ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC vs.
Revision 1.299 by root, Tue Jul 14 00:09:59 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 391# define inline_speed static noinline
279#else 392#else
280# define inline_speed static inline 393# define inline_speed static inline
281#endif 394#endif
282 395
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
285 403
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
288 406
289typedef ev_watcher *W; 407typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
292 410
293#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 422#endif
298 423
299#ifdef _WIN32 424#ifdef _WIN32
300# include "ev_win32.c" 425# include "ev_win32.c"
309{ 434{
310 syserr_cb = cb; 435 syserr_cb = cb;
311} 436}
312 437
313static void noinline 438static void noinline
314syserr (const char *msg) 439ev_syserr (const char *msg)
315{ 440{
316 if (!msg) 441 if (!msg)
317 msg = "(libev) system error"; 442 msg = "(libev) system error";
318 443
319 if (syserr_cb) 444 if (syserr_cb)
323 perror (msg); 448 perror (msg);
324 abort (); 449 abort ();
325 } 450 }
326} 451}
327 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
328static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 469
330void 470void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 472{
333 alloc = cb; 473 alloc = cb;
334} 474}
335 475
336inline_speed void * 476inline_speed void *
337ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
338{ 478{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
340 480
341 if (!ptr && size) 481 if (!ptr && size)
342 { 482 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 484 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
352 492
353/*****************************************************************************/ 493/*****************************************************************************/
354 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
355typedef struct 499typedef struct
356{ 500{
357 WL head; 501 WL head;
358 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
360#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 510 SOCKET handle;
362#endif 511#endif
363} ANFD; 512} ANFD;
364 513
514/* stores the pending event set for a given watcher */
365typedef struct 515typedef struct
366{ 516{
367 W w; 517 W w;
368 int events; 518 int events; /* the pending event set for the given watcher */
369} ANPENDING; 519} ANPENDING;
370 520
371#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
372typedef struct 523typedef struct
373{ 524{
374 WL head; 525 WL head;
375} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
376#endif 547#endif
377 548
378#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
379 550
380 struct ev_loop 551 struct ev_loop
399 570
400 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
401 572
402#endif 573#endif
403 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
404/*****************************************************************************/ 587/*****************************************************************************/
405 588
589#ifndef EV_HAVE_EV_TIME
406ev_tstamp 590ev_tstamp
407ev_time (void) 591ev_time (void)
408{ 592{
409#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
410 struct timespec ts; 596 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 599 }
600#endif
601
414 struct timeval tv; 602 struct timeval tv;
415 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 605}
606#endif
419 607
420ev_tstamp inline_size 608inline_size ev_tstamp
421get_clock (void) 609get_clock (void)
422{ 610{
423#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
425 { 613 {
451 ts.tv_sec = (time_t)delay; 639 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 641
454 nanosleep (&ts, 0); 642 nanosleep (&ts, 0);
455#elif defined(_WIN32) 643#elif defined(_WIN32)
456 Sleep (delay * 1e3); 644 Sleep ((unsigned long)(delay * 1e3));
457#else 645#else
458 struct timeval tv; 646 struct timeval tv;
459 647
460 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
463 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
464#endif 655#endif
465 } 656 }
466} 657}
467 658
468/*****************************************************************************/ 659/*****************************************************************************/
469 660
470int inline_size 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
471array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
472{ 667{
473 int ncur = cur + 1; 668 int ncur = cur + 1;
474 669
475 do 670 do
476 ncur <<= 1; 671 ncur <<= 1;
477 while (cnt > ncur); 672 while (cnt > ncur);
478 673
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 676 {
482 ncur *= elem; 677 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 680 ncur /= elem;
486 } 681 }
487 682
488 return ncur; 683 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
493{ 688{
494 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
496} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 695
498#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
500 { \ 698 { \
501 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 712 }
515#endif 713#endif
516 714
517#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 717
520/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
521 725
522void noinline 726void noinline
523ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
524{ 728{
525 W w_ = (W)w; 729 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
536 } 740 }
537} 741}
538 742
539void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 760{
542 int i; 761 int i;
543 762
544 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
546} 765}
547 766
548/*****************************************************************************/ 767/*****************************************************************************/
549 768
550void inline_size 769inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
565{ 771{
566 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
567 ev_io *w; 773 ev_io *w;
568 774
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 779 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
575 } 781 }
576} 782}
577 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
578void 795void
579ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 797{
581 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
583} 800}
584 801
585void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
586fd_reify (EV_P) 805fd_reify (EV_P)
587{ 806{
588 int i; 807 int i;
589 808
590 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
600 819
601#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
602 if (events) 821 if (events)
603 { 822 {
604 unsigned long argp; 823 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 826 #else
608 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
609 #endif 828 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 830 }
612#endif 831#endif
613 832
614 { 833 {
615 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
617 836
618 anfd->reify = 0; 837 anfd->reify = 0;
619 anfd->events = events; 838 anfd->events = events;
620 839
621 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
623 } 842 }
624 } 843 }
625 844
626 fdchangecnt = 0; 845 fdchangecnt = 0;
627} 846}
628 847
629void inline_size 848/* something about the given fd changed */
849inline_size void
630fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
631{ 851{
632 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
634 854
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
640 } 860 }
641} 861}
642 862
643void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
644fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
645{ 866{
646 ev_io *w; 867 ev_io *w;
647 868
648 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 873 }
653} 874}
654 875
655int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
656fd_valid (int fd) 878fd_valid (int fd)
657{ 879{
658#ifdef _WIN32 880#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
660#else 882#else
668{ 890{
669 int fd; 891 int fd;
670 892
671 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 894 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
675} 897}
676 898
677/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 900static void noinline
696 918
697 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 920 if (anfds [fd].events)
699 { 921 {
700 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 925 }
703} 926}
704 927
705/*****************************************************************************/ 928/*****************************************************************************/
706 929
707void inline_speed 930/*
708upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
711 935
712 while (k) 936/*
713 { 937 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
715 943
716 if (heap [p]->at <= w->at) 944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
717 break; 978 break;
718 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
719 heap [k] = heap [p]; 1042 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1043 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1044 k = p;
722 } 1045 }
723 1046
724 heap [k] = w; 1047 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1048 ev_active (ANHE_w (he)) = k;
726} 1049}
727 1050
728void inline_speed 1051/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1052inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
758{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1056 upheap (heap, k);
1057 else
760 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
761} 1071}
762 1072
763/*****************************************************************************/ 1073/*****************************************************************************/
764 1074
1075/* associate signal watchers to a signal signal */
765typedef struct 1076typedef struct
766{ 1077{
767 WL head; 1078 WL head;
768 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
769} ANSIG; 1080} ANSIG;
771static ANSIG *signals; 1082static ANSIG *signals;
772static int signalmax; 1083static int signalmax;
773 1084
774static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
775 1086
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1087/*****************************************************************************/
789 1088
790void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
791fd_intern (int fd) 1092fd_intern (int fd)
792{ 1093{
793#ifdef _WIN32 1094#ifdef _WIN32
794 int arg = 1; 1095 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1097#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1100#endif
800} 1101}
801 1102
802static void noinline 1103static void noinline
803evpipe_init (EV_P) 1104evpipe_init (EV_P)
804{ 1105{
805 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
806 { 1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
807 while (pipe (evpipe)) 1118 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
809 1120
810 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
814 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1128 }
824 int old_errno = errno; 1129}
825 1130
826 if (sig) gotsig = 1; 1131inline_size void
827 if (async) gotasync = 1; 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
828 1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
829 write (evpipe [1], &old_errno, 1); 1148 write (evpipe [1], &old_errno, 1);
1149
830 errno = old_errno; 1150 errno = old_errno;
831 } 1151 }
832} 1152}
833 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
834static void 1156static void
835pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
836{ 1158{
1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
837 { 1161 {
838 int dummy; 1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
839 read (evpipe [0], &dummy, 1); 1169 read (evpipe [0], &dummy, 1);
840 } 1170 }
841 1171
842 if (gotsig) 1172 if (gotsig && ev_is_default_loop (EV_A))
843 { 1173 {
844 int signum; 1174 int signum;
845 gotsig = 0; 1175 gotsig = 0;
846 1176
847 for (signum = signalmax; signum--; ) 1177 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig) 1178 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1); 1179 ev_feed_signal_event (EV_A_ signum + 1);
850 } 1180 }
851 1181
1182#if EV_ASYNC_ENABLE
852 if (gotasync) 1183 if (gotasync)
853 { 1184 {
854 int i; 1185 int i;
855 gotasync = 0; 1186 gotasync = 0;
856 1187
859 { 1190 {
860 asyncs [i]->sent = 0; 1191 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 1193 }
863 } 1194 }
1195#endif
864} 1196}
865 1197
866/*****************************************************************************/ 1198/*****************************************************************************/
867 1199
868static void 1200static void
869sighandler (int signum) 1201ev_sighandler (int signum)
870{ 1202{
871#if EV_MULTIPLICITY 1203#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 1204 struct ev_loop *loop = &default_loop_struct;
873#endif 1205#endif
874 1206
875#if _WIN32 1207#if _WIN32
876 signal (signum, sighandler); 1208 signal (signum, ev_sighandler);
877#endif 1209#endif
878 1210
879 signals [signum - 1].gotsig = 1; 1211 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0); 1212 evpipe_write (EV_A_ &gotsig);
881} 1213}
882 1214
883void noinline 1215void noinline
884ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
885{ 1217{
886 WL w; 1218 WL w;
887 1219
888#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
890#endif 1222#endif
891 1223
892 --signum; 1224 --signum;
893 1225
894 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
910 1242
911#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
913#endif 1245#endif
914 1246
915void inline_speed 1247/* handle a single child status event */
1248inline_speed void
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
917{ 1250{
918 ev_child *w; 1251 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 1253
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 1255 {
923 if ((w->pid == pid || !w->pid) 1256 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 1257 && (!traced || (w->flags & 1)))
925 { 1258 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 1260 w->rpid = pid;
928 w->rstatus = status; 1261 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 1263 }
931 } 1264 }
933 1266
934#ifndef WCONTINUED 1267#ifndef WCONTINUED
935# define WCONTINUED 0 1268# define WCONTINUED 0
936#endif 1269#endif
937 1270
1271/* called on sigchld etc., calls waitpid */
938static void 1272static void
939childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
940{ 1274{
941 int pid, status; 1275 int pid, status;
942 1276
945 if (!WCONTINUED 1279 if (!WCONTINUED
946 || errno != EINVAL 1280 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 1282 return;
949 1283
950 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 1285 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 1287
954 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 1289 if (EV_PID_HASHSIZE > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 1291}
958 1292
959#endif 1293#endif
960 1294
961/*****************************************************************************/ 1295/*****************************************************************************/
1023 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1024 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1025 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1026#endif 1360#endif
1027#ifdef __APPLE__ 1361#ifdef __APPLE__
1028 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1029 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1030#endif 1365#endif
1031 1366
1032 return flags; 1367 return flags;
1033} 1368}
1034 1369
1048ev_backend (EV_P) 1383ev_backend (EV_P)
1049{ 1384{
1050 return backend; 1385 return backend;
1051} 1386}
1052 1387
1388#if EV_MINIMAL < 2
1053unsigned int 1389unsigned int
1054ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1055{ 1391{
1056 return loop_count; 1392 return loop_count;
1057} 1393}
1058 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1059void 1401void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1061{ 1403{
1062 io_blocktime = interval; 1404 io_blocktime = interval;
1063} 1405}
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1067{ 1409{
1068 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1069} 1411}
1070 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1071static void noinline 1438static void noinline
1072loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1073{ 1440{
1074 if (!backend) 1441 if (!backend)
1075 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1076#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1077 { 1455 {
1078 struct timespec ts; 1456 struct timespec ts;
1457
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 1459 have_monotonic = 1;
1081 } 1460 }
1082#endif 1461#endif
1083 1462
1084 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1085 mn_now = get_clock (); 1464 mn_now = get_clock ();
1086 now_floor = mn_now; 1465 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1088 1470
1089 io_blocktime = 0.; 1471 io_blocktime = 0.;
1090 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1091 1479
1092 /* pid check not overridable via env */ 1480 /* pid check not overridable via env */
1093#ifndef _WIN32 1481#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 1482 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 1483 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 1486 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 1487 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 1488 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 1490
1103 if (!(flags & 0x0000ffffUL)) 1491 if (!(flags & 0x0000ffffU))
1104 flags |= ev_recommended_backends (); 1492 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY
1109 fs_fd = -2;
1110#endif
1111 1493
1112#if EV_USE_PORT 1494#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 1496#endif
1115#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
1123#endif 1505#endif
1124#if EV_USE_SELECT 1506#if EV_USE_SELECT
1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1126#endif 1508#endif
1127 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1128 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1129 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1130 } 1514 }
1131} 1515}
1132 1516
1517/* free up a loop structure */
1133static void noinline 1518static void noinline
1134loop_destroy (EV_P) 1519loop_destroy (EV_P)
1135{ 1520{
1136 int i; 1521 int i;
1137 1522
1138 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1139 { 1524 {
1140 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1142 1527
1143 close (evpipe [0]); evpipe [0] = 0; 1528#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1145 } 1538 }
1146 1539
1147#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 1541 if (fs_fd >= 0)
1149 close (fs_fd); 1542 close (fs_fd);
1177 } 1570 }
1178 1571
1179 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1180 1573
1181 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1182 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1183 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1184#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1185 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1186#endif 1580#endif
1187#if EV_FORK_ENABLE 1581#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 1582 array_free (fork, EMPTY);
1189#endif 1583#endif
1190 array_free (prepare, EMPTY); 1584 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1192 1589
1193 backend = 0; 1590 backend = 0;
1194} 1591}
1195 1592
1593#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1595#endif
1197 1596
1198void inline_size 1597inline_size void
1199loop_fork (EV_P) 1598loop_fork (EV_P)
1200{ 1599{
1201#if EV_USE_PORT 1600#if EV_USE_PORT
1202 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1203#endif 1602#endif
1209#endif 1608#endif
1210#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1211 infy_fork (EV_A); 1610 infy_fork (EV_A);
1212#endif 1611#endif
1213 1612
1214 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1215 { 1614 {
1216 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1217 gotsig = gotasync = 1; 1619 gotasync = 1;
1620#endif
1218 1621
1219 ev_ref (EV_A); 1622 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1221 close (evpipe [0]); 1632 close (evpipe [0]);
1222 close (evpipe [1]); 1633 close (evpipe [1]);
1634 }
1223 1635
1224 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1226 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1227 } 1639 }
1228 1640
1229 postfork = 0; 1641 postfork = 0;
1230} 1642}
1231 1643
1232#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1233struct ev_loop * 1646struct ev_loop *
1234ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1235{ 1648{
1236 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1237 1650
1255void 1668void
1256ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1257{ 1670{
1258 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1259} 1672}
1673#endif /* multiplicity */
1260 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1261#endif 1774#endif
1262 1775
1263#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1264struct ev_loop * 1777struct ev_loop *
1265ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1299{ 1812{
1300#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1301 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1302#endif 1815#endif
1303 1816
1817 ev_default_loop_ptr = 0;
1818
1304#ifndef _WIN32 1819#ifndef _WIN32
1305 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1306 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1307#endif 1822#endif
1308 1823
1314{ 1829{
1315#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1316 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1317#endif 1832#endif
1318 1833
1319 if (backend)
1320 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1321} 1835}
1322 1836
1323/*****************************************************************************/ 1837/*****************************************************************************/
1324 1838
1325void 1839void
1326ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1327{ 1841{
1328 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1329} 1843}
1330 1844
1331void inline_speed 1845void noinline
1332call_pending (EV_P) 1846ev_invoke_pending (EV_P)
1333{ 1847{
1334 int pri; 1848 int pri;
1335 1849
1336 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
1337 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
1338 { 1852 {
1339 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1340 1854
1341 if (expect_true (p->w))
1342 {
1343 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856 /* ^ this is no longer true, as pending_w could be here */
1344 1857
1345 p->w->pending = 0; 1858 p->w->pending = 0;
1346 EV_CB_INVOKE (p->w, p->events); 1859 EV_CB_INVOKE (p->w, p->events);
1347 } 1860 EV_FREQUENT_CHECK;
1348 } 1861 }
1349} 1862}
1350 1863
1351void inline_size
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
1369 downheap (timers, timercnt, 0);
1370 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 {
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430
1431#if EV_IDLE_ENABLE 1864#if EV_IDLE_ENABLE
1432void inline_size 1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1433idle_reify (EV_P) 1868idle_reify (EV_P)
1434{ 1869{
1435 if (expect_false (idleall)) 1870 if (expect_false (idleall))
1436 { 1871 {
1437 int pri; 1872 int pri;
1449 } 1884 }
1450 } 1885 }
1451} 1886}
1452#endif 1887#endif
1453 1888
1454void inline_speed 1889/* make timers pending */
1890inline_size void
1891timers_reify (EV_P)
1892{
1893 EV_FREQUENT_CHECK;
1894
1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 {
1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 }
1925}
1926
1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 {
1936 int feed_count = 0;
1937
1938 do
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
1989{
1990 int i;
1991
1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996
1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
1455time_update (EV_P_ ev_tstamp max_block) 2026time_update (EV_P_ ev_tstamp max_block)
1456{ 2027{
1457 int i;
1458
1459#if EV_USE_MONOTONIC 2028#if EV_USE_MONOTONIC
1460 if (expect_true (have_monotonic)) 2029 if (expect_true (have_monotonic))
1461 { 2030 {
2031 int i;
1462 ev_tstamp odiff = rtmn_diff; 2032 ev_tstamp odiff = rtmn_diff;
1463 2033
1464 mn_now = get_clock (); 2034 mn_now = get_clock ();
1465 2035
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1484 */ 2054 */
1485 for (i = 4; --i; ) 2055 for (i = 4; --i; )
1486 { 2056 {
1487 rtmn_diff = ev_rt_now - mn_now; 2057 rtmn_diff = ev_rt_now - mn_now;
1488 2058
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 2060 return; /* all is well */
1491 2061
1492 ev_rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 2063 mn_now = get_clock ();
1494 now_floor = mn_now; 2064 now_floor = mn_now;
1495 } 2065 }
1496 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1497# if EV_PERIODIC_ENABLE 2069# if EV_PERIODIC_ENABLE
1498 periodics_reschedule (EV_A); 2070 periodics_reschedule (EV_A);
1499# endif 2071# endif
1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502 } 2072 }
1503 else 2073 else
1504#endif 2074#endif
1505 { 2075 {
1506 ev_rt_now = ev_time (); 2076 ev_rt_now = ev_time ();
1507 2077
1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1509 { 2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1510#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
1512#endif 2084#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i)
1515 ((WT)timers [i])->at += ev_rt_now - mn_now;
1516 } 2085 }
1517 2086
1518 mn_now = ev_rt_now; 2087 mn_now = ev_rt_now;
1519 } 2088 }
1520} 2089}
1521 2090
1522void 2091void
1523ev_ref (EV_P)
1524{
1525 ++activecnt;
1526}
1527
1528void
1529ev_unref (EV_P)
1530{
1531 --activecnt;
1532}
1533
1534static int loop_done;
1535
1536void
1537ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
1538{ 2093{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2094#if EV_MINIMAL < 2
1540 ? EVUNLOOP_ONE 2095 ++loop_depth;
1541 : EVUNLOOP_CANCEL; 2096#endif
1542 2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
2100 loop_done = EVUNLOOP_CANCEL;
2101
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1544 2103
1545 do 2104 do
1546 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
1547#ifndef _WIN32 2110#ifndef _WIN32
1548 if (expect_false (curpid)) /* penalise the forking check even more */ 2111 if (expect_false (curpid)) /* penalise the forking check even more */
1549 if (expect_false (getpid () != curpid)) 2112 if (expect_false (getpid () != curpid))
1550 { 2113 {
1551 curpid = getpid (); 2114 curpid = getpid ();
1557 /* we might have forked, so queue fork handlers */ 2120 /* we might have forked, so queue fork handlers */
1558 if (expect_false (postfork)) 2121 if (expect_false (postfork))
1559 if (forkcnt) 2122 if (forkcnt)
1560 { 2123 {
1561 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1562 call_pending (EV_A); 2125 EV_INVOKE_PENDING;
1563 } 2126 }
1564#endif 2127#endif
1565 2128
1566 /* queue prepare watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
1567 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
1568 { 2131 {
1569 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1570 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
1571 } 2134 }
1572 2135
1573 if (expect_false (!activecnt)) 2136 if (expect_false (loop_done))
1574 break; 2137 break;
1575 2138
1576 /* we might have forked, so reify kernel state if necessary */ 2139 /* we might have forked, so reify kernel state if necessary */
1577 if (expect_false (postfork)) 2140 if (expect_false (postfork))
1578 loop_fork (EV_A); 2141 loop_fork (EV_A);
1585 ev_tstamp waittime = 0.; 2148 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.; 2149 ev_tstamp sleeptime = 0.;
1587 2150
1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1589 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
1590 /* update time to cancel out callback processing overhead */ 2156 /* update time to cancel out callback processing overhead */
1591 time_update (EV_A_ 1e100); 2157 time_update (EV_A_ 1e100);
1592 2158
1593 waittime = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
1594 2160
1595 if (timercnt) 2161 if (timercnt)
1596 { 2162 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1598 if (waittime > to) waittime = to; 2164 if (waittime > to) waittime = to;
1599 } 2165 }
1600 2166
1601#if EV_PERIODIC_ENABLE 2167#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 2168 if (periodiccnt)
1603 { 2169 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1605 if (waittime > to) waittime = to; 2171 if (waittime > to) waittime = to;
1606 } 2172 }
1607#endif 2173#endif
1608 2174
2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
1609 if (expect_false (waittime < timeout_blocktime)) 2176 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime; 2177 waittime = timeout_blocktime;
1611 2178
1612 sleeptime = waittime - backend_fudge; 2179 /* extra check because io_blocktime is commonly 0 */
1613
1614 if (expect_true (sleeptime > io_blocktime)) 2180 if (expect_false (io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 { 2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
1619 ev_sleep (sleeptime); 2189 ev_sleep (sleeptime);
1620 waittime -= sleeptime; 2190 waittime -= sleeptime;
2191 }
1621 } 2192 }
1622 } 2193 }
1623 2194
2195#if EV_MINIMAL < 2
1624 ++loop_count; 2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1625 backend_poll (EV_A_ waittime); 2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1626 2201
1627 /* update ev_rt_now, do magic */ 2202 /* update ev_rt_now, do magic */
1628 time_update (EV_A_ waittime + sleeptime); 2203 time_update (EV_A_ waittime + sleeptime);
1629 } 2204 }
1630 2205
1641 2216
1642 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 2218 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1645 2220
1646 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
1647
1648 } 2222 }
1649 while (expect_true (activecnt && !loop_done)); 2223 while (expect_true (
2224 activecnt
2225 && !loop_done
2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2227 ));
1650 2228
1651 if (loop_done == EVUNLOOP_ONE) 2229 if (loop_done == EVUNLOOP_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
1653} 2235}
1654 2236
1655void 2237void
1656ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
1657{ 2239{
1658 loop_done = how; 2240 loop_done = how;
1659} 2241}
1660 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
1661/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
1662 2282
1663void inline_size 2283inline_size void
1664wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
1665{ 2285{
1666 elem->next = *head; 2286 elem->next = *head;
1667 *head = elem; 2287 *head = elem;
1668} 2288}
1669 2289
1670void inline_size 2290inline_size void
1671wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
1672{ 2292{
1673 while (*head) 2293 while (*head)
1674 { 2294 {
1675 if (*head == elem) 2295 if (*head == elem)
1680 2300
1681 head = &(*head)->next; 2301 head = &(*head)->next;
1682 } 2302 }
1683} 2303}
1684 2304
1685void inline_speed 2305/* internal, faster, version of ev_clear_pending */
2306inline_speed void
1686clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
1687{ 2308{
1688 if (w->pending) 2309 if (w->pending)
1689 { 2310 {
1690 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1691 w->pending = 0; 2312 w->pending = 0;
1692 } 2313 }
1693} 2314}
1694 2315
1695int 2316int
1699 int pending = w_->pending; 2320 int pending = w_->pending;
1700 2321
1701 if (expect_true (pending)) 2322 if (expect_true (pending))
1702 { 2323 {
1703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
1704 w_->pending = 0; 2326 w_->pending = 0;
1705 p->w = 0;
1706 return p->events; 2327 return p->events;
1707 } 2328 }
1708 else 2329 else
1709 return 0; 2330 return 0;
1710} 2331}
1711 2332
1712void inline_size 2333inline_size void
1713pri_adjust (EV_P_ W w) 2334pri_adjust (EV_P_ W w)
1714{ 2335{
1715 int pri = w->priority; 2336 int pri = ev_priority (w);
1716 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1718 w->priority = pri; 2339 ev_set_priority (w, pri);
1719} 2340}
1720 2341
1721void inline_speed 2342inline_speed void
1722ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
1723{ 2344{
1724 pri_adjust (EV_A_ w); 2345 pri_adjust (EV_A_ w);
1725 w->active = active; 2346 w->active = active;
1726 ev_ref (EV_A); 2347 ev_ref (EV_A);
1727} 2348}
1728 2349
1729void inline_size 2350inline_size void
1730ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
1731{ 2352{
1732 ev_unref (EV_A); 2353 ev_unref (EV_A);
1733 w->active = 0; 2354 w->active = 0;
1734} 2355}
1741 int fd = w->fd; 2362 int fd = w->fd;
1742 2363
1743 if (expect_false (ev_is_active (w))) 2364 if (expect_false (ev_is_active (w)))
1744 return; 2365 return;
1745 2366
1746 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369
2370 EV_FREQUENT_CHECK;
1747 2371
1748 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1750 wlist_add (&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
1751 2375
1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1753 w->events &= ~EV_IOFDSET; 2377 w->events &= ~EV__IOFDSET;
2378
2379 EV_FREQUENT_CHECK;
1754} 2380}
1755 2381
1756void noinline 2382void noinline
1757ev_io_stop (EV_P_ ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
1758{ 2384{
1759 clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
1760 if (expect_false (!ev_is_active (w))) 2386 if (expect_false (!ev_is_active (w)))
1761 return; 2387 return;
1762 2388
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390
2391 EV_FREQUENT_CHECK;
1764 2392
1765 wlist_del (&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
1766 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
1767 2395
1768 fd_change (EV_A_ w->fd, 1); 2396 fd_change (EV_A_ w->fd, 1);
2397
2398 EV_FREQUENT_CHECK;
1769} 2399}
1770 2400
1771void noinline 2401void noinline
1772ev_timer_start (EV_P_ ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
1773{ 2403{
1774 if (expect_false (ev_is_active (w))) 2404 if (expect_false (ev_is_active (w)))
1775 return; 2405 return;
1776 2406
1777 ((WT)w)->at += mn_now; 2407 ev_at (w) += mn_now;
1778 2408
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 2410
2411 EV_FREQUENT_CHECK;
2412
2413 ++timercnt;
1781 ev_start (EV_A_ (W)w, ++timercnt); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
1784 upheap (timers, timercnt - 1); 2417 ANHE_at_cache (timers [ev_active (w)]);
2418 upheap (timers, ev_active (w));
1785 2419
2420 EV_FREQUENT_CHECK;
2421
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1787} 2423}
1788 2424
1789void noinline 2425void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
1791{ 2427{
1792 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
1794 return; 2430 return;
1795 2431
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2432 EV_FREQUENT_CHECK;
1797 2433
1798 { 2434 {
1799 int active = ((W)w)->active; 2435 int active = ev_active (w);
1800 2436
2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2438
2439 --timercnt;
2440
1801 if (expect_true (--active < --timercnt)) 2441 if (expect_true (active < timercnt + HEAP0))
1802 { 2442 {
1803 timers [active] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
1804 adjustheap (timers, timercnt, active); 2444 adjustheap (timers, timercnt, active);
1805 } 2445 }
1806 } 2446 }
1807 2447
1808 ((WT)w)->at -= mn_now; 2448 EV_FREQUENT_CHECK;
2449
2450 ev_at (w) -= mn_now;
1809 2451
1810 ev_stop (EV_A_ (W)w); 2452 ev_stop (EV_A_ (W)w);
1811} 2453}
1812 2454
1813void noinline 2455void noinline
1814ev_timer_again (EV_P_ ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
1815{ 2457{
2458 EV_FREQUENT_CHECK;
2459
1816 if (ev_is_active (w)) 2460 if (ev_is_active (w))
1817 { 2461 {
1818 if (w->repeat) 2462 if (w->repeat)
1819 { 2463 {
1820 ((WT)w)->at = mn_now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
2465 ANHE_at_cache (timers [ev_active (w)]);
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 2466 adjustheap (timers, timercnt, ev_active (w));
1822 } 2467 }
1823 else 2468 else
1824 ev_timer_stop (EV_A_ w); 2469 ev_timer_stop (EV_A_ w);
1825 } 2470 }
1826 else if (w->repeat) 2471 else if (w->repeat)
1827 { 2472 {
1828 w->at = w->repeat; 2473 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 2474 ev_timer_start (EV_A_ w);
1830 } 2475 }
2476
2477 EV_FREQUENT_CHECK;
1831} 2478}
1832 2479
1833#if EV_PERIODIC_ENABLE 2480#if EV_PERIODIC_ENABLE
1834void noinline 2481void noinline
1835ev_periodic_start (EV_P_ ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
1836{ 2483{
1837 if (expect_false (ev_is_active (w))) 2484 if (expect_false (ev_is_active (w)))
1838 return; 2485 return;
1839 2486
1840 if (w->reschedule_cb) 2487 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 2489 else if (w->interval)
1843 { 2490 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 2494 }
1848 else 2495 else
1849 ((WT)w)->at = w->offset; 2496 ev_at (w) = w->offset;
1850 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2505 upheap (periodics, ev_active (w));
1855 2506
2507 EV_FREQUENT_CHECK;
2508
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1857} 2510}
1858 2511
1859void noinline 2512void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 2514{
1862 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1864 return; 2517 return;
1865 2518
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2519 EV_FREQUENT_CHECK;
1867 2520
1868 { 2521 {
1869 int active = ((W)w)->active; 2522 int active = ev_active (w);
1870 2523
2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2525
2526 --periodiccnt;
2527
1871 if (expect_true (--active < --periodiccnt)) 2528 if (expect_true (active < periodiccnt + HEAP0))
1872 { 2529 {
1873 periodics [active] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
1874 adjustheap (periodics, periodiccnt, active); 2531 adjustheap (periodics, periodiccnt, active);
1875 } 2532 }
1876 } 2533 }
1877 2534
2535 EV_FREQUENT_CHECK;
2536
1878 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1879} 2538}
1880 2539
1881void noinline 2540void noinline
1882ev_periodic_again (EV_P_ ev_periodic *w) 2541ev_periodic_again (EV_P_ ev_periodic *w)
1893 2552
1894void noinline 2553void noinline
1895ev_signal_start (EV_P_ ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
1896{ 2555{
1897#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1898 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2558#endif
1900 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
1901 return; 2560 return;
1902 2561
1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1904 2563
1905 evpipe_init (EV_A); 2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
1906 2567
1907 { 2568 {
1908#ifndef _WIN32 2569#ifndef _WIN32
1909 sigset_t full, prev; 2570 sigset_t full, prev;
1910 sigfillset (&full); 2571 sigfillset (&full);
1911 sigprocmask (SIG_SETMASK, &full, &prev); 2572 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif 2573#endif
1913 2574
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1915 2576
1916#ifndef _WIN32 2577#ifndef _WIN32
1917 sigprocmask (SIG_SETMASK, &prev, 0); 2578 sigprocmask (SIG_SETMASK, &prev, 0);
1918#endif 2579#endif
1919 } 2580 }
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 2583 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 2584
1924 if (!((WL)w)->next) 2585 if (!((WL)w)->next)
1925 { 2586 {
1926#if _WIN32 2587#if _WIN32
1927 signal (w->signum, sighandler); 2588 signal (w->signum, ev_sighandler);
1928#else 2589#else
1929 struct sigaction sa; 2590 struct sigaction sa = { };
1930 sa.sa_handler = sighandler; 2591 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
1934#endif 2595#endif
1935 } 2596 }
2597
2598 EV_FREQUENT_CHECK;
1936} 2599}
1937 2600
1938void noinline 2601void noinline
1939ev_signal_stop (EV_P_ ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
1940{ 2603{
1941 clear_pending (EV_A_ (W)w); 2604 clear_pending (EV_A_ (W)w);
1942 if (expect_false (!ev_is_active (w))) 2605 if (expect_false (!ev_is_active (w)))
1943 return; 2606 return;
1944 2607
2608 EV_FREQUENT_CHECK;
2609
1945 wlist_del (&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
1946 ev_stop (EV_A_ (W)w); 2611 ev_stop (EV_A_ (W)w);
1947 2612
1948 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
1949 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
2615
2616 EV_FREQUENT_CHECK;
1950} 2617}
1951 2618
1952void 2619void
1953ev_child_start (EV_P_ ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
1954{ 2621{
1955#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
1956 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1957#endif 2624#endif
1958 if (expect_false (ev_is_active (w))) 2625 if (expect_false (ev_is_active (w)))
1959 return; 2626 return;
1960 2627
2628 EV_FREQUENT_CHECK;
2629
1961 ev_start (EV_A_ (W)w, 1); 2630 ev_start (EV_A_ (W)w, 1);
1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632
2633 EV_FREQUENT_CHECK;
1963} 2634}
1964 2635
1965void 2636void
1966ev_child_stop (EV_P_ ev_child *w) 2637ev_child_stop (EV_P_ ev_child *w)
1967{ 2638{
1968 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1970 return; 2641 return;
1971 2642
2643 EV_FREQUENT_CHECK;
2644
1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1973 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
2647
2648 EV_FREQUENT_CHECK;
1974} 2649}
1975 2650
1976#if EV_STAT_ENABLE 2651#if EV_STAT_ENABLE
1977 2652
1978# ifdef _WIN32 2653# ifdef _WIN32
1979# undef lstat 2654# undef lstat
1980# define lstat(a,b) _stati64 (a,b) 2655# define lstat(a,b) _stati64 (a,b)
1981# endif 2656# endif
1982 2657
1983#define DEF_STAT_INTERVAL 5.0074891 2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1984#define MIN_STAT_INTERVAL 0.1074891 2660#define MIN_STAT_INTERVAL 0.1074891
1985 2661
1986static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1987 2663
1988#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
1989# define EV_INOTIFY_BUFSIZE 8192 2665# define EV_INOTIFY_BUFSIZE 8192
1993{ 2669{
1994 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1995 2671
1996 if (w->wd < 0) 2672 if (w->wd < 0)
1997 { 2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1999 2676
2000 /* monitor some parent directory for speedup hints */ 2677 /* monitor some parent directory for speedup hints */
2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 2681 {
2003 char path [4096]; 2682 char path [4096];
2004 strcpy (path, w->path); 2683 strcpy (path, w->path);
2005 2684
2008 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2009 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2010 2689
2011 char *pend = strrchr (path, '/'); 2690 char *pend = strrchr (path, '/');
2012 2691
2013 if (!pend) 2692 if (!pend || pend == path)
2014 break; /* whoops, no '/', complain to your admin */ 2693 break;
2015 2694
2016 *pend = 0; 2695 *pend = 0;
2017 w->wd = inotify_add_watch (fs_fd, path, mask); 2696 w->wd = inotify_add_watch (fs_fd, path, mask);
2018 } 2697 }
2019 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2020 } 2699 }
2021 } 2700 }
2022 else
2023 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2024 2701
2025 if (w->wd >= 0) 2702 if (w->wd >= 0)
2703 {
2026 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
2027} 2723}
2028 2724
2029static void noinline 2725static void noinline
2030infy_del (EV_P_ ev_stat *w) 2726infy_del (EV_P_ ev_stat *w)
2031{ 2727{
2045 2741
2046static void noinline 2742static void noinline
2047infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2048{ 2744{
2049 if (slot < 0) 2745 if (slot < 0)
2050 /* overflow, need to check for all hahs slots */ 2746 /* overflow, need to check for all hash slots */
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2052 infy_wd (EV_A_ slot, wd, ev); 2748 infy_wd (EV_A_ slot, wd, ev);
2053 else 2749 else
2054 { 2750 {
2055 WL w_; 2751 WL w_;
2061 2757
2062 if (w->wd == wd || wd == -1) 2758 if (w->wd == wd || wd == -1)
2063 { 2759 {
2064 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2065 { 2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2066 w->wd = -1; 2763 w->wd = -1;
2067 infy_add (EV_A_ w); /* re-add, no matter what */ 2764 infy_add (EV_A_ w); /* re-add, no matter what */
2068 } 2765 }
2069 2766
2070 stat_timer_cb (EV_A_ &w->timer, 0); 2767 stat_timer_cb (EV_A_ &w->timer, 0);
2083 2780
2084 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2085 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2086} 2783}
2087 2784
2088void inline_size 2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
2089infy_init (EV_P) 2809infy_init (EV_P)
2090{ 2810{
2091 if (fs_fd != -2) 2811 if (fs_fd != -2)
2092 return; 2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
2093 2817
2094 fs_fd = inotify_init (); 2818 fs_fd = inotify_init ();
2095 2819
2096 if (fs_fd >= 0) 2820 if (fs_fd >= 0)
2097 { 2821 {
2099 ev_set_priority (&fs_w, EV_MAXPRI); 2823 ev_set_priority (&fs_w, EV_MAXPRI);
2100 ev_io_start (EV_A_ &fs_w); 2824 ev_io_start (EV_A_ &fs_w);
2101 } 2825 }
2102} 2826}
2103 2827
2104void inline_size 2828inline_size void
2105infy_fork (EV_P) 2829infy_fork (EV_P)
2106{ 2830{
2107 int slot; 2831 int slot;
2108 2832
2109 if (fs_fd < 0) 2833 if (fs_fd < 0)
2125 w->wd = -1; 2849 w->wd = -1;
2126 2850
2127 if (fs_fd >= 0) 2851 if (fs_fd >= 0)
2128 infy_add (EV_A_ w); /* re-add, no matter what */ 2852 infy_add (EV_A_ w); /* re-add, no matter what */
2129 else 2853 else
2130 ev_timer_start (EV_A_ &w->timer); 2854 ev_timer_again (EV_A_ &w->timer);
2131 } 2855 }
2132
2133 } 2856 }
2134} 2857}
2135 2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
2136#endif 2865#endif
2137 2866
2138void 2867void
2139ev_stat_stat (EV_P_ ev_stat *w) 2868ev_stat_stat (EV_P_ ev_stat *w)
2140{ 2869{
2167 || w->prev.st_atime != w->attr.st_atime 2896 || w->prev.st_atime != w->attr.st_atime
2168 || w->prev.st_mtime != w->attr.st_mtime 2897 || w->prev.st_mtime != w->attr.st_mtime
2169 || w->prev.st_ctime != w->attr.st_ctime 2898 || w->prev.st_ctime != w->attr.st_ctime
2170 ) { 2899 ) {
2171 #if EV_USE_INOTIFY 2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2172 infy_del (EV_A_ w); 2903 infy_del (EV_A_ w);
2173 infy_add (EV_A_ w); 2904 infy_add (EV_A_ w);
2174 ev_stat_stat (EV_A_ w); /* avoid race... */ 2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2175 #endif 2907 #endif
2176 2908
2177 ev_feed_event (EV_A_ w, EV_STAT); 2909 ev_feed_event (EV_A_ w, EV_STAT);
2178 } 2910 }
2179} 2911}
2182ev_stat_start (EV_P_ ev_stat *w) 2914ev_stat_start (EV_P_ ev_stat *w)
2183{ 2915{
2184 if (expect_false (ev_is_active (w))) 2916 if (expect_false (ev_is_active (w)))
2185 return; 2917 return;
2186 2918
2187 /* since we use memcmp, we need to clear any padding data etc. */
2188 memset (&w->prev, 0, sizeof (ev_statdata));
2189 memset (&w->attr, 0, sizeof (ev_statdata));
2190
2191 ev_stat_stat (EV_A_ w); 2919 ev_stat_stat (EV_A_ w);
2192 2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2193 if (w->interval < MIN_STAT_INTERVAL) 2922 w->interval = MIN_STAT_INTERVAL;
2194 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2195 2923
2196 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2197 ev_set_priority (&w->timer, ev_priority (w)); 2925 ev_set_priority (&w->timer, ev_priority (w));
2198 2926
2199#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2200 infy_init (EV_A); 2928 infy_init (EV_A);
2201 2929
2202 if (fs_fd >= 0) 2930 if (fs_fd >= 0)
2203 infy_add (EV_A_ w); 2931 infy_add (EV_A_ w);
2204 else 2932 else
2205#endif 2933#endif
2206 ev_timer_start (EV_A_ &w->timer); 2934 ev_timer_again (EV_A_ &w->timer);
2207 2935
2208 ev_start (EV_A_ (W)w, 1); 2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2209} 2939}
2210 2940
2211void 2941void
2212ev_stat_stop (EV_P_ ev_stat *w) 2942ev_stat_stop (EV_P_ ev_stat *w)
2213{ 2943{
2214 clear_pending (EV_A_ (W)w); 2944 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2945 if (expect_false (!ev_is_active (w)))
2216 return; 2946 return;
2217 2947
2948 EV_FREQUENT_CHECK;
2949
2218#if EV_USE_INOTIFY 2950#if EV_USE_INOTIFY
2219 infy_del (EV_A_ w); 2951 infy_del (EV_A_ w);
2220#endif 2952#endif
2221 ev_timer_stop (EV_A_ &w->timer); 2953 ev_timer_stop (EV_A_ &w->timer);
2222 2954
2223 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2224} 2958}
2225#endif 2959#endif
2226 2960
2227#if EV_IDLE_ENABLE 2961#if EV_IDLE_ENABLE
2228void 2962void
2230{ 2964{
2231 if (expect_false (ev_is_active (w))) 2965 if (expect_false (ev_is_active (w)))
2232 return; 2966 return;
2233 2967
2234 pri_adjust (EV_A_ (W)w); 2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2235 2971
2236 { 2972 {
2237 int active = ++idlecnt [ABSPRI (w)]; 2973 int active = ++idlecnt [ABSPRI (w)];
2238 2974
2239 ++idleall; 2975 ++idleall;
2240 ev_start (EV_A_ (W)w, active); 2976 ev_start (EV_A_ (W)w, active);
2241 2977
2242 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2243 idles [ABSPRI (w)][active - 1] = w; 2979 idles [ABSPRI (w)][active - 1] = w;
2244 } 2980 }
2981
2982 EV_FREQUENT_CHECK;
2245} 2983}
2246 2984
2247void 2985void
2248ev_idle_stop (EV_P_ ev_idle *w) 2986ev_idle_stop (EV_P_ ev_idle *w)
2249{ 2987{
2250 clear_pending (EV_A_ (W)w); 2988 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 2989 if (expect_false (!ev_is_active (w)))
2252 return; 2990 return;
2253 2991
2992 EV_FREQUENT_CHECK;
2993
2254 { 2994 {
2255 int active = ((W)w)->active; 2995 int active = ev_active (w);
2256 2996
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 2999
2260 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
2261 --idleall; 3001 --idleall;
2262 } 3002 }
3003
3004 EV_FREQUENT_CHECK;
2263} 3005}
2264#endif 3006#endif
2265 3007
2266void 3008void
2267ev_prepare_start (EV_P_ ev_prepare *w) 3009ev_prepare_start (EV_P_ ev_prepare *w)
2268{ 3010{
2269 if (expect_false (ev_is_active (w))) 3011 if (expect_false (ev_is_active (w)))
2270 return; 3012 return;
3013
3014 EV_FREQUENT_CHECK;
2271 3015
2272 ev_start (EV_A_ (W)w, ++preparecnt); 3016 ev_start (EV_A_ (W)w, ++preparecnt);
2273 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2274 prepares [preparecnt - 1] = w; 3018 prepares [preparecnt - 1] = w;
3019
3020 EV_FREQUENT_CHECK;
2275} 3021}
2276 3022
2277void 3023void
2278ev_prepare_stop (EV_P_ ev_prepare *w) 3024ev_prepare_stop (EV_P_ ev_prepare *w)
2279{ 3025{
2280 clear_pending (EV_A_ (W)w); 3026 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 3027 if (expect_false (!ev_is_active (w)))
2282 return; 3028 return;
2283 3029
3030 EV_FREQUENT_CHECK;
3031
2284 { 3032 {
2285 int active = ((W)w)->active; 3033 int active = ev_active (w);
3034
2286 prepares [active - 1] = prepares [--preparecnt]; 3035 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 3036 ev_active (prepares [active - 1]) = active;
2288 } 3037 }
2289 3038
2290 ev_stop (EV_A_ (W)w); 3039 ev_stop (EV_A_ (W)w);
3040
3041 EV_FREQUENT_CHECK;
2291} 3042}
2292 3043
2293void 3044void
2294ev_check_start (EV_P_ ev_check *w) 3045ev_check_start (EV_P_ ev_check *w)
2295{ 3046{
2296 if (expect_false (ev_is_active (w))) 3047 if (expect_false (ev_is_active (w)))
2297 return; 3048 return;
3049
3050 EV_FREQUENT_CHECK;
2298 3051
2299 ev_start (EV_A_ (W)w, ++checkcnt); 3052 ev_start (EV_A_ (W)w, ++checkcnt);
2300 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2301 checks [checkcnt - 1] = w; 3054 checks [checkcnt - 1] = w;
3055
3056 EV_FREQUENT_CHECK;
2302} 3057}
2303 3058
2304void 3059void
2305ev_check_stop (EV_P_ ev_check *w) 3060ev_check_stop (EV_P_ ev_check *w)
2306{ 3061{
2307 clear_pending (EV_A_ (W)w); 3062 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 3063 if (expect_false (!ev_is_active (w)))
2309 return; 3064 return;
2310 3065
3066 EV_FREQUENT_CHECK;
3067
2311 { 3068 {
2312 int active = ((W)w)->active; 3069 int active = ev_active (w);
3070
2313 checks [active - 1] = checks [--checkcnt]; 3071 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 3072 ev_active (checks [active - 1]) = active;
2315 } 3073 }
2316 3074
2317 ev_stop (EV_A_ (W)w); 3075 ev_stop (EV_A_ (W)w);
3076
3077 EV_FREQUENT_CHECK;
2318} 3078}
2319 3079
2320#if EV_EMBED_ENABLE 3080#if EV_EMBED_ENABLE
2321void noinline 3081void noinline
2322ev_embed_sweep (EV_P_ ev_embed *w) 3082ev_embed_sweep (EV_P_ ev_embed *w)
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2350 } 3110 }
2351 } 3111 }
2352} 3112}
2353 3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
2354#if 0 3131#if 0
2355static void 3132static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2357{ 3134{
2358 ev_idle_stop (EV_A_ idle); 3135 ev_idle_stop (EV_A_ idle);
2365 if (expect_false (ev_is_active (w))) 3142 if (expect_false (ev_is_active (w)))
2366 return; 3143 return;
2367 3144
2368 { 3145 {
2369 struct ev_loop *loop = w->other; 3146 struct ev_loop *loop = w->other;
2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2372 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2373 3152
2374 ev_set_priority (&w->io, ev_priority (w)); 3153 ev_set_priority (&w->io, ev_priority (w));
2375 ev_io_start (EV_A_ &w->io); 3154 ev_io_start (EV_A_ &w->io);
2376 3155
2377 ev_prepare_init (&w->prepare, embed_prepare_cb); 3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI); 3157 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare); 3158 ev_prepare_start (EV_A_ &w->prepare);
2380 3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382 3164
2383 ev_start (EV_A_ (W)w, 1); 3165 ev_start (EV_A_ (W)w, 1);
3166
3167 EV_FREQUENT_CHECK;
2384} 3168}
2385 3169
2386void 3170void
2387ev_embed_stop (EV_P_ ev_embed *w) 3171ev_embed_stop (EV_P_ ev_embed *w)
2388{ 3172{
2389 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2391 return; 3175 return;
2392 3176
3177 EV_FREQUENT_CHECK;
3178
2393 ev_io_stop (EV_A_ &w->io); 3179 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare); 3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
2395 3182
2396 ev_stop (EV_A_ (W)w); 3183 EV_FREQUENT_CHECK;
2397} 3184}
2398#endif 3185#endif
2399 3186
2400#if EV_FORK_ENABLE 3187#if EV_FORK_ENABLE
2401void 3188void
2402ev_fork_start (EV_P_ ev_fork *w) 3189ev_fork_start (EV_P_ ev_fork *w)
2403{ 3190{
2404 if (expect_false (ev_is_active (w))) 3191 if (expect_false (ev_is_active (w)))
2405 return; 3192 return;
3193
3194 EV_FREQUENT_CHECK;
2406 3195
2407 ev_start (EV_A_ (W)w, ++forkcnt); 3196 ev_start (EV_A_ (W)w, ++forkcnt);
2408 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2409 forks [forkcnt - 1] = w; 3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
2410} 3201}
2411 3202
2412void 3203void
2413ev_fork_stop (EV_P_ ev_fork *w) 3204ev_fork_stop (EV_P_ ev_fork *w)
2414{ 3205{
2415 clear_pending (EV_A_ (W)w); 3206 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3207 if (expect_false (!ev_is_active (w)))
2417 return; 3208 return;
2418 3209
3210 EV_FREQUENT_CHECK;
3211
2419 { 3212 {
2420 int active = ((W)w)->active; 3213 int active = ev_active (w);
3214
2421 forks [active - 1] = forks [--forkcnt]; 3215 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 3216 ev_active (forks [active - 1]) = active;
2423 } 3217 }
2424 3218
2425 ev_stop (EV_A_ (W)w); 3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2426} 3222}
2427#endif 3223#endif
2428 3224
2429#if EV_ASYNC_ENABLE 3225#if EV_ASYNC_ENABLE
2430void 3226void
2432{ 3228{
2433 if (expect_false (ev_is_active (w))) 3229 if (expect_false (ev_is_active (w)))
2434 return; 3230 return;
2435 3231
2436 evpipe_init (EV_A); 3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
2437 3235
2438 ev_start (EV_A_ (W)w, ++asynccnt); 3236 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w; 3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
2441} 3241}
2442 3242
2443void 3243void
2444ev_async_stop (EV_P_ ev_async *w) 3244ev_async_stop (EV_P_ ev_async *w)
2445{ 3245{
2446 clear_pending (EV_A_ (W)w); 3246 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 3247 if (expect_false (!ev_is_active (w)))
2448 return; 3248 return;
2449 3249
3250 EV_FREQUENT_CHECK;
3251
2450 { 3252 {
2451 int active = ((W)w)->active; 3253 int active = ev_active (w);
3254
2452 asyncs [active - 1] = asyncs [--asynccnt]; 3255 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 3256 ev_active (asyncs [active - 1]) = active;
2454 } 3257 }
2455 3258
2456 ev_stop (EV_A_ (W)w); 3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
2457} 3262}
2458 3263
2459void 3264void
2460ev_async_send (EV_P_ ev_async *w) 3265ev_async_send (EV_P_ ev_async *w)
2461{ 3266{
2462 w->sent = 1; 3267 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 3268 evpipe_write (EV_A_ &gotasync);
2464} 3269}
2465#endif 3270#endif
2466 3271
2467/*****************************************************************************/ 3272/*****************************************************************************/
2468 3273
2478once_cb (EV_P_ struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
2479{ 3284{
2480 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
2481 void *arg = once->arg; 3286 void *arg = once->arg;
2482 3287
2483 ev_io_stop (EV_A_ &once->io); 3288 ev_io_stop (EV_A_ &once->io);
2484 ev_timer_stop (EV_A_ &once->to); 3289 ev_timer_stop (EV_A_ &once->to);
2485 ev_free (once); 3290 ev_free (once);
2486 3291
2487 cb (revents, arg); 3292 cb (revents, arg);
2488} 3293}
2489 3294
2490static void 3295static void
2491once_cb_io (EV_P_ ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
2492{ 3297{
2493 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2494} 3301}
2495 3302
2496static void 3303static void
2497once_cb_to (EV_P_ ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
2498{ 3305{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2500} 3309}
2501 3310
2502void 3311void
2503ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2504{ 3313{
2526 ev_timer_set (&once->to, timeout, 0.); 3335 ev_timer_set (&once->to, timeout, 0.);
2527 ev_timer_start (EV_A_ &once->to); 3336 ev_timer_start (EV_A_ &once->to);
2528 } 3337 }
2529} 3338}
2530 3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
3352 {
3353 wn = wl->next;
3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
3373 }
3374
3375 if (types & (EV_TIMER | EV_STAT))
3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380 {
3381 if (types & EV_STAT)
3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383 }
3384 else
3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
2531#if EV_MULTIPLICITY 3448#if EV_MULTIPLICITY
2532 #include "ev_wrap.h" 3449 #include "ev_wrap.h"
2533#endif 3450#endif
2534 3451
2535#ifdef __cplusplus 3452#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines