ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC vs.
Revision 1.232 by root, Tue May 6 15:29:58 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 241
217#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
220#endif 245#endif
239# include <sys/inotify.h> 264# include <sys/inotify.h>
240#endif 265#endif
241 266
242#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
244#endif 281#endif
245 282
246/**/ 283/**/
247 284
248/* 285/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
265#else 302#else
266# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
267# define noinline 304# define noinline
268# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 306# define inline
270# endif 307# endif
271#endif 308#endif
272 309
273#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
288 325
289typedef ev_watcher *W; 326typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
292 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
293#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 337#endif
323 perror (msg); 363 perror (msg);
324 abort (); 364 abort ();
325 } 365 }
326} 366}
327 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
328static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 384
330void 385void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 387{
333 alloc = cb; 388 alloc = cb;
334} 389}
335 390
336inline_speed void * 391inline_speed void *
337ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
338{ 393{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
340 395
341 if (!ptr && size) 396 if (!ptr && size)
342 { 397 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 399 abort ();
451 ts.tv_sec = (time_t)delay; 506 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 508
454 nanosleep (&ts, 0); 509 nanosleep (&ts, 0);
455#elif defined(_WIN32) 510#elif defined(_WIN32)
456 Sleep (delay * 1e3); 511 Sleep ((unsigned long)(delay * 1e3));
457#else 512#else
458 struct timeval tv; 513 struct timeval tv;
459 514
460 tv.tv_sec = (time_t)delay; 515 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 519#endif
465 } 520 }
466} 521}
467 522
468/*****************************************************************************/ 523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 // prefer to allocate in chunks of this size, must be 2**n and >> 4 longs
469 526
470int inline_size 527int inline_size
471array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
472{ 529{
473 int ncur = cur + 1; 530 int ncur = cur + 1;
474 531
475 do 532 do
476 ncur <<= 1; 533 ncur <<= 1;
477 while (cnt > ncur); 534 while (cnt > ncur);
478 535
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 538 {
482 ncur *= elem; 539 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 542 ncur /= elem;
486 } 543 }
487 544
488 return ncur; 545 return ncur;
702 } 759 }
703} 760}
704 761
705/*****************************************************************************/ 762/*****************************************************************************/
706 763
764/* towards the root */
707void inline_speed 765void inline_speed
708upheap (WT *heap, int k) 766upheap (WT *heap, int k)
709{ 767{
710 WT w = heap [k]; 768 WT w = heap [k];
711 769
712 while (k) 770 for (;;)
713 { 771 {
714 int p = (k - 1) >> 1; 772 int p = k >> 1;
715 773
774 /* maybe we could use a dummy element at heap [0]? */
716 if (heap [p]->at <= w->at) 775 if (!p || heap [p]->at <= w->at)
717 break; 776 break;
718 777
719 heap [k] = heap [p]; 778 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
721 k = p; 780 k = p;
722 } 781 }
723 782
724 heap [k] = w; 783 heap [k] = w;
725 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
726} 785}
727 786
787/* away from the root */
728void inline_speed 788void inline_speed
729downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
730{ 790{
731 WT w = heap [k]; 791 WT w = heap [k];
732 792
733 for (;;) 793 for (;;)
734 { 794 {
735 int c = (k << 1) + 1; 795 int c = k << 1;
736 796
737 if (c >= N) 797 if (c > N)
738 break; 798 break;
739 799
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 800 c += c < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0; 801 ? 1 : 0;
742 802
743 if (w->at <= heap [c]->at) 803 if (w->at <= heap [c]->at)
744 break; 804 break;
745 805
746 heap [k] = heap [c]; 806 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
748 808
749 k = c; 809 k = c;
750 } 810 }
751 811
752 heap [k] = w; 812 heap [k] = w;
753 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
754} 814}
755 815
756void inline_size 816void inline_size
757adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
758{ 818{
802static void noinline 862static void noinline
803evpipe_init (EV_P) 863evpipe_init (EV_P)
804{ 864{
805 if (!ev_is_active (&pipeev)) 865 if (!ev_is_active (&pipeev))
806 { 866 {
867#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0)
869 {
870 evpipe [0] = -1;
871 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ);
873 }
874 else
875#endif
876 {
807 while (pipe (evpipe)) 877 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 878 syserr ("(libev) error creating signal/async pipe");
809 879
810 fd_intern (evpipe [0]); 880 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 881 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 882 ev_io_set (&pipeev, evpipe [0], EV_READ);
883 }
884
814 ev_io_start (EV_A_ &pipeev); 885 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 886 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 887 }
817} 888}
818 889
819void inline_size 890void inline_size
820evpipe_write (EV_P_ int sig, int async) 891evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 892{
822 if (!(gotasync || gotsig)) 893 if (!*flag)
823 { 894 {
824 int old_errno = errno; 895 int old_errno = errno; /* save errno because write might clobber it */
825 896
826 if (sig) gotsig = 1; 897 *flag = 1;
827 if (async) gotasync = 1;
828 898
899#if EV_USE_EVENTFD
900 if (evfd >= 0)
901 {
902 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t));
904 }
905 else
906#endif
829 write (evpipe [1], &old_errno, 1); 907 write (evpipe [1], &old_errno, 1);
908
830 errno = old_errno; 909 errno = old_errno;
831 } 910 }
832} 911}
833 912
834static void 913static void
835pipecb (EV_P_ ev_io *iow, int revents) 914pipecb (EV_P_ ev_io *iow, int revents)
836{ 915{
916#if EV_USE_EVENTFD
917 if (evfd >= 0)
837 { 918 {
838 int dummy; 919 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t));
921 }
922 else
923#endif
924 {
925 char dummy;
839 read (evpipe [0], &dummy, 1); 926 read (evpipe [0], &dummy, 1);
840 } 927 }
841 928
842 if (gotsig) 929 if (gotsig && ev_is_default_loop (EV_A))
843 { 930 {
844 int signum; 931 int signum;
845 gotsig = 0; 932 gotsig = 0;
846 933
847 for (signum = signalmax; signum--; ) 934 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig) 935 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1); 936 ev_feed_signal_event (EV_A_ signum + 1);
850 } 937 }
851 938
939#if EV_ASYNC_ENABLE
852 if (gotasync) 940 if (gotasync)
853 { 941 {
854 int i; 942 int i;
855 gotasync = 0; 943 gotasync = 0;
856 944
859 { 947 {
860 asyncs [i]->sent = 0; 948 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 949 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 950 }
863 } 951 }
952#endif
864} 953}
865 954
866/*****************************************************************************/ 955/*****************************************************************************/
867 956
868static void 957static void
869sighandler (int signum) 958ev_sighandler (int signum)
870{ 959{
871#if EV_MULTIPLICITY 960#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 961 struct ev_loop *loop = &default_loop_struct;
873#endif 962#endif
874 963
875#if _WIN32 964#if _WIN32
876 signal (signum, sighandler); 965 signal (signum, ev_sighandler);
877#endif 966#endif
878 967
879 signals [signum - 1].gotsig = 1; 968 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0); 969 evpipe_write (EV_A_ &gotsig);
881} 970}
882 971
883void noinline 972void noinline
884ev_feed_signal_event (EV_P_ int signum) 973ev_feed_signal_event (EV_P_ int signum)
885{ 974{
911#ifndef WIFCONTINUED 1000#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 1001# define WIFCONTINUED(status) 0
913#endif 1002#endif
914 1003
915void inline_speed 1004void inline_speed
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1005child_reap (EV_P_ int chain, int pid, int status)
917{ 1006{
918 ev_child *w; 1007 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 1009
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 1011 {
923 if ((w->pid == pid || !w->pid) 1012 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 1013 && (!traced || (w->flags & 1)))
925 { 1014 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 1016 w->rpid = pid;
928 w->rstatus = status; 1017 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1018 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 1019 }
931 } 1020 }
945 if (!WCONTINUED 1034 if (!WCONTINUED
946 || errno != EINVAL 1035 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1036 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 1037 return;
949 1038
950 /* make sure we are called again until all childs have been reaped */ 1039 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 1040 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 1042
954 child_reap (EV_A_ sw, pid, pid, status); 1043 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 1044 if (EV_PID_HASHSIZE > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 1046}
958 1047
959#endif 1048#endif
960 1049
961/*****************************************************************************/ 1050/*****************************************************************************/
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 1169 have_monotonic = 1;
1081 } 1170 }
1082#endif 1171#endif
1083 1172
1084 ev_rt_now = ev_time (); 1173 ev_rt_now = ev_time ();
1085 mn_now = get_clock (); 1174 mn_now = get_clock ();
1086 now_floor = mn_now; 1175 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now; 1176 rtmn_diff = ev_rt_now - mn_now;
1088 1177
1089 io_blocktime = 0.; 1178 io_blocktime = 0.;
1090 timeout_blocktime = 0.; 1179 timeout_blocktime = 0.;
1180 backend = 0;
1181 backend_fd = -1;
1182 gotasync = 0;
1183#if EV_USE_INOTIFY
1184 fs_fd = -2;
1185#endif
1091 1186
1092 /* pid check not overridable via env */ 1187 /* pid check not overridable via env */
1093#ifndef _WIN32 1188#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 1189 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 1190 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 1193 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 1194 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 1195 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 1197
1103 if (!(flags & 0x0000ffffUL)) 1198 if (!(flags & 0x0000ffffU))
1104 flags |= ev_recommended_backends (); 1199 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY
1109 fs_fd = -2;
1110#endif
1111 1200
1112#if EV_USE_PORT 1201#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 1203#endif
1115#if EV_USE_KQUEUE 1204#if EV_USE_KQUEUE
1138 if (ev_is_active (&pipeev)) 1227 if (ev_is_active (&pipeev))
1139 { 1228 {
1140 ev_ref (EV_A); /* signal watcher */ 1229 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev); 1230 ev_io_stop (EV_A_ &pipeev);
1142 1231
1143 close (evpipe [0]); evpipe [0] = 0; 1232#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 1233 if (evfd >= 0)
1234 close (evfd);
1235#endif
1236
1237 if (evpipe [0] >= 0)
1238 {
1239 close (evpipe [0]);
1240 close (evpipe [1]);
1241 }
1145 } 1242 }
1146 1243
1147#if EV_USE_INOTIFY 1244#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 1245 if (fs_fd >= 0)
1149 close (fs_fd); 1246 close (fs_fd);
1187#if EV_FORK_ENABLE 1284#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 1285 array_free (fork, EMPTY);
1189#endif 1286#endif
1190 array_free (prepare, EMPTY); 1287 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 1288 array_free (check, EMPTY);
1289#if EV_ASYNC_ENABLE
1290 array_free (async, EMPTY);
1291#endif
1192 1292
1193 backend = 0; 1293 backend = 0;
1194} 1294}
1195 1295
1296#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 1297void inline_size infy_fork (EV_P);
1298#endif
1197 1299
1198void inline_size 1300void inline_size
1199loop_fork (EV_P) 1301loop_fork (EV_P)
1200{ 1302{
1201#if EV_USE_PORT 1303#if EV_USE_PORT
1212#endif 1314#endif
1213 1315
1214 if (ev_is_active (&pipeev)) 1316 if (ev_is_active (&pipeev))
1215 { 1317 {
1216 /* this "locks" the handlers against writing to the pipe */ 1318 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */
1320 gotsig = 1;
1321#if EV_ASYNC_ENABLE
1217 gotsig = gotasync = 1; 1322 gotasync = 1;
1323#endif
1218 1324
1219 ev_ref (EV_A); 1325 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 1326 ev_io_stop (EV_A_ &pipeev);
1327
1328#if EV_USE_EVENTFD
1329 if (evfd >= 0)
1330 close (evfd);
1331#endif
1332
1333 if (evpipe [0] >= 0)
1334 {
1221 close (evpipe [0]); 1335 close (evpipe [0]);
1222 close (evpipe [1]); 1336 close (evpipe [1]);
1337 }
1223 1338
1224 evpipe_init (EV_A); 1339 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */ 1340 /* now iterate over everything, in case we missed something */
1226 pipecb (EV_A_ &pipeev, EV_READ); 1341 pipecb (EV_A_ &pipeev, EV_READ);
1227 } 1342 }
1349} 1464}
1350 1465
1351void inline_size 1466void inline_size
1352timers_reify (EV_P) 1467timers_reify (EV_P)
1353{ 1468{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now) 1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1355 { 1470 {
1356 ev_timer *w = (ev_timer *)timers [0]; 1471 ev_timer *w = (ev_timer *)timers [1];
1357 1472
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359 1474
1360 /* first reschedule or stop timer */ 1475 /* first reschedule or stop timer */
1361 if (w->repeat) 1476 if (w->repeat)
1362 { 1477 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364 1479
1365 ((WT)w)->at += w->repeat; 1480 ev_at (w) += w->repeat;
1366 if (((WT)w)->at < mn_now) 1481 if (ev_at (w) < mn_now)
1367 ((WT)w)->at = mn_now; 1482 ev_at (w) = mn_now;
1368 1483
1369 downheap (timers, timercnt, 0); 1484 downheap (timers, timercnt, 1);
1370 } 1485 }
1371 else 1486 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373 1488
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1377 1492
1378#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1379void inline_size 1494void inline_size
1380periodics_reify (EV_P) 1495periodics_reify (EV_P)
1381{ 1496{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1383 { 1498 {
1384 ev_periodic *w = (ev_periodic *)periodics [0]; 1499 ev_periodic *w = (ev_periodic *)periodics [1];
1385 1500
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387 1502
1388 /* first reschedule or stop timer */ 1503 /* first reschedule or stop timer */
1389 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1390 { 1505 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0); 1508 downheap (periodics, periodiccnt, 1);
1394 } 1509 }
1395 else if (w->interval) 1510 else if (w->interval)
1396 { 1511 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval; 1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0); 1515 downheap (periodics, periodiccnt, 1);
1401 } 1516 }
1402 else 1517 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404 1519
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1410periodics_reschedule (EV_P) 1525periodics_reschedule (EV_P)
1411{ 1526{
1412 int i; 1527 int i;
1413 1528
1414 /* adjust periodics after time jump */ 1529 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i) 1530 for (i = 1; i <= periodiccnt; ++i)
1416 { 1531 {
1417 ev_periodic *w = (ev_periodic *)periodics [i]; 1532 ev_periodic *w = (ev_periodic *)periodics [i];
1418 1533
1419 if (w->reschedule_cb) 1534 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval) 1536 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 } 1538 }
1424 1539
1425 /* now rebuild the heap */ 1540 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; ) 1541 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i); 1542 downheap (periodics, periodiccnt, i);
1509 { 1624 {
1510#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 1626 periodics_reschedule (EV_A);
1512#endif 1627#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */ 1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i) 1629 for (i = 1; i <= timercnt; ++i)
1515 ((WT)timers [i])->at += ev_rt_now - mn_now; 1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1516 } 1631 }
1517 1632
1518 mn_now = ev_rt_now; 1633 mn_now = ev_rt_now;
1519 } 1634 }
1520} 1635}
1534static int loop_done; 1649static int loop_done;
1535 1650
1536void 1651void
1537ev_loop (EV_P_ int flags) 1652ev_loop (EV_P_ int flags)
1538{ 1653{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1654 loop_done = EVUNLOOP_CANCEL;
1540 ? EVUNLOOP_ONE
1541 : EVUNLOOP_CANCEL;
1542 1655
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1544 1657
1545 do 1658 do
1546 { 1659 {
1592 1705
1593 waittime = MAX_BLOCKTIME; 1706 waittime = MAX_BLOCKTIME;
1594 1707
1595 if (timercnt) 1708 if (timercnt)
1596 { 1709 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1598 if (waittime > to) waittime = to; 1711 if (waittime > to) waittime = to;
1599 } 1712 }
1600 1713
1601#if EV_PERIODIC_ENABLE 1714#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 1715 if (periodiccnt)
1603 { 1716 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1605 if (waittime > to) waittime = to; 1718 if (waittime > to) waittime = to;
1606 } 1719 }
1607#endif 1720#endif
1608 1721
1609 if (expect_false (waittime < timeout_blocktime)) 1722 if (expect_false (waittime < timeout_blocktime))
1642 /* queue check watchers, to be executed first */ 1755 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 1756 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1757 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1645 1758
1646 call_pending (EV_A); 1759 call_pending (EV_A);
1647
1648 } 1760 }
1649 while (expect_true (activecnt && !loop_done)); 1761 while (expect_true (
1762 activecnt
1763 && !loop_done
1764 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1765 ));
1650 1766
1651 if (loop_done == EVUNLOOP_ONE) 1767 if (loop_done == EVUNLOOP_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 1768 loop_done = EVUNLOOP_CANCEL;
1653} 1769}
1654 1770
1772ev_timer_start (EV_P_ ev_timer *w) 1888ev_timer_start (EV_P_ ev_timer *w)
1773{ 1889{
1774 if (expect_false (ev_is_active (w))) 1890 if (expect_false (ev_is_active (w)))
1775 return; 1891 return;
1776 1892
1777 ((WT)w)->at += mn_now; 1893 ev_at (w) += mn_now;
1778 1894
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 1896
1781 ev_start (EV_A_ (W)w, ++timercnt); 1897 ev_start (EV_A_ (W)w, ++timercnt);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 1899 timers [timercnt] = (WT)w;
1784 upheap (timers, timercnt - 1); 1900 upheap (timers, timercnt);
1785 1901
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1787} 1903}
1788 1904
1789void noinline 1905void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 1906ev_timer_stop (EV_P_ ev_timer *w)
1791{ 1907{
1792 clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 1909 if (expect_false (!ev_is_active (w)))
1794 return; 1910 return;
1795 1911
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1797
1798 { 1912 {
1799 int active = ((W)w)->active; 1913 int active = ev_active (w);
1800 1914
1915 assert (("internal timer heap corruption", timers [active] == (WT)w));
1916
1801 if (expect_true (--active < --timercnt)) 1917 if (expect_true (active < timercnt))
1802 { 1918 {
1803 timers [active] = timers [timercnt]; 1919 timers [active] = timers [timercnt];
1804 adjustheap (timers, timercnt, active); 1920 adjustheap (timers, timercnt, active);
1805 } 1921 }
1922
1923 --timercnt;
1806 } 1924 }
1807 1925
1808 ((WT)w)->at -= mn_now; 1926 ev_at (w) -= mn_now;
1809 1927
1810 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1811} 1929}
1812 1930
1813void noinline 1931void noinline
1815{ 1933{
1816 if (ev_is_active (w)) 1934 if (ev_is_active (w))
1817 { 1935 {
1818 if (w->repeat) 1936 if (w->repeat)
1819 { 1937 {
1820 ((WT)w)->at = mn_now + w->repeat; 1938 ev_at (w) = mn_now + w->repeat;
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 1939 adjustheap (timers, timercnt, ev_active (w));
1822 } 1940 }
1823 else 1941 else
1824 ev_timer_stop (EV_A_ w); 1942 ev_timer_stop (EV_A_ w);
1825 } 1943 }
1826 else if (w->repeat) 1944 else if (w->repeat)
1827 { 1945 {
1828 w->at = w->repeat; 1946 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 1947 ev_timer_start (EV_A_ w);
1830 } 1948 }
1831} 1949}
1832 1950
1833#if EV_PERIODIC_ENABLE 1951#if EV_PERIODIC_ENABLE
1836{ 1954{
1837 if (expect_false (ev_is_active (w))) 1955 if (expect_false (ev_is_active (w)))
1838 return; 1956 return;
1839 1957
1840 if (w->reschedule_cb) 1958 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 1960 else if (w->interval)
1843 { 1961 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 1963 /* this formula differs from the one in periodic_reify because we do not always round up */
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 1965 }
1848 else 1966 else
1849 ((WT)w)->at = w->offset; 1967 ev_at (w) = w->offset;
1850 1968
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 1969 ev_start (EV_A_ (W)w, ++periodiccnt);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 1971 periodics [periodiccnt] = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 1972 upheap (periodics, periodiccnt);
1855 1973
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1857} 1975}
1858 1976
1859void noinline 1977void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 1978ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 1979{
1862 clear_pending (EV_A_ (W)w); 1980 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 1981 if (expect_false (!ev_is_active (w)))
1864 return; 1982 return;
1865 1983
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1867
1868 { 1984 {
1869 int active = ((W)w)->active; 1985 int active = ev_active (w);
1870 1986
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1988
1871 if (expect_true (--active < --periodiccnt)) 1989 if (expect_true (active < periodiccnt))
1872 { 1990 {
1873 periodics [active] = periodics [periodiccnt]; 1991 periodics [active] = periodics [periodiccnt];
1874 adjustheap (periodics, periodiccnt, active); 1992 adjustheap (periodics, periodiccnt, active);
1875 } 1993 }
1994
1995 --periodiccnt;
1876 } 1996 }
1877 1997
1878 ev_stop (EV_A_ (W)w); 1998 ev_stop (EV_A_ (W)w);
1879} 1999}
1880 2000
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 2042 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 2043
1924 if (!((WL)w)->next) 2044 if (!((WL)w)->next)
1925 { 2045 {
1926#if _WIN32 2046#if _WIN32
1927 signal (w->signum, sighandler); 2047 signal (w->signum, ev_sighandler);
1928#else 2048#else
1929 struct sigaction sa; 2049 struct sigaction sa;
1930 sa.sa_handler = sighandler; 2050 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 2051 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 2053 sigaction (w->signum, &sa, 0);
1934#endif 2054#endif
1935 } 2055 }
2250 clear_pending (EV_A_ (W)w); 2370 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 2371 if (expect_false (!ev_is_active (w)))
2252 return; 2372 return;
2253 2373
2254 { 2374 {
2255 int active = ((W)w)->active; 2375 int active = ev_active (w);
2256 2376
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2378 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 2379
2260 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2261 --idleall; 2381 --idleall;
2262 } 2382 }
2263} 2383}
2280 clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
2282 return; 2402 return;
2283 2403
2284 { 2404 {
2285 int active = ((W)w)->active; 2405 int active = ev_active (w);
2406
2286 prepares [active - 1] = prepares [--preparecnt]; 2407 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 2408 ev_active (prepares [active - 1]) = active;
2288 } 2409 }
2289 2410
2290 ev_stop (EV_A_ (W)w); 2411 ev_stop (EV_A_ (W)w);
2291} 2412}
2292 2413
2307 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
2309 return; 2430 return;
2310 2431
2311 { 2432 {
2312 int active = ((W)w)->active; 2433 int active = ev_active (w);
2434
2313 checks [active - 1] = checks [--checkcnt]; 2435 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 2436 ev_active (checks [active - 1]) = active;
2315 } 2437 }
2316 2438
2317 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
2318} 2440}
2319 2441
2415 clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2538 if (expect_false (!ev_is_active (w)))
2417 return; 2539 return;
2418 2540
2419 { 2541 {
2420 int active = ((W)w)->active; 2542 int active = ev_active (w);
2543
2421 forks [active - 1] = forks [--forkcnt]; 2544 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 2545 ev_active (forks [active - 1]) = active;
2423 } 2546 }
2424 2547
2425 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2426} 2549}
2427#endif 2550#endif
2446 clear_pending (EV_A_ (W)w); 2569 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 2570 if (expect_false (!ev_is_active (w)))
2448 return; 2571 return;
2449 2572
2450 { 2573 {
2451 int active = ((W)w)->active; 2574 int active = ev_active (w);
2575
2452 asyncs [active - 1] = asyncs [--asynccnt]; 2576 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 2577 ev_active (asyncs [active - 1]) = active;
2454 } 2578 }
2455 2579
2456 ev_stop (EV_A_ (W)w); 2580 ev_stop (EV_A_ (W)w);
2457} 2581}
2458 2582
2459void 2583void
2460ev_async_send (EV_P_ ev_async *w) 2584ev_async_send (EV_P_ ev_async *w)
2461{ 2585{
2462 w->sent = 1; 2586 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 2587 evpipe_write (EV_A_ &gotasync);
2464} 2588}
2465#endif 2589#endif
2466 2590
2467/*****************************************************************************/ 2591/*****************************************************************************/
2468 2592

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines