ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 255
217#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
220#endif 259#endif
241 280
242#if EV_SELECT_IS_WINSOCKET 281#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 282# include <winsock.h>
244#endif 283#endif
245 284
285#if EV_USE_EVENTFD
286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
290# endif
291int eventfd (unsigned int initval, int flags);
292# ifdef __cplusplus
293}
294# endif
295#endif
296
246/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
247 309
248/* 310/*
249 * This is used to avoid floating point rounding problems. 311 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 312 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 313 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 325# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 326# define noinline __attribute__ ((noinline))
265#else 327#else
266# define expect(expr,value) (expr) 328# define expect(expr,value) (expr)
267# define noinline 329# define noinline
268# if __STDC_VERSION__ < 199901L 330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 331# define inline
270# endif 332# endif
271#endif 333#endif
272 334
273#define expect_false(expr) expect ((expr) != 0, 0) 335#define expect_false(expr) expect ((expr) != 0, 0)
288 350
289typedef ev_watcher *W; 351typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
292 354
355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
293#if EV_USE_MONOTONIC 358#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 360/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 362#endif
323 perror (msg); 388 perror (msg);
324 abort (); 389 abort ();
325 } 390 }
326} 391}
327 392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
328static void *(*alloc)(void *ptr, long size); 408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 409
330void 410void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 411ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 412{
333 alloc = cb; 413 alloc = cb;
334} 414}
335 415
336inline_speed void * 416inline_speed void *
337ev_realloc (void *ptr, long size) 417ev_realloc (void *ptr, long size)
338{ 418{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 419 ptr = alloc (ptr, size);
340 420
341 if (!ptr && size) 421 if (!ptr && size)
342 { 422 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 424 abort ();
367 W w; 447 W w;
368 int events; 448 int events;
369} ANPENDING; 449} ANPENDING;
370 450
371#if EV_USE_INOTIFY 451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
372typedef struct 453typedef struct
373{ 454{
374 WL head; 455 WL head;
375} ANFS; 456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
376#endif 475#endif
377 476
378#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
379 478
380 struct ev_loop 479 struct ev_loop
451 ts.tv_sec = (time_t)delay; 550 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 552
454 nanosleep (&ts, 0); 553 nanosleep (&ts, 0);
455#elif defined(_WIN32) 554#elif defined(_WIN32)
456 Sleep (delay * 1e3); 555 Sleep ((unsigned long)(delay * 1e3));
457#else 556#else
458 struct timeval tv; 557 struct timeval tv;
459 558
460 tv.tv_sec = (time_t)delay; 559 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 563#endif
465 } 564 }
466} 565}
467 566
468/*****************************************************************************/ 567/*****************************************************************************/
568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 570
470int inline_size 571int inline_size
471array_nextsize (int elem, int cur, int cnt) 572array_nextsize (int elem, int cur, int cnt)
472{ 573{
473 int ncur = cur + 1; 574 int ncur = cur + 1;
474 575
475 do 576 do
476 ncur <<= 1; 577 ncur <<= 1;
477 while (cnt > ncur); 578 while (cnt > ncur);
478 579
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 582 {
482 ncur *= elem; 583 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 585 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 586 ncur /= elem;
486 } 587 }
487 588
488 return ncur; 589 return ncur;
702 } 803 }
703} 804}
704 805
705/*****************************************************************************/ 806/*****************************************************************************/
706 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
707void inline_speed 828void inline_speed
708upheap (WT *heap, int k) 829downheap (ANHE *heap, int N, int k)
709{ 830{
710 WT w = heap [k]; 831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
711 833
712 while (k) 834 for (;;)
713 { 835 {
714 int p = (k - 1) >> 1; 836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 839
716 if (heap [p]->at <= w->at) 840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
717 break; 856 break;
718 857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
867 heap [k] = he;
868 ev_active (ANHE_w (he)) = k;
869}
870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
878void inline_speed
879downheap (ANHE *heap, int N, int k)
880{
881 ANHE he = heap [k];
882
883 for (;;)
884 {
885 int c = k << 1;
886
887 if (c > N + HEAP0 - 1)
888 break;
889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
896 heap [k] = heap [c];
897 ev_active (ANHE_w (heap [k])) = k;
898
899 k = c;
900 }
901
902 heap [k] = he;
903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
719 heap [k] = heap [p]; 920 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 922 k = p;
722 } 923 }
723 924
724 heap [k] = w; 925 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 926 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 927}
755 928
756void inline_size 929void inline_size
757adjustheap (WT *heap, int N, int k) 930adjustheap (ANHE *heap, int N, int k)
758{ 931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 933 upheap (heap, k);
934 else
760 downheap (heap, N, k); 935 downheap (heap, N, k);
761} 936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
762 963
763/*****************************************************************************/ 964/*****************************************************************************/
764 965
765typedef struct 966typedef struct
766{ 967{
802static void noinline 1003static void noinline
803evpipe_init (EV_P) 1004evpipe_init (EV_P)
804{ 1005{
805 if (!ev_is_active (&pipeev)) 1006 if (!ev_is_active (&pipeev))
806 { 1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
807 while (pipe (evpipe)) 1018 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1019 syserr ("(libev) error creating signal/async pipe");
809 1020
810 fd_intern (evpipe [0]); 1021 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1022 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
1025
814 ev_io_start (EV_A_ &pipeev); 1026 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1027 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1028 }
817} 1029}
818 1030
819void inline_size 1031void inline_size
820evpipe_write (EV_P_ int sig, int async) 1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1033{
822 if (!(gotasync || gotsig)) 1034 if (!*flag)
823 { 1035 {
824 int old_errno = errno; 1036 int old_errno = errno; /* save errno because write might clobber it */
825 1037
826 if (sig) gotsig = 1; 1038 *flag = 1;
827 if (async) gotasync = 1;
828 1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
829 write (evpipe [1], &old_errno, 1); 1048 write (evpipe [1], &old_errno, 1);
1049
830 errno = old_errno; 1050 errno = old_errno;
831 } 1051 }
832} 1052}
833 1053
834static void 1054static void
835pipecb (EV_P_ ev_io *iow, int revents) 1055pipecb (EV_P_ ev_io *iow, int revents)
836{ 1056{
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
837 { 1059 {
838 int dummy; 1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
839 read (evpipe [0], &dummy, 1); 1067 read (evpipe [0], &dummy, 1);
840 } 1068 }
841 1069
842 if (gotsig) 1070 if (gotsig && ev_is_default_loop (EV_A))
843 { 1071 {
844 int signum; 1072 int signum;
845 gotsig = 0; 1073 gotsig = 0;
846 1074
847 for (signum = signalmax; signum--; ) 1075 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig) 1076 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1); 1077 ev_feed_signal_event (EV_A_ signum + 1);
850 } 1078 }
851 1079
1080#if EV_ASYNC_ENABLE
852 if (gotasync) 1081 if (gotasync)
853 { 1082 {
854 int i; 1083 int i;
855 gotasync = 0; 1084 gotasync = 0;
856 1085
859 { 1088 {
860 asyncs [i]->sent = 0; 1089 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 1091 }
863 } 1092 }
1093#endif
864} 1094}
865 1095
866/*****************************************************************************/ 1096/*****************************************************************************/
867 1097
868static void 1098static void
869sighandler (int signum) 1099ev_sighandler (int signum)
870{ 1100{
871#if EV_MULTIPLICITY 1101#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 1102 struct ev_loop *loop = &default_loop_struct;
873#endif 1103#endif
874 1104
875#if _WIN32 1105#if _WIN32
876 signal (signum, sighandler); 1106 signal (signum, ev_sighandler);
877#endif 1107#endif
878 1108
879 signals [signum - 1].gotsig = 1; 1109 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0); 1110 evpipe_write (EV_A_ &gotsig);
881} 1111}
882 1112
883void noinline 1113void noinline
884ev_feed_signal_event (EV_P_ int signum) 1114ev_feed_signal_event (EV_P_ int signum)
885{ 1115{
911#ifndef WIFCONTINUED 1141#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 1142# define WIFCONTINUED(status) 0
913#endif 1143#endif
914 1144
915void inline_speed 1145void inline_speed
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1146child_reap (EV_P_ int chain, int pid, int status)
917{ 1147{
918 ev_child *w; 1148 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 1150
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 1152 {
923 if ((w->pid == pid || !w->pid) 1153 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 1154 && (!traced || (w->flags & 1)))
925 { 1155 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 1157 w->rpid = pid;
928 w->rstatus = status; 1158 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 1160 }
931 } 1161 }
945 if (!WCONTINUED 1175 if (!WCONTINUED
946 || errno != EINVAL 1176 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 1178 return;
949 1179
950 /* make sure we are called again until all childs have been reaped */ 1180 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 1181 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 1183
954 child_reap (EV_A_ sw, pid, pid, status); 1184 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 1185 if (EV_PID_HASHSIZE > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 1187}
958 1188
959#endif 1189#endif
960 1190
961/*****************************************************************************/ 1191/*****************************************************************************/
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 1310 have_monotonic = 1;
1081 } 1311 }
1082#endif 1312#endif
1083 1313
1084 ev_rt_now = ev_time (); 1314 ev_rt_now = ev_time ();
1085 mn_now = get_clock (); 1315 mn_now = get_clock ();
1086 now_floor = mn_now; 1316 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now; 1317 rtmn_diff = ev_rt_now - mn_now;
1088 1318
1089 io_blocktime = 0.; 1319 io_blocktime = 0.;
1090 timeout_blocktime = 0.; 1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
1091 1327
1092 /* pid check not overridable via env */ 1328 /* pid check not overridable via env */
1093#ifndef _WIN32 1329#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 1330 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 1331 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 1334 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 1335 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 1336 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 1337 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 1338
1103 if (!(flags & 0x0000ffffUL)) 1339 if (!(flags & 0x0000ffffU))
1104 flags |= ev_recommended_backends (); 1340 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY
1109 fs_fd = -2;
1110#endif
1111 1341
1112#if EV_USE_PORT 1342#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 1344#endif
1115#if EV_USE_KQUEUE 1345#if EV_USE_KQUEUE
1138 if (ev_is_active (&pipeev)) 1368 if (ev_is_active (&pipeev))
1139 { 1369 {
1140 ev_ref (EV_A); /* signal watcher */ 1370 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev); 1371 ev_io_stop (EV_A_ &pipeev);
1142 1372
1143 close (evpipe [0]); evpipe [0] = 0; 1373#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
1379 {
1380 close (evpipe [0]);
1381 close (evpipe [1]);
1382 }
1145 } 1383 }
1146 1384
1147#if EV_USE_INOTIFY 1385#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 1386 if (fs_fd >= 0)
1149 close (fs_fd); 1387 close (fs_fd);
1187#if EV_FORK_ENABLE 1425#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 1426 array_free (fork, EMPTY);
1189#endif 1427#endif
1190 array_free (prepare, EMPTY); 1428 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
1192 1433
1193 backend = 0; 1434 backend = 0;
1194} 1435}
1195 1436
1437#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 1438void inline_size infy_fork (EV_P);
1439#endif
1197 1440
1198void inline_size 1441void inline_size
1199loop_fork (EV_P) 1442loop_fork (EV_P)
1200{ 1443{
1201#if EV_USE_PORT 1444#if EV_USE_PORT
1212#endif 1455#endif
1213 1456
1214 if (ev_is_active (&pipeev)) 1457 if (ev_is_active (&pipeev))
1215 { 1458 {
1216 /* this "locks" the handlers against writing to the pipe */ 1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1217 gotsig = gotasync = 1; 1463 gotasync = 1;
1464#endif
1218 1465
1219 ev_ref (EV_A); 1466 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1221 close (evpipe [0]); 1476 close (evpipe [0]);
1222 close (evpipe [1]); 1477 close (evpipe [1]);
1478 }
1223 1479
1224 evpipe_init (EV_A); 1480 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */ 1481 /* now iterate over everything, in case we missed something */
1226 pipecb (EV_A_ &pipeev, EV_READ); 1482 pipecb (EV_A_ &pipeev, EV_READ);
1227 } 1483 }
1255void 1511void
1256ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1257{ 1513{
1258 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1259} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1260 1549
1261#endif 1550#endif
1262 1551
1263#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
1264struct ev_loop * 1553struct ev_loop *
1331void inline_speed 1620void inline_speed
1332call_pending (EV_P) 1621call_pending (EV_P)
1333{ 1622{
1334 int pri; 1623 int pri;
1335 1624
1625 EV_FREQUENT_CHECK;
1626
1336 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1337 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1338 { 1629 {
1339 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1340 1631
1344 1635
1345 p->w->pending = 0; 1636 p->w->pending = 0;
1346 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1347 } 1638 }
1348 } 1639 }
1349}
1350 1640
1351void inline_size 1641 EV_FREQUENT_CHECK;
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
1369 downheap (timers, timercnt, 0);
1370 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376} 1642}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 {
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430 1643
1431#if EV_IDLE_ENABLE 1644#if EV_IDLE_ENABLE
1432void inline_size 1645void inline_size
1433idle_reify (EV_P) 1646idle_reify (EV_P)
1434{ 1647{
1446 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1659 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1447 break; 1660 break;
1448 } 1661 }
1449 } 1662 }
1450 } 1663 }
1664}
1665#endif
1666
1667void inline_size
1668timers_reify (EV_P)
1669{
1670 EV_FREQUENT_CHECK;
1671
1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1673 {
1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1677
1678 /* first reschedule or stop timer */
1679 if (w->repeat)
1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1686
1687 ANHE_at_cache (timers [HEAP0]);
1688 downheap (timers, timercnt, HEAP0);
1689 }
1690 else
1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1692
1693 EV_FREQUENT_CHECK;
1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1695 }
1696}
1697
1698#if EV_PERIODIC_ENABLE
1699void inline_size
1700periodics_reify (EV_P)
1701{
1702 EV_FREQUENT_CHECK;
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1719 }
1720 else if (w->interval)
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
1738 }
1739 else
1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1744 }
1745}
1746
1747static void noinline
1748periodics_reschedule (EV_P)
1749{
1750 int i;
1751
1752 /* adjust periodics after time jump */
1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1756
1757 if (w->reschedule_cb)
1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1759 else if (w->interval)
1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1451} 1766}
1452#endif 1767#endif
1453 1768
1454void inline_speed 1769void inline_speed
1455time_update (EV_P_ ev_tstamp max_block) 1770time_update (EV_P_ ev_tstamp max_block)
1484 */ 1799 */
1485 for (i = 4; --i; ) 1800 for (i = 4; --i; )
1486 { 1801 {
1487 rtmn_diff = ev_rt_now - mn_now; 1802 rtmn_diff = ev_rt_now - mn_now;
1488 1803
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 1805 return; /* all is well */
1491 1806
1492 ev_rt_now = ev_time (); 1807 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 1808 mn_now = get_clock ();
1494 now_floor = mn_now; 1809 now_floor = mn_now;
1510#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 1826 periodics_reschedule (EV_A);
1512#endif 1827#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */ 1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i) 1829 for (i = 0; i < timercnt; ++i)
1830 {
1831 ANHE *he = timers + i + HEAP0;
1515 ((WT)timers [i])->at += ev_rt_now - mn_now; 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1516 } 1835 }
1517 1836
1518 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1519 } 1838 }
1520} 1839}
1534static int loop_done; 1853static int loop_done;
1535 1854
1536void 1855void
1537ev_loop (EV_P_ int flags) 1856ev_loop (EV_P_ int flags)
1538{ 1857{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1858 loop_done = EVUNLOOP_CANCEL;
1540 ? EVUNLOOP_ONE
1541 : EVUNLOOP_CANCEL;
1542 1859
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1544 1861
1545 do 1862 do
1546 { 1863 {
1592 1909
1593 waittime = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1594 1911
1595 if (timercnt) 1912 if (timercnt)
1596 { 1913 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1598 if (waittime > to) waittime = to; 1915 if (waittime > to) waittime = to;
1599 } 1916 }
1600 1917
1601#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 1919 if (periodiccnt)
1603 { 1920 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1605 if (waittime > to) waittime = to; 1922 if (waittime > to) waittime = to;
1606 } 1923 }
1607#endif 1924#endif
1608 1925
1609 if (expect_false (waittime < timeout_blocktime)) 1926 if (expect_false (waittime < timeout_blocktime))
1642 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 1960 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1645 1962
1646 call_pending (EV_A); 1963 call_pending (EV_A);
1647
1648 } 1964 }
1649 while (expect_true (activecnt && !loop_done)); 1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
1650 1970
1651 if (loop_done == EVUNLOOP_ONE) 1971 if (loop_done == EVUNLOOP_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 1972 loop_done = EVUNLOOP_CANCEL;
1653} 1973}
1654 1974
1743 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1744 return; 2064 return;
1745 2065
1746 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1747 2067
2068 EV_FREQUENT_CHECK;
2069
1748 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1750 wlist_add (&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1751 2073
1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1753 w->events &= ~EV_IOFDSET; 2075 w->events &= ~EV_IOFDSET;
2076
2077 EV_FREQUENT_CHECK;
1754} 2078}
1755 2079
1756void noinline 2080void noinline
1757ev_io_stop (EV_P_ ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1758{ 2082{
1759 clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1760 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1761 return; 2085 return;
1762 2086
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2088
2089 EV_FREQUENT_CHECK;
1764 2090
1765 wlist_del (&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1766 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1767 2093
1768 fd_change (EV_A_ w->fd, 1); 2094 fd_change (EV_A_ w->fd, 1);
2095
2096 EV_FREQUENT_CHECK;
1769} 2097}
1770 2098
1771void noinline 2099void noinline
1772ev_timer_start (EV_P_ ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1773{ 2101{
1774 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1775 return; 2103 return;
1776 2104
1777 ((WT)w)->at += mn_now; 2105 ev_at (w) += mn_now;
1778 2106
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1781 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
1784 upheap (timers, timercnt - 1); 2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
1785 2117
2118 EV_FREQUENT_CHECK;
2119
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1787} 2121}
1788 2122
1789void noinline 2123void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1791{ 2125{
1792 clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1794 return; 2128 return;
1795 2129
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2130 EV_FREQUENT_CHECK;
1797 2131
1798 { 2132 {
1799 int active = ((W)w)->active; 2133 int active = ev_active (w);
1800 2134
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136
2137 --timercnt;
2138
1801 if (expect_true (--active < --timercnt)) 2139 if (expect_true (active < timercnt + HEAP0))
1802 { 2140 {
1803 timers [active] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1804 adjustheap (timers, timercnt, active); 2142 adjustheap (timers, timercnt, active);
1805 } 2143 }
1806 } 2144 }
1807 2145
1808 ((WT)w)->at -= mn_now; 2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now;
1809 2149
1810 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1811} 2151}
1812 2152
1813void noinline 2153void noinline
1814ev_timer_again (EV_P_ ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1815{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1816 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1817 { 2159 {
1818 if (w->repeat) 2160 if (w->repeat)
1819 { 2161 {
1820 ((WT)w)->at = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
1822 } 2165 }
1823 else 2166 else
1824 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1825 } 2168 }
1826 else if (w->repeat) 2169 else if (w->repeat)
1827 { 2170 {
1828 w->at = w->repeat; 2171 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1830 } 2173 }
2174
2175 EV_FREQUENT_CHECK;
1831} 2176}
1832 2177
1833#if EV_PERIODIC_ENABLE 2178#if EV_PERIODIC_ENABLE
1834void noinline 2179void noinline
1835ev_periodic_start (EV_P_ ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1836{ 2181{
1837 if (expect_false (ev_is_active (w))) 2182 if (expect_false (ev_is_active (w)))
1838 return; 2183 return;
1839 2184
1840 if (w->reschedule_cb) 2185 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 2187 else if (w->interval)
1843 { 2188 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 2192 }
1848 else 2193 else
1849 ((WT)w)->at = w->offset; 2194 ev_at (w) = w->offset;
1850 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1855 2204
2205 EV_FREQUENT_CHECK;
2206
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1857} 2208}
1858 2209
1859void noinline 2210void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 2212{
1862 clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1864 return; 2215 return;
1865 2216
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2217 EV_FREQUENT_CHECK;
1867 2218
1868 { 2219 {
1869 int active = ((W)w)->active; 2220 int active = ev_active (w);
1870 2221
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223
2224 --periodiccnt;
2225
1871 if (expect_true (--active < --periodiccnt)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1872 { 2227 {
1873 periodics [active] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1874 adjustheap (periodics, periodiccnt, active); 2229 adjustheap (periodics, periodiccnt, active);
1875 } 2230 }
1876 } 2231 }
1877 2232
2233 EV_FREQUENT_CHECK;
2234
1878 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1879} 2236}
1880 2237
1881void noinline 2238void noinline
1882ev_periodic_again (EV_P_ ev_periodic *w) 2239ev_periodic_again (EV_P_ ev_periodic *w)
1901 return; 2258 return;
1902 2259
1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1904 2261
1905 evpipe_init (EV_A); 2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
1906 2265
1907 { 2266 {
1908#ifndef _WIN32 2267#ifndef _WIN32
1909 sigset_t full, prev; 2268 sigset_t full, prev;
1910 sigfillset (&full); 2269 sigfillset (&full);
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 2282
1924 if (!((WL)w)->next) 2283 if (!((WL)w)->next)
1925 { 2284 {
1926#if _WIN32 2285#if _WIN32
1927 signal (w->signum, sighandler); 2286 signal (w->signum, ev_sighandler);
1928#else 2287#else
1929 struct sigaction sa; 2288 struct sigaction sa;
1930 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
1934#endif 2293#endif
1935 } 2294 }
2295
2296 EV_FREQUENT_CHECK;
1936} 2297}
1937 2298
1938void noinline 2299void noinline
1939ev_signal_stop (EV_P_ ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
1940{ 2301{
1941 clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
1942 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
1943 return; 2304 return;
1944 2305
2306 EV_FREQUENT_CHECK;
2307
1945 wlist_del (&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
1946 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
1947 2310
1948 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
1949 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
2313
2314 EV_FREQUENT_CHECK;
1950} 2315}
1951 2316
1952void 2317void
1953ev_child_start (EV_P_ ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
1954{ 2319{
1956 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1957#endif 2322#endif
1958 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1959 return; 2324 return;
1960 2325
2326 EV_FREQUENT_CHECK;
2327
1961 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
1963} 2332}
1964 2333
1965void 2334void
1966ev_child_stop (EV_P_ ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
1967{ 2336{
1968 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1970 return; 2339 return;
1971 2340
2341 EV_FREQUENT_CHECK;
2342
1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1973 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
1974} 2347}
1975 2348
1976#if EV_STAT_ENABLE 2349#if EV_STAT_ENABLE
1977 2350
1978# ifdef _WIN32 2351# ifdef _WIN32
1996 if (w->wd < 0) 2369 if (w->wd < 0)
1997 { 2370 {
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1999 2372
2000 /* monitor some parent directory for speedup hints */ 2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 2377 {
2003 char path [4096]; 2378 char path [4096];
2004 strcpy (path, w->path); 2379 strcpy (path, w->path);
2005 2380
2204 else 2579 else
2205#endif 2580#endif
2206 ev_timer_start (EV_A_ &w->timer); 2581 ev_timer_start (EV_A_ &w->timer);
2207 2582
2208 ev_start (EV_A_ (W)w, 1); 2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2209} 2586}
2210 2587
2211void 2588void
2212ev_stat_stop (EV_P_ ev_stat *w) 2589ev_stat_stop (EV_P_ ev_stat *w)
2213{ 2590{
2214 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2216 return; 2593 return;
2217 2594
2595 EV_FREQUENT_CHECK;
2596
2218#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2219 infy_del (EV_A_ w); 2598 infy_del (EV_A_ w);
2220#endif 2599#endif
2221 ev_timer_stop (EV_A_ &w->timer); 2600 ev_timer_stop (EV_A_ &w->timer);
2222 2601
2223 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2224} 2605}
2225#endif 2606#endif
2226 2607
2227#if EV_IDLE_ENABLE 2608#if EV_IDLE_ENABLE
2228void 2609void
2230{ 2611{
2231 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2232 return; 2613 return;
2233 2614
2234 pri_adjust (EV_A_ (W)w); 2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2235 2618
2236 { 2619 {
2237 int active = ++idlecnt [ABSPRI (w)]; 2620 int active = ++idlecnt [ABSPRI (w)];
2238 2621
2239 ++idleall; 2622 ++idleall;
2240 ev_start (EV_A_ (W)w, active); 2623 ev_start (EV_A_ (W)w, active);
2241 2624
2242 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2243 idles [ABSPRI (w)][active - 1] = w; 2626 idles [ABSPRI (w)][active - 1] = w;
2244 } 2627 }
2628
2629 EV_FREQUENT_CHECK;
2245} 2630}
2246 2631
2247void 2632void
2248ev_idle_stop (EV_P_ ev_idle *w) 2633ev_idle_stop (EV_P_ ev_idle *w)
2249{ 2634{
2250 clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
2252 return; 2637 return;
2253 2638
2639 EV_FREQUENT_CHECK;
2640
2254 { 2641 {
2255 int active = ((W)w)->active; 2642 int active = ev_active (w);
2256 2643
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 2646
2260 ev_stop (EV_A_ (W)w); 2647 ev_stop (EV_A_ (W)w);
2261 --idleall; 2648 --idleall;
2262 } 2649 }
2650
2651 EV_FREQUENT_CHECK;
2263} 2652}
2264#endif 2653#endif
2265 2654
2266void 2655void
2267ev_prepare_start (EV_P_ ev_prepare *w) 2656ev_prepare_start (EV_P_ ev_prepare *w)
2268{ 2657{
2269 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
2270 return; 2659 return;
2660
2661 EV_FREQUENT_CHECK;
2271 2662
2272 ev_start (EV_A_ (W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
2273 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2274 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2275} 2668}
2276 2669
2277void 2670void
2278ev_prepare_stop (EV_P_ ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
2279{ 2672{
2280 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2282 return; 2675 return;
2283 2676
2677 EV_FREQUENT_CHECK;
2678
2284 { 2679 {
2285 int active = ((W)w)->active; 2680 int active = ev_active (w);
2681
2286 prepares [active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 2683 ev_active (prepares [active - 1]) = active;
2288 } 2684 }
2289 2685
2290 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2291} 2689}
2292 2690
2293void 2691void
2294ev_check_start (EV_P_ ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
2295{ 2693{
2296 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2297 return; 2695 return;
2696
2697 EV_FREQUENT_CHECK;
2298 2698
2299 ev_start (EV_A_ (W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
2300 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2301 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2302} 2704}
2303 2705
2304void 2706void
2305ev_check_stop (EV_P_ ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
2306{ 2708{
2307 clear_pending (EV_A_ (W)w); 2709 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2710 if (expect_false (!ev_is_active (w)))
2309 return; 2711 return;
2310 2712
2713 EV_FREQUENT_CHECK;
2714
2311 { 2715 {
2312 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2313 checks [active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 2719 ev_active (checks [active - 1]) = active;
2315 } 2720 }
2316 2721
2317 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2318} 2725}
2319 2726
2320#if EV_EMBED_ENABLE 2727#if EV_EMBED_ENABLE
2321void noinline 2728void noinline
2322ev_embed_sweep (EV_P_ ev_embed *w) 2729ev_embed_sweep (EV_P_ ev_embed *w)
2369 struct ev_loop *loop = w->other; 2776 struct ev_loop *loop = w->other;
2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2372 } 2779 }
2373 2780
2781 EV_FREQUENT_CHECK;
2782
2374 ev_set_priority (&w->io, ev_priority (w)); 2783 ev_set_priority (&w->io, ev_priority (w));
2375 ev_io_start (EV_A_ &w->io); 2784 ev_io_start (EV_A_ &w->io);
2376 2785
2377 ev_prepare_init (&w->prepare, embed_prepare_cb); 2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI); 2787 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare); 2788 ev_prepare_start (EV_A_ &w->prepare);
2380 2789
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382 2791
2383 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2384} 2795}
2385 2796
2386void 2797void
2387ev_embed_stop (EV_P_ ev_embed *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
2388{ 2799{
2389 clear_pending (EV_A_ (W)w); 2800 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w))) 2801 if (expect_false (!ev_is_active (w)))
2391 return; 2802 return;
2392 2803
2804 EV_FREQUENT_CHECK;
2805
2393 ev_io_stop (EV_A_ &w->io); 2806 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare); 2807 ev_prepare_stop (EV_A_ &w->prepare);
2395 2808
2396 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2397} 2812}
2398#endif 2813#endif
2399 2814
2400#if EV_FORK_ENABLE 2815#if EV_FORK_ENABLE
2401void 2816void
2402ev_fork_start (EV_P_ ev_fork *w) 2817ev_fork_start (EV_P_ ev_fork *w)
2403{ 2818{
2404 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2405 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2406 2823
2407 ev_start (EV_A_ (W)w, ++forkcnt); 2824 ev_start (EV_A_ (W)w, ++forkcnt);
2408 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2409 forks [forkcnt - 1] = w; 2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2410} 2829}
2411 2830
2412void 2831void
2413ev_fork_stop (EV_P_ ev_fork *w) 2832ev_fork_stop (EV_P_ ev_fork *w)
2414{ 2833{
2415 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2417 return; 2836 return;
2418 2837
2838 EV_FREQUENT_CHECK;
2839
2419 { 2840 {
2420 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2421 forks [active - 1] = forks [--forkcnt]; 2843 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 2844 ev_active (forks [active - 1]) = active;
2423 } 2845 }
2424 2846
2425 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2426} 2850}
2427#endif 2851#endif
2428 2852
2429#if EV_ASYNC_ENABLE 2853#if EV_ASYNC_ENABLE
2430void 2854void
2432{ 2856{
2433 if (expect_false (ev_is_active (w))) 2857 if (expect_false (ev_is_active (w)))
2434 return; 2858 return;
2435 2859
2436 evpipe_init (EV_A); 2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2437 2863
2438 ev_start (EV_A_ (W)w, ++asynccnt); 2864 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w; 2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2441} 2869}
2442 2870
2443void 2871void
2444ev_async_stop (EV_P_ ev_async *w) 2872ev_async_stop (EV_P_ ev_async *w)
2445{ 2873{
2446 clear_pending (EV_A_ (W)w); 2874 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 2875 if (expect_false (!ev_is_active (w)))
2448 return; 2876 return;
2449 2877
2878 EV_FREQUENT_CHECK;
2879
2450 { 2880 {
2451 int active = ((W)w)->active; 2881 int active = ev_active (w);
2882
2452 asyncs [active - 1] = asyncs [--asynccnt]; 2883 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 2884 ev_active (asyncs [active - 1]) = active;
2454 } 2885 }
2455 2886
2456 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2457} 2890}
2458 2891
2459void 2892void
2460ev_async_send (EV_P_ ev_async *w) 2893ev_async_send (EV_P_ ev_async *w)
2461{ 2894{
2462 w->sent = 1; 2895 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 2896 evpipe_write (EV_A_ &gotasync);
2464} 2897}
2465#endif 2898#endif
2466 2899
2467/*****************************************************************************/ 2900/*****************************************************************************/
2468 2901

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines