170 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3171#endif
1610 3172
1611 call_pending (EV_A); 3173 EV_INVOKE_PENDING;
1612
1613 } 3174 }
1614 while (expect_true (activecnt && !loop_done)); 3175 while (expect_true (
3176 activecnt
3177 && !loop_done
3178 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3179 ));
1615 3180
1616 if (loop_done == EVUNLOOP_ONE) 3181 if (loop_done == EVBREAK_ONE)
1617 loop_done = EVUNLOOP_CANCEL; 3182 loop_done = EVBREAK_CANCEL;
3183
3184#if EV_FEATURE_API
3185 --loop_depth;
3186#endif
3187
3188 return activecnt;
1618} 3189}
1619 3190
1620void 3191void
1621ev_unloop (EV_P_ int how) 3192ev_break (EV_P_ int how) EV_THROW
1622{ 3193{
1623 loop_done = how; 3194 loop_done = how;
1624} 3195}
1625 3196
3197void
3198ev_ref (EV_P) EV_THROW
3199{
3200 ++activecnt;
3201}
3202
3203void
3204ev_unref (EV_P) EV_THROW
3205{
3206 --activecnt;
3207}
3208
3209void
3210ev_now_update (EV_P) EV_THROW
3211{
3212 time_update (EV_A_ 1e100);
3213}
3214
3215void
3216ev_suspend (EV_P) EV_THROW
3217{
3218 ev_now_update (EV_A);
3219}
3220
3221void
3222ev_resume (EV_P) EV_THROW
3223{
3224 ev_tstamp mn_prev = mn_now;
3225
3226 ev_now_update (EV_A);
3227 timers_reschedule (EV_A_ mn_now - mn_prev);
3228#if EV_PERIODIC_ENABLE
3229 /* TODO: really do this? */
3230 periodics_reschedule (EV_A);
3231#endif
3232}
3233
1626/*****************************************************************************/ 3234/*****************************************************************************/
3235/* singly-linked list management, used when the expected list length is short */
1627 3236
1628void inline_size 3237inline_size void
1629wlist_add (WL *head, WL elem) 3238wlist_add (WL *head, WL elem)
1630{ 3239{
1631 elem->next = *head; 3240 elem->next = *head;
1632 *head = elem; 3241 *head = elem;
1633} 3242}
1634 3243
1635void inline_size 3244inline_size void
1636wlist_del (WL *head, WL elem) 3245wlist_del (WL *head, WL elem)
1637{ 3246{
1638 while (*head) 3247 while (*head)
1639 { 3248 {
1640 if (*head == elem) 3249 if (expect_true (*head == elem))
1641 { 3250 {
1642 *head = elem->next; 3251 *head = elem->next;
1643 return; 3252 break;
1644 } 3253 }
1645 3254
1646 head = &(*head)->next; 3255 head = &(*head)->next;
1647 } 3256 }
1648} 3257}
1649 3258
1650void inline_speed 3259/* internal, faster, version of ev_clear_pending */
3260inline_speed void
1651clear_pending (EV_P_ W w) 3261clear_pending (EV_P_ W w)
1652{ 3262{
1653 if (w->pending) 3263 if (w->pending)
1654 { 3264 {
1655 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3265 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1656 w->pending = 0; 3266 w->pending = 0;
1657 } 3267 }
1658} 3268}
1659 3269
1660int 3270int
1661ev_clear_pending (EV_P_ void *w) 3271ev_clear_pending (EV_P_ void *w) EV_THROW
1662{ 3272{
1663 W w_ = (W)w; 3273 W w_ = (W)w;
1664 int pending = w_->pending; 3274 int pending = w_->pending;
1665 3275
1666 if (expect_true (pending)) 3276 if (expect_true (pending))
1667 { 3277 {
1668 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3278 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3279 p->w = (W)&pending_w;
1669 w_->pending = 0; 3280 w_->pending = 0;
1670 p->w = 0;
1671 return p->events; 3281 return p->events;
1672 } 3282 }
1673 else 3283 else
1674 return 0; 3284 return 0;
1675} 3285}
1676 3286
1677void inline_size 3287inline_size void
1678pri_adjust (EV_P_ W w) 3288pri_adjust (EV_P_ W w)
1679{ 3289{
1680 int pri = w->priority; 3290 int pri = ev_priority (w);
1681 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3291 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1682 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3292 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1683 w->priority = pri; 3293 ev_set_priority (w, pri);
1684} 3294}
1685 3295
1686void inline_speed 3296inline_speed void
1687ev_start (EV_P_ W w, int active) 3297ev_start (EV_P_ W w, int active)
1688{ 3298{
1689 pri_adjust (EV_A_ w); 3299 pri_adjust (EV_A_ w);
1690 w->active = active; 3300 w->active = active;
1691 ev_ref (EV_A); 3301 ev_ref (EV_A);
1692} 3302}
1693 3303
1694void inline_size 3304inline_size void
1695ev_stop (EV_P_ W w) 3305ev_stop (EV_P_ W w)
1696{ 3306{
1697 ev_unref (EV_A); 3307 ev_unref (EV_A);
1698 w->active = 0; 3308 w->active = 0;
1699} 3309}
1700 3310
1701/*****************************************************************************/ 3311/*****************************************************************************/
1702 3312
1703void noinline 3313void noinline
1704ev_io_start (EV_P_ ev_io *w) 3314ev_io_start (EV_P_ ev_io *w) EV_THROW
1705{ 3315{
1706 int fd = w->fd; 3316 int fd = w->fd;
1707 3317
1708 if (expect_false (ev_is_active (w))) 3318 if (expect_false (ev_is_active (w)))
1709 return; 3319 return;
1710 3320
1711 assert (("ev_io_start called with negative fd", fd >= 0)); 3321 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3322 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3323
3324 EV_FREQUENT_CHECK;
1712 3325
1713 ev_start (EV_A_ (W)w, 1); 3326 ev_start (EV_A_ (W)w, 1);
1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3327 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1715 wlist_add (&anfds[fd].head, (WL)w); 3328 wlist_add (&anfds[fd].head, (WL)w);
1716 3329
3330 /* common bug, apparently */
3331 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3332
1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3333 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1718 w->events &= ~EV_IOFDSET; 3334 w->events &= ~EV__IOFDSET;
3335
3336 EV_FREQUENT_CHECK;
1719} 3337}
1720 3338
1721void noinline 3339void noinline
1722ev_io_stop (EV_P_ ev_io *w) 3340ev_io_stop (EV_P_ ev_io *w) EV_THROW
1723{ 3341{
1724 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
1726 return; 3344 return;
1727 3345
1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3346 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3347
3348 EV_FREQUENT_CHECK;
1729 3349
1730 wlist_del (&anfds[w->fd].head, (WL)w); 3350 wlist_del (&anfds[w->fd].head, (WL)w);
1731 ev_stop (EV_A_ (W)w); 3351 ev_stop (EV_A_ (W)w);
1732 3352
1733 fd_change (EV_A_ w->fd, 1); 3353 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3354
3355 EV_FREQUENT_CHECK;
1734} 3356}
1735 3357
1736void noinline 3358void noinline
1737ev_timer_start (EV_P_ ev_timer *w) 3359ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1738{ 3360{
1739 if (expect_false (ev_is_active (w))) 3361 if (expect_false (ev_is_active (w)))
1740 return; 3362 return;
1741 3363
1742 ((WT)w)->at += mn_now; 3364 ev_at (w) += mn_now;
1743 3365
1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3366 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1745 3367
3368 EV_FREQUENT_CHECK;
3369
3370 ++timercnt;
1746 ev_start (EV_A_ (W)w, ++timercnt); 3371 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3372 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1748 timers [timercnt - 1] = (WT)w; 3373 ANHE_w (timers [ev_active (w)]) = (WT)w;
1749 upheap (timers, timercnt - 1); 3374 ANHE_at_cache (timers [ev_active (w)]);
3375 upheap (timers, ev_active (w));
1750 3376
3377 EV_FREQUENT_CHECK;
3378
1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3379 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1752} 3380}
1753 3381
1754void noinline 3382void noinline
1755ev_timer_stop (EV_P_ ev_timer *w) 3383ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1756{ 3384{
1757 clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
1758 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
1759 return; 3387 return;
1760 3388
1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3389 EV_FREQUENT_CHECK;
1762 3390
1763 { 3391 {
1764 int active = ((W)w)->active; 3392 int active = ev_active (w);
1765 3393
3394 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3395
3396 --timercnt;
3397
1766 if (expect_true (--active < --timercnt)) 3398 if (expect_true (active < timercnt + HEAP0))
1767 { 3399 {
1768 timers [active] = timers [timercnt]; 3400 timers [active] = timers [timercnt + HEAP0];
1769 adjustheap (timers, timercnt, active); 3401 adjustheap (timers, timercnt, active);
1770 } 3402 }
1771 } 3403 }
1772 3404
1773 ((WT)w)->at -= mn_now; 3405 ev_at (w) -= mn_now;
1774 3406
1775 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
1776} 3410}
1777 3411
1778void noinline 3412void noinline
1779ev_timer_again (EV_P_ ev_timer *w) 3413ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1780{ 3414{
3415 EV_FREQUENT_CHECK;
3416
3417 clear_pending (EV_A_ (W)w);
3418
1781 if (ev_is_active (w)) 3419 if (ev_is_active (w))
1782 { 3420 {
1783 if (w->repeat) 3421 if (w->repeat)
1784 { 3422 {
1785 ((WT)w)->at = mn_now + w->repeat; 3423 ev_at (w) = mn_now + w->repeat;
3424 ANHE_at_cache (timers [ev_active (w)]);
1786 adjustheap (timers, timercnt, ((W)w)->active - 1); 3425 adjustheap (timers, timercnt, ev_active (w));
1787 } 3426 }
1788 else 3427 else
1789 ev_timer_stop (EV_A_ w); 3428 ev_timer_stop (EV_A_ w);
1790 } 3429 }
1791 else if (w->repeat) 3430 else if (w->repeat)
1792 { 3431 {
1793 w->at = w->repeat; 3432 ev_at (w) = w->repeat;
1794 ev_timer_start (EV_A_ w); 3433 ev_timer_start (EV_A_ w);
1795 } 3434 }
3435
3436 EV_FREQUENT_CHECK;
3437}
3438
3439ev_tstamp
3440ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3441{
3442 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1796} 3443}
1797 3444
1798#if EV_PERIODIC_ENABLE 3445#if EV_PERIODIC_ENABLE
1799void noinline 3446void noinline
1800ev_periodic_start (EV_P_ ev_periodic *w) 3447ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1801{ 3448{
1802 if (expect_false (ev_is_active (w))) 3449 if (expect_false (ev_is_active (w)))
1803 return; 3450 return;
1804 3451
1805 if (w->reschedule_cb) 3452 if (w->reschedule_cb)
1806 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3453 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval) 3454 else if (w->interval)
1808 { 3455 {
1809 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3456 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1810 /* this formula differs from the one in periodic_reify because we do not always round up */ 3457 periodic_recalc (EV_A_ w);
1811 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1812 } 3458 }
1813 else 3459 else
1814 ((WT)w)->at = w->offset; 3460 ev_at (w) = w->offset;
1815 3461
3462 EV_FREQUENT_CHECK;
3463
3464 ++periodiccnt;
1816 ev_start (EV_A_ (W)w, ++periodiccnt); 3465 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3466 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1818 periodics [periodiccnt - 1] = (WT)w; 3467 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1819 upheap (periodics, periodiccnt - 1); 3468 ANHE_at_cache (periodics [ev_active (w)]);
3469 upheap (periodics, ev_active (w));
1820 3470
3471 EV_FREQUENT_CHECK;
3472
1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3473 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1822} 3474}
1823 3475
1824void noinline 3476void noinline
1825ev_periodic_stop (EV_P_ ev_periodic *w) 3477ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1826{ 3478{
1827 clear_pending (EV_A_ (W)w); 3479 clear_pending (EV_A_ (W)w);
1828 if (expect_false (!ev_is_active (w))) 3480 if (expect_false (!ev_is_active (w)))
1829 return; 3481 return;
1830 3482
1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3483 EV_FREQUENT_CHECK;
1832 3484
1833 { 3485 {
1834 int active = ((W)w)->active; 3486 int active = ev_active (w);
1835 3487
3488 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3489
3490 --periodiccnt;
3491
1836 if (expect_true (--active < --periodiccnt)) 3492 if (expect_true (active < periodiccnt + HEAP0))
1837 { 3493 {
1838 periodics [active] = periodics [periodiccnt]; 3494 periodics [active] = periodics [periodiccnt + HEAP0];
1839 adjustheap (periodics, periodiccnt, active); 3495 adjustheap (periodics, periodiccnt, active);
1840 } 3496 }
1841 } 3497 }
1842 3498
1843 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
3500
3501 EV_FREQUENT_CHECK;
1844} 3502}
1845 3503
1846void noinline 3504void noinline
1847ev_periodic_again (EV_P_ ev_periodic *w) 3505ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1848{ 3506{
1849 /* TODO: use adjustheap and recalculation */ 3507 /* TODO: use adjustheap and recalculation */
1850 ev_periodic_stop (EV_A_ w); 3508 ev_periodic_stop (EV_A_ w);
1851 ev_periodic_start (EV_A_ w); 3509 ev_periodic_start (EV_A_ w);
1852} 3510}
1854 3512
1855#ifndef SA_RESTART 3513#ifndef SA_RESTART
1856# define SA_RESTART 0 3514# define SA_RESTART 0
1857#endif 3515#endif
1858 3516
3517#if EV_SIGNAL_ENABLE
3518
1859void noinline 3519void noinline
1860ev_signal_start (EV_P_ ev_signal *w) 3520ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1861{ 3521{
1862#if EV_MULTIPLICITY
1863 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1864#endif
1865 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
1866 return; 3523 return;
1867 3524
1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3525 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1869 3526
3527#if EV_MULTIPLICITY
3528 assert (("libev: a signal must not be attached to two different loops",
3529 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3530
3531 signals [w->signum - 1].loop = EV_A;
3532 ECB_MEMORY_FENCE_RELEASE;
3533#endif
3534
3535 EV_FREQUENT_CHECK;
3536
3537#if EV_USE_SIGNALFD
3538 if (sigfd == -2)
1870 { 3539 {
1871#ifndef _WIN32 3540 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1872 sigset_t full, prev; 3541 if (sigfd < 0 && errno == EINVAL)
1873 sigfillset (&full); 3542 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1874 sigprocmask (SIG_SETMASK, &full, &prev);
1875#endif
1876 3543
1877 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3544 if (sigfd >= 0)
3545 {
3546 fd_intern (sigfd); /* doing it twice will not hurt */
1878 3547
1879#ifndef _WIN32 3548 sigemptyset (&sigfd_set);
1880 sigprocmask (SIG_SETMASK, &prev, 0); 3549
1881#endif 3550 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3551 ev_set_priority (&sigfd_w, EV_MAXPRI);
3552 ev_io_start (EV_A_ &sigfd_w);
3553 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3554 }
1882 } 3555 }
3556
3557 if (sigfd >= 0)
3558 {
3559 /* TODO: check .head */
3560 sigaddset (&sigfd_set, w->signum);
3561 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3562
3563 signalfd (sigfd, &sigfd_set, 0);
3564 }
3565#endif
1883 3566
1884 ev_start (EV_A_ (W)w, 1); 3567 ev_start (EV_A_ (W)w, 1);
1885 wlist_add (&signals [w->signum - 1].head, (WL)w); 3568 wlist_add (&signals [w->signum - 1].head, (WL)w);
1886 3569
1887 if (!((WL)w)->next) 3570 if (!((WL)w)->next)
3571# if EV_USE_SIGNALFD
3572 if (sigfd < 0) /*TODO*/
3573# endif
1888 { 3574 {
1889#if _WIN32 3575# ifdef _WIN32
3576 evpipe_init (EV_A);
3577
1890 signal (w->signum, sighandler); 3578 signal (w->signum, ev_sighandler);
1891#else 3579# else
1892 struct sigaction sa; 3580 struct sigaction sa;
3581
3582 evpipe_init (EV_A);
3583
1893 sa.sa_handler = sighandler; 3584 sa.sa_handler = ev_sighandler;
1894 sigfillset (&sa.sa_mask); 3585 sigfillset (&sa.sa_mask);
1895 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3586 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1896 sigaction (w->signum, &sa, 0); 3587 sigaction (w->signum, &sa, 0);
3588
3589 if (origflags & EVFLAG_NOSIGMASK)
3590 {
3591 sigemptyset (&sa.sa_mask);
3592 sigaddset (&sa.sa_mask, w->signum);
3593 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3594 }
1897#endif 3595#endif
1898 } 3596 }
3597
3598 EV_FREQUENT_CHECK;
1899} 3599}
1900 3600
1901void noinline 3601void noinline
1902ev_signal_stop (EV_P_ ev_signal *w) 3602ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1903{ 3603{
1904 clear_pending (EV_A_ (W)w); 3604 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 3605 if (expect_false (!ev_is_active (w)))
1906 return; 3606 return;
1907 3607
3608 EV_FREQUENT_CHECK;
3609
1908 wlist_del (&signals [w->signum - 1].head, (WL)w); 3610 wlist_del (&signals [w->signum - 1].head, (WL)w);
1909 ev_stop (EV_A_ (W)w); 3611 ev_stop (EV_A_ (W)w);
1910 3612
1911 if (!signals [w->signum - 1].head) 3613 if (!signals [w->signum - 1].head)
3614 {
3615#if EV_MULTIPLICITY
3616 signals [w->signum - 1].loop = 0; /* unattach from signal */
3617#endif
3618#if EV_USE_SIGNALFD
3619 if (sigfd >= 0)
3620 {
3621 sigset_t ss;
3622
3623 sigemptyset (&ss);
3624 sigaddset (&ss, w->signum);
3625 sigdelset (&sigfd_set, w->signum);
3626
3627 signalfd (sigfd, &sigfd_set, 0);
3628 sigprocmask (SIG_UNBLOCK, &ss, 0);
3629 }
3630 else
3631#endif
1912 signal (w->signum, SIG_DFL); 3632 signal (w->signum, SIG_DFL);
3633 }
3634
3635 EV_FREQUENT_CHECK;
1913} 3636}
3637
3638#endif
3639
3640#if EV_CHILD_ENABLE
1914 3641
1915void 3642void
1916ev_child_start (EV_P_ ev_child *w) 3643ev_child_start (EV_P_ ev_child *w) EV_THROW
1917{ 3644{
1918#if EV_MULTIPLICITY 3645#if EV_MULTIPLICITY
1919 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3646 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1920#endif 3647#endif
1921 if (expect_false (ev_is_active (w))) 3648 if (expect_false (ev_is_active (w)))
1922 return; 3649 return;
1923 3650
3651 EV_FREQUENT_CHECK;
3652
1924 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3654 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3655
3656 EV_FREQUENT_CHECK;
1926} 3657}
1927 3658
1928void 3659void
1929ev_child_stop (EV_P_ ev_child *w) 3660ev_child_stop (EV_P_ ev_child *w) EV_THROW
1930{ 3661{
1931 clear_pending (EV_A_ (W)w); 3662 clear_pending (EV_A_ (W)w);
1932 if (expect_false (!ev_is_active (w))) 3663 if (expect_false (!ev_is_active (w)))
1933 return; 3664 return;
1934 3665
3666 EV_FREQUENT_CHECK;
3667
1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3668 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1936 ev_stop (EV_A_ (W)w); 3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
1937} 3672}
3673
3674#endif
1938 3675
1939#if EV_STAT_ENABLE 3676#if EV_STAT_ENABLE
1940 3677
1941# ifdef _WIN32 3678# ifdef _WIN32
1942# undef lstat 3679# undef lstat
1943# define lstat(a,b) _stati64 (a,b) 3680# define lstat(a,b) _stati64 (a,b)
1944# endif 3681# endif
1945 3682
1946#define DEF_STAT_INTERVAL 5.0074891 3683#define DEF_STAT_INTERVAL 5.0074891
3684#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1947#define MIN_STAT_INTERVAL 0.1074891 3685#define MIN_STAT_INTERVAL 0.1074891
1948 3686
1949static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3687static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1950 3688
1951#if EV_USE_INOTIFY 3689#if EV_USE_INOTIFY
1952# define EV_INOTIFY_BUFSIZE 8192 3690
3691/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3692# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1953 3693
1954static void noinline 3694static void noinline
1955infy_add (EV_P_ ev_stat *w) 3695infy_add (EV_P_ ev_stat *w)
1956{ 3696{
1957 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3697 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1958 3698
1959 if (w->wd < 0) 3699 if (w->wd >= 0)
3700 {
3701 struct statfs sfs;
3702
3703 /* now local changes will be tracked by inotify, but remote changes won't */
3704 /* unless the filesystem is known to be local, we therefore still poll */
3705 /* also do poll on <2.6.25, but with normal frequency */
3706
3707 if (!fs_2625)
3708 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3709 else if (!statfs (w->path, &sfs)
3710 && (sfs.f_type == 0x1373 /* devfs */
3711 || sfs.f_type == 0xEF53 /* ext2/3 */
3712 || sfs.f_type == 0x3153464a /* jfs */
3713 || sfs.f_type == 0x52654973 /* reiser3 */
3714 || sfs.f_type == 0x01021994 /* tempfs */
3715 || sfs.f_type == 0x58465342 /* xfs */))
3716 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3717 else
3718 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1960 { 3719 }
1961 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3720 else
3721 {
3722 /* can't use inotify, continue to stat */
3723 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1962 3724
1963 /* monitor some parent directory for speedup hints */ 3725 /* if path is not there, monitor some parent directory for speedup hints */
3726 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3727 /* but an efficiency issue only */
1964 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3728 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1965 { 3729 {
1966 char path [4096]; 3730 char path [4096];
1967 strcpy (path, w->path); 3731 strcpy (path, w->path);
1968 3732
1971 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3735 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1972 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3736 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1973 3737
1974 char *pend = strrchr (path, '/'); 3738 char *pend = strrchr (path, '/');
1975 3739
1976 if (!pend) 3740 if (!pend || pend == path)
1977 break; /* whoops, no '/', complain to your admin */ 3741 break;
1978 3742
1979 *pend = 0; 3743 *pend = 0;
1980 w->wd = inotify_add_watch (fs_fd, path, mask); 3744 w->wd = inotify_add_watch (fs_fd, path, mask);
1981 } 3745 }
1982 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3746 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1983 } 3747 }
1984 } 3748 }
1985 else
1986 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1987 3749
1988 if (w->wd >= 0) 3750 if (w->wd >= 0)
1989 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3751 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3752
3753 /* now re-arm timer, if required */
3754 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3755 ev_timer_again (EV_A_ &w->timer);
3756 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1990} 3757}
1991 3758
1992static void noinline 3759static void noinline
1993infy_del (EV_P_ ev_stat *w) 3760infy_del (EV_P_ ev_stat *w)
1994{ 3761{
1997 3764
1998 if (wd < 0) 3765 if (wd < 0)
1999 return; 3766 return;
2000 3767
2001 w->wd = -2; 3768 w->wd = -2;
2002 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3769 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2003 wlist_del (&fs_hash [slot].head, (WL)w); 3770 wlist_del (&fs_hash [slot].head, (WL)w);
2004 3771
2005 /* remove this watcher, if others are watching it, they will rearm */ 3772 /* remove this watcher, if others are watching it, they will rearm */
2006 inotify_rm_watch (fs_fd, wd); 3773 inotify_rm_watch (fs_fd, wd);
2007} 3774}
2008 3775
2009static void noinline 3776static void noinline
2010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3777infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2011{ 3778{
2012 if (slot < 0) 3779 if (slot < 0)
2013 /* overflow, need to check for all hahs slots */ 3780 /* overflow, need to check for all hash slots */
2014 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3781 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2015 infy_wd (EV_A_ slot, wd, ev); 3782 infy_wd (EV_A_ slot, wd, ev);
2016 else 3783 else
2017 { 3784 {
2018 WL w_; 3785 WL w_;
2019 3786
2020 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3787 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2021 { 3788 {
2022 ev_stat *w = (ev_stat *)w_; 3789 ev_stat *w = (ev_stat *)w_;
2023 w_ = w_->next; /* lets us remove this watcher and all before it */ 3790 w_ = w_->next; /* lets us remove this watcher and all before it */
2024 3791
2025 if (w->wd == wd || wd == -1) 3792 if (w->wd == wd || wd == -1)
2026 { 3793 {
2027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3794 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2028 { 3795 {
3796 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2029 w->wd = -1; 3797 w->wd = -1;
2030 infy_add (EV_A_ w); /* re-add, no matter what */ 3798 infy_add (EV_A_ w); /* re-add, no matter what */
2031 } 3799 }
2032 3800
2033 stat_timer_cb (EV_A_ &w->timer, 0); 3801 stat_timer_cb (EV_A_ &w->timer, 0);
2038 3806
2039static void 3807static void
2040infy_cb (EV_P_ ev_io *w, int revents) 3808infy_cb (EV_P_ ev_io *w, int revents)
2041{ 3809{
2042 char buf [EV_INOTIFY_BUFSIZE]; 3810 char buf [EV_INOTIFY_BUFSIZE];
2043 struct inotify_event *ev = (struct inotify_event *)buf;
2044 int ofs; 3811 int ofs;
2045 int len = read (fs_fd, buf, sizeof (buf)); 3812 int len = read (fs_fd, buf, sizeof (buf));
2046 3813
2047 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3814 for (ofs = 0; ofs < len; )
3815 {
3816 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2048 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3817 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3818 ofs += sizeof (struct inotify_event) + ev->len;
3819 }
2049} 3820}
2050 3821
2051void inline_size 3822inline_size void ecb_cold
3823ev_check_2625 (EV_P)
3824{
3825 /* kernels < 2.6.25 are borked
3826 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3827 */
3828 if (ev_linux_version () < 0x020619)
3829 return;
3830
3831 fs_2625 = 1;
3832}
3833
3834inline_size int
3835infy_newfd (void)
3836{
3837#if defined IN_CLOEXEC && defined IN_NONBLOCK
3838 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3839 if (fd >= 0)
3840 return fd;
3841#endif
3842 return inotify_init ();
3843}
3844
3845inline_size void
2052infy_init (EV_P) 3846infy_init (EV_P)
2053{ 3847{
2054 if (fs_fd != -2) 3848 if (fs_fd != -2)
2055 return; 3849 return;
2056 3850
3851 fs_fd = -1;
3852
3853 ev_check_2625 (EV_A);
3854
2057 fs_fd = inotify_init (); 3855 fs_fd = infy_newfd ();
2058 3856
2059 if (fs_fd >= 0) 3857 if (fs_fd >= 0)
2060 { 3858 {
3859 fd_intern (fs_fd);
2061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3860 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2062 ev_set_priority (&fs_w, EV_MAXPRI); 3861 ev_set_priority (&fs_w, EV_MAXPRI);
2063 ev_io_start (EV_A_ &fs_w); 3862 ev_io_start (EV_A_ &fs_w);
3863 ev_unref (EV_A);
2064 } 3864 }
2065} 3865}
2066 3866
2067void inline_size 3867inline_size void
2068infy_fork (EV_P) 3868infy_fork (EV_P)
2069{ 3869{
2070 int slot; 3870 int slot;
2071 3871
2072 if (fs_fd < 0) 3872 if (fs_fd < 0)
2073 return; 3873 return;
2074 3874
3875 ev_ref (EV_A);
3876 ev_io_stop (EV_A_ &fs_w);
2075 close (fs_fd); 3877 close (fs_fd);
2076 fs_fd = inotify_init (); 3878 fs_fd = infy_newfd ();
2077 3879
3880 if (fs_fd >= 0)
3881 {
3882 fd_intern (fs_fd);
3883 ev_io_set (&fs_w, fs_fd, EV_READ);
3884 ev_io_start (EV_A_ &fs_w);
3885 ev_unref (EV_A);
3886 }
3887
2078 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3888 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2079 { 3889 {
2080 WL w_ = fs_hash [slot].head; 3890 WL w_ = fs_hash [slot].head;
2081 fs_hash [slot].head = 0; 3891 fs_hash [slot].head = 0;
2082 3892
2083 while (w_) 3893 while (w_)
2088 w->wd = -1; 3898 w->wd = -1;
2089 3899
2090 if (fs_fd >= 0) 3900 if (fs_fd >= 0)
2091 infy_add (EV_A_ w); /* re-add, no matter what */ 3901 infy_add (EV_A_ w); /* re-add, no matter what */
2092 else 3902 else
3903 {
3904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3905 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2093 ev_timer_start (EV_A_ &w->timer); 3906 ev_timer_again (EV_A_ &w->timer);
3907 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3908 }
2094 } 3909 }
2095
2096 } 3910 }
2097} 3911}
2098 3912
3913#endif
3914
3915#ifdef _WIN32
3916# define EV_LSTAT(p,b) _stati64 (p, b)
3917#else
3918# define EV_LSTAT(p,b) lstat (p, b)
2099#endif 3919#endif
2100 3920
2101void 3921void
2102ev_stat_stat (EV_P_ ev_stat *w) 3922ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2103{ 3923{
2104 if (lstat (w->path, &w->attr) < 0) 3924 if (lstat (w->path, &w->attr) < 0)
2105 w->attr.st_nlink = 0; 3925 w->attr.st_nlink = 0;
2106 else if (!w->attr.st_nlink) 3926 else if (!w->attr.st_nlink)
2107 w->attr.st_nlink = 1; 3927 w->attr.st_nlink = 1;
2110static void noinline 3930static void noinline
2111stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3931stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2112{ 3932{
2113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3933 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2114 3934
2115 /* we copy this here each the time so that */ 3935 ev_statdata prev = w->attr;
2116 /* prev has the old value when the callback gets invoked */
2117 w->prev = w->attr;
2118 ev_stat_stat (EV_A_ w); 3936 ev_stat_stat (EV_A_ w);
2119 3937
2120 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3938 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2121 if ( 3939 if (
2122 w->prev.st_dev != w->attr.st_dev 3940 prev.st_dev != w->attr.st_dev
2123 || w->prev.st_ino != w->attr.st_ino 3941 || prev.st_ino != w->attr.st_ino
2124 || w->prev.st_mode != w->attr.st_mode 3942 || prev.st_mode != w->attr.st_mode
2125 || w->prev.st_nlink != w->attr.st_nlink 3943 || prev.st_nlink != w->attr.st_nlink
2126 || w->prev.st_uid != w->attr.st_uid 3944 || prev.st_uid != w->attr.st_uid
2127 || w->prev.st_gid != w->attr.st_gid 3945 || prev.st_gid != w->attr.st_gid
2128 || w->prev.st_rdev != w->attr.st_rdev 3946 || prev.st_rdev != w->attr.st_rdev
2129 || w->prev.st_size != w->attr.st_size 3947 || prev.st_size != w->attr.st_size
2130 || w->prev.st_atime != w->attr.st_atime 3948 || prev.st_atime != w->attr.st_atime
2131 || w->prev.st_mtime != w->attr.st_mtime 3949 || prev.st_mtime != w->attr.st_mtime
2132 || w->prev.st_ctime != w->attr.st_ctime 3950 || prev.st_ctime != w->attr.st_ctime
2133 ) { 3951 ) {
3952 /* we only update w->prev on actual differences */
3953 /* in case we test more often than invoke the callback, */
3954 /* to ensure that prev is always different to attr */
3955 w->prev = prev;
3956
2134 #if EV_USE_INOTIFY 3957 #if EV_USE_INOTIFY
3958 if (fs_fd >= 0)
3959 {
2135 infy_del (EV_A_ w); 3960 infy_del (EV_A_ w);
2136 infy_add (EV_A_ w); 3961 infy_add (EV_A_ w);
2137 ev_stat_stat (EV_A_ w); /* avoid race... */ 3962 ev_stat_stat (EV_A_ w); /* avoid race... */
3963 }
2138 #endif 3964 #endif
2139 3965
2140 ev_feed_event (EV_A_ w, EV_STAT); 3966 ev_feed_event (EV_A_ w, EV_STAT);
2141 } 3967 }
2142} 3968}
2143 3969
2144void 3970void
2145ev_stat_start (EV_P_ ev_stat *w) 3971ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2146{ 3972{
2147 if (expect_false (ev_is_active (w))) 3973 if (expect_false (ev_is_active (w)))
2148 return; 3974 return;
2149 3975
2150 /* since we use memcmp, we need to clear any padding data etc. */
2151 memset (&w->prev, 0, sizeof (ev_statdata));
2152 memset (&w->attr, 0, sizeof (ev_statdata));
2153
2154 ev_stat_stat (EV_A_ w); 3976 ev_stat_stat (EV_A_ w);
2155 3977
3978 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2156 if (w->interval < MIN_STAT_INTERVAL) 3979 w->interval = MIN_STAT_INTERVAL;
2157 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2158 3980
2159 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3981 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2160 ev_set_priority (&w->timer, ev_priority (w)); 3982 ev_set_priority (&w->timer, ev_priority (w));
2161 3983
2162#if EV_USE_INOTIFY 3984#if EV_USE_INOTIFY
2163 infy_init (EV_A); 3985 infy_init (EV_A);
2164 3986
2165 if (fs_fd >= 0) 3987 if (fs_fd >= 0)
2166 infy_add (EV_A_ w); 3988 infy_add (EV_A_ w);
2167 else 3989 else
2168#endif 3990#endif
3991 {
2169 ev_timer_start (EV_A_ &w->timer); 3992 ev_timer_again (EV_A_ &w->timer);
3993 ev_unref (EV_A);
3994 }
2170 3995
2171 ev_start (EV_A_ (W)w, 1); 3996 ev_start (EV_A_ (W)w, 1);
3997
3998 EV_FREQUENT_CHECK;
2172} 3999}
2173 4000
2174void 4001void
2175ev_stat_stop (EV_P_ ev_stat *w) 4002ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2176{ 4003{
2177 clear_pending (EV_A_ (W)w); 4004 clear_pending (EV_A_ (W)w);
2178 if (expect_false (!ev_is_active (w))) 4005 if (expect_false (!ev_is_active (w)))
2179 return; 4006 return;
2180 4007
4008 EV_FREQUENT_CHECK;
4009
2181#if EV_USE_INOTIFY 4010#if EV_USE_INOTIFY
2182 infy_del (EV_A_ w); 4011 infy_del (EV_A_ w);
2183#endif 4012#endif
4013
4014 if (ev_is_active (&w->timer))
4015 {
4016 ev_ref (EV_A);
2184 ev_timer_stop (EV_A_ &w->timer); 4017 ev_timer_stop (EV_A_ &w->timer);
4018 }
2185 4019
2186 ev_stop (EV_A_ (W)w); 4020 ev_stop (EV_A_ (W)w);
4021
4022 EV_FREQUENT_CHECK;
2187} 4023}
2188#endif 4024#endif
2189 4025
2190#if EV_IDLE_ENABLE 4026#if EV_IDLE_ENABLE
2191void 4027void
2192ev_idle_start (EV_P_ ev_idle *w) 4028ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2193{ 4029{
2194 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
2195 return; 4031 return;
2196 4032
2197 pri_adjust (EV_A_ (W)w); 4033 pri_adjust (EV_A_ (W)w);
4034
4035 EV_FREQUENT_CHECK;
2198 4036
2199 { 4037 {
2200 int active = ++idlecnt [ABSPRI (w)]; 4038 int active = ++idlecnt [ABSPRI (w)];
2201 4039
2202 ++idleall; 4040 ++idleall;
2203 ev_start (EV_A_ (W)w, active); 4041 ev_start (EV_A_ (W)w, active);
2204 4042
2205 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4043 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2206 idles [ABSPRI (w)][active - 1] = w; 4044 idles [ABSPRI (w)][active - 1] = w;
2207 } 4045 }
4046
4047 EV_FREQUENT_CHECK;
2208} 4048}
2209 4049
2210void 4050void
2211ev_idle_stop (EV_P_ ev_idle *w) 4051ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2212{ 4052{
2213 clear_pending (EV_A_ (W)w); 4053 clear_pending (EV_A_ (W)w);
2214 if (expect_false (!ev_is_active (w))) 4054 if (expect_false (!ev_is_active (w)))
2215 return; 4055 return;
2216 4056
4057 EV_FREQUENT_CHECK;
4058
2217 { 4059 {
2218 int active = ((W)w)->active; 4060 int active = ev_active (w);
2219 4061
2220 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4062 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2221 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4063 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2222 4064
2223 ev_stop (EV_A_ (W)w); 4065 ev_stop (EV_A_ (W)w);
2224 --idleall; 4066 --idleall;
2225 } 4067 }
2226}
2227#endif
2228 4068
4069 EV_FREQUENT_CHECK;
4070}
4071#endif
4072
4073#if EV_PREPARE_ENABLE
2229void 4074void
2230ev_prepare_start (EV_P_ ev_prepare *w) 4075ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2231{ 4076{
2232 if (expect_false (ev_is_active (w))) 4077 if (expect_false (ev_is_active (w)))
2233 return; 4078 return;
4079
4080 EV_FREQUENT_CHECK;
2234 4081
2235 ev_start (EV_A_ (W)w, ++preparecnt); 4082 ev_start (EV_A_ (W)w, ++preparecnt);
2236 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4083 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2237 prepares [preparecnt - 1] = w; 4084 prepares [preparecnt - 1] = w;
4085
4086 EV_FREQUENT_CHECK;
2238} 4087}
2239 4088
2240void 4089void
2241ev_prepare_stop (EV_P_ ev_prepare *w) 4090ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2242{ 4091{
2243 clear_pending (EV_A_ (W)w); 4092 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 4093 if (expect_false (!ev_is_active (w)))
2245 return; 4094 return;
2246 4095
4096 EV_FREQUENT_CHECK;
4097
2247 { 4098 {
2248 int active = ((W)w)->active; 4099 int active = ev_active (w);
4100
2249 prepares [active - 1] = prepares [--preparecnt]; 4101 prepares [active - 1] = prepares [--preparecnt];
2250 ((W)prepares [active - 1])->active = active; 4102 ev_active (prepares [active - 1]) = active;
2251 } 4103 }
2252 4104
2253 ev_stop (EV_A_ (W)w); 4105 ev_stop (EV_A_ (W)w);
2254}
2255 4106
4107 EV_FREQUENT_CHECK;
4108}
4109#endif
4110
4111#if EV_CHECK_ENABLE
2256void 4112void
2257ev_check_start (EV_P_ ev_check *w) 4113ev_check_start (EV_P_ ev_check *w) EV_THROW
2258{ 4114{
2259 if (expect_false (ev_is_active (w))) 4115 if (expect_false (ev_is_active (w)))
2260 return; 4116 return;
4117
4118 EV_FREQUENT_CHECK;
2261 4119
2262 ev_start (EV_A_ (W)w, ++checkcnt); 4120 ev_start (EV_A_ (W)w, ++checkcnt);
2263 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4121 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2264 checks [checkcnt - 1] = w; 4122 checks [checkcnt - 1] = w;
4123
4124 EV_FREQUENT_CHECK;
2265} 4125}
2266 4126
2267void 4127void
2268ev_check_stop (EV_P_ ev_check *w) 4128ev_check_stop (EV_P_ ev_check *w) EV_THROW
2269{ 4129{
2270 clear_pending (EV_A_ (W)w); 4130 clear_pending (EV_A_ (W)w);
2271 if (expect_false (!ev_is_active (w))) 4131 if (expect_false (!ev_is_active (w)))
2272 return; 4132 return;
2273 4133
4134 EV_FREQUENT_CHECK;
4135
2274 { 4136 {
2275 int active = ((W)w)->active; 4137 int active = ev_active (w);
4138
2276 checks [active - 1] = checks [--checkcnt]; 4139 checks [active - 1] = checks [--checkcnt];
2277 ((W)checks [active - 1])->active = active; 4140 ev_active (checks [active - 1]) = active;
2278 } 4141 }
2279 4142
2280 ev_stop (EV_A_ (W)w); 4143 ev_stop (EV_A_ (W)w);
4144
4145 EV_FREQUENT_CHECK;
2281} 4146}
4147#endif
2282 4148
2283#if EV_EMBED_ENABLE 4149#if EV_EMBED_ENABLE
2284void noinline 4150void noinline
2285ev_embed_sweep (EV_P_ ev_embed *w) 4151ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2286{ 4152{
2287 ev_loop (w->other, EVLOOP_NONBLOCK); 4153 ev_run (w->other, EVRUN_NOWAIT);
2288} 4154}
2289 4155
2290static void 4156static void
2291embed_io_cb (EV_P_ ev_io *io, int revents) 4157embed_io_cb (EV_P_ ev_io *io, int revents)
2292{ 4158{
2293 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4159 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2294 4160
2295 if (ev_cb (w)) 4161 if (ev_cb (w))
2296 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4162 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2297 else 4163 else
2298 ev_loop (w->other, EVLOOP_NONBLOCK); 4164 ev_run (w->other, EVRUN_NOWAIT);
2299} 4165}
2300 4166
2301static void 4167static void
2302embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4168embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2303{ 4169{
2304 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4170 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2305 4171
2306 { 4172 {
2307 struct ev_loop *loop = w->other; 4173 EV_P = w->other;
2308 4174
2309 while (fdchangecnt) 4175 while (fdchangecnt)
2310 { 4176 {
2311 fd_reify (EV_A); 4177 fd_reify (EV_A);
2312 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4178 ev_run (EV_A_ EVRUN_NOWAIT);
2313 } 4179 }
2314 } 4180 }
4181}
4182
4183static void
4184embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4185{
4186 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4187
4188 ev_embed_stop (EV_A_ w);
4189
4190 {
4191 EV_P = w->other;
4192
4193 ev_loop_fork (EV_A);
4194 ev_run (EV_A_ EVRUN_NOWAIT);
4195 }
4196
4197 ev_embed_start (EV_A_ w);
2315} 4198}
2316 4199
2317#if 0 4200#if 0
2318static void 4201static void
2319embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4202embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2321 ev_idle_stop (EV_A_ idle); 4204 ev_idle_stop (EV_A_ idle);
2322} 4205}
2323#endif 4206#endif
2324 4207
2325void 4208void
2326ev_embed_start (EV_P_ ev_embed *w) 4209ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2327{ 4210{
2328 if (expect_false (ev_is_active (w))) 4211 if (expect_false (ev_is_active (w)))
2329 return; 4212 return;
2330 4213
2331 { 4214 {
2332 struct ev_loop *loop = w->other; 4215 EV_P = w->other;
2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4216 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4217 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2335 } 4218 }
4219
4220 EV_FREQUENT_CHECK;
2336 4221
2337 ev_set_priority (&w->io, ev_priority (w)); 4222 ev_set_priority (&w->io, ev_priority (w));
2338 ev_io_start (EV_A_ &w->io); 4223 ev_io_start (EV_A_ &w->io);
2339 4224
2340 ev_prepare_init (&w->prepare, embed_prepare_cb); 4225 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI); 4226 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare); 4227 ev_prepare_start (EV_A_ &w->prepare);
2343 4228
4229 ev_fork_init (&w->fork, embed_fork_cb);
4230 ev_fork_start (EV_A_ &w->fork);
4231
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4232 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345 4233
2346 ev_start (EV_A_ (W)w, 1); 4234 ev_start (EV_A_ (W)w, 1);
4235
4236 EV_FREQUENT_CHECK;
2347} 4237}
2348 4238
2349void 4239void
2350ev_embed_stop (EV_P_ ev_embed *w) 4240ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2351{ 4241{
2352 clear_pending (EV_A_ (W)w); 4242 clear_pending (EV_A_ (W)w);
2353 if (expect_false (!ev_is_active (w))) 4243 if (expect_false (!ev_is_active (w)))
2354 return; 4244 return;
2355 4245
4246 EV_FREQUENT_CHECK;
4247
2356 ev_io_stop (EV_A_ &w->io); 4248 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare); 4249 ev_prepare_stop (EV_A_ &w->prepare);
4250 ev_fork_stop (EV_A_ &w->fork);
2358 4251
2359 ev_stop (EV_A_ (W)w); 4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
2360} 4255}
2361#endif 4256#endif
2362 4257
2363#if EV_FORK_ENABLE 4258#if EV_FORK_ENABLE
2364void 4259void
2365ev_fork_start (EV_P_ ev_fork *w) 4260ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2366{ 4261{
2367 if (expect_false (ev_is_active (w))) 4262 if (expect_false (ev_is_active (w)))
2368 return; 4263 return;
4264
4265 EV_FREQUENT_CHECK;
2369 4266
2370 ev_start (EV_A_ (W)w, ++forkcnt); 4267 ev_start (EV_A_ (W)w, ++forkcnt);
2371 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4268 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2372 forks [forkcnt - 1] = w; 4269 forks [forkcnt - 1] = w;
4270
4271 EV_FREQUENT_CHECK;
2373} 4272}
2374 4273
2375void 4274void
2376ev_fork_stop (EV_P_ ev_fork *w) 4275ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2377{ 4276{
2378 clear_pending (EV_A_ (W)w); 4277 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w))) 4278 if (expect_false (!ev_is_active (w)))
2380 return; 4279 return;
2381 4280
4281 EV_FREQUENT_CHECK;
4282
2382 { 4283 {
2383 int active = ((W)w)->active; 4284 int active = ev_active (w);
4285
2384 forks [active - 1] = forks [--forkcnt]; 4286 forks [active - 1] = forks [--forkcnt];
2385 ((W)forks [active - 1])->active = active; 4287 ev_active (forks [active - 1]) = active;
2386 } 4288 }
2387 4289
2388 ev_stop (EV_A_ (W)w); 4290 ev_stop (EV_A_ (W)w);
4291
4292 EV_FREQUENT_CHECK;
4293}
4294#endif
4295
4296#if EV_CLEANUP_ENABLE
4297void
4298ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4299{
4300 if (expect_false (ev_is_active (w)))
4301 return;
4302
4303 EV_FREQUENT_CHECK;
4304
4305 ev_start (EV_A_ (W)w, ++cleanupcnt);
4306 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4307 cleanups [cleanupcnt - 1] = w;
4308
4309 /* cleanup watchers should never keep a refcount on the loop */
4310 ev_unref (EV_A);
4311 EV_FREQUENT_CHECK;
4312}
4313
4314void
4315ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4316{
4317 clear_pending (EV_A_ (W)w);
4318 if (expect_false (!ev_is_active (w)))
4319 return;
4320
4321 EV_FREQUENT_CHECK;
4322 ev_ref (EV_A);
4323
4324 {
4325 int active = ev_active (w);
4326
4327 cleanups [active - 1] = cleanups [--cleanupcnt];
4328 ev_active (cleanups [active - 1]) = active;
4329 }
4330
4331 ev_stop (EV_A_ (W)w);
4332
4333 EV_FREQUENT_CHECK;
4334}
4335#endif
4336
4337#if EV_ASYNC_ENABLE
4338void
4339ev_async_start (EV_P_ ev_async *w) EV_THROW
4340{
4341 if (expect_false (ev_is_active (w)))
4342 return;
4343
4344 w->sent = 0;
4345
4346 evpipe_init (EV_A);
4347
4348 EV_FREQUENT_CHECK;
4349
4350 ev_start (EV_A_ (W)w, ++asynccnt);
4351 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4352 asyncs [asynccnt - 1] = w;
4353
4354 EV_FREQUENT_CHECK;
4355}
4356
4357void
4358ev_async_stop (EV_P_ ev_async *w) EV_THROW
4359{
4360 clear_pending (EV_A_ (W)w);
4361 if (expect_false (!ev_is_active (w)))
4362 return;
4363
4364 EV_FREQUENT_CHECK;
4365
4366 {
4367 int active = ev_active (w);
4368
4369 asyncs [active - 1] = asyncs [--asynccnt];
4370 ev_active (asyncs [active - 1]) = active;
4371 }
4372
4373 ev_stop (EV_A_ (W)w);
4374
4375 EV_FREQUENT_CHECK;
4376}
4377
4378void
4379ev_async_send (EV_P_ ev_async *w) EV_THROW
4380{
4381 w->sent = 1;
4382 evpipe_write (EV_A_ &async_pending);
2389} 4383}
2390#endif 4384#endif
2391 4385
2392/*****************************************************************************/ 4386/*****************************************************************************/
2393 4387
2403once_cb (EV_P_ struct ev_once *once, int revents) 4397once_cb (EV_P_ struct ev_once *once, int revents)
2404{ 4398{
2405 void (*cb)(int revents, void *arg) = once->cb; 4399 void (*cb)(int revents, void *arg) = once->cb;
2406 void *arg = once->arg; 4400 void *arg = once->arg;
2407 4401
2408 ev_io_stop (EV_A_ &once->io); 4402 ev_io_stop (EV_A_ &once->io);
2409 ev_timer_stop (EV_A_ &once->to); 4403 ev_timer_stop (EV_A_ &once->to);
2410 ev_free (once); 4404 ev_free (once);
2411 4405
2412 cb (revents, arg); 4406 cb (revents, arg);
2413} 4407}
2414 4408
2415static void 4409static void
2416once_cb_io (EV_P_ ev_io *w, int revents) 4410once_cb_io (EV_P_ ev_io *w, int revents)
2417{ 4411{
2418 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4412 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4413
4414 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2419} 4415}
2420 4416
2421static void 4417static void
2422once_cb_to (EV_P_ ev_timer *w, int revents) 4418once_cb_to (EV_P_ ev_timer *w, int revents)
2423{ 4419{
2424 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4420 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4421
4422 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2425} 4423}
2426 4424
2427void 4425void
2428ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4426ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2429{ 4427{
2430 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4428 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2431 4429
2432 if (expect_false (!once)) 4430 if (expect_false (!once))
2433 { 4431 {
2434 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4432 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2435 return; 4433 return;
2436 } 4434 }
2437 4435
2438 once->cb = cb; 4436 once->cb = cb;
2439 once->arg = arg; 4437 once->arg = arg;
2451 ev_timer_set (&once->to, timeout, 0.); 4449 ev_timer_set (&once->to, timeout, 0.);
2452 ev_timer_start (EV_A_ &once->to); 4450 ev_timer_start (EV_A_ &once->to);
2453 } 4451 }
2454} 4452}
2455 4453
4454/*****************************************************************************/
4455
4456#if EV_WALK_ENABLE
4457void ecb_cold
4458ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4459{
4460 int i, j;
4461 ev_watcher_list *wl, *wn;
4462
4463 if (types & (EV_IO | EV_EMBED))
4464 for (i = 0; i < anfdmax; ++i)
4465 for (wl = anfds [i].head; wl; )
4466 {
4467 wn = wl->next;
4468
4469#if EV_EMBED_ENABLE
4470 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4471 {
4472 if (types & EV_EMBED)
4473 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4474 }
4475 else
4476#endif
4477#if EV_USE_INOTIFY
4478 if (ev_cb ((ev_io *)wl) == infy_cb)
4479 ;
4480 else
4481#endif
4482 if ((ev_io *)wl != &pipe_w)
4483 if (types & EV_IO)
4484 cb (EV_A_ EV_IO, wl);
4485
4486 wl = wn;
4487 }
4488
4489 if (types & (EV_TIMER | EV_STAT))
4490 for (i = timercnt + HEAP0; i-- > HEAP0; )
4491#if EV_STAT_ENABLE
4492 /*TODO: timer is not always active*/
4493 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4494 {
4495 if (types & EV_STAT)
4496 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4497 }
4498 else
4499#endif
4500 if (types & EV_TIMER)
4501 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4502
4503#if EV_PERIODIC_ENABLE
4504 if (types & EV_PERIODIC)
4505 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4506 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4507#endif
4508
4509#if EV_IDLE_ENABLE
4510 if (types & EV_IDLE)
4511 for (j = NUMPRI; j--; )
4512 for (i = idlecnt [j]; i--; )
4513 cb (EV_A_ EV_IDLE, idles [j][i]);
4514#endif
4515
4516#if EV_FORK_ENABLE
4517 if (types & EV_FORK)
4518 for (i = forkcnt; i--; )
4519 if (ev_cb (forks [i]) != embed_fork_cb)
4520 cb (EV_A_ EV_FORK, forks [i]);
4521#endif
4522
4523#if EV_ASYNC_ENABLE
4524 if (types & EV_ASYNC)
4525 for (i = asynccnt; i--; )
4526 cb (EV_A_ EV_ASYNC, asyncs [i]);
4527#endif
4528
4529#if EV_PREPARE_ENABLE
4530 if (types & EV_PREPARE)
4531 for (i = preparecnt; i--; )
4532# if EV_EMBED_ENABLE
4533 if (ev_cb (prepares [i]) != embed_prepare_cb)
4534# endif
4535 cb (EV_A_ EV_PREPARE, prepares [i]);
4536#endif
4537
4538#if EV_CHECK_ENABLE
4539 if (types & EV_CHECK)
4540 for (i = checkcnt; i--; )
4541 cb (EV_A_ EV_CHECK, checks [i]);
4542#endif
4543
4544#if EV_SIGNAL_ENABLE
4545 if (types & EV_SIGNAL)
4546 for (i = 0; i < EV_NSIG - 1; ++i)
4547 for (wl = signals [i].head; wl; )
4548 {
4549 wn = wl->next;
4550 cb (EV_A_ EV_SIGNAL, wl);
4551 wl = wn;
4552 }
4553#endif
4554
4555#if EV_CHILD_ENABLE
4556 if (types & EV_CHILD)
4557 for (i = (EV_PID_HASHSIZE); i--; )
4558 for (wl = childs [i]; wl; )
4559 {
4560 wn = wl->next;
4561 cb (EV_A_ EV_CHILD, wl);
4562 wl = wn;
4563 }
4564#endif
4565/* EV_STAT 0x00001000 /* stat data changed */
4566/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4567}
4568#endif
4569
2456#if EV_MULTIPLICITY 4570#if EV_MULTIPLICITY
2457 #include "ev_wrap.h" 4571 #include "ev_wrap.h"
2458#endif 4572#endif
2459 4573
2460#ifdef __cplusplus
2461}
2462#endif
2463

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines