ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.207 by root, Thu Jan 31 13:10:56 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
31#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
32# include "config.h" 48# include "config.h"
49# endif
33 50
34# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
54# endif
55# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
37# endif 65# endif
38 66
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
41# endif 73# endif
42 74
43# if HAVE_POLL && HAVE_POLL_H 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
45# endif 81# endif
46 82
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
49# endif 89# endif
50 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
53# endif 121# endif
54 122
55#endif 123#endif
56 124
57#include <math.h> 125#include <math.h>
58#include <stdlib.h> 126#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 127#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 128#include <stddef.h>
63 129
64#include <stdio.h> 130#include <stdio.h>
65 131
66#include <assert.h> 132#include <assert.h>
67#include <errno.h> 133#include <errno.h>
68#include <sys/types.h> 134#include <sys/types.h>
135#include <time.h>
136
137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
69#ifndef WIN32 145#ifndef _WIN32
146# include <sys/time.h>
70# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
71#endif 154# endif
72#include <sys/time.h> 155#endif
73#include <time.h>
74 156
75/**/ 157/**/
76 158
77#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
79#endif 169#endif
80 170
81#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
83#endif 173#endif
84 174
85#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
87#endif 181#endif
88 182
89#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
91#endif 185#endif
92 186
93#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
95#endif 189#endif
96 190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
97#ifndef EV_USE_WIN32 195#ifndef EV_USE_INOTIFY
98# ifdef WIN32 196# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
100# else 202# else
101# define EV_USE_WIN32 0 203# define EV_PID_HASHSIZE 16
102# endif 204# endif
103#endif 205#endif
104 206
105#ifndef EV_USE_REALTIME 207#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
107#endif 213#endif
108 214
109/**/ 215/**/
110 216
111#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
119#endif 225#endif
120 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
121/**/ 246/**/
122 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 261
128#include "ev.h"
129
130#if __GNUC__ >= 3 262#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 264# define noinline __attribute__ ((noinline))
133#else 265#else
134# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
135# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
136#endif 271#endif
137 272
138#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
140 282
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
144typedef struct ev_watcher *W; 289typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
147 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
149 298
150#if WIN32 299#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 300# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 301#endif
155 302
156/*****************************************************************************/ 303/*****************************************************************************/
157 304
158static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
159 306
307void
160void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 309{
162 syserr_cb = cb; 310 syserr_cb = cb;
163} 311}
164 312
165static void 313static void noinline
166syserr (const char *msg) 314syserr (const char *msg)
167{ 315{
168 if (!msg) 316 if (!msg)
169 msg = "(libev) system error"; 317 msg = "(libev) system error";
170 318
177 } 325 }
178} 326}
179 327
180static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
181 329
330void
182void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
183{ 332{
184 alloc = cb; 333 alloc = cb;
185} 334}
186 335
187static void * 336inline_speed void *
188ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
189{ 338{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191 340
192 if (!ptr && size) 341 if (!ptr && size)
206typedef struct 355typedef struct
207{ 356{
208 WL head; 357 WL head;
209 unsigned char events; 358 unsigned char events;
210 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
211} ANFD; 363} ANFD;
212 364
213typedef struct 365typedef struct
214{ 366{
215 W w; 367 W w;
216 int events; 368 int events;
217} ANPENDING; 369} ANPENDING;
218 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
219#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
220 379
221struct ev_loop 380 struct ev_loop
222{ 381 {
382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
224# include "ev_vars.h" 385 #include "ev_vars.h"
225};
226# undef VAR 386 #undef VAR
387 };
227# include "ev_wrap.h" 388 #include "ev_wrap.h"
389
390 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr;
228 392
229#else 393#else
230 394
395 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 397 #include "ev_vars.h"
233# undef VAR 398 #undef VAR
399
400 static int ev_default_loop_ptr;
234 401
235#endif 402#endif
236 403
237/*****************************************************************************/ 404/*****************************************************************************/
238 405
239inline ev_tstamp 406ev_tstamp
240ev_time (void) 407ev_time (void)
241{ 408{
242#if EV_USE_REALTIME 409#if EV_USE_REALTIME
243 struct timespec ts; 410 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 411 clock_gettime (CLOCK_REALTIME, &ts);
248 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
249 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
250#endif 417#endif
251} 418}
252 419
253inline ev_tstamp 420ev_tstamp inline_size
254get_clock (void) 421get_clock (void)
255{ 422{
256#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
257 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
258 { 425 {
263#endif 430#endif
264 431
265 return ev_time (); 432 return ev_time ();
266} 433}
267 434
435#if EV_MULTIPLICITY
268ev_tstamp 436ev_tstamp
269ev_now (EV_P) 437ev_now (EV_P)
270{ 438{
271 return rt_now; 439 return ev_rt_now;
272} 440}
441#endif
273 442
274#define array_roundsize(base,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
275 450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
497
276#define array_needsize(base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
278 { \ 500 { \
279 int newcnt = cur; \ 501 int ocur_ = (cur); \
280 do \ 502 (base) = (type *)array_realloc \
281 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
282 newcnt = array_roundsize (base, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
283 } \
284 while ((cnt) > newcnt); \
285 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
287 init (base + cur, newcnt - cur); \
288 cur = newcnt; \
289 } 505 }
290 506
507#if 0
291#define array_slim(stem) \ 508#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 510 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 514 }
515#endif
298 516
299#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
301 519
302/*****************************************************************************/ 520/*****************************************************************************/
303 521
304static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
305anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
306{ 552{
307 while (count--) 553 while (count--)
308 { 554 {
309 base->head = 0; 555 base->head = 0;
312 558
313 ++base; 559 ++base;
314 } 560 }
315} 561}
316 562
317static void 563void inline_speed
318event (EV_P_ W w, int events)
319{
320 if (w->pending)
321 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
323 return;
324 }
325
326 w->pending = ++pendingcnt [ABSPRI (w)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
328 pendings [ABSPRI (w)][w->pending - 1].w = w;
329 pendings [ABSPRI (w)][w->pending - 1].events = events;
330}
331
332static void
333queue_events (EV_P_ W *events, int eventcnt, int type)
334{
335 int i;
336
337 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type);
339}
340
341static void
342fd_event (EV_P_ int fd, int events) 564fd_event (EV_P_ int fd, int revents)
343{ 565{
344 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 567 ev_io *w;
346 568
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
348 { 570 {
349 int ev = w->events & events; 571 int ev = w->events & revents;
350 572
351 if (ev) 573 if (ev)
352 event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
353 } 575 }
354} 576}
355 577
356/*****************************************************************************/ 578void
579ev_feed_fd_event (EV_P_ int fd, int revents)
580{
581 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents);
583}
357 584
358static void 585void inline_size
359fd_reify (EV_P) 586fd_reify (EV_P)
360{ 587{
361 int i; 588 int i;
362 589
363 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
364 { 591 {
365 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
366 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
367 struct ev_io *w; 594 ev_io *w;
368 595
369 int events = 0; 596 unsigned char events = 0;
370 597
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 events |= w->events; 599 events |= (unsigned char)w->events;
373 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
611 }
612#endif
613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
374 anfd->reify = 0; 618 anfd->reify = 0;
375
376 method_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
378 } 624 }
379 625
380 fdchangecnt = 0; 626 fdchangecnt = 0;
381} 627}
382 628
383static void 629void inline_size
384fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
385{ 631{
386 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
387 return;
388
389 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
390 634
635 if (expect_true (!reify))
636 {
391 ++fdchangecnt; 637 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
393 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
394} 641}
395 642
396static void 643void inline_speed
397fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
398{ 645{
399 struct ev_io *w; 646 ev_io *w;
400 647
401 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
402 { 649 {
403 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 652 }
653}
654
655int inline_size
656fd_valid (int fd)
657{
658#ifdef _WIN32
659 return _get_osfhandle (fd) != -1;
660#else
661 return fcntl (fd, F_GETFD) != -1;
662#endif
406} 663}
407 664
408/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
409static void 666static void noinline
410fd_ebadf (EV_P) 667fd_ebadf (EV_P)
411{ 668{
412 int fd; 669 int fd;
413 670
414 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 672 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
418} 675}
419 676
420/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 678static void noinline
422fd_enomem (EV_P) 679fd_enomem (EV_P)
423{ 680{
424 int fd; 681 int fd;
425 682
426 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
429 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
430 return; 687 return;
431 } 688 }
432} 689}
433 690
434/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
435static void 692static void noinline
436fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
437{ 694{
438 int fd; 695 int fd;
439 696
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events) 698 if (anfds [fd].events)
443 { 699 {
444 anfds [fd].events = 0; 700 anfds [fd].events = 0;
445 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
446 } 702 }
447} 703}
448 704
449/*****************************************************************************/ 705/*****************************************************************************/
450 706
451static void 707void inline_speed
452upheap (WT *heap, int k) 708upheap (WT *heap, int k)
453{ 709{
454 WT w = heap [k]; 710 WT w = heap [k];
455 711
456 while (k && heap [k >> 1]->at > w->at) 712 while (k)
457 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
458 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
459 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
460 k >>= 1; 721 k = p;
461 } 722 }
462 723
463 heap [k] = w; 724 heap [k] = w;
464 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
465
466} 726}
467 727
468static void 728void inline_speed
469downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
470{ 730{
471 WT w = heap [k]; 731 WT w = heap [k];
472 732
473 while (k < (N >> 1)) 733 for (;;)
474 { 734 {
475 int j = k << 1; 735 int c = (k << 1) + 1;
476 736
477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
478 ++j;
479
480 if (w->at <= heap [j]->at)
481 break; 738 break;
482 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
483 heap [k] = heap [j]; 746 heap [k] = heap [c];
484 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
485 k = j; 749 k = c;
486 } 750 }
487 751
488 heap [k] = w; 752 heap [k] = w;
489 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
490} 754}
491 755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
492/*****************************************************************************/ 763/*****************************************************************************/
493 764
494typedef struct 765typedef struct
495{ 766{
496 WL head; 767 WL head;
497 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
498} ANSIG; 769} ANSIG;
499 770
500static ANSIG *signals; 771static ANSIG *signals;
501static int signalmax; 772static int signalmax;
502 773
503static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
504static sig_atomic_t volatile gotsig;
505static struct ev_io sigev;
506 775
507static void 776void inline_size
508signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
509{ 778{
510 while (count--) 779 while (count--)
511 { 780 {
512 base->head = 0; 781 base->head = 0;
514 783
515 ++base; 784 ++base;
516 } 785 }
517} 786}
518 787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd)
792{
793#ifdef _WIN32
794 int arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif
800}
801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno;
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830 errno = old_errno;
831 }
832}
833
834static void
835pipecb (EV_P_ ev_io *iow, int revents)
836{
837 {
838 int dummy;
839 read (evpipe [0], &dummy, 1);
840 }
841
842 if (gotsig)
843 {
844 int signum;
845 gotsig = 0;
846
847 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1);
850 }
851
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864}
865
866/*****************************************************************************/
867
519static void 868static void
520sighandler (int signum) 869sighandler (int signum)
521{ 870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct;
873#endif
874
522#if WIN32 875#if _WIN32
523 signal (signum, sighandler); 876 signal (signum, sighandler);
524#endif 877#endif
525 878
526 signals [signum - 1].gotsig = 1; 879 signals [signum - 1].gotsig = 1;
527 880 evpipe_write (EV_A_ 1, 0);
528 if (!gotsig)
529 {
530 int old_errno = errno;
531 gotsig = 1;
532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
534 }
535} 881}
536 882
537static void 883void noinline
538sigcb (EV_P_ struct ev_io *iow, int revents) 884ev_feed_signal_event (EV_P_ int signum)
539{ 885{
540 WL w; 886 WL w;
887
888#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
890#endif
891
541 int signum; 892 --signum;
542 893
543 read (sigpipe [0], &revents, 1); 894 if (signum < 0 || signum >= signalmax)
544 gotsig = 0; 895 return;
545 896
546 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig)
548 {
549 signals [signum].gotsig = 0; 897 signals [signum].gotsig = 0;
550 898
551 for (w = signals [signum].head; w; w = w->next) 899 for (w = signals [signum].head; w; w = w->next)
552 event (EV_A_ (W)w, EV_SIGNAL); 900 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
553 }
554}
555
556static void
557siginit (EV_P)
558{
559#ifndef WIN32
560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562
563 /* rather than sort out wether we really need nb, set it */
564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
567
568 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
571} 901}
572 902
573/*****************************************************************************/ 903/*****************************************************************************/
574 904
905static WL childs [EV_PID_HASHSIZE];
906
575#ifndef WIN32 907#ifndef _WIN32
576 908
577static struct ev_child *childs [PID_HASHSIZE];
578static struct ev_signal childev; 909static ev_signal childev;
910
911#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0
913#endif
914
915void inline_speed
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
917{
918 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 {
923 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1)))
925 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
927 w->rpid = pid;
928 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 }
931 }
932}
579 933
580#ifndef WCONTINUED 934#ifndef WCONTINUED
581# define WCONTINUED 0 935# define WCONTINUED 0
582#endif 936#endif
583 937
584static void 938static void
585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586{
587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 939childcb (EV_P_ ev_signal *sw, int revents)
601{ 940{
602 int pid, status; 941 int pid, status;
603 942
943 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 944 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 945 if (!WCONTINUED
946 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return;
949
606 /* make sure we are called again until all childs have been reaped */ 950 /* make sure we are called again until all childs have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */
607 event (EV_A_ (W)sw, EV_SIGNAL); 952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 953
609 child_reap (EV_A_ sw, pid, pid, status); 954 child_reap (EV_A_ sw, pid, pid, status);
955 if (EV_PID_HASHSIZE > 1)
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
611 }
612} 957}
613 958
614#endif 959#endif
615 960
616/*****************************************************************************/ 961/*****************************************************************************/
617 962
963#if EV_USE_PORT
964# include "ev_port.c"
965#endif
618#if EV_USE_KQUEUE 966#if EV_USE_KQUEUE
619# include "ev_kqueue.c" 967# include "ev_kqueue.c"
620#endif 968#endif
621#if EV_USE_EPOLL 969#if EV_USE_EPOLL
622# include "ev_epoll.c" 970# include "ev_epoll.c"
639{ 987{
640 return EV_VERSION_MINOR; 988 return EV_VERSION_MINOR;
641} 989}
642 990
643/* return true if we are running with elevated privileges and should ignore env variables */ 991/* return true if we are running with elevated privileges and should ignore env variables */
644static int 992int inline_size
645enable_secure (void) 993enable_secure (void)
646{ 994{
647#ifdef WIN32 995#ifdef _WIN32
648 return 0; 996 return 0;
649#else 997#else
650 return getuid () != geteuid () 998 return getuid () != geteuid ()
651 || getgid () != getegid (); 999 || getgid () != getegid ();
652#endif 1000#endif
653} 1001}
654 1002
655int 1003unsigned int
656ev_method (EV_P) 1004ev_supported_backends (void)
657{ 1005{
658 return method; 1006 unsigned int flags = 0;
659}
660 1007
661static void 1008 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
662loop_init (EV_P_ int methods) 1009 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1010 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1012 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1013
1014 return flags;
1015}
1016
1017unsigned int
1018ev_recommended_backends (void)
663{ 1019{
664 if (!method) 1020 unsigned int flags = ev_supported_backends ();
1021
1022#ifndef __NetBSD__
1023 /* kqueue is borked on everything but netbsd apparently */
1024 /* it usually doesn't work correctly on anything but sockets and pipes */
1025 flags &= ~EVBACKEND_KQUEUE;
1026#endif
1027#ifdef __APPLE__
1028 // flags &= ~EVBACKEND_KQUEUE; for documentation
1029 flags &= ~EVBACKEND_POLL;
1030#endif
1031
1032 return flags;
1033}
1034
1035unsigned int
1036ev_embeddable_backends (void)
1037{
1038 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1039
1040 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1041 /* please fix it and tell me how to detect the fix */
1042 flags &= ~EVBACKEND_EPOLL;
1043
1044 return flags;
1045}
1046
1047unsigned int
1048ev_backend (EV_P)
1049{
1050 return backend;
1051}
1052
1053unsigned int
1054ev_loop_count (EV_P)
1055{
1056 return loop_count;
1057}
1058
1059void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1061{
1062 io_blocktime = interval;
1063}
1064
1065void
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 timeout_blocktime = interval;
1069}
1070
1071static void noinline
1072loop_init (EV_P_ unsigned int flags)
1073{
1074 if (!backend)
665 { 1075 {
666#if EV_USE_MONOTONIC 1076#if EV_USE_MONOTONIC
667 { 1077 {
668 struct timespec ts; 1078 struct timespec ts;
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670 have_monotonic = 1; 1080 have_monotonic = 1;
671 } 1081 }
672#endif 1082#endif
673 1083
674 rt_now = ev_time (); 1084 ev_rt_now = ev_time ();
675 mn_now = get_clock (); 1085 mn_now = get_clock ();
676 now_floor = mn_now; 1086 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now; 1087 rtmn_diff = ev_rt_now - mn_now;
678 1088
679 if (methods == EVMETHOD_AUTO) 1089 io_blocktime = 0.;
680 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1090 timeout_blocktime = 0.;
1091
1092 /* pid check not overridable via env */
1093#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid ();
1096#endif
1097
1098 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS"))
681 methods = atoi (getenv ("LIBEV_METHODS")); 1101 flags = atoi (getenv ("LIBEV_FLAGS"));
682 else
683 methods = EVMETHOD_ANY;
684 1102
685 method = 0; 1103 if (!(flags & 0x0000ffffUL))
1104 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
686#if EV_USE_WIN32 1108#if EV_USE_INOTIFY
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1109 fs_fd = -2;
1110#endif
1111
1112#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
688#endif 1114#endif
689#if EV_USE_KQUEUE 1115#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1116 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
691#endif 1117#endif
692#if EV_USE_EPOLL 1118#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1119 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
694#endif 1120#endif
695#if EV_USE_POLL 1121#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1122 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
697#endif 1123#endif
698#if EV_USE_SELECT 1124#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
700#endif 1126#endif
701 1127
702 ev_watcher_init (&sigev, sigcb); 1128 ev_init (&pipeev, pipecb);
703 ev_set_priority (&sigev, EV_MAXPRI); 1129 ev_set_priority (&pipeev, EV_MAXPRI);
704 } 1130 }
705} 1131}
706 1132
707void 1133static void noinline
708loop_destroy (EV_P) 1134loop_destroy (EV_P)
709{ 1135{
710 int i; 1136 int i;
711 1137
1138 if (ev_is_active (&pipeev))
1139 {
1140 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev);
1142
1143 close (evpipe [0]); evpipe [0] = 0;
1144 close (evpipe [1]); evpipe [1] = 0;
1145 }
1146
712#if EV_USE_WIN32 1147#if EV_USE_INOTIFY
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1148 if (fs_fd >= 0)
1149 close (fs_fd);
1150#endif
1151
1152 if (backend_fd >= 0)
1153 close (backend_fd);
1154
1155#if EV_USE_PORT
1156 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
714#endif 1157#endif
715#if EV_USE_KQUEUE 1158#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1159 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
717#endif 1160#endif
718#if EV_USE_EPOLL 1161#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1162 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
720#endif 1163#endif
721#if EV_USE_POLL 1164#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1165 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
723#endif 1166#endif
724#if EV_USE_SELECT 1167#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1168 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
726#endif 1169#endif
727 1170
728 for (i = NUMPRI; i--; ) 1171 for (i = NUMPRI; i--; )
1172 {
729 array_free (pending, [i]); 1173 array_free (pending, [i]);
1174#if EV_IDLE_ENABLE
1175 array_free (idle, [i]);
1176#endif
1177 }
730 1178
1179 ev_free (anfds); anfdmax = 0;
1180
1181 /* have to use the microsoft-never-gets-it-right macro */
731 array_free (fdchange, ); 1182 array_free (fdchange, EMPTY);
732 array_free (timer, ); 1183 array_free (timer, EMPTY);
1184#if EV_PERIODIC_ENABLE
733 array_free (periodic, ); 1185 array_free (periodic, EMPTY);
734 array_free (idle, ); 1186#endif
1187#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY);
1189#endif
735 array_free (prepare, ); 1190 array_free (prepare, EMPTY);
736 array_free (check, ); 1191 array_free (check, EMPTY);
737 1192
738 method = 0; 1193 backend = 0;
739} 1194}
740 1195
741static void 1196void inline_size infy_fork (EV_P);
1197
1198void inline_size
742loop_fork (EV_P) 1199loop_fork (EV_P)
743{ 1200{
1201#if EV_USE_PORT
1202 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1203#endif
1204#if EV_USE_KQUEUE
1205 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1206#endif
744#if EV_USE_EPOLL 1207#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1208 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
746#endif 1209#endif
747#if EV_USE_KQUEUE 1210#if EV_USE_INOTIFY
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1211 infy_fork (EV_A);
749#endif 1212#endif
750 1213
751 if (ev_is_active (&sigev)) 1214 if (ev_is_active (&pipeev))
752 { 1215 {
753 /* default loop */ 1216 /* this "locks" the handlers against writing to the pipe */
1217 gotsig = gotasync = 1;
754 1218
755 ev_ref (EV_A); 1219 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev); 1220 ev_io_stop (EV_A_ &pipeev);
757 close (sigpipe [0]); 1221 close (evpipe [0]);
758 close (sigpipe [1]); 1222 close (evpipe [1]);
759 1223
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A); 1224 evpipe_init (EV_A);
1225 /* now iterate over everything */
1226 evcb (EV_A_ &pipeev, EV_READ);
764 } 1227 }
765 1228
766 postfork = 0; 1229 postfork = 0;
767} 1230}
768 1231
769#if EV_MULTIPLICITY 1232#if EV_MULTIPLICITY
770struct ev_loop * 1233struct ev_loop *
771ev_loop_new (int methods) 1234ev_loop_new (unsigned int flags)
772{ 1235{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1236 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774 1237
775 memset (loop, 0, sizeof (struct ev_loop)); 1238 memset (loop, 0, sizeof (struct ev_loop));
776 1239
777 loop_init (EV_A_ methods); 1240 loop_init (EV_A_ flags);
778 1241
779 if (ev_method (EV_A)) 1242 if (ev_backend (EV_A))
780 return loop; 1243 return loop;
781 1244
782 return 0; 1245 return 0;
783} 1246}
784 1247
790} 1253}
791 1254
792void 1255void
793ev_loop_fork (EV_P) 1256ev_loop_fork (EV_P)
794{ 1257{
795 postfork = 1; 1258 postfork = 1; /* must be in line with ev_default_fork */
796} 1259}
797 1260
798#endif 1261#endif
799 1262
800#if EV_MULTIPLICITY 1263#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop * 1264struct ev_loop *
1265ev_default_loop_init (unsigned int flags)
805#else 1266#else
806static int default_loop;
807
808int 1267int
1268ev_default_loop (unsigned int flags)
809#endif 1269#endif
810ev_default_loop (int methods)
811{ 1270{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop) 1271 if (!ev_default_loop_ptr)
817 { 1272 {
818#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct; 1274 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
820#else 1275#else
821 default_loop = 1; 1276 ev_default_loop_ptr = 1;
822#endif 1277#endif
823 1278
824 loop_init (EV_A_ methods); 1279 loop_init (EV_A_ flags);
825 1280
826 if (ev_method (EV_A)) 1281 if (ev_backend (EV_A))
827 { 1282 {
828 siginit (EV_A);
829
830#ifndef WIN32 1283#ifndef _WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD); 1284 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI); 1285 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev); 1286 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1287 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif 1288#endif
836 } 1289 }
837 else 1290 else
838 default_loop = 0; 1291 ev_default_loop_ptr = 0;
839 } 1292 }
840 1293
841 return default_loop; 1294 return ev_default_loop_ptr;
842} 1295}
843 1296
844void 1297void
845ev_default_destroy (void) 1298ev_default_destroy (void)
846{ 1299{
847#if EV_MULTIPLICITY 1300#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1301 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1302#endif
850 1303
1304#ifndef _WIN32
851 ev_ref (EV_A); /* child watcher */ 1305 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev); 1306 ev_signal_stop (EV_A_ &childev);
853 1307#endif
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859 1308
860 loop_destroy (EV_A); 1309 loop_destroy (EV_A);
861} 1310}
862 1311
863void 1312void
864ev_default_fork (void) 1313ev_default_fork (void)
865{ 1314{
866#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop; 1316 struct ev_loop *loop = ev_default_loop_ptr;
868#endif 1317#endif
869 1318
870 if (method) 1319 if (backend)
871 postfork = 1; 1320 postfork = 1; /* must be in line with ev_loop_fork */
872} 1321}
873 1322
874/*****************************************************************************/ 1323/*****************************************************************************/
875 1324
876static void 1325void
1326ev_invoke (EV_P_ void *w, int revents)
1327{
1328 EV_CB_INVOKE ((W)w, revents);
1329}
1330
1331void inline_speed
877call_pending (EV_P) 1332call_pending (EV_P)
878{ 1333{
879 int pri; 1334 int pri;
880 1335
881 for (pri = NUMPRI; pri--; ) 1336 for (pri = NUMPRI; pri--; )
882 while (pendingcnt [pri]) 1337 while (pendingcnt [pri])
883 { 1338 {
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1339 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 1340
886 if (p->w) 1341 if (expect_true (p->w))
887 { 1342 {
1343 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1344
888 p->w->pending = 0; 1345 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 1346 EV_CB_INVOKE (p->w, p->events);
890 } 1347 }
891 } 1348 }
892} 1349}
893 1350
894static void 1351void inline_size
895timers_reify (EV_P) 1352timers_reify (EV_P)
896{ 1353{
897 while (timercnt && ((WT)timers [0])->at <= mn_now) 1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
898 { 1355 {
899 struct ev_timer *w = timers [0]; 1356 ev_timer *w = (ev_timer *)timers [0];
900 1357
901 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
902 1359
903 /* first reschedule or stop timer */ 1360 /* first reschedule or stop timer */
904 if (w->repeat) 1361 if (w->repeat)
905 { 1362 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
907 ((WT)w)->at = mn_now + w->repeat; 1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
908 downheap ((WT *)timers, timercnt, 0); 1369 downheap (timers, timercnt, 0);
909 } 1370 }
910 else 1371 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 1373
913 event (EV_A_ (W)w, EV_TIMEOUT); 1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
914 } 1375 }
915} 1376}
916 1377
917static void 1378#if EV_PERIODIC_ENABLE
1379void inline_size
918periodics_reify (EV_P) 1380periodics_reify (EV_P)
919{ 1381{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
921 { 1383 {
922 struct ev_periodic *w = periodics [0]; 1384 ev_periodic *w = (ev_periodic *)periodics [0];
923 1385
924 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
925 1387
926 /* first reschedule or stop timer */ 1388 /* first reschedule or stop timer */
927 if (w->interval) 1389 if (w->reschedule_cb)
928 { 1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0); 1400 downheap (periodics, periodiccnt, 0);
932 } 1401 }
933 else 1402 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 1404
936 event (EV_A_ (W)w, EV_PERIODIC); 1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
937 } 1406 }
938} 1407}
939 1408
940static void 1409static void noinline
941periodics_reschedule (EV_P) 1410periodics_reschedule (EV_P)
942{ 1411{
943 int i; 1412 int i;
944 1413
945 /* adjust periodics after time jump */ 1414 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i) 1415 for (i = 0; i < periodiccnt; ++i)
947 { 1416 {
948 struct ev_periodic *w = periodics [i]; 1417 ev_periodic *w = (ev_periodic *)periodics [i];
949 1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
950 if (w->interval) 1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430
1431#if EV_IDLE_ENABLE
1432void inline_size
1433idle_reify (EV_P)
1434{
1435 if (expect_false (idleall))
1436 {
1437 int pri;
1438
1439 for (pri = NUMPRI; pri--; )
951 { 1440 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1441 if (pendingcnt [pri])
1442 break;
953 1443
954 if (fabs (diff) >= 1e-4) 1444 if (idlecnt [pri])
955 { 1445 {
956 ev_periodic_stop (EV_A_ w); 1446 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
957 ev_periodic_start (EV_A_ w); 1447 break;
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 } 1448 }
961 } 1449 }
962 } 1450 }
963} 1451}
1452#endif
964 1453
965inline int 1454void inline_speed
966time_update_monotonic (EV_P) 1455time_update (EV_P_ ev_tstamp max_block)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
983static void
984time_update (EV_P)
985{ 1456{
986 int i; 1457 int i;
987 1458
988#if EV_USE_MONOTONIC 1459#if EV_USE_MONOTONIC
989 if (expect_true (have_monotonic)) 1460 if (expect_true (have_monotonic))
990 { 1461 {
991 if (time_update_monotonic (EV_A)) 1462 ev_tstamp odiff = rtmn_diff;
1463
1464 mn_now = get_clock ();
1465
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1467 /* interpolate in the meantime */
1468 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
992 { 1469 {
993 ev_tstamp odiff = rtmn_diff; 1470 ev_rt_now = rtmn_diff + mn_now;
1471 return;
1472 }
994 1473
1474 now_floor = mn_now;
1475 ev_rt_now = ev_time ();
1476
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1477 /* loop a few times, before making important decisions.
1478 * on the choice of "4": one iteration isn't enough,
1479 * in case we get preempted during the calls to
1480 * ev_time and get_clock. a second call is almost guaranteed
1481 * to succeed in that case, though. and looping a few more times
1482 * doesn't hurt either as we only do this on time-jumps or
1483 * in the unlikely event of having been preempted here.
1484 */
1485 for (i = 4; --i; )
996 { 1486 {
997 rtmn_diff = rt_now - mn_now; 1487 rtmn_diff = ev_rt_now - mn_now;
998 1488
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */ 1490 return; /* all is well */
1001 1491
1002 rt_now = ev_time (); 1492 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 1493 mn_now = get_clock ();
1004 now_floor = mn_now; 1494 now_floor = mn_now;
1005 } 1495 }
1006 1496
1497# if EV_PERIODIC_ENABLE
1498 periodics_reschedule (EV_A);
1499# endif
1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502 }
1503 else
1504#endif
1505 {
1506 ev_rt_now = ev_time ();
1507
1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1509 {
1510#if EV_PERIODIC_ENABLE
1007 periodics_reschedule (EV_A); 1511 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 1512#endif
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i)
1515 ((WT)timers [i])->at += ev_rt_now - mn_now;
1010 } 1516 }
1011 }
1012 else
1013#endif
1014 {
1015 rt_now = ev_time ();
1016 1517
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 {
1019 periodics_reschedule (EV_A);
1020
1021 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now;
1024 }
1025
1026 mn_now = rt_now; 1518 mn_now = ev_rt_now;
1027 } 1519 }
1028} 1520}
1029 1521
1030void 1522void
1031ev_ref (EV_P) 1523ev_ref (EV_P)
1042static int loop_done; 1534static int loop_done;
1043 1535
1044void 1536void
1045ev_loop (EV_P_ int flags) 1537ev_loop (EV_P_ int flags)
1046{ 1538{
1047 double block;
1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1540 ? EVUNLOOP_ONE
1541 : EVUNLOOP_CANCEL;
1542
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1049 1544
1050 do 1545 do
1051 { 1546 {
1547#ifndef _WIN32
1548 if (expect_false (curpid)) /* penalise the forking check even more */
1549 if (expect_false (getpid () != curpid))
1550 {
1551 curpid = getpid ();
1552 postfork = 1;
1553 }
1554#endif
1555
1556#if EV_FORK_ENABLE
1557 /* we might have forked, so queue fork handlers */
1558 if (expect_false (postfork))
1559 if (forkcnt)
1560 {
1561 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1562 call_pending (EV_A);
1563 }
1564#endif
1565
1052 /* queue check watchers (and execute them) */ 1566 /* queue prepare watchers (and execute them) */
1053 if (expect_false (preparecnt)) 1567 if (expect_false (preparecnt))
1054 { 1568 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1569 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056 call_pending (EV_A); 1570 call_pending (EV_A);
1057 } 1571 }
1058 1572
1573 if (expect_false (!activecnt))
1574 break;
1575
1059 /* we might have forked, so reify kernel state if necessary */ 1576 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork)) 1577 if (expect_false (postfork))
1061 loop_fork (EV_A); 1578 loop_fork (EV_A);
1062 1579
1063 /* update fd-related kernel structures */ 1580 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 1581 fd_reify (EV_A);
1065 1582
1066 /* calculate blocking time */ 1583 /* calculate blocking time */
1584 {
1585 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.;
1067 1587
1068 /* we only need this for !monotonic clockor timers, but as we basically 1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1069 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else
1074#endif
1075 { 1589 {
1076 rt_now = ev_time (); 1590 /* update time to cancel out callback processing overhead */
1077 mn_now = rt_now; 1591 time_update (EV_A_ 1e100);
1078 }
1079 1592
1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.;
1082 else
1083 {
1084 block = MAX_BLOCKTIME; 1593 waittime = MAX_BLOCKTIME;
1085 1594
1086 if (timercnt) 1595 if (timercnt)
1087 { 1596 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1089 if (block > to) block = to; 1598 if (waittime > to) waittime = to;
1090 } 1599 }
1091 1600
1601#if EV_PERIODIC_ENABLE
1092 if (periodiccnt) 1602 if (periodiccnt)
1093 { 1603 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1095 if (block > to) block = to; 1605 if (waittime > to) waittime = to;
1096 } 1606 }
1607#endif
1097 1608
1098 if (block < 0.) block = 0.; 1609 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime;
1611
1612 sleeptime = waittime - backend_fudge;
1613
1614 if (expect_true (sleeptime > io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 {
1619 ev_sleep (sleeptime);
1620 waittime -= sleeptime;
1621 }
1099 } 1622 }
1100 1623
1101 method_poll (EV_A_ block); 1624 ++loop_count;
1625 backend_poll (EV_A_ waittime);
1102 1626
1103 /* update rt_now, do magic */ 1627 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 1628 time_update (EV_A_ waittime + sleeptime);
1629 }
1105 1630
1106 /* queue pending timers and reschedule them */ 1631 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 1632 timers_reify (EV_A); /* relative timers called last */
1633#if EV_PERIODIC_ENABLE
1108 periodics_reify (EV_A); /* absolute timers called first */ 1634 periodics_reify (EV_A); /* absolute timers called first */
1635#endif
1109 1636
1637#if EV_IDLE_ENABLE
1110 /* queue idle watchers unless io or timers are pending */ 1638 /* queue idle watchers unless other events are pending */
1111 if (!pendingcnt) 1639 idle_reify (EV_A);
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1640#endif
1113 1641
1114 /* queue check watchers, to be executed first */ 1642 /* queue check watchers, to be executed first */
1115 if (checkcnt) 1643 if (expect_false (checkcnt))
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1117 1645
1118 call_pending (EV_A); 1646 call_pending (EV_A);
1647
1119 } 1648 }
1120 while (activecnt && !loop_done); 1649 while (expect_true (activecnt && !loop_done));
1121 1650
1122 if (loop_done != 2) 1651 if (loop_done == EVUNLOOP_ONE)
1123 loop_done = 0; 1652 loop_done = EVUNLOOP_CANCEL;
1124} 1653}
1125 1654
1126void 1655void
1127ev_unloop (EV_P_ int how) 1656ev_unloop (EV_P_ int how)
1128{ 1657{
1129 loop_done = how; 1658 loop_done = how;
1130} 1659}
1131 1660
1132/*****************************************************************************/ 1661/*****************************************************************************/
1133 1662
1134inline void 1663void inline_size
1135wlist_add (WL *head, WL elem) 1664wlist_add (WL *head, WL elem)
1136{ 1665{
1137 elem->next = *head; 1666 elem->next = *head;
1138 *head = elem; 1667 *head = elem;
1139} 1668}
1140 1669
1141inline void 1670void inline_size
1142wlist_del (WL *head, WL elem) 1671wlist_del (WL *head, WL elem)
1143{ 1672{
1144 while (*head) 1673 while (*head)
1145 { 1674 {
1146 if (*head == elem) 1675 if (*head == elem)
1151 1680
1152 head = &(*head)->next; 1681 head = &(*head)->next;
1153 } 1682 }
1154} 1683}
1155 1684
1156inline void 1685void inline_speed
1157ev_clear_pending (EV_P_ W w) 1686clear_pending (EV_P_ W w)
1158{ 1687{
1159 if (w->pending) 1688 if (w->pending)
1160 { 1689 {
1161 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1690 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1162 w->pending = 0; 1691 w->pending = 0;
1163 } 1692 }
1164} 1693}
1165 1694
1166inline void 1695int
1696ev_clear_pending (EV_P_ void *w)
1697{
1698 W w_ = (W)w;
1699 int pending = w_->pending;
1700
1701 if (expect_true (pending))
1702 {
1703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1704 w_->pending = 0;
1705 p->w = 0;
1706 return p->events;
1707 }
1708 else
1709 return 0;
1710}
1711
1712void inline_size
1713pri_adjust (EV_P_ W w)
1714{
1715 int pri = w->priority;
1716 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1718 w->priority = pri;
1719}
1720
1721void inline_speed
1167ev_start (EV_P_ W w, int active) 1722ev_start (EV_P_ W w, int active)
1168{ 1723{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1724 pri_adjust (EV_A_ w);
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
1172 w->active = active; 1725 w->active = active;
1173 ev_ref (EV_A); 1726 ev_ref (EV_A);
1174} 1727}
1175 1728
1176inline void 1729void inline_size
1177ev_stop (EV_P_ W w) 1730ev_stop (EV_P_ W w)
1178{ 1731{
1179 ev_unref (EV_A); 1732 ev_unref (EV_A);
1180 w->active = 0; 1733 w->active = 0;
1181} 1734}
1182 1735
1183/*****************************************************************************/ 1736/*****************************************************************************/
1184 1737
1185void 1738void noinline
1186ev_io_start (EV_P_ struct ev_io *w) 1739ev_io_start (EV_P_ ev_io *w)
1187{ 1740{
1188 int fd = w->fd; 1741 int fd = w->fd;
1189 1742
1190 if (ev_is_active (w)) 1743 if (expect_false (ev_is_active (w)))
1191 return; 1744 return;
1192 1745
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 1746 assert (("ev_io_start called with negative fd", fd >= 0));
1194 1747
1195 ev_start (EV_A_ (W)w, 1); 1748 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1750 wlist_add (&anfds[fd].head, (WL)w);
1198 1751
1199 fd_change (EV_A_ fd); 1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1753 w->events &= ~EV_IOFDSET;
1200} 1754}
1201 1755
1202void 1756void noinline
1203ev_io_stop (EV_P_ struct ev_io *w) 1757ev_io_stop (EV_P_ ev_io *w)
1204{ 1758{
1205 ev_clear_pending (EV_A_ (W)w); 1759 clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 1760 if (expect_false (!ev_is_active (w)))
1207 return; 1761 return;
1208 1762
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1764
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1765 wlist_del (&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1211 1767
1212 fd_change (EV_A_ w->fd); 1768 fd_change (EV_A_ w->fd, 1);
1213} 1769}
1214 1770
1215void 1771void noinline
1216ev_timer_start (EV_P_ struct ev_timer *w) 1772ev_timer_start (EV_P_ ev_timer *w)
1217{ 1773{
1218 if (ev_is_active (w)) 1774 if (expect_false (ev_is_active (w)))
1219 return; 1775 return;
1220 1776
1221 ((WT)w)->at += mn_now; 1777 ((WT)w)->at += mn_now;
1222 1778
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 1780
1225 ev_start (EV_A_ (W)w, ++timercnt); 1781 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, ); 1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1227 timers [timercnt - 1] = w; 1783 timers [timercnt - 1] = (WT)w;
1228 upheap ((WT *)timers, timercnt - 1); 1784 upheap (timers, timercnt - 1);
1229 1785
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1231} 1787}
1232 1788
1233void 1789void noinline
1234ev_timer_stop (EV_P_ struct ev_timer *w) 1790ev_timer_stop (EV_P_ ev_timer *w)
1235{ 1791{
1236 ev_clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1237 if (!ev_is_active (w)) 1793 if (expect_false (!ev_is_active (w)))
1238 return; 1794 return;
1239 1795
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1241 1797
1242 if (((W)w)->active < timercnt--) 1798 {
1799 int active = ((W)w)->active;
1800
1801 if (expect_true (--active < --timercnt))
1243 { 1802 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 1803 timers [active] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1804 adjustheap (timers, timercnt, active);
1246 } 1805 }
1806 }
1247 1807
1248 ((WT)w)->at = w->repeat; 1808 ((WT)w)->at -= mn_now;
1249 1809
1250 ev_stop (EV_A_ (W)w); 1810 ev_stop (EV_A_ (W)w);
1251} 1811}
1252 1812
1253void 1813void noinline
1254ev_timer_again (EV_P_ struct ev_timer *w) 1814ev_timer_again (EV_P_ ev_timer *w)
1255{ 1815{
1256 if (ev_is_active (w)) 1816 if (ev_is_active (w))
1257 { 1817 {
1258 if (w->repeat) 1818 if (w->repeat)
1259 { 1819 {
1260 ((WT)w)->at = mn_now + w->repeat; 1820 ((WT)w)->at = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1821 adjustheap (timers, timercnt, ((W)w)->active - 1);
1262 } 1822 }
1263 else 1823 else
1264 ev_timer_stop (EV_A_ w); 1824 ev_timer_stop (EV_A_ w);
1265 } 1825 }
1266 else if (w->repeat) 1826 else if (w->repeat)
1827 {
1828 w->at = w->repeat;
1267 ev_timer_start (EV_A_ w); 1829 ev_timer_start (EV_A_ w);
1830 }
1268} 1831}
1269 1832
1270void 1833#if EV_PERIODIC_ENABLE
1834void noinline
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 1835ev_periodic_start (EV_P_ ev_periodic *w)
1272{ 1836{
1273 if (ev_is_active (w)) 1837 if (expect_false (ev_is_active (w)))
1274 return; 1838 return;
1275 1839
1840 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval)
1843 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 1845 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 }
1848 else
1849 ((WT)w)->at = w->offset;
1281 1850
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 1851 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1284 periodics [periodiccnt - 1] = w; 1853 periodics [periodiccnt - 1] = (WT)w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 1854 upheap (periodics, periodiccnt - 1);
1286 1855
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1288} 1857}
1289 1858
1290void 1859void noinline
1291ev_periodic_stop (EV_P_ struct ev_periodic *w) 1860ev_periodic_stop (EV_P_ ev_periodic *w)
1292{ 1861{
1293 ev_clear_pending (EV_A_ (W)w); 1862 clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w)) 1863 if (expect_false (!ev_is_active (w)))
1295 return; 1864 return;
1296 1865
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1298 1867
1299 if (((W)w)->active < periodiccnt--) 1868 {
1869 int active = ((W)w)->active;
1870
1871 if (expect_true (--active < --periodiccnt))
1300 { 1872 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1873 periodics [active] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1874 adjustheap (periodics, periodiccnt, active);
1303 } 1875 }
1876 }
1304 1877
1305 ev_stop (EV_A_ (W)w); 1878 ev_stop (EV_A_ (W)w);
1306} 1879}
1307 1880
1308void 1881void noinline
1309ev_idle_start (EV_P_ struct ev_idle *w) 1882ev_periodic_again (EV_P_ ev_periodic *w)
1310{ 1883{
1311 if (ev_is_active (w)) 1884 /* TODO: use adjustheap and recalculation */
1312 return;
1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w); 1885 ev_periodic_stop (EV_A_ w);
1886 ev_periodic_start (EV_A_ w);
1328} 1887}
1329 1888#endif
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373 1889
1374#ifndef SA_RESTART 1890#ifndef SA_RESTART
1375# define SA_RESTART 0 1891# define SA_RESTART 0
1376#endif 1892#endif
1377 1893
1378void 1894void noinline
1379ev_signal_start (EV_P_ struct ev_signal *w) 1895ev_signal_start (EV_P_ ev_signal *w)
1380{ 1896{
1381#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1898 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1383#endif 1899#endif
1384 if (ev_is_active (w)) 1900 if (expect_false (ev_is_active (w)))
1385 return; 1901 return;
1386 1902
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388 1904
1905 evpipe_init (EV_A);
1906
1907 {
1908#ifndef _WIN32
1909 sigset_t full, prev;
1910 sigfillset (&full);
1911 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif
1913
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1915
1916#ifndef _WIN32
1917 sigprocmask (SIG_SETMASK, &prev, 0);
1918#endif
1919 }
1920
1389 ev_start (EV_A_ (W)w, 1); 1921 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1922 wlist_add (&signals [w->signum - 1].head, (WL)w);
1392 1923
1393 if (!((WL)w)->next) 1924 if (!((WL)w)->next)
1394 { 1925 {
1395#if WIN32 1926#if _WIN32
1396 signal (w->signum, sighandler); 1927 signal (w->signum, sighandler);
1397#else 1928#else
1398 struct sigaction sa; 1929 struct sigaction sa;
1399 sa.sa_handler = sighandler; 1930 sa.sa_handler = sighandler;
1400 sigfillset (&sa.sa_mask); 1931 sigfillset (&sa.sa_mask);
1402 sigaction (w->signum, &sa, 0); 1933 sigaction (w->signum, &sa, 0);
1403#endif 1934#endif
1404 } 1935 }
1405} 1936}
1406 1937
1407void 1938void noinline
1408ev_signal_stop (EV_P_ struct ev_signal *w) 1939ev_signal_stop (EV_P_ ev_signal *w)
1409{ 1940{
1410 ev_clear_pending (EV_A_ (W)w); 1941 clear_pending (EV_A_ (W)w);
1411 if (!ev_is_active (w)) 1942 if (expect_false (!ev_is_active (w)))
1412 return; 1943 return;
1413 1944
1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1945 wlist_del (&signals [w->signum - 1].head, (WL)w);
1415 ev_stop (EV_A_ (W)w); 1946 ev_stop (EV_A_ (W)w);
1416 1947
1417 if (!signals [w->signum - 1].head) 1948 if (!signals [w->signum - 1].head)
1418 signal (w->signum, SIG_DFL); 1949 signal (w->signum, SIG_DFL);
1419} 1950}
1420 1951
1421void 1952void
1422ev_child_start (EV_P_ struct ev_child *w) 1953ev_child_start (EV_P_ ev_child *w)
1423{ 1954{
1424#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1956 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1426#endif 1957#endif
1427 if (ev_is_active (w)) 1958 if (expect_false (ev_is_active (w)))
1428 return; 1959 return;
1429 1960
1430 ev_start (EV_A_ (W)w, 1); 1961 ev_start (EV_A_ (W)w, 1);
1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1432} 1963}
1433 1964
1434void 1965void
1435ev_child_stop (EV_P_ struct ev_child *w) 1966ev_child_stop (EV_P_ ev_child *w)
1436{ 1967{
1437 ev_clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 1969 if (expect_false (!ev_is_active (w)))
1439 return; 1970 return;
1440 1971
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1442 ev_stop (EV_A_ (W)w); 1973 ev_stop (EV_A_ (W)w);
1443} 1974}
1444 1975
1976#if EV_STAT_ENABLE
1977
1978# ifdef _WIN32
1979# undef lstat
1980# define lstat(a,b) _stati64 (a,b)
1981# endif
1982
1983#define DEF_STAT_INTERVAL 5.0074891
1984#define MIN_STAT_INTERVAL 0.1074891
1985
1986static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1987
1988#if EV_USE_INOTIFY
1989# define EV_INOTIFY_BUFSIZE 8192
1990
1991static void noinline
1992infy_add (EV_P_ ev_stat *w)
1993{
1994 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1995
1996 if (w->wd < 0)
1997 {
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1999
2000 /* monitor some parent directory for speedup hints */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 {
2003 char path [4096];
2004 strcpy (path, w->path);
2005
2006 do
2007 {
2008 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2009 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2010
2011 char *pend = strrchr (path, '/');
2012
2013 if (!pend)
2014 break; /* whoops, no '/', complain to your admin */
2015
2016 *pend = 0;
2017 w->wd = inotify_add_watch (fs_fd, path, mask);
2018 }
2019 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2020 }
2021 }
2022 else
2023 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2024
2025 if (w->wd >= 0)
2026 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2027}
2028
2029static void noinline
2030infy_del (EV_P_ ev_stat *w)
2031{
2032 int slot;
2033 int wd = w->wd;
2034
2035 if (wd < 0)
2036 return;
2037
2038 w->wd = -2;
2039 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2040 wlist_del (&fs_hash [slot].head, (WL)w);
2041
2042 /* remove this watcher, if others are watching it, they will rearm */
2043 inotify_rm_watch (fs_fd, wd);
2044}
2045
2046static void noinline
2047infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2048{
2049 if (slot < 0)
2050 /* overflow, need to check for all hahs slots */
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2052 infy_wd (EV_A_ slot, wd, ev);
2053 else
2054 {
2055 WL w_;
2056
2057 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2058 {
2059 ev_stat *w = (ev_stat *)w_;
2060 w_ = w_->next; /* lets us remove this watcher and all before it */
2061
2062 if (w->wd == wd || wd == -1)
2063 {
2064 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2065 {
2066 w->wd = -1;
2067 infy_add (EV_A_ w); /* re-add, no matter what */
2068 }
2069
2070 stat_timer_cb (EV_A_ &w->timer, 0);
2071 }
2072 }
2073 }
2074}
2075
2076static void
2077infy_cb (EV_P_ ev_io *w, int revents)
2078{
2079 char buf [EV_INOTIFY_BUFSIZE];
2080 struct inotify_event *ev = (struct inotify_event *)buf;
2081 int ofs;
2082 int len = read (fs_fd, buf, sizeof (buf));
2083
2084 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2085 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2086}
2087
2088void inline_size
2089infy_init (EV_P)
2090{
2091 if (fs_fd != -2)
2092 return;
2093
2094 fs_fd = inotify_init ();
2095
2096 if (fs_fd >= 0)
2097 {
2098 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2099 ev_set_priority (&fs_w, EV_MAXPRI);
2100 ev_io_start (EV_A_ &fs_w);
2101 }
2102}
2103
2104void inline_size
2105infy_fork (EV_P)
2106{
2107 int slot;
2108
2109 if (fs_fd < 0)
2110 return;
2111
2112 close (fs_fd);
2113 fs_fd = inotify_init ();
2114
2115 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2116 {
2117 WL w_ = fs_hash [slot].head;
2118 fs_hash [slot].head = 0;
2119
2120 while (w_)
2121 {
2122 ev_stat *w = (ev_stat *)w_;
2123 w_ = w_->next; /* lets us add this watcher */
2124
2125 w->wd = -1;
2126
2127 if (fs_fd >= 0)
2128 infy_add (EV_A_ w); /* re-add, no matter what */
2129 else
2130 ev_timer_start (EV_A_ &w->timer);
2131 }
2132
2133 }
2134}
2135
2136#endif
2137
2138void
2139ev_stat_stat (EV_P_ ev_stat *w)
2140{
2141 if (lstat (w->path, &w->attr) < 0)
2142 w->attr.st_nlink = 0;
2143 else if (!w->attr.st_nlink)
2144 w->attr.st_nlink = 1;
2145}
2146
2147static void noinline
2148stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2149{
2150 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2151
2152 /* we copy this here each the time so that */
2153 /* prev has the old value when the callback gets invoked */
2154 w->prev = w->attr;
2155 ev_stat_stat (EV_A_ w);
2156
2157 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2158 if (
2159 w->prev.st_dev != w->attr.st_dev
2160 || w->prev.st_ino != w->attr.st_ino
2161 || w->prev.st_mode != w->attr.st_mode
2162 || w->prev.st_nlink != w->attr.st_nlink
2163 || w->prev.st_uid != w->attr.st_uid
2164 || w->prev.st_gid != w->attr.st_gid
2165 || w->prev.st_rdev != w->attr.st_rdev
2166 || w->prev.st_size != w->attr.st_size
2167 || w->prev.st_atime != w->attr.st_atime
2168 || w->prev.st_mtime != w->attr.st_mtime
2169 || w->prev.st_ctime != w->attr.st_ctime
2170 ) {
2171 #if EV_USE_INOTIFY
2172 infy_del (EV_A_ w);
2173 infy_add (EV_A_ w);
2174 ev_stat_stat (EV_A_ w); /* avoid race... */
2175 #endif
2176
2177 ev_feed_event (EV_A_ w, EV_STAT);
2178 }
2179}
2180
2181void
2182ev_stat_start (EV_P_ ev_stat *w)
2183{
2184 if (expect_false (ev_is_active (w)))
2185 return;
2186
2187 /* since we use memcmp, we need to clear any padding data etc. */
2188 memset (&w->prev, 0, sizeof (ev_statdata));
2189 memset (&w->attr, 0, sizeof (ev_statdata));
2190
2191 ev_stat_stat (EV_A_ w);
2192
2193 if (w->interval < MIN_STAT_INTERVAL)
2194 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2195
2196 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2197 ev_set_priority (&w->timer, ev_priority (w));
2198
2199#if EV_USE_INOTIFY
2200 infy_init (EV_A);
2201
2202 if (fs_fd >= 0)
2203 infy_add (EV_A_ w);
2204 else
2205#endif
2206 ev_timer_start (EV_A_ &w->timer);
2207
2208 ev_start (EV_A_ (W)w, 1);
2209}
2210
2211void
2212ev_stat_stop (EV_P_ ev_stat *w)
2213{
2214 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w)))
2216 return;
2217
2218#if EV_USE_INOTIFY
2219 infy_del (EV_A_ w);
2220#endif
2221 ev_timer_stop (EV_A_ &w->timer);
2222
2223 ev_stop (EV_A_ (W)w);
2224}
2225#endif
2226
2227#if EV_IDLE_ENABLE
2228void
2229ev_idle_start (EV_P_ ev_idle *w)
2230{
2231 if (expect_false (ev_is_active (w)))
2232 return;
2233
2234 pri_adjust (EV_A_ (W)w);
2235
2236 {
2237 int active = ++idlecnt [ABSPRI (w)];
2238
2239 ++idleall;
2240 ev_start (EV_A_ (W)w, active);
2241
2242 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2243 idles [ABSPRI (w)][active - 1] = w;
2244 }
2245}
2246
2247void
2248ev_idle_stop (EV_P_ ev_idle *w)
2249{
2250 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w)))
2252 return;
2253
2254 {
2255 int active = ((W)w)->active;
2256
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2259
2260 ev_stop (EV_A_ (W)w);
2261 --idleall;
2262 }
2263}
2264#endif
2265
2266void
2267ev_prepare_start (EV_P_ ev_prepare *w)
2268{
2269 if (expect_false (ev_is_active (w)))
2270 return;
2271
2272 ev_start (EV_A_ (W)w, ++preparecnt);
2273 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2274 prepares [preparecnt - 1] = w;
2275}
2276
2277void
2278ev_prepare_stop (EV_P_ ev_prepare *w)
2279{
2280 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w)))
2282 return;
2283
2284 {
2285 int active = ((W)w)->active;
2286 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active;
2288 }
2289
2290 ev_stop (EV_A_ (W)w);
2291}
2292
2293void
2294ev_check_start (EV_P_ ev_check *w)
2295{
2296 if (expect_false (ev_is_active (w)))
2297 return;
2298
2299 ev_start (EV_A_ (W)w, ++checkcnt);
2300 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2301 checks [checkcnt - 1] = w;
2302}
2303
2304void
2305ev_check_stop (EV_P_ ev_check *w)
2306{
2307 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w)))
2309 return;
2310
2311 {
2312 int active = ((W)w)->active;
2313 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active;
2315 }
2316
2317 ev_stop (EV_A_ (W)w);
2318}
2319
2320#if EV_EMBED_ENABLE
2321void noinline
2322ev_embed_sweep (EV_P_ ev_embed *w)
2323{
2324 ev_loop (w->other, EVLOOP_NONBLOCK);
2325}
2326
2327static void
2328embed_io_cb (EV_P_ ev_io *io, int revents)
2329{
2330 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2331
2332 if (ev_cb (w))
2333 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2334 else
2335 ev_loop (w->other, EVLOOP_NONBLOCK);
2336}
2337
2338static void
2339embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2340{
2341 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2342
2343 {
2344 struct ev_loop *loop = w->other;
2345
2346 while (fdchangecnt)
2347 {
2348 fd_reify (EV_A);
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2350 }
2351 }
2352}
2353
2354#if 0
2355static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2357{
2358 ev_idle_stop (EV_A_ idle);
2359}
2360#endif
2361
2362void
2363ev_embed_start (EV_P_ ev_embed *w)
2364{
2365 if (expect_false (ev_is_active (w)))
2366 return;
2367
2368 {
2369 struct ev_loop *loop = w->other;
2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2372 }
2373
2374 ev_set_priority (&w->io, ev_priority (w));
2375 ev_io_start (EV_A_ &w->io);
2376
2377 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare);
2380
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382
2383 ev_start (EV_A_ (W)w, 1);
2384}
2385
2386void
2387ev_embed_stop (EV_P_ ev_embed *w)
2388{
2389 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w)))
2391 return;
2392
2393 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare);
2395
2396 ev_stop (EV_A_ (W)w);
2397}
2398#endif
2399
2400#if EV_FORK_ENABLE
2401void
2402ev_fork_start (EV_P_ ev_fork *w)
2403{
2404 if (expect_false (ev_is_active (w)))
2405 return;
2406
2407 ev_start (EV_A_ (W)w, ++forkcnt);
2408 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2409 forks [forkcnt - 1] = w;
2410}
2411
2412void
2413ev_fork_stop (EV_P_ ev_fork *w)
2414{
2415 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w)))
2417 return;
2418
2419 {
2420 int active = ((W)w)->active;
2421 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active;
2423 }
2424
2425 ev_stop (EV_A_ (W)w);
2426}
2427#endif
2428
2429#if EV_ASYNC_ENABLE
2430void
2431ev_async_start (EV_P_ ev_async *w)
2432{
2433 if (expect_false (ev_is_active (w)))
2434 return;
2435
2436 evpipe_init (EV_A);
2437
2438 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w;
2441}
2442
2443void
2444ev_async_stop (EV_P_ ev_async *w)
2445{
2446 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w)))
2448 return;
2449
2450 {
2451 int active = ((W)w)->active;
2452 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active;
2454 }
2455
2456 ev_stop (EV_A_ (W)w);
2457}
2458
2459void
2460ev_async_send (EV_P_ ev_async *w)
2461{
2462 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1);
2464}
2465#endif
2466
1445/*****************************************************************************/ 2467/*****************************************************************************/
1446 2468
1447struct ev_once 2469struct ev_once
1448{ 2470{
1449 struct ev_io io; 2471 ev_io io;
1450 struct ev_timer to; 2472 ev_timer to;
1451 void (*cb)(int revents, void *arg); 2473 void (*cb)(int revents, void *arg);
1452 void *arg; 2474 void *arg;
1453}; 2475};
1454 2476
1455static void 2477static void
1464 2486
1465 cb (revents, arg); 2487 cb (revents, arg);
1466} 2488}
1467 2489
1468static void 2490static void
1469once_cb_io (EV_P_ struct ev_io *w, int revents) 2491once_cb_io (EV_P_ ev_io *w, int revents)
1470{ 2492{
1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2493 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1472} 2494}
1473 2495
1474static void 2496static void
1475once_cb_to (EV_P_ struct ev_timer *w, int revents) 2497once_cb_to (EV_P_ ev_timer *w, int revents)
1476{ 2498{
1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1478} 2500}
1479 2501
1480void 2502void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2503ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 2504{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 2505 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 2506
1485 if (!once) 2507 if (expect_false (!once))
2508 {
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2509 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else 2510 return;
1488 { 2511 }
2512
1489 once->cb = cb; 2513 once->cb = cb;
1490 once->arg = arg; 2514 once->arg = arg;
1491 2515
1492 ev_watcher_init (&once->io, once_cb_io); 2516 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 2517 if (fd >= 0)
1494 { 2518 {
1495 ev_io_set (&once->io, fd, events); 2519 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io); 2520 ev_io_start (EV_A_ &once->io);
1497 } 2521 }
1498 2522
1499 ev_watcher_init (&once->to, once_cb_to); 2523 ev_init (&once->to, once_cb_to);
1500 if (timeout >= 0.) 2524 if (timeout >= 0.)
1501 { 2525 {
1502 ev_timer_set (&once->to, timeout, 0.); 2526 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to); 2527 ev_timer_start (EV_A_ &once->to);
1504 }
1505 } 2528 }
1506} 2529}
1507 2530
2531#if EV_MULTIPLICITY
2532 #include "ev_wrap.h"
2533#endif
2534
2535#ifdef __cplusplus
2536}
2537#endif
2538

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines