ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.175 by root, Tue Dec 11 04:08:54 2007 UTC vs.
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
228#else 265#else
229# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
230# define noinline 267# define noinline
251 288
252typedef ev_watcher *W; 289typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
255 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
257 298
258#ifdef _WIN32 299#ifdef _WIN32
259# include "ev_win32.c" 300# include "ev_win32.c"
260#endif 301#endif
261 302
397{ 438{
398 return ev_rt_now; 439 return ev_rt_now;
399} 440}
400#endif 441#endif
401 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
402int inline_size 470int inline_size
403array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
404{ 472{
405 int ncur = cur + 1; 473 int ncur = cur + 1;
406 474
466 pendings [pri][w_->pending - 1].w = w_; 534 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 535 pendings [pri][w_->pending - 1].events = revents;
468 } 536 }
469} 537}
470 538
471void inline_size 539void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 541{
474 int i; 542 int i;
475 543
476 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
523 { 591 {
524 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
526 ev_io *w; 594 ev_io *w;
527 595
528 int events = 0; 596 unsigned char events = 0;
529 597
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 599 events |= (unsigned char)w->events;
532 600
533#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
534 if (events) 602 if (events)
535 { 603 {
536 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
537 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
539 } 611 }
540#endif 612#endif
541 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
542 anfd->reify = 0; 618 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
546 } 624 }
547 625
548 fdchangecnt = 0; 626 fdchangecnt = 0;
549} 627}
550 628
551void inline_size 629void inline_size
552fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
553{ 631{
554 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
558 634
635 if (expect_true (!reify))
636 {
559 ++fdchangecnt; 637 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
562} 641}
563 642
564void inline_speed 643void inline_speed
565fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
566{ 645{
617 696
618 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 698 if (anfds [fd].events)
620 { 699 {
621 anfds [fd].events = 0; 700 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 702 }
624} 703}
625 704
626/*****************************************************************************/ 705/*****************************************************************************/
627 706
628void inline_speed 707void inline_speed
629upheap (WT *heap, int k) 708upheap (WT *heap, int k)
630{ 709{
631 WT w = heap [k]; 710 WT w = heap [k];
632 711
633 while (k && heap [k >> 1]->at > w->at) 712 while (k)
634 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
635 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
636 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
637 k >>= 1; 721 k = p;
638 } 722 }
639 723
640 heap [k] = w; 724 heap [k] = w;
641 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
642
643} 726}
644 727
645void inline_speed 728void inline_speed
646downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
647{ 730{
648 WT w = heap [k]; 731 WT w = heap [k];
649 732
650 while (k < (N >> 1)) 733 for (;;)
651 { 734 {
652 int j = k << 1; 735 int c = (k << 1) + 1;
653 736
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 738 break;
659 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
660 heap [k] = heap [j]; 746 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
662 k = j; 749 k = c;
663 } 750 }
664 751
665 heap [k] = w; 752 heap [k] = w;
666 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
667} 754}
676/*****************************************************************************/ 763/*****************************************************************************/
677 764
678typedef struct 765typedef struct
679{ 766{
680 WL head; 767 WL head;
681 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
682} ANSIG; 769} ANSIG;
683 770
684static ANSIG *signals; 771static ANSIG *signals;
685static int signalmax; 772static int signalmax;
686 773
687static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 775
691void inline_size 776void inline_size
692signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
693{ 778{
694 while (count--) 779 while (count--)
698 783
699 ++base; 784 ++base;
700 } 785 }
701} 786}
702 787
703static void 788/*****************************************************************************/
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753 789
754void inline_speed 790void inline_speed
755fd_intern (int fd) 791fd_intern (int fd)
756{ 792{
757#ifdef _WIN32 793#ifdef _WIN32
762 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 799#endif
764} 800}
765 801
766static void noinline 802static void noinline
767siginit (EV_P) 803evpipe_init (EV_P)
768{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
769 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
771 812
772 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno;
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830 errno = old_errno;
831 }
832}
833
834static void
835pipecb (EV_P_ ev_io *iow, int revents)
836{
837 {
838 int dummy;
839 read (evpipe [0], &dummy, 1);
840 }
841
842 if (gotsig)
843 {
844 int signum;
845 gotsig = 0;
846
847 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1);
850 }
851
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
775} 864}
776 865
777/*****************************************************************************/ 866/*****************************************************************************/
778 867
868static void
869sighandler (int signum)
870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct;
873#endif
874
875#if _WIN32
876 signal (signum, sighandler);
877#endif
878
879 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0);
881}
882
883void noinline
884ev_feed_signal_event (EV_P_ int signum)
885{
886 WL w;
887
888#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
890#endif
891
892 --signum;
893
894 if (signum < 0 || signum >= signalmax)
895 return;
896
897 signals [signum].gotsig = 0;
898
899 for (w = signals [signum].head; w; w = w->next)
900 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
901}
902
903/*****************************************************************************/
904
779static ev_child *childs [EV_PID_HASHSIZE]; 905static WL childs [EV_PID_HASHSIZE];
780 906
781#ifndef _WIN32 907#ifndef _WIN32
782 908
783static ev_signal childev; 909static ev_signal childev;
910
911#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0
913#endif
784 914
785void inline_speed 915void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
787{ 917{
788 ev_child *w; 918 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 920
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 {
791 if (w->pid == pid || !w->pid) 923 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1)))
792 { 925 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
794 w->rpid = pid; 927 w->rpid = pid;
795 w->rstatus = status; 928 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 929 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 930 }
931 }
798} 932}
799 933
800#ifndef WCONTINUED 934#ifndef WCONTINUED
801# define WCONTINUED 0 935# define WCONTINUED 0
802#endif 936#endif
899} 1033}
900 1034
901unsigned int 1035unsigned int
902ev_embeddable_backends (void) 1036ev_embeddable_backends (void)
903{ 1037{
904 return EVBACKEND_EPOLL 1038 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1039
906 | EVBACKEND_PORT; 1040 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1041 /* please fix it and tell me how to detect the fix */
1042 flags &= ~EVBACKEND_EPOLL;
1043
1044 return flags;
907} 1045}
908 1046
909unsigned int 1047unsigned int
910ev_backend (EV_P) 1048ev_backend (EV_P)
911{ 1049{
914 1052
915unsigned int 1053unsigned int
916ev_loop_count (EV_P) 1054ev_loop_count (EV_P)
917{ 1055{
918 return loop_count; 1056 return loop_count;
1057}
1058
1059void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1061{
1062 io_blocktime = interval;
1063}
1064
1065void
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 timeout_blocktime = interval;
919} 1069}
920 1070
921static void noinline 1071static void noinline
922loop_init (EV_P_ unsigned int flags) 1072loop_init (EV_P_ unsigned int flags)
923{ 1073{
934 ev_rt_now = ev_time (); 1084 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1085 mn_now = get_clock ();
936 now_floor = mn_now; 1086 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1087 rtmn_diff = ev_rt_now - mn_now;
938 1088
1089 io_blocktime = 0.;
1090 timeout_blocktime = 0.;
1091
939 /* pid check not overridable via env */ 1092 /* pid check not overridable via env */
940#ifndef _WIN32 1093#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1094 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1095 curpid = getpid ();
943#endif 1096#endif
970#endif 1123#endif
971#if EV_USE_SELECT 1124#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1126#endif
974 1127
975 ev_init (&sigev, sigcb); 1128 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1129 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1130 }
978} 1131}
979 1132
980static void noinline 1133static void noinline
981loop_destroy (EV_P) 1134loop_destroy (EV_P)
982{ 1135{
983 int i; 1136 int i;
1137
1138 if (ev_is_active (&pipeev))
1139 {
1140 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev);
1142
1143 close (evpipe [0]); evpipe [0] = 0;
1144 close (evpipe [1]); evpipe [1] = 0;
1145 }
984 1146
985#if EV_USE_INOTIFY 1147#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1148 if (fs_fd >= 0)
987 close (fs_fd); 1149 close (fs_fd);
988#endif 1150#endif
1011 array_free (pending, [i]); 1173 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1174#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1175 array_free (idle, [i]);
1014#endif 1176#endif
1015 } 1177 }
1178
1179 ev_free (anfds); anfdmax = 0;
1016 1180
1017 /* have to use the microsoft-never-gets-it-right macro */ 1181 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1182 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1183 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1184#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1185 array_free (periodic, EMPTY);
1022#endif 1186#endif
1187#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY);
1189#endif
1023 array_free (prepare, EMPTY); 1190 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1191 array_free (check, EMPTY);
1025 1192
1026 backend = 0; 1193 backend = 0;
1027} 1194}
1042#endif 1209#endif
1043#if EV_USE_INOTIFY 1210#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1211 infy_fork (EV_A);
1045#endif 1212#endif
1046 1213
1047 if (ev_is_active (&sigev)) 1214 if (ev_is_active (&pipeev))
1048 { 1215 {
1049 /* default loop */ 1216 /* this "locks" the handlers against writing to the pipe */
1217 gotsig = gotasync = 1;
1050 1218
1051 ev_ref (EV_A); 1219 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1220 ev_io_stop (EV_A_ &pipeev);
1053 close (sigpipe [0]); 1221 close (evpipe [0]);
1054 close (sigpipe [1]); 1222 close (evpipe [1]);
1055 1223
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1224 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */
1226 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1227 }
1061 1228
1062 postfork = 0; 1229 postfork = 0;
1063} 1230}
1064 1231
1086} 1253}
1087 1254
1088void 1255void
1089ev_loop_fork (EV_P) 1256ev_loop_fork (EV_P)
1090{ 1257{
1091 postfork = 1; 1258 postfork = 1; /* must be in line with ev_default_fork */
1092} 1259}
1093 1260
1094#endif 1261#endif
1095 1262
1096#if EV_MULTIPLICITY 1263#if EV_MULTIPLICITY
1099#else 1266#else
1100int 1267int
1101ev_default_loop (unsigned int flags) 1268ev_default_loop (unsigned int flags)
1102#endif 1269#endif
1103{ 1270{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1271 if (!ev_default_loop_ptr)
1109 { 1272 {
1110#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1274 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1275#else
1115 1278
1116 loop_init (EV_A_ flags); 1279 loop_init (EV_A_ flags);
1117 1280
1118 if (ev_backend (EV_A)) 1281 if (ev_backend (EV_A))
1119 { 1282 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1283#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1284 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1285 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1286 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1287 ev_unref (EV_A); /* child watcher should not keep loop alive */
1143#ifndef _WIN32 1304#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1305 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1306 ev_signal_stop (EV_A_ &childev);
1146#endif 1307#endif
1147 1308
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1309 loop_destroy (EV_A);
1155} 1310}
1156 1311
1157void 1312void
1158ev_default_fork (void) 1313ev_default_fork (void)
1160#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1316 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1317#endif
1163 1318
1164 if (backend) 1319 if (backend)
1165 postfork = 1; 1320 postfork = 1; /* must be in line with ev_loop_fork */
1166} 1321}
1167 1322
1168/*****************************************************************************/ 1323/*****************************************************************************/
1169 1324
1170void 1325void
1196void inline_size 1351void inline_size
1197timers_reify (EV_P) 1352timers_reify (EV_P)
1198{ 1353{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 { 1355 {
1201 ev_timer *w = timers [0]; 1356 ev_timer *w = (ev_timer *)timers [0];
1202 1357
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1359
1205 /* first reschedule or stop timer */ 1360 /* first reschedule or stop timer */
1206 if (w->repeat) 1361 if (w->repeat)
1209 1364
1210 ((WT)w)->at += w->repeat; 1365 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now) 1366 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now; 1367 ((WT)w)->at = mn_now;
1213 1368
1214 downheap ((WT *)timers, timercnt, 0); 1369 downheap (timers, timercnt, 0);
1215 } 1370 }
1216 else 1371 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1373
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1224void inline_size 1379void inline_size
1225periodics_reify (EV_P) 1380periodics_reify (EV_P)
1226{ 1381{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 1383 {
1229 ev_periodic *w = periodics [0]; 1384 ev_periodic *w = (ev_periodic *)periodics [0];
1230 1385
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1387
1233 /* first reschedule or stop timer */ 1388 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1389 if (w->reschedule_cb)
1235 { 1390 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001220703125 /* 1/8192 */); 1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1393 downheap (periodics, periodiccnt, 0);
1239 } 1394 }
1240 else if (w->interval) 1395 else if (w->interval)
1241 { 1396 {
1242 ((WT)w)->at = w->offset + (floor ((ev_rt_now - w->offset) / w->interval) + 1.) * w->interval; 1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1400 downheap (periodics, periodiccnt, 0);
1245 } 1401 }
1246 else 1402 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1404
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1412 int i;
1257 1413
1258 /* adjust periodics after time jump */ 1414 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1415 for (i = 0; i < periodiccnt; ++i)
1260 { 1416 {
1261 ev_periodic *w = periodics [i]; 1417 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1418
1263 if (w->reschedule_cb) 1419 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1421 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1423 }
1268 1424
1269 /* now rebuild the heap */ 1425 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1426 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1427 downheap (periodics, periodiccnt, i);
1272} 1428}
1273#endif 1429#endif
1274 1430
1275#if EV_IDLE_ENABLE 1431#if EV_IDLE_ENABLE
1276void inline_size 1432void inline_size
1293 } 1449 }
1294 } 1450 }
1295} 1451}
1296#endif 1452#endif
1297 1453
1298int inline_size 1454void inline_speed
1299time_update_monotonic (EV_P) 1455time_update (EV_P_ ev_tstamp max_block)
1300{ 1456{
1457 int i;
1458
1459#if EV_USE_MONOTONIC
1460 if (expect_true (have_monotonic))
1461 {
1462 ev_tstamp odiff = rtmn_diff;
1463
1301 mn_now = get_clock (); 1464 mn_now = get_clock ();
1302 1465
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1467 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1468 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1469 {
1305 ev_rt_now = rtmn_diff + mn_now; 1470 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1471 return;
1307 } 1472 }
1308 else 1473
1309 {
1310 now_floor = mn_now; 1474 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1475 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1476
1316void inline_size 1477 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1478 * on the choice of "4": one iteration isn't enough,
1318{ 1479 * in case we get preempted during the calls to
1319 int i; 1480 * ev_time and get_clock. a second call is almost guaranteed
1320 1481 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1482 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1483 * in the unlikely event of having been preempted here.
1323 { 1484 */
1324 if (time_update_monotonic (EV_A)) 1485 for (i = 4; --i; )
1325 { 1486 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1487 rtmn_diff = ev_rt_now - mn_now;
1339 1488
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1341 return; /* all is well */ 1490 return; /* all is well */
1342 1491
1343 ev_rt_now = ev_time (); 1492 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1493 mn_now = get_clock ();
1345 now_floor = mn_now; 1494 now_floor = mn_now;
1346 } 1495 }
1347 1496
1348# if EV_PERIODIC_ENABLE 1497# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1498 periodics_reschedule (EV_A);
1350# endif 1499# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1502 }
1355 else 1503 else
1356#endif 1504#endif
1357 { 1505 {
1358 ev_rt_now = ev_time (); 1506 ev_rt_now = ev_time ();
1359 1507
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1509 {
1362#if EV_PERIODIC_ENABLE 1510#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1511 periodics_reschedule (EV_A);
1364#endif 1512#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1514 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1515 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 1516 }
1370 1517
1433 /* update fd-related kernel structures */ 1580 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1581 fd_reify (EV_A);
1435 1582
1436 /* calculate blocking time */ 1583 /* calculate blocking time */
1437 { 1584 {
1438 ev_tstamp block; 1585 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.;
1439 1587
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1589 {
1444 /* update time to cancel out callback processing overhead */ 1590 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1591 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1592
1455 block = MAX_BLOCKTIME; 1593 waittime = MAX_BLOCKTIME;
1456 1594
1457 if (timercnt) 1595 if (timercnt)
1458 { 1596 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1460 if (block > to) block = to; 1598 if (waittime > to) waittime = to;
1461 } 1599 }
1462 1600
1463#if EV_PERIODIC_ENABLE 1601#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1602 if (periodiccnt)
1465 { 1603 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1605 if (waittime > to) waittime = to;
1468 } 1606 }
1469#endif 1607#endif
1470 1608
1471 if (expect_false (block < 0.)) block = 0.; 1609 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime;
1611
1612 sleeptime = waittime - backend_fudge;
1613
1614 if (expect_true (sleeptime > io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 {
1619 ev_sleep (sleeptime);
1620 waittime -= sleeptime;
1621 }
1472 } 1622 }
1473 1623
1474 ++loop_count; 1624 ++loop_count;
1475 backend_poll (EV_A_ block); 1625 backend_poll (EV_A_ waittime);
1626
1627 /* update ev_rt_now, do magic */
1628 time_update (EV_A_ waittime + sleeptime);
1476 } 1629 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 1630
1481 /* queue pending timers and reschedule them */ 1631 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 1632 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 1633#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 1634 periodics_reify (EV_A); /* absolute timers called first */
1595 1745
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 1746 assert (("ev_io_start called with negative fd", fd >= 0));
1597 1747
1598 ev_start (EV_A_ (W)w, 1); 1748 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1750 wlist_add (&anfds[fd].head, (WL)w);
1601 1751
1602 fd_change (EV_A_ fd); 1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1753 w->events &= ~EV_IOFDSET;
1603} 1754}
1604 1755
1605void noinline 1756void noinline
1606ev_io_stop (EV_P_ ev_io *w) 1757ev_io_stop (EV_P_ ev_io *w)
1607{ 1758{
1609 if (expect_false (!ev_is_active (w))) 1760 if (expect_false (!ev_is_active (w)))
1610 return; 1761 return;
1611 1762
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 1764
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1765 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1616 1767
1617 fd_change (EV_A_ w->fd); 1768 fd_change (EV_A_ w->fd, 1);
1618} 1769}
1619 1770
1620void noinline 1771void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 1772ev_timer_start (EV_P_ ev_timer *w)
1622{ 1773{
1626 ((WT)w)->at += mn_now; 1777 ((WT)w)->at += mn_now;
1627 1778
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 1780
1630 ev_start (EV_A_ (W)w, ++timercnt); 1781 ev_start (EV_A_ (W)w, ++timercnt);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1632 timers [timercnt - 1] = w; 1783 timers [timercnt - 1] = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 1784 upheap (timers, timercnt - 1);
1634 1785
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1636} 1787}
1637 1788
1638void noinline 1789void noinline
1640{ 1791{
1641 clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 1793 if (expect_false (!ev_is_active (w)))
1643 return; 1794 return;
1644 1795
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1646 1797
1647 { 1798 {
1648 int active = ((W)w)->active; 1799 int active = ((W)w)->active;
1649 1800
1650 if (expect_true (--active < --timercnt)) 1801 if (expect_true (--active < --timercnt))
1651 { 1802 {
1652 timers [active] = timers [timercnt]; 1803 timers [active] = timers [timercnt];
1653 adjustheap ((WT *)timers, timercnt, active); 1804 adjustheap (timers, timercnt, active);
1654 } 1805 }
1655 } 1806 }
1656 1807
1657 ((WT)w)->at -= mn_now; 1808 ((WT)w)->at -= mn_now;
1658 1809
1665 if (ev_is_active (w)) 1816 if (ev_is_active (w))
1666 { 1817 {
1667 if (w->repeat) 1818 if (w->repeat)
1668 { 1819 {
1669 ((WT)w)->at = mn_now + w->repeat; 1820 ((WT)w)->at = mn_now + w->repeat;
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1821 adjustheap (timers, timercnt, ((W)w)->active - 1);
1671 } 1822 }
1672 else 1823 else
1673 ev_timer_stop (EV_A_ w); 1824 ev_timer_stop (EV_A_ w);
1674 } 1825 }
1675 else if (w->repeat) 1826 else if (w->repeat)
1696 } 1847 }
1697 else 1848 else
1698 ((WT)w)->at = w->offset; 1849 ((WT)w)->at = w->offset;
1699 1850
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 1851 ev_start (EV_A_ (W)w, ++periodiccnt);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 1853 periodics [periodiccnt - 1] = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 1854 upheap (periodics, periodiccnt - 1);
1704 1855
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1706} 1857}
1707 1858
1708void noinline 1859void noinline
1710{ 1861{
1711 clear_pending (EV_A_ (W)w); 1862 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 1863 if (expect_false (!ev_is_active (w)))
1713 return; 1864 return;
1714 1865
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1716 1867
1717 { 1868 {
1718 int active = ((W)w)->active; 1869 int active = ((W)w)->active;
1719 1870
1720 if (expect_true (--active < --periodiccnt)) 1871 if (expect_true (--active < --periodiccnt))
1721 { 1872 {
1722 periodics [active] = periodics [periodiccnt]; 1873 periodics [active] = periodics [periodiccnt];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 1874 adjustheap (periodics, periodiccnt, active);
1724 } 1875 }
1725 } 1876 }
1726 1877
1727 ev_stop (EV_A_ (W)w); 1878 ev_stop (EV_A_ (W)w);
1728} 1879}
1749 if (expect_false (ev_is_active (w))) 1900 if (expect_false (ev_is_active (w)))
1750 return; 1901 return;
1751 1902
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1753 1904
1905 evpipe_init (EV_A);
1906
1907 {
1908#ifndef _WIN32
1909 sigset_t full, prev;
1910 sigfillset (&full);
1911 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif
1913
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1915
1916#ifndef _WIN32
1917 sigprocmask (SIG_SETMASK, &prev, 0);
1918#endif
1919 }
1920
1754 ev_start (EV_A_ (W)w, 1); 1921 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1922 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 1923
1758 if (!((WL)w)->next) 1924 if (!((WL)w)->next)
1759 { 1925 {
1760#if _WIN32 1926#if _WIN32
1761 signal (w->signum, sighandler); 1927 signal (w->signum, sighandler);
1774{ 1940{
1775 clear_pending (EV_A_ (W)w); 1941 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 1942 if (expect_false (!ev_is_active (w)))
1777 return; 1943 return;
1778 1944
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1945 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 1946 ev_stop (EV_A_ (W)w);
1781 1947
1782 if (!signals [w->signum - 1].head) 1948 if (!signals [w->signum - 1].head)
1783 signal (w->signum, SIG_DFL); 1949 signal (w->signum, SIG_DFL);
1784} 1950}
1791#endif 1957#endif
1792 if (expect_false (ev_is_active (w))) 1958 if (expect_false (ev_is_active (w)))
1793 return; 1959 return;
1794 1960
1795 ev_start (EV_A_ (W)w, 1); 1961 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1797} 1963}
1798 1964
1799void 1965void
1800ev_child_stop (EV_P_ ev_child *w) 1966ev_child_stop (EV_P_ ev_child *w)
1801{ 1967{
1802 clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 1969 if (expect_false (!ev_is_active (w)))
1804 return; 1970 return;
1805 1971
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 1973 ev_stop (EV_A_ (W)w);
1808} 1974}
1809 1975
1810#if EV_STAT_ENABLE 1976#if EV_STAT_ENABLE
1811 1977
2153 2319
2154#if EV_EMBED_ENABLE 2320#if EV_EMBED_ENABLE
2155void noinline 2321void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 2322ev_embed_sweep (EV_P_ ev_embed *w)
2157{ 2323{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 2324 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2325}
2160 2326
2161static void 2327static void
2162embed_cb (EV_P_ ev_io *io, int revents) 2328embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 2329{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2330 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 2331
2166 if (ev_cb (w)) 2332 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2333 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 2334 else
2169 ev_embed_sweep (loop, w); 2335 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2336}
2337
2338static void
2339embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2340{
2341 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2342
2343 {
2344 struct ev_loop *loop = w->other;
2345
2346 while (fdchangecnt)
2347 {
2348 fd_reify (EV_A);
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2350 }
2351 }
2352}
2353
2354#if 0
2355static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2357{
2358 ev_idle_stop (EV_A_ idle);
2359}
2360#endif
2171 2361
2172void 2362void
2173ev_embed_start (EV_P_ ev_embed *w) 2363ev_embed_start (EV_P_ ev_embed *w)
2174{ 2364{
2175 if (expect_false (ev_is_active (w))) 2365 if (expect_false (ev_is_active (w)))
2176 return; 2366 return;
2177 2367
2178 { 2368 {
2179 struct ev_loop *loop = w->loop; 2369 struct ev_loop *loop = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 2372 }
2183 2373
2184 ev_set_priority (&w->io, ev_priority (w)); 2374 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 2375 ev_io_start (EV_A_ &w->io);
2186 2376
2377 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare);
2380
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382
2187 ev_start (EV_A_ (W)w, 1); 2383 ev_start (EV_A_ (W)w, 1);
2188} 2384}
2189 2385
2190void 2386void
2191ev_embed_stop (EV_P_ ev_embed *w) 2387ev_embed_stop (EV_P_ ev_embed *w)
2193 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2195 return; 2391 return;
2196 2392
2197 ev_io_stop (EV_A_ &w->io); 2393 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare);
2198 2395
2199 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2200} 2397}
2201#endif 2398#endif
2202 2399
2227 2424
2228 ev_stop (EV_A_ (W)w); 2425 ev_stop (EV_A_ (W)w);
2229} 2426}
2230#endif 2427#endif
2231 2428
2429#if EV_ASYNC_ENABLE
2430void
2431ev_async_start (EV_P_ ev_async *w)
2432{
2433 if (expect_false (ev_is_active (w)))
2434 return;
2435
2436 evpipe_init (EV_A);
2437
2438 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w;
2441}
2442
2443void
2444ev_async_stop (EV_P_ ev_async *w)
2445{
2446 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w)))
2448 return;
2449
2450 {
2451 int active = ((W)w)->active;
2452 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active;
2454 }
2455
2456 ev_stop (EV_A_ (W)w);
2457}
2458
2459void
2460ev_async_send (EV_P_ ev_async *w)
2461{
2462 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1);
2464}
2465#endif
2466
2232/*****************************************************************************/ 2467/*****************************************************************************/
2233 2468
2234struct ev_once 2469struct ev_once
2235{ 2470{
2236 ev_io io; 2471 ev_io io;
2291 ev_timer_set (&once->to, timeout, 0.); 2526 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 2527 ev_timer_start (EV_A_ &once->to);
2293 } 2528 }
2294} 2529}
2295 2530
2531#if EV_MULTIPLICITY
2532 #include "ev_wrap.h"
2533#endif
2534
2296#ifdef __cplusplus 2535#ifdef __cplusplus
2297} 2536}
2298#endif 2537#endif
2299 2538

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines