ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC vs.
Revision 1.446 by root, Mon Jun 11 12:50:50 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
240#endif 413# endif
414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
244#endif 452#endif
245 453
246/**/ 454/**/
247 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 465 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 468
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
265#else 536#else
266# define expect(expr,value) (expr) 537 #include <inttypes.h>
267# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
269# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
270# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 557 #endif
558#endif
272 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
275#define inline_size static inline 1013#define inline_size ecb_inline
276 1014
277#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
278# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
279#else 1025#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
285 1028
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
288 1031
289typedef ev_watcher *W; 1032typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
292 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
293#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1057#endif
298 1058
299#ifdef _WIN32 1059#ifdef _WIN32
300# include "ev_win32.c" 1060# include "ev_win32.c"
301#endif 1061#endif
302 1062
303/*****************************************************************************/ 1063/*****************************************************************************/
304 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
305static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
306 1164
307void 1165void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1167{
310 syserr_cb = cb; 1168 syserr_cb = cb;
311} 1169}
312 1170
313static void noinline 1171static void noinline ecb_cold
314syserr (const char *msg) 1172ev_syserr (const char *msg)
315{ 1173{
316 if (!msg) 1174 if (!msg)
317 msg = "(libev) system error"; 1175 msg = "(libev) system error";
318 1176
319 if (syserr_cb) 1177 if (syserr_cb)
320 syserr_cb (msg); 1178 syserr_cb (msg);
321 else 1179 else
322 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
323 perror (msg); 1187 perror (msg);
1188#endif
324 abort (); 1189 abort ();
325 } 1190 }
326} 1191}
327 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
1199 /* some systems, notably openbsd and darwin, fail to properly
1200 * implement realloc (x, 0) (as required by both ansi c-89 and
1201 * the single unix specification, so work around them here.
1202 */
1203
1204 if (size)
1205 return realloc (ptr, size);
1206
1207 free (ptr);
1208 return 0;
1209#endif
1210}
1211
328static void *(*alloc)(void *ptr, long size); 1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1213
330void 1214void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1216{
333 alloc = cb; 1217 alloc = cb;
334} 1218}
335 1219
336inline_speed void * 1220inline_speed void *
337ev_realloc (void *ptr, long size) 1221ev_realloc (void *ptr, long size)
338{ 1222{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1223 ptr = alloc (ptr, size);
340 1224
341 if (!ptr && size) 1225 if (!ptr && size)
342 { 1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
344 abort (); 1232 abort ();
345 } 1233 }
346 1234
347 return ptr; 1235 return ptr;
348} 1236}
350#define ev_malloc(size) ev_realloc (0, (size)) 1238#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1239#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1240
353/*****************************************************************************/ 1241/*****************************************************************************/
354 1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
355typedef struct 1247typedef struct
356{ 1248{
357 WL head; 1249 WL head;
358 unsigned char events; 1250 unsigned char events; /* the events watched for */
1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1253 unsigned char unused;
1254#if EV_USE_EPOLL
1255 unsigned int egen; /* generation counter to counter epoll bugs */
1256#endif
360#if EV_SELECT_IS_WINSOCKET 1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1258 SOCKET handle;
362#endif 1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
363} ANFD; 1263} ANFD;
364 1264
1265/* stores the pending event set for a given watcher */
365typedef struct 1266typedef struct
366{ 1267{
367 W w; 1268 W w;
368 int events; 1269 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1270} ANPENDING;
370 1271
371#if EV_USE_INOTIFY 1272#if EV_USE_INOTIFY
1273/* hash table entry per inotify-id */
372typedef struct 1274typedef struct
373{ 1275{
374 WL head; 1276 WL head;
375} ANFS; 1277} ANFS;
1278#endif
1279
1280/* Heap Entry */
1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
1283 typedef struct {
1284 ev_tstamp at;
1285 WT w;
1286 } ANHE;
1287
1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291#else
1292 /* a heap element */
1293 typedef WT ANHE;
1294
1295 #define ANHE_w(he) (he)
1296 #define ANHE_at(he) (he)->at
1297 #define ANHE_at_cache(he)
376#endif 1298#endif
377 1299
378#if EV_MULTIPLICITY 1300#if EV_MULTIPLICITY
379 1301
380 struct ev_loop 1302 struct ev_loop
386 #undef VAR 1308 #undef VAR
387 }; 1309 };
388 #include "ev_wrap.h" 1310 #include "ev_wrap.h"
389 1311
390 static struct ev_loop default_loop_struct; 1312 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1314
393#else 1315#else
394 1316
395 ev_tstamp ev_rt_now; 1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1318 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1319 #include "ev_vars.h"
398 #undef VAR 1320 #undef VAR
399 1321
400 static int ev_default_loop_ptr; 1322 static int ev_default_loop_ptr;
401 1323
402#endif 1324#endif
403 1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
1337
404/*****************************************************************************/ 1338/*****************************************************************************/
405 1339
1340#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1341ev_tstamp
407ev_time (void) 1342ev_time (void) EV_THROW
408{ 1343{
409#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
1345 if (expect_true (have_realtime))
1346 {
410 struct timespec ts; 1347 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1348 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1349 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1350 }
1351#endif
1352
414 struct timeval tv; 1353 struct timeval tv;
415 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1356}
1357#endif
419 1358
420ev_tstamp inline_size 1359inline_size ev_tstamp
421get_clock (void) 1360get_clock (void)
422{ 1361{
423#if EV_USE_MONOTONIC 1362#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1363 if (expect_true (have_monotonic))
425 { 1364 {
432 return ev_time (); 1371 return ev_time ();
433} 1372}
434 1373
435#if EV_MULTIPLICITY 1374#if EV_MULTIPLICITY
436ev_tstamp 1375ev_tstamp
437ev_now (EV_P) 1376ev_now (EV_P) EV_THROW
438{ 1377{
439 return ev_rt_now; 1378 return ev_rt_now;
440} 1379}
441#endif 1380#endif
442 1381
443void 1382void
444ev_sleep (ev_tstamp delay) 1383ev_sleep (ev_tstamp delay) EV_THROW
445{ 1384{
446 if (delay > 0.) 1385 if (delay > 0.)
447 { 1386 {
448#if EV_USE_NANOSLEEP 1387#if EV_USE_NANOSLEEP
449 struct timespec ts; 1388 struct timespec ts;
450 1389
451 ts.tv_sec = (time_t)delay; 1390 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1391 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1392#elif defined _WIN32
456 Sleep (delay * 1e3); 1393 Sleep ((unsigned long)(delay * 1e3));
457#else 1394#else
458 struct timeval tv; 1395 struct timeval tv;
459 1396
460 tv.tv_sec = (time_t)delay; 1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1398 /* something not guaranteed by newer posix versions, but guaranteed */
462 1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1401 select (0, 0, 0, 0, &tv);
464#endif 1402#endif
465 } 1403 }
466} 1404}
467 1405
468/*****************************************************************************/ 1406/*****************************************************************************/
469 1407
470int inline_size 1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409
1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
471array_nextsize (int elem, int cur, int cnt) 1413array_nextsize (int elem, int cur, int cnt)
472{ 1414{
473 int ncur = cur + 1; 1415 int ncur = cur + 1;
474 1416
475 do 1417 do
476 ncur <<= 1; 1418 ncur <<= 1;
477 while (cnt > ncur); 1419 while (cnt > ncur);
478 1420
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1423 {
482 ncur *= elem; 1424 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1426 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1427 ncur /= elem;
486 } 1428 }
487 1429
488 return ncur; 1430 return ncur;
489} 1431}
490 1432
491static noinline void * 1433static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1434array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1435{
494 *cur = array_nextsize (elem, *cur, cnt); 1436 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1437 return ev_realloc (base, elem * *cur);
496} 1438}
1439
1440#define array_init_zero(base,count) \
1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1442
498#define array_needsize(type,base,cur,cnt,init) \ 1443#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1444 if (expect_false ((cnt) > (cur))) \
500 { \ 1445 { \
501 int ocur_ = (cur); \ 1446 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1447 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1448 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1449 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1450 }
506 1451
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1458 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1459 }
515#endif 1460#endif
516 1461
517#define array_free(stem, idx) \ 1462#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1464
520/*****************************************************************************/ 1465/*****************************************************************************/
521 1466
1467/* dummy callback for pending events */
1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
1470{
1471}
1472
522void noinline 1473void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1475{
525 W w_ = (W)w; 1476 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1477 int pri = ABSPRI (w_);
527 1478
528 if (expect_false (w_->pending)) 1479 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1483 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1485 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1486 pendings [pri][w_->pending - 1].events = revents;
536 } 1487 }
537}
538 1488
539void inline_speed 1489 pendingpri = NUMPRI - 1;
1490}
1491
1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1508queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1509{
542 int i; 1510 int i;
543 1511
544 for (i = 0; i < eventcnt; ++i) 1512 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1513 ev_feed_event (EV_A_ events [i], type);
546} 1514}
547 1515
548/*****************************************************************************/ 1516/*****************************************************************************/
549 1517
550void inline_size 1518inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1519fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1520{
566 ANFD *anfd = anfds + fd; 1521 ANFD *anfd = anfds + fd;
567 ev_io *w; 1522 ev_io *w;
568 1523
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1528 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1529 ev_feed_event (EV_A_ (W)w, ev);
575 } 1530 }
576} 1531}
577 1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
578void 1544void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1546{
581 if (fd >= 0 && fd < anfdmax) 1547 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1548 fd_event_nocheck (EV_A_ fd, revents);
583} 1549}
584 1550
585void inline_size 1551/* make sure the external fd watch events are in-sync */
1552/* with the kernel/libev internal state */
1553inline_size void
586fd_reify (EV_P) 1554fd_reify (EV_P)
587{ 1555{
588 int i; 1556 int i;
1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1559 for (i = 0; i < fdchangecnt; ++i)
1560 {
1561 int fd = fdchanges [i];
1562 ANFD *anfd = anfds + fd;
1563
1564 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
1570 unsigned long arg;
1571
1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
1579 }
1580 }
1581#endif
589 1582
590 for (i = 0; i < fdchangecnt; ++i) 1583 for (i = 0; i < fdchangecnt; ++i)
591 { 1584 {
592 int fd = fdchanges [i]; 1585 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1586 ANFD *anfd = anfds + fd;
594 ev_io *w; 1587 ev_io *w;
595 1588
596 unsigned char events = 0; 1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
597 1591
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1592 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1593
601#if EV_SELECT_IS_WINSOCKET 1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1595 {
604 unsigned long argp; 1596 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1597
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1599 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1600
609 #endif 1601 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1602 o_reify = EV__IOFDSET; /* actually |= */
611 } 1603 }
612#endif
613 1604
614 { 1605 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1606 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1607 }
625 1608
626 fdchangecnt = 0; 1609 fdchangecnt = 0;
627} 1610}
628 1611
629void inline_size 1612/* something about the given fd changed */
1613inline_size void
630fd_change (EV_P_ int fd, int flags) 1614fd_change (EV_P_ int fd, int flags)
631{ 1615{
632 unsigned char reify = anfds [fd].reify; 1616 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1617 anfds [fd].reify |= flags;
634 1618
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1623 fdchanges [fdchangecnt - 1] = fd;
640 } 1624 }
641} 1625}
642 1626
643void inline_speed 1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1629fd_kill (EV_P_ int fd)
645{ 1630{
646 ev_io *w; 1631 ev_io *w;
647 1632
648 while ((w = (ev_io *)anfds [fd].head)) 1633 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1635 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1637 }
653} 1638}
654 1639
655int inline_size 1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
656fd_valid (int fd) 1642fd_valid (int fd)
657{ 1643{
658#ifdef _WIN32 1644#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1646#else
661 return fcntl (fd, F_GETFD) != -1; 1647 return fcntl (fd, F_GETFD) != -1;
662#endif 1648#endif
663} 1649}
664 1650
665/* called on EBADF to verify fds */ 1651/* called on EBADF to verify fds */
666static void noinline 1652static void noinline ecb_cold
667fd_ebadf (EV_P) 1653fd_ebadf (EV_P)
668{ 1654{
669 int fd; 1655 int fd;
670 1656
671 for (fd = 0; fd < anfdmax; ++fd) 1657 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1658 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1659 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1660 fd_kill (EV_A_ fd);
675} 1661}
676 1662
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1663/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1664static void noinline ecb_cold
679fd_enomem (EV_P) 1665fd_enomem (EV_P)
680{ 1666{
681 int fd; 1667 int fd;
682 1668
683 for (fd = anfdmax; fd--; ) 1669 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1670 if (anfds [fd].events)
685 { 1671 {
686 fd_kill (EV_A_ fd); 1672 fd_kill (EV_A_ fd);
687 return; 1673 break;
688 } 1674 }
689} 1675}
690 1676
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1677/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1678static void noinline
696 1682
697 for (fd = 0; fd < anfdmax; ++fd) 1683 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1684 if (anfds [fd].events)
699 { 1685 {
700 anfds [fd].events = 0; 1686 anfds [fd].events = 0;
1687 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1689 }
703} 1690}
704 1691
705/*****************************************************************************/ 1692/* used to prepare libev internal fd's */
706 1693/* this is not fork-safe */
707void inline_speed 1694inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1695fd_intern (int fd)
792{ 1696{
793#ifdef _WIN32 1697#ifdef _WIN32
794 int arg = 1; 1698 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1700#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1702 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1703#endif
800} 1704}
801 1705
1706/*****************************************************************************/
1707
1708/*
1709 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711 * the branching factor of the d-tree.
1712 */
1713
1714/*
1715 * at the moment we allow libev the luxury of two heaps,
1716 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717 * which is more cache-efficient.
1718 * the difference is about 5% with 50000+ watchers.
1719 */
1720#if EV_USE_4HEAP
1721
1722#define DHEAP 4
1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725#define UPHEAP_DONE(p,k) ((p) == (k))
1726
1727/* away from the root */
1728inline_speed void
1729downheap (ANHE *heap, int N, int k)
1730{
1731 ANHE he = heap [k];
1732 ANHE *E = heap + N + HEAP0;
1733
1734 for (;;)
1735 {
1736 ev_tstamp minat;
1737 ANHE *minpos;
1738 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739
1740 /* find minimum child */
1741 if (expect_true (pos + DHEAP - 1 < E))
1742 {
1743 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 }
1748 else if (pos < E)
1749 {
1750 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 }
1755 else
1756 break;
1757
1758 if (ANHE_at (he) <= minat)
1759 break;
1760
1761 heap [k] = *minpos;
1762 ev_active (ANHE_w (*minpos)) = k;
1763
1764 k = minpos - heap;
1765 }
1766
1767 heap [k] = he;
1768 ev_active (ANHE_w (he)) = k;
1769}
1770
1771#else /* 4HEAP */
1772
1773#define HEAP0 1
1774#define HPARENT(k) ((k) >> 1)
1775#define UPHEAP_DONE(p,k) (!(p))
1776
1777/* away from the root */
1778inline_speed void
1779downheap (ANHE *heap, int N, int k)
1780{
1781 ANHE he = heap [k];
1782
1783 for (;;)
1784 {
1785 int c = k << 1;
1786
1787 if (c >= N + HEAP0)
1788 break;
1789
1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791 ? 1 : 0;
1792
1793 if (ANHE_at (he) <= ANHE_at (heap [c]))
1794 break;
1795
1796 heap [k] = heap [c];
1797 ev_active (ANHE_w (heap [k])) = k;
1798
1799 k = c;
1800 }
1801
1802 heap [k] = he;
1803 ev_active (ANHE_w (he)) = k;
1804}
1805#endif
1806
1807/* towards the root */
1808inline_speed void
1809upheap (ANHE *heap, int k)
1810{
1811 ANHE he = heap [k];
1812
1813 for (;;)
1814 {
1815 int p = HPARENT (k);
1816
1817 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 break;
1819
1820 heap [k] = heap [p];
1821 ev_active (ANHE_w (heap [k])) = k;
1822 k = p;
1823 }
1824
1825 heap [k] = he;
1826 ev_active (ANHE_w (he)) = k;
1827}
1828
1829/* move an element suitably so it is in a correct place */
1830inline_size void
1831adjustheap (ANHE *heap, int N, int k)
1832{
1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 upheap (heap, k);
1835 else
1836 downheap (heap, N, k);
1837}
1838
1839/* rebuild the heap: this function is used only once and executed rarely */
1840inline_size void
1841reheap (ANHE *heap, int N)
1842{
1843 int i;
1844
1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847 for (i = 0; i < N; ++i)
1848 upheap (heap, i + HEAP0);
1849}
1850
1851/*****************************************************************************/
1852
1853/* associate signal watchers to a signal signal */
1854typedef struct
1855{
1856 EV_ATOMIC_T pending;
1857#if EV_MULTIPLICITY
1858 EV_P;
1859#endif
1860 WL head;
1861} ANSIG;
1862
1863static ANSIG signals [EV_NSIG - 1];
1864
1865/*****************************************************************************/
1866
1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868
802static void noinline 1869static void noinline ecb_cold
803evpipe_init (EV_P) 1870evpipe_init (EV_P)
804{ 1871{
805 if (!ev_is_active (&pipeev)) 1872 if (!ev_is_active (&pipe_w))
806 { 1873 {
1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
1880 {
1881 evpipe [0] = -1;
1882 fd_intern (evfd); /* doing it twice doesn't hurt */
1883 ev_io_set (&pipe_w, evfd, EV_READ);
1884 }
1885 else
1886# endif
1887 {
807 while (pipe (evpipe)) 1888 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1889 ev_syserr ("(libev) error creating signal/async pipe");
809 1890
810 fd_intern (evpipe [0]); 1891 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1892 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1894 }
1895
814 ev_io_start (EV_A_ &pipeev); 1896 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1897 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1898 }
1899}
1900
1901inline_speed void
1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1903{
1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
1917 {
824 int old_errno = errno; 1918 int old_errno;
825 1919
826 if (sig) gotsig = 1; 1920 pipe_write_skipped = 0;
827 if (async) gotasync = 1; 1921 ECB_MEMORY_FENCE_RELEASE;
828 1922
829 write (evpipe [1], &old_errno, 1); 1923 old_errno = errno; /* save errno because write will clobber it */
1924
1925#if EV_USE_EVENTFD
1926 if (evfd >= 0)
1927 {
1928 uint64_t counter = 1;
1929 write (evfd, &counter, sizeof (uint64_t));
1930 }
1931 else
1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
1944
830 errno = old_errno; 1945 errno = old_errno;
831 } 1946 }
832} 1947}
833 1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
834static void 1951static void
835pipecb (EV_P_ ev_io *iow, int revents) 1952pipecb (EV_P_ ev_io *iow, int revents)
836{ 1953{
1954 int i;
1955
1956 if (revents & EV_READ)
837 { 1957 {
838 int dummy; 1958#if EV_USE_EVENTFD
1959 if (evfd >= 0)
1960 {
1961 uint64_t counter;
1962 read (evfd, &counter, sizeof (uint64_t));
1963 }
1964 else
1965#endif
1966 {
1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
839 read (evpipe [0], &dummy, 1); 1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
840 } 1979 }
841 1980
842 if (gotsig) 1981 pipe_write_skipped = 0;
843 {
844 int signum;
845 gotsig = 0;
846 1982
847 for (signum = signalmax; signum--; ) 1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
848 if (signals [signum].gotsig) 1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
1987 {
1988 sig_pending = 0;
1989
1990 ECB_MEMORY_FENCE;
1991
1992 for (i = EV_NSIG - 1; i--; )
1993 if (expect_false (signals [i].pending))
849 ev_feed_signal_event (EV_A_ signum + 1); 1994 ev_feed_signal_event (EV_A_ i + 1);
850 }
851
852 if (gotasync)
853 { 1995 }
854 int i; 1996#endif
855 gotasync = 0; 1997
1998#if EV_ASYNC_ENABLE
1999 if (async_pending)
2000 {
2001 async_pending = 0;
2002
2003 ECB_MEMORY_FENCE;
856 2004
857 for (i = asynccnt; i--; ) 2005 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2006 if (asyncs [i]->sent)
859 { 2007 {
860 asyncs [i]->sent = 0; 2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2011 }
863 } 2012 }
2013#endif
864} 2014}
865 2015
866/*****************************************************************************/ 2016/*****************************************************************************/
867 2017
2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
2033}
2034
868static void 2035static void
869sighandler (int signum) 2036ev_sighandler (int signum)
870{ 2037{
2038#ifdef _WIN32
2039 signal (signum, ev_sighandler);
2040#endif
2041
2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047{
2048 WL w;
2049
2050 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2051 return;
2052
2053 --signum;
2054
871#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 2056 /* it is permissible to try to feed a signal to the wrong loop */
873#endif 2057 /* or, likely more useful, feeding a signal nobody is waiting for */
874 2058
875#if _WIN32 2059 if (expect_false (signals [signum].loop != EV_A))
876 signal (signum, sighandler);
877#endif
878
879 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0);
881}
882
883void noinline
884ev_feed_signal_event (EV_P_ int signum)
885{
886 WL w;
887
888#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
890#endif
891
892 --signum;
893
894 if (signum < 0 || signum >= signalmax)
895 return; 2060 return;
2061#endif
896 2062
897 signals [signum].gotsig = 0; 2063 signals [signum].pending = 0;
2064 ECB_MEMORY_FENCE_RELEASE;
898 2065
899 for (w = signals [signum].head; w; w = w->next) 2066 for (w = signals [signum].head; w; w = w->next)
900 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
901} 2068}
902 2069
2070#if EV_USE_SIGNALFD
2071static void
2072sigfdcb (EV_P_ ev_io *iow, int revents)
2073{
2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2075
2076 for (;;)
2077 {
2078 ssize_t res = read (sigfd, si, sizeof (si));
2079
2080 /* not ISO-C, as res might be -1, but works with SuS */
2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2083
2084 if (res < (ssize_t)sizeof (si))
2085 break;
2086 }
2087}
2088#endif
2089
2090#endif
2091
903/*****************************************************************************/ 2092/*****************************************************************************/
904 2093
2094#if EV_CHILD_ENABLE
905static WL childs [EV_PID_HASHSIZE]; 2095static WL childs [EV_PID_HASHSIZE];
906
907#ifndef _WIN32
908 2096
909static ev_signal childev; 2097static ev_signal childev;
910 2098
911#ifndef WIFCONTINUED 2099#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 2100# define WIFCONTINUED(status) 0
913#endif 2101#endif
914 2102
915void inline_speed 2103/* handle a single child status event */
2104inline_speed void
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2105child_reap (EV_P_ int chain, int pid, int status)
917{ 2106{
918 ev_child *w; 2107 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 2109
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 2111 {
923 if ((w->pid == pid || !w->pid) 2112 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 2113 && (!traced || (w->flags & 1)))
925 { 2114 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 2116 w->rpid = pid;
928 w->rstatus = status; 2117 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2118 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 2119 }
931 } 2120 }
933 2122
934#ifndef WCONTINUED 2123#ifndef WCONTINUED
935# define WCONTINUED 0 2124# define WCONTINUED 0
936#endif 2125#endif
937 2126
2127/* called on sigchld etc., calls waitpid */
938static void 2128static void
939childcb (EV_P_ ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
940{ 2130{
941 int pid, status; 2131 int pid, status;
942 2132
945 if (!WCONTINUED 2135 if (!WCONTINUED
946 || errno != EINVAL 2136 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2137 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 2138 return;
949 2139
950 /* make sure we are called again until all childs have been reaped */ 2140 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 2141 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 2143
954 child_reap (EV_A_ sw, pid, pid, status); 2144 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 2145 if ((EV_PID_HASHSIZE) > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 2147}
958 2148
959#endif 2149#endif
960 2150
961/*****************************************************************************/ 2151/*****************************************************************************/
962 2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
963#if EV_USE_PORT 2156#if EV_USE_PORT
964# include "ev_port.c" 2157# include "ev_port.c"
965#endif 2158#endif
966#if EV_USE_KQUEUE 2159#if EV_USE_KQUEUE
967# include "ev_kqueue.c" 2160# include "ev_kqueue.c"
974#endif 2167#endif
975#if EV_USE_SELECT 2168#if EV_USE_SELECT
976# include "ev_select.c" 2169# include "ev_select.c"
977#endif 2170#endif
978 2171
979int 2172int ecb_cold
980ev_version_major (void) 2173ev_version_major (void) EV_THROW
981{ 2174{
982 return EV_VERSION_MAJOR; 2175 return EV_VERSION_MAJOR;
983} 2176}
984 2177
985int 2178int ecb_cold
986ev_version_minor (void) 2179ev_version_minor (void) EV_THROW
987{ 2180{
988 return EV_VERSION_MINOR; 2181 return EV_VERSION_MINOR;
989} 2182}
990 2183
991/* return true if we are running with elevated privileges and should ignore env variables */ 2184/* return true if we are running with elevated privileges and should ignore env variables */
992int inline_size 2185int inline_size ecb_cold
993enable_secure (void) 2186enable_secure (void)
994{ 2187{
995#ifdef _WIN32 2188#ifdef _WIN32
996 return 0; 2189 return 0;
997#else 2190#else
998 return getuid () != geteuid () 2191 return getuid () != geteuid ()
999 || getgid () != getegid (); 2192 || getgid () != getegid ();
1000#endif 2193#endif
1001} 2194}
1002 2195
1003unsigned int 2196unsigned int ecb_cold
1004ev_supported_backends (void) 2197ev_supported_backends (void) EV_THROW
1005{ 2198{
1006 unsigned int flags = 0; 2199 unsigned int flags = 0;
1007 2200
1008 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1009 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1012 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1013 2206
1014 return flags; 2207 return flags;
1015} 2208}
1016 2209
1017unsigned int 2210unsigned int ecb_cold
1018ev_recommended_backends (void) 2211ev_recommended_backends (void) EV_THROW
1019{ 2212{
1020 unsigned int flags = ev_supported_backends (); 2213 unsigned int flags = ev_supported_backends ();
1021 2214
1022#ifndef __NetBSD__ 2215#ifndef __NetBSD__
1023 /* kqueue is borked on everything but netbsd apparently */ 2216 /* kqueue is borked on everything but netbsd apparently */
1024 /* it usually doesn't work correctly on anything but sockets and pipes */ 2217 /* it usually doesn't work correctly on anything but sockets and pipes */
1025 flags &= ~EVBACKEND_KQUEUE; 2218 flags &= ~EVBACKEND_KQUEUE;
1026#endif 2219#endif
1027#ifdef __APPLE__ 2220#ifdef __APPLE__
1028 // flags &= ~EVBACKEND_KQUEUE; for documentation 2221 /* only select works correctly on that "unix-certified" platform */
1029 flags &= ~EVBACKEND_POLL; 2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1030#endif 2227#endif
1031 2228
1032 return flags; 2229 return flags;
1033} 2230}
1034 2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
1035unsigned int 2244unsigned int
1036ev_embeddable_backends (void) 2245ev_backend (EV_P) EV_THROW
1037{ 2246{
1038 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2247 return backend;
1039
1040 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1041 /* please fix it and tell me how to detect the fix */
1042 flags &= ~EVBACKEND_EPOLL;
1043
1044 return flags;
1045} 2248}
1046 2249
2250#if EV_FEATURE_API
1047unsigned int 2251unsigned int
1048ev_backend (EV_P) 2252ev_iteration (EV_P) EV_THROW
1049{ 2253{
1050 return backend; 2254 return loop_count;
1051} 2255}
1052 2256
1053unsigned int 2257unsigned int
1054ev_loop_count (EV_P) 2258ev_depth (EV_P) EV_THROW
1055{ 2259{
1056 return loop_count; 2260 return loop_depth;
1057} 2261}
1058 2262
1059void 2263void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1061{ 2265{
1062 io_blocktime = interval; 2266 io_blocktime = interval;
1063} 2267}
1064 2268
1065void 2269void
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1067{ 2271{
1068 timeout_blocktime = interval; 2272 timeout_blocktime = interval;
1069} 2273}
1070 2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
1071static void noinline 2302static void noinline ecb_cold
1072loop_init (EV_P_ unsigned int flags) 2303loop_init (EV_P_ unsigned int flags) EV_THROW
1073{ 2304{
1074 if (!backend) 2305 if (!backend)
1075 { 2306 {
2307 origflags = flags;
2308
2309#if EV_USE_REALTIME
2310 if (!have_realtime)
2311 {
2312 struct timespec ts;
2313
2314 if (!clock_gettime (CLOCK_REALTIME, &ts))
2315 have_realtime = 1;
2316 }
2317#endif
2318
1076#if EV_USE_MONOTONIC 2319#if EV_USE_MONOTONIC
2320 if (!have_monotonic)
1077 { 2321 {
1078 struct timespec ts; 2322 struct timespec ts;
2323
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 2325 have_monotonic = 1;
1081 } 2326 }
1082#endif 2327#endif
1083
1084 ev_rt_now = ev_time ();
1085 mn_now = get_clock ();
1086 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now;
1088
1089 io_blocktime = 0.;
1090 timeout_blocktime = 0.;
1091 2328
1092 /* pid check not overridable via env */ 2329 /* pid check not overridable via env */
1093#ifndef _WIN32 2330#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 2331 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 2332 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 2335 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 2336 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 2337 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 2338 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 2339
1103 if (!(flags & 0x0000ffffUL)) 2340 ev_rt_now = ev_time ();
2341 mn_now = get_clock ();
2342 now_floor = mn_now;
2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
2347
2348 io_blocktime = 0.;
2349 timeout_blocktime = 0.;
2350 backend = 0;
2351 backend_fd = -1;
2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
2364
2365 if (!(flags & EVBACKEND_MASK))
1104 flags |= ev_recommended_backends (); 2366 flags |= ev_recommended_backends ();
1105 2367
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY 2368#if EV_USE_IOCP
1109 fs_fd = -2; 2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1110#endif 2370#endif
1111
1112#if EV_USE_PORT 2371#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 2373#endif
1115#if EV_USE_KQUEUE 2374#if EV_USE_KQUEUE
1116 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1123#endif 2382#endif
1124#if EV_USE_SELECT 2383#if EV_USE_SELECT
1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1126#endif 2385#endif
1127 2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1128 ev_init (&pipeev, pipecb); 2390 ev_init (&pipe_w, pipecb);
1129 ev_set_priority (&pipeev, EV_MAXPRI); 2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
1130 } 2393 }
1131} 2394}
1132 2395
1133static void noinline 2396/* free up a loop structure */
2397void ecb_cold
1134loop_destroy (EV_P) 2398ev_loop_destroy (EV_P)
1135{ 2399{
1136 int i; 2400 int i;
1137 2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
1138 if (ev_is_active (&pipeev)) 2425 if (ev_is_active (&pipe_w))
1139 { 2426 {
1140 ev_ref (EV_A); /* signal watcher */ 2427 /*ev_ref (EV_A);*/
1141 ev_io_stop (EV_A_ &pipeev); 2428 /*ev_io_stop (EV_A_ &pipe_w);*/
1142 2429
1143 close (evpipe [0]); evpipe [0] = 0; 2430#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 2431 if (evfd >= 0)
2432 close (evfd);
2433#endif
2434
2435 if (evpipe [0] >= 0)
2436 {
2437 EV_WIN32_CLOSE_FD (evpipe [0]);
2438 EV_WIN32_CLOSE_FD (evpipe [1]);
2439 }
1145 } 2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
1146 2446
1147#if EV_USE_INOTIFY 2447#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 2448 if (fs_fd >= 0)
1149 close (fs_fd); 2449 close (fs_fd);
1150#endif 2450#endif
1151 2451
1152 if (backend_fd >= 0) 2452 if (backend_fd >= 0)
1153 close (backend_fd); 2453 close (backend_fd);
1154 2454
2455#if EV_USE_IOCP
2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
1155#if EV_USE_PORT 2458#if EV_USE_PORT
1156 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1157#endif 2460#endif
1158#if EV_USE_KQUEUE 2461#if EV_USE_KQUEUE
1159 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1174#if EV_IDLE_ENABLE 2477#if EV_IDLE_ENABLE
1175 array_free (idle, [i]); 2478 array_free (idle, [i]);
1176#endif 2479#endif
1177 } 2480 }
1178 2481
1179 ev_free (anfds); anfdmax = 0; 2482 ev_free (anfds); anfds = 0; anfdmax = 0;
1180 2483
1181 /* have to use the microsoft-never-gets-it-right macro */ 2484 /* have to use the microsoft-never-gets-it-right macro */
2485 array_free (rfeed, EMPTY);
1182 array_free (fdchange, EMPTY); 2486 array_free (fdchange, EMPTY);
1183 array_free (timer, EMPTY); 2487 array_free (timer, EMPTY);
1184#if EV_PERIODIC_ENABLE 2488#if EV_PERIODIC_ENABLE
1185 array_free (periodic, EMPTY); 2489 array_free (periodic, EMPTY);
1186#endif 2490#endif
1187#if EV_FORK_ENABLE 2491#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 2492 array_free (fork, EMPTY);
1189#endif 2493#endif
2494#if EV_CLEANUP_ENABLE
2495 array_free (cleanup, EMPTY);
2496#endif
1190 array_free (prepare, EMPTY); 2497 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 2498 array_free (check, EMPTY);
2499#if EV_ASYNC_ENABLE
2500 array_free (async, EMPTY);
2501#endif
1192 2502
1193 backend = 0; 2503 backend = 0;
1194}
1195 2504
2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
2513}
2514
2515#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 2516inline_size void infy_fork (EV_P);
2517#endif
1197 2518
1198void inline_size 2519inline_size void
1199loop_fork (EV_P) 2520loop_fork (EV_P)
1200{ 2521{
1201#if EV_USE_PORT 2522#if EV_USE_PORT
1202 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1203#endif 2524#endif
1209#endif 2530#endif
1210#if EV_USE_INOTIFY 2531#if EV_USE_INOTIFY
1211 infy_fork (EV_A); 2532 infy_fork (EV_A);
1212#endif 2533#endif
1213 2534
1214 if (ev_is_active (&pipeev)) 2535 if (ev_is_active (&pipe_w))
1215 { 2536 {
1216 /* this "locks" the handlers against writing to the pipe */ 2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1217 gotsig = gotasync = 1;
1218 2538
1219 ev_ref (EV_A); 2539 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 2540 ev_io_stop (EV_A_ &pipe_w);
1221 close (evpipe [0]);
1222 close (evpipe [1]);
1223 2541
2542#if EV_USE_EVENTFD
2543 if (evfd >= 0)
2544 close (evfd);
2545#endif
2546
2547 if (evpipe [0] >= 0)
2548 {
2549 EV_WIN32_CLOSE_FD (evpipe [0]);
2550 EV_WIN32_CLOSE_FD (evpipe [1]);
2551 }
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1224 evpipe_init (EV_A); 2554 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */ 2555 /* iterate over everything, in case we missed something before */
1226 pipecb (EV_A_ &pipeev, EV_READ); 2556 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2557#endif
1227 } 2558 }
1228 2559
1229 postfork = 0; 2560 postfork = 0;
1230} 2561}
1231 2562
1232#if EV_MULTIPLICITY 2563#if EV_MULTIPLICITY
2564
1233struct ev_loop * 2565struct ev_loop * ecb_cold
1234ev_loop_new (unsigned int flags) 2566ev_loop_new (unsigned int flags) EV_THROW
1235{ 2567{
1236 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1237 2569
1238 memset (loop, 0, sizeof (struct ev_loop)); 2570 memset (EV_A, 0, sizeof (struct ev_loop));
1239
1240 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1241 2572
1242 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1243 return loop; 2574 return EV_A;
1244 2575
2576 ev_free (EV_A);
1245 return 0; 2577 return 0;
1246} 2578}
1247 2579
1248void 2580#endif /* multiplicity */
1249ev_loop_destroy (EV_P)
1250{
1251 loop_destroy (EV_A);
1252 ev_free (loop);
1253}
1254 2581
1255void 2582#if EV_VERIFY
1256ev_loop_fork (EV_P) 2583static void noinline ecb_cold
2584verify_watcher (EV_P_ W w)
1257{ 2585{
1258 postfork = 1; /* must be in line with ev_default_fork */ 2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1259}
1260 2587
2588 if (w->pending)
2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590}
2591
2592static void noinline ecb_cold
2593verify_heap (EV_P_ ANHE *heap, int N)
2594{
2595 int i;
2596
2597 for (i = HEAP0; i < N + HEAP0; ++i)
2598 {
2599 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602
2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604 }
2605}
2606
2607static void noinline ecb_cold
2608array_verify (EV_P_ W *ws, int cnt)
2609{
2610 while (cnt--)
2611 {
2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 verify_watcher (EV_A_ ws [cnt]);
2614 }
2615}
2616#endif
2617
2618#if EV_FEATURE_API
2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
2621{
2622#if EV_VERIFY
2623 int i;
2624 WL w, w2;
2625
2626 assert (activecnt >= -1);
2627
2628 assert (fdchangemax >= fdchangecnt);
2629 for (i = 0; i < fdchangecnt; ++i)
2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631
2632 assert (anfdmax >= 0);
2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
2637 for (w = w2 = anfds [i].head; w; w = w->next)
2638 {
2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649 }
2650 }
2651
2652 assert (timermax >= timercnt);
2653 verify_heap (EV_A_ timers, timercnt);
2654
2655#if EV_PERIODIC_ENABLE
2656 assert (periodicmax >= periodiccnt);
2657 verify_heap (EV_A_ periodics, periodiccnt);
2658#endif
2659
2660 for (i = NUMPRI; i--; )
2661 {
2662 assert (pendingmax [i] >= pendingcnt [i]);
2663#if EV_IDLE_ENABLE
2664 assert (idleall >= 0);
2665 assert (idlemax [i] >= idlecnt [i]);
2666 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667#endif
2668 }
2669
2670#if EV_FORK_ENABLE
2671 assert (forkmax >= forkcnt);
2672 array_verify (EV_A_ (W *)forks, forkcnt);
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
2680#if EV_ASYNC_ENABLE
2681 assert (asyncmax >= asynccnt);
2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
2683#endif
2684
2685#if EV_PREPARE_ENABLE
2686 assert (preparemax >= preparecnt);
2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
2689
2690#if EV_CHECK_ENABLE
2691 assert (checkmax >= checkcnt);
2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
2694
2695# if 0
2696#if EV_CHILD_ENABLE
2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
2700# endif
2701#endif
2702}
1261#endif 2703#endif
1262 2704
1263#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
1264struct ev_loop * 2706struct ev_loop * ecb_cold
1265ev_default_loop_init (unsigned int flags)
1266#else 2707#else
1267int 2708int
2709#endif
1268ev_default_loop (unsigned int flags) 2710ev_default_loop (unsigned int flags) EV_THROW
1269#endif
1270{ 2711{
1271 if (!ev_default_loop_ptr) 2712 if (!ev_default_loop_ptr)
1272 { 2713 {
1273#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
1274 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
1275#else 2716#else
1276 ev_default_loop_ptr = 1; 2717 ev_default_loop_ptr = 1;
1277#endif 2718#endif
1278 2719
1279 loop_init (EV_A_ flags); 2720 loop_init (EV_A_ flags);
1280 2721
1281 if (ev_backend (EV_A)) 2722 if (ev_backend (EV_A))
1282 { 2723 {
1283#ifndef _WIN32 2724#if EV_CHILD_ENABLE
1284 ev_signal_init (&childev, childcb, SIGCHLD); 2725 ev_signal_init (&childev, childcb, SIGCHLD);
1285 ev_set_priority (&childev, EV_MAXPRI); 2726 ev_set_priority (&childev, EV_MAXPRI);
1286 ev_signal_start (EV_A_ &childev); 2727 ev_signal_start (EV_A_ &childev);
1287 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
1288#endif 2729#endif
1293 2734
1294 return ev_default_loop_ptr; 2735 return ev_default_loop_ptr;
1295} 2736}
1296 2737
1297void 2738void
1298ev_default_destroy (void) 2739ev_loop_fork (EV_P) EV_THROW
1299{ 2740{
1300#if EV_MULTIPLICITY 2741 postfork = 1;
1301 struct ev_loop *loop = ev_default_loop_ptr;
1302#endif
1303
1304#ifndef _WIN32
1305 ev_ref (EV_A); /* child watcher */
1306 ev_signal_stop (EV_A_ &childev);
1307#endif
1308
1309 loop_destroy (EV_A);
1310}
1311
1312void
1313ev_default_fork (void)
1314{
1315#if EV_MULTIPLICITY
1316 struct ev_loop *loop = ev_default_loop_ptr;
1317#endif
1318
1319 if (backend)
1320 postfork = 1; /* must be in line with ev_loop_fork */
1321} 2742}
1322 2743
1323/*****************************************************************************/ 2744/*****************************************************************************/
1324 2745
1325void 2746void
1326ev_invoke (EV_P_ void *w, int revents) 2747ev_invoke (EV_P_ void *w, int revents)
1327{ 2748{
1328 EV_CB_INVOKE ((W)w, revents); 2749 EV_CB_INVOKE ((W)w, revents);
1329} 2750}
1330 2751
1331void inline_speed 2752unsigned int
1332call_pending (EV_P) 2753ev_pending_count (EV_P) EV_THROW
1333{ 2754{
1334 int pri; 2755 int pri;
2756 unsigned int count = 0;
1335 2757
1336 for (pri = NUMPRI; pri--; ) 2758 for (pri = NUMPRI; pri--; )
2759 count += pendingcnt [pri];
2760
2761 return count;
2762}
2763
2764void noinline
2765ev_invoke_pending (EV_P)
2766{
2767 pendingpri = NUMPRI;
2768
2769 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2770 {
2771 --pendingpri;
2772
1337 while (pendingcnt [pri]) 2773 while (pendingcnt [pendingpri])
1338 {
1339 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1340
1341 if (expect_true (p->w))
1342 {
1343 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1344
1345 p->w->pending = 0;
1346 EV_CB_INVOKE (p->w, p->events);
1347 }
1348 }
1349}
1350
1351void inline_size
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 { 2774 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2775 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1364 2776
1365 ((WT)w)->at += w->repeat; 2777 p->w->pending = 0;
1366 if (((WT)w)->at < mn_now) 2778 EV_CB_INVOKE (p->w, p->events);
1367 ((WT)w)->at = mn_now; 2779 EV_FREQUENT_CHECK;
1368
1369 downheap (timers, timercnt, 0);
1370 } 2780 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 { 2781 }
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407} 2782}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430 2783
1431#if EV_IDLE_ENABLE 2784#if EV_IDLE_ENABLE
1432void inline_size 2785/* make idle watchers pending. this handles the "call-idle */
2786/* only when higher priorities are idle" logic */
2787inline_size void
1433idle_reify (EV_P) 2788idle_reify (EV_P)
1434{ 2789{
1435 if (expect_false (idleall)) 2790 if (expect_false (idleall))
1436 { 2791 {
1437 int pri; 2792 int pri;
1449 } 2804 }
1450 } 2805 }
1451} 2806}
1452#endif 2807#endif
1453 2808
1454void inline_speed 2809/* make timers pending */
2810inline_size void
2811timers_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2816 {
2817 do
2818 {
2819 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->repeat)
2825 {
2826 ev_at (w) += w->repeat;
2827 if (ev_at (w) < mn_now)
2828 ev_at (w) = mn_now;
2829
2830 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2831
2832 ANHE_at_cache (timers [HEAP0]);
2833 downheap (timers, timercnt, HEAP0);
2834 }
2835 else
2836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2837
2838 EV_FREQUENT_CHECK;
2839 feed_reverse (EV_A_ (W)w);
2840 }
2841 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2842
2843 feed_reverse_done (EV_A_ EV_TIMER);
2844 }
2845}
2846
2847#if EV_PERIODIC_ENABLE
2848
2849static void noinline
2850periodic_recalc (EV_P_ ev_periodic *w)
2851{
2852 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2853 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2854
2855 /* the above almost always errs on the low side */
2856 while (at <= ev_rt_now)
2857 {
2858 ev_tstamp nat = at + w->interval;
2859
2860 /* when resolution fails us, we use ev_rt_now */
2861 if (expect_false (nat == at))
2862 {
2863 at = ev_rt_now;
2864 break;
2865 }
2866
2867 at = nat;
2868 }
2869
2870 ev_at (w) = at;
2871}
2872
2873/* make periodics pending */
2874inline_size void
2875periodics_reify (EV_P)
2876{
2877 EV_FREQUENT_CHECK;
2878
2879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2880 {
2881 do
2882 {
2883 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2884
2885 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2886
2887 /* first reschedule or stop timer */
2888 if (w->reschedule_cb)
2889 {
2890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2891
2892 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2893
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else if (w->interval)
2898 {
2899 periodic_recalc (EV_A_ w);
2900 ANHE_at_cache (periodics [HEAP0]);
2901 downheap (periodics, periodiccnt, HEAP0);
2902 }
2903 else
2904 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2905
2906 EV_FREQUENT_CHECK;
2907 feed_reverse (EV_A_ (W)w);
2908 }
2909 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2910
2911 feed_reverse_done (EV_A_ EV_PERIODIC);
2912 }
2913}
2914
2915/* simply recalculate all periodics */
2916/* TODO: maybe ensure that at least one event happens when jumping forward? */
2917static void noinline ecb_cold
2918periodics_reschedule (EV_P)
2919{
2920 int i;
2921
2922 /* adjust periodics after time jump */
2923 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2924 {
2925 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2926
2927 if (w->reschedule_cb)
2928 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2929 else if (w->interval)
2930 periodic_recalc (EV_A_ w);
2931
2932 ANHE_at_cache (periodics [i]);
2933 }
2934
2935 reheap (periodics, periodiccnt);
2936}
2937#endif
2938
2939/* adjust all timers by a given offset */
2940static void noinline ecb_cold
2941timers_reschedule (EV_P_ ev_tstamp adjust)
2942{
2943 int i;
2944
2945 for (i = 0; i < timercnt; ++i)
2946 {
2947 ANHE *he = timers + i + HEAP0;
2948 ANHE_w (*he)->at += adjust;
2949 ANHE_at_cache (*he);
2950 }
2951}
2952
2953/* fetch new monotonic and realtime times from the kernel */
2954/* also detect if there was a timejump, and act accordingly */
2955inline_speed void
1455time_update (EV_P_ ev_tstamp max_block) 2956time_update (EV_P_ ev_tstamp max_block)
1456{ 2957{
1457 int i;
1458
1459#if EV_USE_MONOTONIC 2958#if EV_USE_MONOTONIC
1460 if (expect_true (have_monotonic)) 2959 if (expect_true (have_monotonic))
1461 { 2960 {
2961 int i;
1462 ev_tstamp odiff = rtmn_diff; 2962 ev_tstamp odiff = rtmn_diff;
1463 2963
1464 mn_now = get_clock (); 2964 mn_now = get_clock ();
1465 2965
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1482 * doesn't hurt either as we only do this on time-jumps or 2982 * doesn't hurt either as we only do this on time-jumps or
1483 * in the unlikely event of having been preempted here. 2983 * in the unlikely event of having been preempted here.
1484 */ 2984 */
1485 for (i = 4; --i; ) 2985 for (i = 4; --i; )
1486 { 2986 {
2987 ev_tstamp diff;
1487 rtmn_diff = ev_rt_now - mn_now; 2988 rtmn_diff = ev_rt_now - mn_now;
1488 2989
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2990 diff = odiff - rtmn_diff;
2991
2992 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 2993 return; /* all is well */
1491 2994
1492 ev_rt_now = ev_time (); 2995 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 2996 mn_now = get_clock ();
1494 now_floor = mn_now; 2997 now_floor = mn_now;
1495 } 2998 }
1496 2999
3000 /* no timer adjustment, as the monotonic clock doesn't jump */
3001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1497# if EV_PERIODIC_ENABLE 3002# if EV_PERIODIC_ENABLE
1498 periodics_reschedule (EV_A); 3003 periodics_reschedule (EV_A);
1499# endif 3004# endif
1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502 } 3005 }
1503 else 3006 else
1504#endif 3007#endif
1505 { 3008 {
1506 ev_rt_now = ev_time (); 3009 ev_rt_now = ev_time ();
1507 3010
1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3011 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1509 { 3012 {
3013 /* adjust timers. this is easy, as the offset is the same for all of them */
3014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1510#if EV_PERIODIC_ENABLE 3015#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 3016 periodics_reschedule (EV_A);
1512#endif 3017#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i)
1515 ((WT)timers [i])->at += ev_rt_now - mn_now;
1516 } 3018 }
1517 3019
1518 mn_now = ev_rt_now; 3020 mn_now = ev_rt_now;
1519 } 3021 }
1520} 3022}
1521 3023
1522void 3024int
1523ev_ref (EV_P)
1524{
1525 ++activecnt;
1526}
1527
1528void
1529ev_unref (EV_P)
1530{
1531 --activecnt;
1532}
1533
1534static int loop_done;
1535
1536void
1537ev_loop (EV_P_ int flags) 3025ev_run (EV_P_ int flags)
1538{ 3026{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3027#if EV_FEATURE_API
1540 ? EVUNLOOP_ONE 3028 ++loop_depth;
1541 : EVUNLOOP_CANCEL; 3029#endif
1542 3030
3031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3032
3033 loop_done = EVBREAK_CANCEL;
3034
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1544 3036
1545 do 3037 do
1546 { 3038 {
3039#if EV_VERIFY >= 2
3040 ev_verify (EV_A);
3041#endif
3042
1547#ifndef _WIN32 3043#ifndef _WIN32
1548 if (expect_false (curpid)) /* penalise the forking check even more */ 3044 if (expect_false (curpid)) /* penalise the forking check even more */
1549 if (expect_false (getpid () != curpid)) 3045 if (expect_false (getpid () != curpid))
1550 { 3046 {
1551 curpid = getpid (); 3047 curpid = getpid ();
1557 /* we might have forked, so queue fork handlers */ 3053 /* we might have forked, so queue fork handlers */
1558 if (expect_false (postfork)) 3054 if (expect_false (postfork))
1559 if (forkcnt) 3055 if (forkcnt)
1560 { 3056 {
1561 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1562 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1563 } 3059 }
1564#endif 3060#endif
1565 3061
3062#if EV_PREPARE_ENABLE
1566 /* queue prepare watchers (and execute them) */ 3063 /* queue prepare watchers (and execute them) */
1567 if (expect_false (preparecnt)) 3064 if (expect_false (preparecnt))
1568 { 3065 {
1569 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1570 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1571 } 3068 }
3069#endif
1572 3070
1573 if (expect_false (!activecnt)) 3071 if (expect_false (loop_done))
1574 break; 3072 break;
1575 3073
1576 /* we might have forked, so reify kernel state if necessary */ 3074 /* we might have forked, so reify kernel state if necessary */
1577 if (expect_false (postfork)) 3075 if (expect_false (postfork))
1578 loop_fork (EV_A); 3076 loop_fork (EV_A);
1583 /* calculate blocking time */ 3081 /* calculate blocking time */
1584 { 3082 {
1585 ev_tstamp waittime = 0.; 3083 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.; 3084 ev_tstamp sleeptime = 0.;
1587 3085
3086 /* remember old timestamp for io_blocktime calculation */
3087 ev_tstamp prev_mn_now = mn_now;
3088
3089 /* update time to cancel out callback processing overhead */
3090 time_update (EV_A_ 1e100);
3091
3092 /* from now on, we want a pipe-wake-up */
3093 pipe_write_wanted = 1;
3094
3095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3096
1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3097 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1589 { 3098 {
1590 /* update time to cancel out callback processing overhead */
1591 time_update (EV_A_ 1e100);
1592
1593 waittime = MAX_BLOCKTIME; 3099 waittime = MAX_BLOCKTIME;
1594 3100
1595 if (timercnt) 3101 if (timercnt)
1596 { 3102 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1598 if (waittime > to) waittime = to; 3104 if (waittime > to) waittime = to;
1599 } 3105 }
1600 3106
1601#if EV_PERIODIC_ENABLE 3107#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 3108 if (periodiccnt)
1603 { 3109 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1605 if (waittime > to) waittime = to; 3111 if (waittime > to) waittime = to;
1606 } 3112 }
1607#endif 3113#endif
1608 3114
3115 /* don't let timeouts decrease the waittime below timeout_blocktime */
1609 if (expect_false (waittime < timeout_blocktime)) 3116 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime; 3117 waittime = timeout_blocktime;
1611 3118
1612 sleeptime = waittime - backend_fudge; 3119 /* at this point, we NEED to wait, so we have to ensure */
3120 /* to pass a minimum nonzero value to the backend */
3121 if (expect_false (waittime < backend_mintime))
3122 waittime = backend_mintime;
1613 3123
3124 /* extra check because io_blocktime is commonly 0 */
1614 if (expect_true (sleeptime > io_blocktime)) 3125 if (expect_false (io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 { 3126 {
3127 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3128
3129 if (sleeptime > waittime - backend_mintime)
3130 sleeptime = waittime - backend_mintime;
3131
3132 if (expect_true (sleeptime > 0.))
3133 {
1619 ev_sleep (sleeptime); 3134 ev_sleep (sleeptime);
1620 waittime -= sleeptime; 3135 waittime -= sleeptime;
3136 }
1621 } 3137 }
1622 } 3138 }
1623 3139
3140#if EV_FEATURE_API
1624 ++loop_count; 3141 ++loop_count;
3142#endif
3143 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1625 backend_poll (EV_A_ waittime); 3144 backend_poll (EV_A_ waittime);
3145 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3146
3147 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3148
3149 ECB_MEMORY_FENCE_ACQUIRE;
3150 if (pipe_write_skipped)
3151 {
3152 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3153 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3154 }
3155
1626 3156
1627 /* update ev_rt_now, do magic */ 3157 /* update ev_rt_now, do magic */
1628 time_update (EV_A_ waittime + sleeptime); 3158 time_update (EV_A_ waittime + sleeptime);
1629 } 3159 }
1630 3160
1637#if EV_IDLE_ENABLE 3167#if EV_IDLE_ENABLE
1638 /* queue idle watchers unless other events are pending */ 3168 /* queue idle watchers unless other events are pending */
1639 idle_reify (EV_A); 3169 idle_reify (EV_A);
1640#endif 3170#endif
1641 3171
3172#if EV_CHECK_ENABLE
1642 /* queue check watchers, to be executed first */ 3173 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 3174 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3175 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3176#endif
1645 3177
1646 call_pending (EV_A); 3178 EV_INVOKE_PENDING;
1647
1648 } 3179 }
1649 while (expect_true (activecnt && !loop_done)); 3180 while (expect_true (
3181 activecnt
3182 && !loop_done
3183 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3184 ));
1650 3185
1651 if (loop_done == EVUNLOOP_ONE) 3186 if (loop_done == EVBREAK_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 3187 loop_done = EVBREAK_CANCEL;
3188
3189#if EV_FEATURE_API
3190 --loop_depth;
3191#endif
3192
3193 return activecnt;
1653} 3194}
1654 3195
1655void 3196void
1656ev_unloop (EV_P_ int how) 3197ev_break (EV_P_ int how) EV_THROW
1657{ 3198{
1658 loop_done = how; 3199 loop_done = how;
1659} 3200}
1660 3201
3202void
3203ev_ref (EV_P) EV_THROW
3204{
3205 ++activecnt;
3206}
3207
3208void
3209ev_unref (EV_P) EV_THROW
3210{
3211 --activecnt;
3212}
3213
3214void
3215ev_now_update (EV_P) EV_THROW
3216{
3217 time_update (EV_A_ 1e100);
3218}
3219
3220void
3221ev_suspend (EV_P) EV_THROW
3222{
3223 ev_now_update (EV_A);
3224}
3225
3226void
3227ev_resume (EV_P) EV_THROW
3228{
3229 ev_tstamp mn_prev = mn_now;
3230
3231 ev_now_update (EV_A);
3232 timers_reschedule (EV_A_ mn_now - mn_prev);
3233#if EV_PERIODIC_ENABLE
3234 /* TODO: really do this? */
3235 periodics_reschedule (EV_A);
3236#endif
3237}
3238
1661/*****************************************************************************/ 3239/*****************************************************************************/
3240/* singly-linked list management, used when the expected list length is short */
1662 3241
1663void inline_size 3242inline_size void
1664wlist_add (WL *head, WL elem) 3243wlist_add (WL *head, WL elem)
1665{ 3244{
1666 elem->next = *head; 3245 elem->next = *head;
1667 *head = elem; 3246 *head = elem;
1668} 3247}
1669 3248
1670void inline_size 3249inline_size void
1671wlist_del (WL *head, WL elem) 3250wlist_del (WL *head, WL elem)
1672{ 3251{
1673 while (*head) 3252 while (*head)
1674 { 3253 {
1675 if (*head == elem) 3254 if (expect_true (*head == elem))
1676 { 3255 {
1677 *head = elem->next; 3256 *head = elem->next;
1678 return; 3257 break;
1679 } 3258 }
1680 3259
1681 head = &(*head)->next; 3260 head = &(*head)->next;
1682 } 3261 }
1683} 3262}
1684 3263
1685void inline_speed 3264/* internal, faster, version of ev_clear_pending */
3265inline_speed void
1686clear_pending (EV_P_ W w) 3266clear_pending (EV_P_ W w)
1687{ 3267{
1688 if (w->pending) 3268 if (w->pending)
1689 { 3269 {
1690 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3270 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1691 w->pending = 0; 3271 w->pending = 0;
1692 } 3272 }
1693} 3273}
1694 3274
1695int 3275int
1696ev_clear_pending (EV_P_ void *w) 3276ev_clear_pending (EV_P_ void *w) EV_THROW
1697{ 3277{
1698 W w_ = (W)w; 3278 W w_ = (W)w;
1699 int pending = w_->pending; 3279 int pending = w_->pending;
1700 3280
1701 if (expect_true (pending)) 3281 if (expect_true (pending))
1702 { 3282 {
1703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3283 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3284 p->w = (W)&pending_w;
1704 w_->pending = 0; 3285 w_->pending = 0;
1705 p->w = 0;
1706 return p->events; 3286 return p->events;
1707 } 3287 }
1708 else 3288 else
1709 return 0; 3289 return 0;
1710} 3290}
1711 3291
1712void inline_size 3292inline_size void
1713pri_adjust (EV_P_ W w) 3293pri_adjust (EV_P_ W w)
1714{ 3294{
1715 int pri = w->priority; 3295 int pri = ev_priority (w);
1716 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3296 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3297 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1718 w->priority = pri; 3298 ev_set_priority (w, pri);
1719} 3299}
1720 3300
1721void inline_speed 3301inline_speed void
1722ev_start (EV_P_ W w, int active) 3302ev_start (EV_P_ W w, int active)
1723{ 3303{
1724 pri_adjust (EV_A_ w); 3304 pri_adjust (EV_A_ w);
1725 w->active = active; 3305 w->active = active;
1726 ev_ref (EV_A); 3306 ev_ref (EV_A);
1727} 3307}
1728 3308
1729void inline_size 3309inline_size void
1730ev_stop (EV_P_ W w) 3310ev_stop (EV_P_ W w)
1731{ 3311{
1732 ev_unref (EV_A); 3312 ev_unref (EV_A);
1733 w->active = 0; 3313 w->active = 0;
1734} 3314}
1735 3315
1736/*****************************************************************************/ 3316/*****************************************************************************/
1737 3317
1738void noinline 3318void noinline
1739ev_io_start (EV_P_ ev_io *w) 3319ev_io_start (EV_P_ ev_io *w) EV_THROW
1740{ 3320{
1741 int fd = w->fd; 3321 int fd = w->fd;
1742 3322
1743 if (expect_false (ev_is_active (w))) 3323 if (expect_false (ev_is_active (w)))
1744 return; 3324 return;
1745 3325
1746 assert (("ev_io_start called with negative fd", fd >= 0)); 3326 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3328
3329 EV_FREQUENT_CHECK;
1747 3330
1748 ev_start (EV_A_ (W)w, 1); 3331 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3332 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1750 wlist_add (&anfds[fd].head, (WL)w); 3333 wlist_add (&anfds[fd].head, (WL)w);
1751 3334
3335 /* common bug, apparently */
3336 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3337
1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3338 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1753 w->events &= ~EV_IOFDSET; 3339 w->events &= ~EV__IOFDSET;
3340
3341 EV_FREQUENT_CHECK;
1754} 3342}
1755 3343
1756void noinline 3344void noinline
1757ev_io_stop (EV_P_ ev_io *w) 3345ev_io_stop (EV_P_ ev_io *w) EV_THROW
1758{ 3346{
1759 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
1760 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
1761 return; 3349 return;
1762 3350
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3351 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3352
3353 EV_FREQUENT_CHECK;
1764 3354
1765 wlist_del (&anfds[w->fd].head, (WL)w); 3355 wlist_del (&anfds[w->fd].head, (WL)w);
1766 ev_stop (EV_A_ (W)w); 3356 ev_stop (EV_A_ (W)w);
1767 3357
1768 fd_change (EV_A_ w->fd, 1); 3358 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3359
3360 EV_FREQUENT_CHECK;
1769} 3361}
1770 3362
1771void noinline 3363void noinline
1772ev_timer_start (EV_P_ ev_timer *w) 3364ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1773{ 3365{
1774 if (expect_false (ev_is_active (w))) 3366 if (expect_false (ev_is_active (w)))
1775 return; 3367 return;
1776 3368
1777 ((WT)w)->at += mn_now; 3369 ev_at (w) += mn_now;
1778 3370
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3371 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 3372
3373 EV_FREQUENT_CHECK;
3374
3375 ++timercnt;
1781 ev_start (EV_A_ (W)w, ++timercnt); 3376 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3377 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 3378 ANHE_w (timers [ev_active (w)]) = (WT)w;
1784 upheap (timers, timercnt - 1); 3379 ANHE_at_cache (timers [ev_active (w)]);
3380 upheap (timers, ev_active (w));
1785 3381
3382 EV_FREQUENT_CHECK;
3383
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3384 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1787} 3385}
1788 3386
1789void noinline 3387void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 3388ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1791{ 3389{
1792 clear_pending (EV_A_ (W)w); 3390 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 3391 if (expect_false (!ev_is_active (w)))
1794 return; 3392 return;
1795 3393
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3394 EV_FREQUENT_CHECK;
1797 3395
1798 { 3396 {
1799 int active = ((W)w)->active; 3397 int active = ev_active (w);
1800 3398
3399 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3400
3401 --timercnt;
3402
1801 if (expect_true (--active < --timercnt)) 3403 if (expect_true (active < timercnt + HEAP0))
1802 { 3404 {
1803 timers [active] = timers [timercnt]; 3405 timers [active] = timers [timercnt + HEAP0];
1804 adjustheap (timers, timercnt, active); 3406 adjustheap (timers, timercnt, active);
1805 } 3407 }
1806 } 3408 }
1807 3409
1808 ((WT)w)->at -= mn_now; 3410 ev_at (w) -= mn_now;
1809 3411
1810 ev_stop (EV_A_ (W)w); 3412 ev_stop (EV_A_ (W)w);
3413
3414 EV_FREQUENT_CHECK;
1811} 3415}
1812 3416
1813void noinline 3417void noinline
1814ev_timer_again (EV_P_ ev_timer *w) 3418ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1815{ 3419{
3420 EV_FREQUENT_CHECK;
3421
3422 clear_pending (EV_A_ (W)w);
3423
1816 if (ev_is_active (w)) 3424 if (ev_is_active (w))
1817 { 3425 {
1818 if (w->repeat) 3426 if (w->repeat)
1819 { 3427 {
1820 ((WT)w)->at = mn_now + w->repeat; 3428 ev_at (w) = mn_now + w->repeat;
3429 ANHE_at_cache (timers [ev_active (w)]);
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 3430 adjustheap (timers, timercnt, ev_active (w));
1822 } 3431 }
1823 else 3432 else
1824 ev_timer_stop (EV_A_ w); 3433 ev_timer_stop (EV_A_ w);
1825 } 3434 }
1826 else if (w->repeat) 3435 else if (w->repeat)
1827 { 3436 {
1828 w->at = w->repeat; 3437 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 3438 ev_timer_start (EV_A_ w);
1830 } 3439 }
3440
3441 EV_FREQUENT_CHECK;
3442}
3443
3444ev_tstamp
3445ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3446{
3447 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1831} 3448}
1832 3449
1833#if EV_PERIODIC_ENABLE 3450#if EV_PERIODIC_ENABLE
1834void noinline 3451void noinline
1835ev_periodic_start (EV_P_ ev_periodic *w) 3452ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1836{ 3453{
1837 if (expect_false (ev_is_active (w))) 3454 if (expect_false (ev_is_active (w)))
1838 return; 3455 return;
1839 3456
1840 if (w->reschedule_cb) 3457 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 3459 else if (w->interval)
1843 { 3460 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3461 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 3462 periodic_recalc (EV_A_ w);
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 3463 }
1848 else 3464 else
1849 ((WT)w)->at = w->offset; 3465 ev_at (w) = w->offset;
1850 3466
3467 EV_FREQUENT_CHECK;
3468
3469 ++periodiccnt;
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 3470 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3471 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 3472 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 3473 ANHE_at_cache (periodics [ev_active (w)]);
3474 upheap (periodics, ev_active (w));
1855 3475
3476 EV_FREQUENT_CHECK;
3477
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3478 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1857} 3479}
1858 3480
1859void noinline 3481void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 3482ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1861{ 3483{
1862 clear_pending (EV_A_ (W)w); 3484 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 3485 if (expect_false (!ev_is_active (w)))
1864 return; 3486 return;
1865 3487
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3488 EV_FREQUENT_CHECK;
1867 3489
1868 { 3490 {
1869 int active = ((W)w)->active; 3491 int active = ev_active (w);
1870 3492
3493 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3494
3495 --periodiccnt;
3496
1871 if (expect_true (--active < --periodiccnt)) 3497 if (expect_true (active < periodiccnt + HEAP0))
1872 { 3498 {
1873 periodics [active] = periodics [periodiccnt]; 3499 periodics [active] = periodics [periodiccnt + HEAP0];
1874 adjustheap (periodics, periodiccnt, active); 3500 adjustheap (periodics, periodiccnt, active);
1875 } 3501 }
1876 } 3502 }
1877 3503
1878 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
1879} 3507}
1880 3508
1881void noinline 3509void noinline
1882ev_periodic_again (EV_P_ ev_periodic *w) 3510ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1883{ 3511{
1884 /* TODO: use adjustheap and recalculation */ 3512 /* TODO: use adjustheap and recalculation */
1885 ev_periodic_stop (EV_A_ w); 3513 ev_periodic_stop (EV_A_ w);
1886 ev_periodic_start (EV_A_ w); 3514 ev_periodic_start (EV_A_ w);
1887} 3515}
1889 3517
1890#ifndef SA_RESTART 3518#ifndef SA_RESTART
1891# define SA_RESTART 0 3519# define SA_RESTART 0
1892#endif 3520#endif
1893 3521
3522#if EV_SIGNAL_ENABLE
3523
1894void noinline 3524void noinline
1895ev_signal_start (EV_P_ ev_signal *w) 3525ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1896{ 3526{
1897#if EV_MULTIPLICITY
1898 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif
1900 if (expect_false (ev_is_active (w))) 3527 if (expect_false (ev_is_active (w)))
1901 return; 3528 return;
1902 3529
1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3530 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1904 3531
1905 evpipe_init (EV_A); 3532#if EV_MULTIPLICITY
3533 assert (("libev: a signal must not be attached to two different loops",
3534 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1906 3535
3536 signals [w->signum - 1].loop = EV_A;
3537#endif
3538
3539 EV_FREQUENT_CHECK;
3540
3541#if EV_USE_SIGNALFD
3542 if (sigfd == -2)
1907 { 3543 {
1908#ifndef _WIN32 3544 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1909 sigset_t full, prev; 3545 if (sigfd < 0 && errno == EINVAL)
1910 sigfillset (&full); 3546 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1911 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif
1913 3547
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3548 if (sigfd >= 0)
3549 {
3550 fd_intern (sigfd); /* doing it twice will not hurt */
1915 3551
1916#ifndef _WIN32 3552 sigemptyset (&sigfd_set);
1917 sigprocmask (SIG_SETMASK, &prev, 0); 3553
1918#endif 3554 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3555 ev_set_priority (&sigfd_w, EV_MAXPRI);
3556 ev_io_start (EV_A_ &sigfd_w);
3557 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3558 }
1919 } 3559 }
3560
3561 if (sigfd >= 0)
3562 {
3563 /* TODO: check .head */
3564 sigaddset (&sigfd_set, w->signum);
3565 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 }
3569#endif
1920 3570
1921 ev_start (EV_A_ (W)w, 1); 3571 ev_start (EV_A_ (W)w, 1);
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 3572 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 3573
1924 if (!((WL)w)->next) 3574 if (!((WL)w)->next)
3575# if EV_USE_SIGNALFD
3576 if (sigfd < 0) /*TODO*/
3577# endif
1925 { 3578 {
1926#if _WIN32 3579# ifdef _WIN32
3580 evpipe_init (EV_A);
3581
1927 signal (w->signum, sighandler); 3582 signal (w->signum, ev_sighandler);
1928#else 3583# else
1929 struct sigaction sa; 3584 struct sigaction sa;
3585
3586 evpipe_init (EV_A);
3587
1930 sa.sa_handler = sighandler; 3588 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 3589 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 3591 sigaction (w->signum, &sa, 0);
3592
3593 if (origflags & EVFLAG_NOSIGMASK)
3594 {
3595 sigemptyset (&sa.sa_mask);
3596 sigaddset (&sa.sa_mask, w->signum);
3597 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3598 }
1934#endif 3599#endif
1935 } 3600 }
3601
3602 EV_FREQUENT_CHECK;
1936} 3603}
1937 3604
1938void noinline 3605void noinline
1939ev_signal_stop (EV_P_ ev_signal *w) 3606ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1940{ 3607{
1941 clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
1942 if (expect_false (!ev_is_active (w))) 3609 if (expect_false (!ev_is_active (w)))
1943 return; 3610 return;
1944 3611
3612 EV_FREQUENT_CHECK;
3613
1945 wlist_del (&signals [w->signum - 1].head, (WL)w); 3614 wlist_del (&signals [w->signum - 1].head, (WL)w);
1946 ev_stop (EV_A_ (W)w); 3615 ev_stop (EV_A_ (W)w);
1947 3616
1948 if (!signals [w->signum - 1].head) 3617 if (!signals [w->signum - 1].head)
3618 {
3619#if EV_MULTIPLICITY
3620 signals [w->signum - 1].loop = 0; /* unattach from signal */
3621#endif
3622#if EV_USE_SIGNALFD
3623 if (sigfd >= 0)
3624 {
3625 sigset_t ss;
3626
3627 sigemptyset (&ss);
3628 sigaddset (&ss, w->signum);
3629 sigdelset (&sigfd_set, w->signum);
3630
3631 signalfd (sigfd, &sigfd_set, 0);
3632 sigprocmask (SIG_UNBLOCK, &ss, 0);
3633 }
3634 else
3635#endif
1949 signal (w->signum, SIG_DFL); 3636 signal (w->signum, SIG_DFL);
3637 }
3638
3639 EV_FREQUENT_CHECK;
1950} 3640}
3641
3642#endif
3643
3644#if EV_CHILD_ENABLE
1951 3645
1952void 3646void
1953ev_child_start (EV_P_ ev_child *w) 3647ev_child_start (EV_P_ ev_child *w) EV_THROW
1954{ 3648{
1955#if EV_MULTIPLICITY 3649#if EV_MULTIPLICITY
1956 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3650 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1957#endif 3651#endif
1958 if (expect_false (ev_is_active (w))) 3652 if (expect_false (ev_is_active (w)))
1959 return; 3653 return;
1960 3654
3655 EV_FREQUENT_CHECK;
3656
1961 ev_start (EV_A_ (W)w, 1); 3657 ev_start (EV_A_ (W)w, 1);
1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3658 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3659
3660 EV_FREQUENT_CHECK;
1963} 3661}
1964 3662
1965void 3663void
1966ev_child_stop (EV_P_ ev_child *w) 3664ev_child_stop (EV_P_ ev_child *w) EV_THROW
1967{ 3665{
1968 clear_pending (EV_A_ (W)w); 3666 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 3667 if (expect_false (!ev_is_active (w)))
1970 return; 3668 return;
1971 3669
3670 EV_FREQUENT_CHECK;
3671
1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3672 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1973 ev_stop (EV_A_ (W)w); 3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
1974} 3676}
3677
3678#endif
1975 3679
1976#if EV_STAT_ENABLE 3680#if EV_STAT_ENABLE
1977 3681
1978# ifdef _WIN32 3682# ifdef _WIN32
1979# undef lstat 3683# undef lstat
1980# define lstat(a,b) _stati64 (a,b) 3684# define lstat(a,b) _stati64 (a,b)
1981# endif 3685# endif
1982 3686
1983#define DEF_STAT_INTERVAL 5.0074891 3687#define DEF_STAT_INTERVAL 5.0074891
3688#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1984#define MIN_STAT_INTERVAL 0.1074891 3689#define MIN_STAT_INTERVAL 0.1074891
1985 3690
1986static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3691static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1987 3692
1988#if EV_USE_INOTIFY 3693#if EV_USE_INOTIFY
1989# define EV_INOTIFY_BUFSIZE 8192 3694
3695/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3696# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1990 3697
1991static void noinline 3698static void noinline
1992infy_add (EV_P_ ev_stat *w) 3699infy_add (EV_P_ ev_stat *w)
1993{ 3700{
1994 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3701 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1995 3702
1996 if (w->wd < 0) 3703 if (w->wd >= 0)
3704 {
3705 struct statfs sfs;
3706
3707 /* now local changes will be tracked by inotify, but remote changes won't */
3708 /* unless the filesystem is known to be local, we therefore still poll */
3709 /* also do poll on <2.6.25, but with normal frequency */
3710
3711 if (!fs_2625)
3712 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3713 else if (!statfs (w->path, &sfs)
3714 && (sfs.f_type == 0x1373 /* devfs */
3715 || sfs.f_type == 0xEF53 /* ext2/3 */
3716 || sfs.f_type == 0x3153464a /* jfs */
3717 || sfs.f_type == 0x52654973 /* reiser3 */
3718 || sfs.f_type == 0x01021994 /* tempfs */
3719 || sfs.f_type == 0x58465342 /* xfs */))
3720 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3721 else
3722 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1997 { 3723 }
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3724 else
3725 {
3726 /* can't use inotify, continue to stat */
3727 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1999 3728
2000 /* monitor some parent directory for speedup hints */ 3729 /* if path is not there, monitor some parent directory for speedup hints */
3730 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3731 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3732 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 3733 {
2003 char path [4096]; 3734 char path [4096];
2004 strcpy (path, w->path); 3735 strcpy (path, w->path);
2005 3736
2008 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3739 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2009 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3740 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2010 3741
2011 char *pend = strrchr (path, '/'); 3742 char *pend = strrchr (path, '/');
2012 3743
2013 if (!pend) 3744 if (!pend || pend == path)
2014 break; /* whoops, no '/', complain to your admin */ 3745 break;
2015 3746
2016 *pend = 0; 3747 *pend = 0;
2017 w->wd = inotify_add_watch (fs_fd, path, mask); 3748 w->wd = inotify_add_watch (fs_fd, path, mask);
2018 } 3749 }
2019 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3750 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2020 } 3751 }
2021 } 3752 }
2022 else
2023 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2024 3753
2025 if (w->wd >= 0) 3754 if (w->wd >= 0)
2026 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3755 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3756
3757 /* now re-arm timer, if required */
3758 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3759 ev_timer_again (EV_A_ &w->timer);
3760 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2027} 3761}
2028 3762
2029static void noinline 3763static void noinline
2030infy_del (EV_P_ ev_stat *w) 3764infy_del (EV_P_ ev_stat *w)
2031{ 3765{
2034 3768
2035 if (wd < 0) 3769 if (wd < 0)
2036 return; 3770 return;
2037 3771
2038 w->wd = -2; 3772 w->wd = -2;
2039 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3773 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2040 wlist_del (&fs_hash [slot].head, (WL)w); 3774 wlist_del (&fs_hash [slot].head, (WL)w);
2041 3775
2042 /* remove this watcher, if others are watching it, they will rearm */ 3776 /* remove this watcher, if others are watching it, they will rearm */
2043 inotify_rm_watch (fs_fd, wd); 3777 inotify_rm_watch (fs_fd, wd);
2044} 3778}
2045 3779
2046static void noinline 3780static void noinline
2047infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3781infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2048{ 3782{
2049 if (slot < 0) 3783 if (slot < 0)
2050 /* overflow, need to check for all hahs slots */ 3784 /* overflow, need to check for all hash slots */
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3785 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2052 infy_wd (EV_A_ slot, wd, ev); 3786 infy_wd (EV_A_ slot, wd, ev);
2053 else 3787 else
2054 { 3788 {
2055 WL w_; 3789 WL w_;
2056 3790
2057 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3791 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2058 { 3792 {
2059 ev_stat *w = (ev_stat *)w_; 3793 ev_stat *w = (ev_stat *)w_;
2060 w_ = w_->next; /* lets us remove this watcher and all before it */ 3794 w_ = w_->next; /* lets us remove this watcher and all before it */
2061 3795
2062 if (w->wd == wd || wd == -1) 3796 if (w->wd == wd || wd == -1)
2063 { 3797 {
2064 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3798 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2065 { 3799 {
3800 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2066 w->wd = -1; 3801 w->wd = -1;
2067 infy_add (EV_A_ w); /* re-add, no matter what */ 3802 infy_add (EV_A_ w); /* re-add, no matter what */
2068 } 3803 }
2069 3804
2070 stat_timer_cb (EV_A_ &w->timer, 0); 3805 stat_timer_cb (EV_A_ &w->timer, 0);
2075 3810
2076static void 3811static void
2077infy_cb (EV_P_ ev_io *w, int revents) 3812infy_cb (EV_P_ ev_io *w, int revents)
2078{ 3813{
2079 char buf [EV_INOTIFY_BUFSIZE]; 3814 char buf [EV_INOTIFY_BUFSIZE];
2080 struct inotify_event *ev = (struct inotify_event *)buf;
2081 int ofs; 3815 int ofs;
2082 int len = read (fs_fd, buf, sizeof (buf)); 3816 int len = read (fs_fd, buf, sizeof (buf));
2083 3817
2084 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3818 for (ofs = 0; ofs < len; )
3819 {
3820 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2085 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3821 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3822 ofs += sizeof (struct inotify_event) + ev->len;
3823 }
2086} 3824}
2087 3825
2088void inline_size 3826inline_size void ecb_cold
3827ev_check_2625 (EV_P)
3828{
3829 /* kernels < 2.6.25 are borked
3830 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3831 */
3832 if (ev_linux_version () < 0x020619)
3833 return;
3834
3835 fs_2625 = 1;
3836}
3837
3838inline_size int
3839infy_newfd (void)
3840{
3841#if defined IN_CLOEXEC && defined IN_NONBLOCK
3842 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3843 if (fd >= 0)
3844 return fd;
3845#endif
3846 return inotify_init ();
3847}
3848
3849inline_size void
2089infy_init (EV_P) 3850infy_init (EV_P)
2090{ 3851{
2091 if (fs_fd != -2) 3852 if (fs_fd != -2)
2092 return; 3853 return;
2093 3854
3855 fs_fd = -1;
3856
3857 ev_check_2625 (EV_A);
3858
2094 fs_fd = inotify_init (); 3859 fs_fd = infy_newfd ();
2095 3860
2096 if (fs_fd >= 0) 3861 if (fs_fd >= 0)
2097 { 3862 {
3863 fd_intern (fs_fd);
2098 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3864 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2099 ev_set_priority (&fs_w, EV_MAXPRI); 3865 ev_set_priority (&fs_w, EV_MAXPRI);
2100 ev_io_start (EV_A_ &fs_w); 3866 ev_io_start (EV_A_ &fs_w);
3867 ev_unref (EV_A);
2101 } 3868 }
2102} 3869}
2103 3870
2104void inline_size 3871inline_size void
2105infy_fork (EV_P) 3872infy_fork (EV_P)
2106{ 3873{
2107 int slot; 3874 int slot;
2108 3875
2109 if (fs_fd < 0) 3876 if (fs_fd < 0)
2110 return; 3877 return;
2111 3878
3879 ev_ref (EV_A);
3880 ev_io_stop (EV_A_ &fs_w);
2112 close (fs_fd); 3881 close (fs_fd);
2113 fs_fd = inotify_init (); 3882 fs_fd = infy_newfd ();
2114 3883
3884 if (fs_fd >= 0)
3885 {
3886 fd_intern (fs_fd);
3887 ev_io_set (&fs_w, fs_fd, EV_READ);
3888 ev_io_start (EV_A_ &fs_w);
3889 ev_unref (EV_A);
3890 }
3891
2115 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3892 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2116 { 3893 {
2117 WL w_ = fs_hash [slot].head; 3894 WL w_ = fs_hash [slot].head;
2118 fs_hash [slot].head = 0; 3895 fs_hash [slot].head = 0;
2119 3896
2120 while (w_) 3897 while (w_)
2125 w->wd = -1; 3902 w->wd = -1;
2126 3903
2127 if (fs_fd >= 0) 3904 if (fs_fd >= 0)
2128 infy_add (EV_A_ w); /* re-add, no matter what */ 3905 infy_add (EV_A_ w); /* re-add, no matter what */
2129 else 3906 else
3907 {
3908 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3909 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2130 ev_timer_start (EV_A_ &w->timer); 3910 ev_timer_again (EV_A_ &w->timer);
3911 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3912 }
2131 } 3913 }
2132
2133 } 3914 }
2134} 3915}
2135 3916
3917#endif
3918
3919#ifdef _WIN32
3920# define EV_LSTAT(p,b) _stati64 (p, b)
3921#else
3922# define EV_LSTAT(p,b) lstat (p, b)
2136#endif 3923#endif
2137 3924
2138void 3925void
2139ev_stat_stat (EV_P_ ev_stat *w) 3926ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2140{ 3927{
2141 if (lstat (w->path, &w->attr) < 0) 3928 if (lstat (w->path, &w->attr) < 0)
2142 w->attr.st_nlink = 0; 3929 w->attr.st_nlink = 0;
2143 else if (!w->attr.st_nlink) 3930 else if (!w->attr.st_nlink)
2144 w->attr.st_nlink = 1; 3931 w->attr.st_nlink = 1;
2147static void noinline 3934static void noinline
2148stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3935stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2149{ 3936{
2150 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3937 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2151 3938
2152 /* we copy this here each the time so that */ 3939 ev_statdata prev = w->attr;
2153 /* prev has the old value when the callback gets invoked */
2154 w->prev = w->attr;
2155 ev_stat_stat (EV_A_ w); 3940 ev_stat_stat (EV_A_ w);
2156 3941
2157 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3942 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2158 if ( 3943 if (
2159 w->prev.st_dev != w->attr.st_dev 3944 prev.st_dev != w->attr.st_dev
2160 || w->prev.st_ino != w->attr.st_ino 3945 || prev.st_ino != w->attr.st_ino
2161 || w->prev.st_mode != w->attr.st_mode 3946 || prev.st_mode != w->attr.st_mode
2162 || w->prev.st_nlink != w->attr.st_nlink 3947 || prev.st_nlink != w->attr.st_nlink
2163 || w->prev.st_uid != w->attr.st_uid 3948 || prev.st_uid != w->attr.st_uid
2164 || w->prev.st_gid != w->attr.st_gid 3949 || prev.st_gid != w->attr.st_gid
2165 || w->prev.st_rdev != w->attr.st_rdev 3950 || prev.st_rdev != w->attr.st_rdev
2166 || w->prev.st_size != w->attr.st_size 3951 || prev.st_size != w->attr.st_size
2167 || w->prev.st_atime != w->attr.st_atime 3952 || prev.st_atime != w->attr.st_atime
2168 || w->prev.st_mtime != w->attr.st_mtime 3953 || prev.st_mtime != w->attr.st_mtime
2169 || w->prev.st_ctime != w->attr.st_ctime 3954 || prev.st_ctime != w->attr.st_ctime
2170 ) { 3955 ) {
3956 /* we only update w->prev on actual differences */
3957 /* in case we test more often than invoke the callback, */
3958 /* to ensure that prev is always different to attr */
3959 w->prev = prev;
3960
2171 #if EV_USE_INOTIFY 3961 #if EV_USE_INOTIFY
3962 if (fs_fd >= 0)
3963 {
2172 infy_del (EV_A_ w); 3964 infy_del (EV_A_ w);
2173 infy_add (EV_A_ w); 3965 infy_add (EV_A_ w);
2174 ev_stat_stat (EV_A_ w); /* avoid race... */ 3966 ev_stat_stat (EV_A_ w); /* avoid race... */
3967 }
2175 #endif 3968 #endif
2176 3969
2177 ev_feed_event (EV_A_ w, EV_STAT); 3970 ev_feed_event (EV_A_ w, EV_STAT);
2178 } 3971 }
2179} 3972}
2180 3973
2181void 3974void
2182ev_stat_start (EV_P_ ev_stat *w) 3975ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2183{ 3976{
2184 if (expect_false (ev_is_active (w))) 3977 if (expect_false (ev_is_active (w)))
2185 return; 3978 return;
2186 3979
2187 /* since we use memcmp, we need to clear any padding data etc. */
2188 memset (&w->prev, 0, sizeof (ev_statdata));
2189 memset (&w->attr, 0, sizeof (ev_statdata));
2190
2191 ev_stat_stat (EV_A_ w); 3980 ev_stat_stat (EV_A_ w);
2192 3981
3982 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2193 if (w->interval < MIN_STAT_INTERVAL) 3983 w->interval = MIN_STAT_INTERVAL;
2194 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2195 3984
2196 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3985 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2197 ev_set_priority (&w->timer, ev_priority (w)); 3986 ev_set_priority (&w->timer, ev_priority (w));
2198 3987
2199#if EV_USE_INOTIFY 3988#if EV_USE_INOTIFY
2200 infy_init (EV_A); 3989 infy_init (EV_A);
2201 3990
2202 if (fs_fd >= 0) 3991 if (fs_fd >= 0)
2203 infy_add (EV_A_ w); 3992 infy_add (EV_A_ w);
2204 else 3993 else
2205#endif 3994#endif
3995 {
2206 ev_timer_start (EV_A_ &w->timer); 3996 ev_timer_again (EV_A_ &w->timer);
3997 ev_unref (EV_A);
3998 }
2207 3999
2208 ev_start (EV_A_ (W)w, 1); 4000 ev_start (EV_A_ (W)w, 1);
4001
4002 EV_FREQUENT_CHECK;
2209} 4003}
2210 4004
2211void 4005void
2212ev_stat_stop (EV_P_ ev_stat *w) 4006ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2213{ 4007{
2214 clear_pending (EV_A_ (W)w); 4008 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4009 if (expect_false (!ev_is_active (w)))
2216 return; 4010 return;
2217 4011
4012 EV_FREQUENT_CHECK;
4013
2218#if EV_USE_INOTIFY 4014#if EV_USE_INOTIFY
2219 infy_del (EV_A_ w); 4015 infy_del (EV_A_ w);
2220#endif 4016#endif
4017
4018 if (ev_is_active (&w->timer))
4019 {
4020 ev_ref (EV_A);
2221 ev_timer_stop (EV_A_ &w->timer); 4021 ev_timer_stop (EV_A_ &w->timer);
4022 }
2222 4023
2223 ev_stop (EV_A_ (W)w); 4024 ev_stop (EV_A_ (W)w);
4025
4026 EV_FREQUENT_CHECK;
2224} 4027}
2225#endif 4028#endif
2226 4029
2227#if EV_IDLE_ENABLE 4030#if EV_IDLE_ENABLE
2228void 4031void
2229ev_idle_start (EV_P_ ev_idle *w) 4032ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2230{ 4033{
2231 if (expect_false (ev_is_active (w))) 4034 if (expect_false (ev_is_active (w)))
2232 return; 4035 return;
2233 4036
2234 pri_adjust (EV_A_ (W)w); 4037 pri_adjust (EV_A_ (W)w);
4038
4039 EV_FREQUENT_CHECK;
2235 4040
2236 { 4041 {
2237 int active = ++idlecnt [ABSPRI (w)]; 4042 int active = ++idlecnt [ABSPRI (w)];
2238 4043
2239 ++idleall; 4044 ++idleall;
2240 ev_start (EV_A_ (W)w, active); 4045 ev_start (EV_A_ (W)w, active);
2241 4046
2242 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4047 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2243 idles [ABSPRI (w)][active - 1] = w; 4048 idles [ABSPRI (w)][active - 1] = w;
2244 } 4049 }
4050
4051 EV_FREQUENT_CHECK;
2245} 4052}
2246 4053
2247void 4054void
2248ev_idle_stop (EV_P_ ev_idle *w) 4055ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2249{ 4056{
2250 clear_pending (EV_A_ (W)w); 4057 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 4058 if (expect_false (!ev_is_active (w)))
2252 return; 4059 return;
2253 4060
4061 EV_FREQUENT_CHECK;
4062
2254 { 4063 {
2255 int active = ((W)w)->active; 4064 int active = ev_active (w);
2256 4065
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4066 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4067 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 4068
2260 ev_stop (EV_A_ (W)w); 4069 ev_stop (EV_A_ (W)w);
2261 --idleall; 4070 --idleall;
2262 } 4071 }
2263}
2264#endif
2265 4072
4073 EV_FREQUENT_CHECK;
4074}
4075#endif
4076
4077#if EV_PREPARE_ENABLE
2266void 4078void
2267ev_prepare_start (EV_P_ ev_prepare *w) 4079ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2268{ 4080{
2269 if (expect_false (ev_is_active (w))) 4081 if (expect_false (ev_is_active (w)))
2270 return; 4082 return;
4083
4084 EV_FREQUENT_CHECK;
2271 4085
2272 ev_start (EV_A_ (W)w, ++preparecnt); 4086 ev_start (EV_A_ (W)w, ++preparecnt);
2273 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4087 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2274 prepares [preparecnt - 1] = w; 4088 prepares [preparecnt - 1] = w;
4089
4090 EV_FREQUENT_CHECK;
2275} 4091}
2276 4092
2277void 4093void
2278ev_prepare_stop (EV_P_ ev_prepare *w) 4094ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2279{ 4095{
2280 clear_pending (EV_A_ (W)w); 4096 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 4097 if (expect_false (!ev_is_active (w)))
2282 return; 4098 return;
2283 4099
4100 EV_FREQUENT_CHECK;
4101
2284 { 4102 {
2285 int active = ((W)w)->active; 4103 int active = ev_active (w);
4104
2286 prepares [active - 1] = prepares [--preparecnt]; 4105 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 4106 ev_active (prepares [active - 1]) = active;
2288 } 4107 }
2289 4108
2290 ev_stop (EV_A_ (W)w); 4109 ev_stop (EV_A_ (W)w);
2291}
2292 4110
4111 EV_FREQUENT_CHECK;
4112}
4113#endif
4114
4115#if EV_CHECK_ENABLE
2293void 4116void
2294ev_check_start (EV_P_ ev_check *w) 4117ev_check_start (EV_P_ ev_check *w) EV_THROW
2295{ 4118{
2296 if (expect_false (ev_is_active (w))) 4119 if (expect_false (ev_is_active (w)))
2297 return; 4120 return;
4121
4122 EV_FREQUENT_CHECK;
2298 4123
2299 ev_start (EV_A_ (W)w, ++checkcnt); 4124 ev_start (EV_A_ (W)w, ++checkcnt);
2300 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2301 checks [checkcnt - 1] = w; 4126 checks [checkcnt - 1] = w;
4127
4128 EV_FREQUENT_CHECK;
2302} 4129}
2303 4130
2304void 4131void
2305ev_check_stop (EV_P_ ev_check *w) 4132ev_check_stop (EV_P_ ev_check *w) EV_THROW
2306{ 4133{
2307 clear_pending (EV_A_ (W)w); 4134 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 4135 if (expect_false (!ev_is_active (w)))
2309 return; 4136 return;
2310 4137
4138 EV_FREQUENT_CHECK;
4139
2311 { 4140 {
2312 int active = ((W)w)->active; 4141 int active = ev_active (w);
4142
2313 checks [active - 1] = checks [--checkcnt]; 4143 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 4144 ev_active (checks [active - 1]) = active;
2315 } 4145 }
2316 4146
2317 ev_stop (EV_A_ (W)w); 4147 ev_stop (EV_A_ (W)w);
4148
4149 EV_FREQUENT_CHECK;
2318} 4150}
4151#endif
2319 4152
2320#if EV_EMBED_ENABLE 4153#if EV_EMBED_ENABLE
2321void noinline 4154void noinline
2322ev_embed_sweep (EV_P_ ev_embed *w) 4155ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2323{ 4156{
2324 ev_loop (w->other, EVLOOP_NONBLOCK); 4157 ev_run (w->other, EVRUN_NOWAIT);
2325} 4158}
2326 4159
2327static void 4160static void
2328embed_io_cb (EV_P_ ev_io *io, int revents) 4161embed_io_cb (EV_P_ ev_io *io, int revents)
2329{ 4162{
2330 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4163 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2331 4164
2332 if (ev_cb (w)) 4165 if (ev_cb (w))
2333 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4166 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2334 else 4167 else
2335 ev_loop (w->other, EVLOOP_NONBLOCK); 4168 ev_run (w->other, EVRUN_NOWAIT);
2336} 4169}
2337 4170
2338static void 4171static void
2339embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4172embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2340{ 4173{
2341 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4174 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2342 4175
2343 { 4176 {
2344 struct ev_loop *loop = w->other; 4177 EV_P = w->other;
2345 4178
2346 while (fdchangecnt) 4179 while (fdchangecnt)
2347 { 4180 {
2348 fd_reify (EV_A); 4181 fd_reify (EV_A);
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4182 ev_run (EV_A_ EVRUN_NOWAIT);
2350 } 4183 }
2351 } 4184 }
4185}
4186
4187static void
4188embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4189{
4190 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4191
4192 ev_embed_stop (EV_A_ w);
4193
4194 {
4195 EV_P = w->other;
4196
4197 ev_loop_fork (EV_A);
4198 ev_run (EV_A_ EVRUN_NOWAIT);
4199 }
4200
4201 ev_embed_start (EV_A_ w);
2352} 4202}
2353 4203
2354#if 0 4204#if 0
2355static void 4205static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4206embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2358 ev_idle_stop (EV_A_ idle); 4208 ev_idle_stop (EV_A_ idle);
2359} 4209}
2360#endif 4210#endif
2361 4211
2362void 4212void
2363ev_embed_start (EV_P_ ev_embed *w) 4213ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2364{ 4214{
2365 if (expect_false (ev_is_active (w))) 4215 if (expect_false (ev_is_active (w)))
2366 return; 4216 return;
2367 4217
2368 { 4218 {
2369 struct ev_loop *loop = w->other; 4219 EV_P = w->other;
2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4220 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4221 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2372 } 4222 }
4223
4224 EV_FREQUENT_CHECK;
2373 4225
2374 ev_set_priority (&w->io, ev_priority (w)); 4226 ev_set_priority (&w->io, ev_priority (w));
2375 ev_io_start (EV_A_ &w->io); 4227 ev_io_start (EV_A_ &w->io);
2376 4228
2377 ev_prepare_init (&w->prepare, embed_prepare_cb); 4229 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI); 4230 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare); 4231 ev_prepare_start (EV_A_ &w->prepare);
2380 4232
4233 ev_fork_init (&w->fork, embed_fork_cb);
4234 ev_fork_start (EV_A_ &w->fork);
4235
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4236 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382 4237
2383 ev_start (EV_A_ (W)w, 1); 4238 ev_start (EV_A_ (W)w, 1);
4239
4240 EV_FREQUENT_CHECK;
2384} 4241}
2385 4242
2386void 4243void
2387ev_embed_stop (EV_P_ ev_embed *w) 4244ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2388{ 4245{
2389 clear_pending (EV_A_ (W)w); 4246 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w))) 4247 if (expect_false (!ev_is_active (w)))
2391 return; 4248 return;
2392 4249
4250 EV_FREQUENT_CHECK;
4251
2393 ev_io_stop (EV_A_ &w->io); 4252 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare); 4253 ev_prepare_stop (EV_A_ &w->prepare);
4254 ev_fork_stop (EV_A_ &w->fork);
2395 4255
2396 ev_stop (EV_A_ (W)w); 4256 ev_stop (EV_A_ (W)w);
4257
4258 EV_FREQUENT_CHECK;
2397} 4259}
2398#endif 4260#endif
2399 4261
2400#if EV_FORK_ENABLE 4262#if EV_FORK_ENABLE
2401void 4263void
2402ev_fork_start (EV_P_ ev_fork *w) 4264ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2403{ 4265{
2404 if (expect_false (ev_is_active (w))) 4266 if (expect_false (ev_is_active (w)))
2405 return; 4267 return;
4268
4269 EV_FREQUENT_CHECK;
2406 4270
2407 ev_start (EV_A_ (W)w, ++forkcnt); 4271 ev_start (EV_A_ (W)w, ++forkcnt);
2408 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4272 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2409 forks [forkcnt - 1] = w; 4273 forks [forkcnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
2410} 4276}
2411 4277
2412void 4278void
2413ev_fork_stop (EV_P_ ev_fork *w) 4279ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2414{ 4280{
2415 clear_pending (EV_A_ (W)w); 4281 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 4282 if (expect_false (!ev_is_active (w)))
2417 return; 4283 return;
2418 4284
4285 EV_FREQUENT_CHECK;
4286
2419 { 4287 {
2420 int active = ((W)w)->active; 4288 int active = ev_active (w);
4289
2421 forks [active - 1] = forks [--forkcnt]; 4290 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 4291 ev_active (forks [active - 1]) = active;
2423 } 4292 }
2424 4293
2425 ev_stop (EV_A_ (W)w); 4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298#endif
4299
4300#if EV_CLEANUP_ENABLE
4301void
4302ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4303{
4304 if (expect_false (ev_is_active (w)))
4305 return;
4306
4307 EV_FREQUENT_CHECK;
4308
4309 ev_start (EV_A_ (W)w, ++cleanupcnt);
4310 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4311 cleanups [cleanupcnt - 1] = w;
4312
4313 /* cleanup watchers should never keep a refcount on the loop */
4314 ev_unref (EV_A);
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4320{
4321 clear_pending (EV_A_ (W)w);
4322 if (expect_false (!ev_is_active (w)))
4323 return;
4324
4325 EV_FREQUENT_CHECK;
4326 ev_ref (EV_A);
4327
4328 {
4329 int active = ev_active (w);
4330
4331 cleanups [active - 1] = cleanups [--cleanupcnt];
4332 ev_active (cleanups [active - 1]) = active;
4333 }
4334
4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
2426} 4338}
2427#endif 4339#endif
2428 4340
2429#if EV_ASYNC_ENABLE 4341#if EV_ASYNC_ENABLE
2430void 4342void
2431ev_async_start (EV_P_ ev_async *w) 4343ev_async_start (EV_P_ ev_async *w) EV_THROW
2432{ 4344{
2433 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2434 return; 4346 return;
2435 4347
4348 w->sent = 0;
4349
2436 evpipe_init (EV_A); 4350 evpipe_init (EV_A);
4351
4352 EV_FREQUENT_CHECK;
2437 4353
2438 ev_start (EV_A_ (W)w, ++asynccnt); 4354 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4355 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w; 4356 asyncs [asynccnt - 1] = w;
4357
4358 EV_FREQUENT_CHECK;
2441} 4359}
2442 4360
2443void 4361void
2444ev_async_stop (EV_P_ ev_async *w) 4362ev_async_stop (EV_P_ ev_async *w) EV_THROW
2445{ 4363{
2446 clear_pending (EV_A_ (W)w); 4364 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 4365 if (expect_false (!ev_is_active (w)))
2448 return; 4366 return;
2449 4367
4368 EV_FREQUENT_CHECK;
4369
2450 { 4370 {
2451 int active = ((W)w)->active; 4371 int active = ev_active (w);
4372
2452 asyncs [active - 1] = asyncs [--asynccnt]; 4373 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 4374 ev_active (asyncs [active - 1]) = active;
2454 } 4375 }
2455 4376
2456 ev_stop (EV_A_ (W)w); 4377 ev_stop (EV_A_ (W)w);
4378
4379 EV_FREQUENT_CHECK;
2457} 4380}
2458 4381
2459void 4382void
2460ev_async_send (EV_P_ ev_async *w) 4383ev_async_send (EV_P_ ev_async *w) EV_THROW
2461{ 4384{
2462 w->sent = 1; 4385 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 4386 evpipe_write (EV_A_ &async_pending);
2464} 4387}
2465#endif 4388#endif
2466 4389
2467/*****************************************************************************/ 4390/*****************************************************************************/
2468 4391
2478once_cb (EV_P_ struct ev_once *once, int revents) 4401once_cb (EV_P_ struct ev_once *once, int revents)
2479{ 4402{
2480 void (*cb)(int revents, void *arg) = once->cb; 4403 void (*cb)(int revents, void *arg) = once->cb;
2481 void *arg = once->arg; 4404 void *arg = once->arg;
2482 4405
2483 ev_io_stop (EV_A_ &once->io); 4406 ev_io_stop (EV_A_ &once->io);
2484 ev_timer_stop (EV_A_ &once->to); 4407 ev_timer_stop (EV_A_ &once->to);
2485 ev_free (once); 4408 ev_free (once);
2486 4409
2487 cb (revents, arg); 4410 cb (revents, arg);
2488} 4411}
2489 4412
2490static void 4413static void
2491once_cb_io (EV_P_ ev_io *w, int revents) 4414once_cb_io (EV_P_ ev_io *w, int revents)
2492{ 4415{
2493 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4416 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4417
4418 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2494} 4419}
2495 4420
2496static void 4421static void
2497once_cb_to (EV_P_ ev_timer *w, int revents) 4422once_cb_to (EV_P_ ev_timer *w, int revents)
2498{ 4423{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4425
4426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2500} 4427}
2501 4428
2502void 4429void
2503ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4430ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2504{ 4431{
2505 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4432 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2506 4433
2507 if (expect_false (!once)) 4434 if (expect_false (!once))
2508 { 4435 {
2509 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4436 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2510 return; 4437 return;
2511 } 4438 }
2512 4439
2513 once->cb = cb; 4440 once->cb = cb;
2514 once->arg = arg; 4441 once->arg = arg;
2526 ev_timer_set (&once->to, timeout, 0.); 4453 ev_timer_set (&once->to, timeout, 0.);
2527 ev_timer_start (EV_A_ &once->to); 4454 ev_timer_start (EV_A_ &once->to);
2528 } 4455 }
2529} 4456}
2530 4457
4458/*****************************************************************************/
4459
4460#if EV_WALK_ENABLE
4461void ecb_cold
4462ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4463{
4464 int i, j;
4465 ev_watcher_list *wl, *wn;
4466
4467 if (types & (EV_IO | EV_EMBED))
4468 for (i = 0; i < anfdmax; ++i)
4469 for (wl = anfds [i].head; wl; )
4470 {
4471 wn = wl->next;
4472
4473#if EV_EMBED_ENABLE
4474 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4475 {
4476 if (types & EV_EMBED)
4477 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4478 }
4479 else
4480#endif
4481#if EV_USE_INOTIFY
4482 if (ev_cb ((ev_io *)wl) == infy_cb)
4483 ;
4484 else
4485#endif
4486 if ((ev_io *)wl != &pipe_w)
4487 if (types & EV_IO)
4488 cb (EV_A_ EV_IO, wl);
4489
4490 wl = wn;
4491 }
4492
4493 if (types & (EV_TIMER | EV_STAT))
4494 for (i = timercnt + HEAP0; i-- > HEAP0; )
4495#if EV_STAT_ENABLE
4496 /*TODO: timer is not always active*/
4497 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4498 {
4499 if (types & EV_STAT)
4500 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4501 }
4502 else
4503#endif
4504 if (types & EV_TIMER)
4505 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4506
4507#if EV_PERIODIC_ENABLE
4508 if (types & EV_PERIODIC)
4509 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4510 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4511#endif
4512
4513#if EV_IDLE_ENABLE
4514 if (types & EV_IDLE)
4515 for (j = NUMPRI; j--; )
4516 for (i = idlecnt [j]; i--; )
4517 cb (EV_A_ EV_IDLE, idles [j][i]);
4518#endif
4519
4520#if EV_FORK_ENABLE
4521 if (types & EV_FORK)
4522 for (i = forkcnt; i--; )
4523 if (ev_cb (forks [i]) != embed_fork_cb)
4524 cb (EV_A_ EV_FORK, forks [i]);
4525#endif
4526
4527#if EV_ASYNC_ENABLE
4528 if (types & EV_ASYNC)
4529 for (i = asynccnt; i--; )
4530 cb (EV_A_ EV_ASYNC, asyncs [i]);
4531#endif
4532
4533#if EV_PREPARE_ENABLE
4534 if (types & EV_PREPARE)
4535 for (i = preparecnt; i--; )
4536# if EV_EMBED_ENABLE
4537 if (ev_cb (prepares [i]) != embed_prepare_cb)
4538# endif
4539 cb (EV_A_ EV_PREPARE, prepares [i]);
4540#endif
4541
4542#if EV_CHECK_ENABLE
4543 if (types & EV_CHECK)
4544 for (i = checkcnt; i--; )
4545 cb (EV_A_ EV_CHECK, checks [i]);
4546#endif
4547
4548#if EV_SIGNAL_ENABLE
4549 if (types & EV_SIGNAL)
4550 for (i = 0; i < EV_NSIG - 1; ++i)
4551 for (wl = signals [i].head; wl; )
4552 {
4553 wn = wl->next;
4554 cb (EV_A_ EV_SIGNAL, wl);
4555 wl = wn;
4556 }
4557#endif
4558
4559#if EV_CHILD_ENABLE
4560 if (types & EV_CHILD)
4561 for (i = (EV_PID_HASHSIZE); i--; )
4562 for (wl = childs [i]; wl; )
4563 {
4564 wn = wl->next;
4565 cb (EV_A_ EV_CHILD, wl);
4566 wl = wn;
4567 }
4568#endif
4569/* EV_STAT 0x00001000 /* stat data changed */
4570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4571}
4572#endif
4573
2531#if EV_MULTIPLICITY 4574#if EV_MULTIPLICITY
2532 #include "ev_wrap.h" 4575 #include "ev_wrap.h"
2533#endif 4576#endif
2534 4577
2535#ifdef __cplusplus
2536}
2537#endif
2538

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines