ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 249
217#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
220#endif 253#endif
241 274
242#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 276# include <winsock.h>
244#endif 277#endif
245 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
246/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
247 303
248/* 304/*
249 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
265#else 321#else
266# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
267# define noinline 323# define noinline
268# if __STDC_VERSION__ < 199901L 324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 325# define inline
270# endif 326# endif
271#endif 327#endif
272 328
273#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
288 344
289typedef ev_watcher *W; 345typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
292 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
293#if EV_USE_MONOTONIC 352#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 354/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 356#endif
323 perror (msg); 382 perror (msg);
324 abort (); 383 abort ();
325 } 384 }
326} 385}
327 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
328static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 403
330void 404void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 406{
333 alloc = cb; 407 alloc = cb;
334} 408}
335 409
336inline_speed void * 410inline_speed void *
337ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
338{ 412{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
340 414
341 if (!ptr && size) 415 if (!ptr && size)
342 { 416 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 418 abort ();
367 W w; 441 W w;
368 int events; 442 int events;
369} ANPENDING; 443} ANPENDING;
370 444
371#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
372typedef struct 447typedef struct
373{ 448{
374 WL head; 449 WL head;
375} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
376#endif 469#endif
377 470
378#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
379 472
380 struct ev_loop 473 struct ev_loop
451 ts.tv_sec = (time_t)delay; 544 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 546
454 nanosleep (&ts, 0); 547 nanosleep (&ts, 0);
455#elif defined(_WIN32) 548#elif defined(_WIN32)
456 Sleep (delay * 1e3); 549 Sleep ((unsigned long)(delay * 1e3));
457#else 550#else
458 struct timeval tv; 551 struct timeval tv;
459 552
460 tv.tv_sec = (time_t)delay; 553 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 557#endif
465 } 558 }
466} 559}
467 560
468/*****************************************************************************/ 561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 564
470int inline_size 565int inline_size
471array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
472{ 567{
473 int ncur = cur + 1; 568 int ncur = cur + 1;
474 569
475 do 570 do
476 ncur <<= 1; 571 ncur <<= 1;
477 while (cnt > ncur); 572 while (cnt > ncur);
478 573
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 576 {
482 ncur *= elem; 577 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 580 ncur /= elem;
486 } 581 }
487 582
488 return ncur; 583 return ncur;
702 } 797 }
703} 798}
704 799
705/*****************************************************************************/ 800/*****************************************************************************/
706 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
707void inline_speed 822void inline_speed
708upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
709{ 824{
710 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
711 827
712 while (k) 828 for (;;)
713 { 829 {
714 int p = (k - 1) >> 1; 830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 833
716 if (heap [p]->at <= w->at) 834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
717 break; 850 break;
718 851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
719 heap [k] = heap [p]; 914 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 916 k = p;
722 } 917 }
723 918
724 heap [k] = w; 919 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 921}
755 922
756void inline_size 923void inline_size
757adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
758{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 927 upheap (heap, k);
928 else
760 downheap (heap, N, k); 929 downheap (heap, N, k);
761} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
762 957
763/*****************************************************************************/ 958/*****************************************************************************/
764 959
765typedef struct 960typedef struct
766{ 961{
802static void noinline 997static void noinline
803evpipe_init (EV_P) 998evpipe_init (EV_P)
804{ 999{
805 if (!ev_is_active (&pipeev)) 1000 if (!ev_is_active (&pipeev))
806 { 1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
807 while (pipe (evpipe)) 1012 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1013 syserr ("(libev) error creating signal/async pipe");
809 1014
810 fd_intern (evpipe [0]); 1015 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1016 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
814 ev_io_start (EV_A_ &pipeev); 1020 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1022 }
817} 1023}
818 1024
819void inline_size 1025void inline_size
820evpipe_write (EV_P_ int sig, int async) 1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1027{
822 if (!(gotasync || gotsig)) 1028 if (!*flag)
823 { 1029 {
824 int old_errno = errno; 1030 int old_errno = errno; /* save errno because write might clobber it */
825 1031
826 if (sig) gotsig = 1; 1032 *flag = 1;
827 if (async) gotasync = 1;
828 1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
829 write (evpipe [1], &old_errno, 1); 1042 write (evpipe [1], &old_errno, 1);
1043
830 errno = old_errno; 1044 errno = old_errno;
831 } 1045 }
832} 1046}
833 1047
834static void 1048static void
835pipecb (EV_P_ ev_io *iow, int revents) 1049pipecb (EV_P_ ev_io *iow, int revents)
836{ 1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
837 { 1053 {
838 int dummy; 1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
839 read (evpipe [0], &dummy, 1); 1061 read (evpipe [0], &dummy, 1);
840 } 1062 }
841 1063
842 if (gotsig) 1064 if (gotsig && ev_is_default_loop (EV_A))
843 { 1065 {
844 int signum; 1066 int signum;
845 gotsig = 0; 1067 gotsig = 0;
846 1068
847 for (signum = signalmax; signum--; ) 1069 for (signum = signalmax; signum--; )
866} 1088}
867 1089
868/*****************************************************************************/ 1090/*****************************************************************************/
869 1091
870static void 1092static void
871sighandler (int signum) 1093ev_sighandler (int signum)
872{ 1094{
873#if EV_MULTIPLICITY 1095#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 1096 struct ev_loop *loop = &default_loop_struct;
875#endif 1097#endif
876 1098
877#if _WIN32 1099#if _WIN32
878 signal (signum, sighandler); 1100 signal (signum, ev_sighandler);
879#endif 1101#endif
880 1102
881 signals [signum - 1].gotsig = 1; 1103 signals [signum - 1].gotsig = 1;
882 evpipe_write (EV_A_ 1, 0); 1104 evpipe_write (EV_A_ &gotsig);
883} 1105}
884 1106
885void noinline 1107void noinline
886ev_feed_signal_event (EV_P_ int signum) 1108ev_feed_signal_event (EV_P_ int signum)
887{ 1109{
913#ifndef WIFCONTINUED 1135#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 1136# define WIFCONTINUED(status) 0
915#endif 1137#endif
916 1138
917void inline_speed 1139void inline_speed
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
919{ 1141{
920 ev_child *w; 1142 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 1144
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 1146 {
925 if ((w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 1148 && (!traced || (w->flags & 1)))
927 { 1149 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 1151 w->rpid = pid;
930 w->rstatus = status; 1152 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 1154 }
933 } 1155 }
947 if (!WCONTINUED 1169 if (!WCONTINUED
948 || errno != EINVAL 1170 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 1172 return;
951 1173
952 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 1177
956 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 1181}
960 1182
961#endif 1183#endif
962 1184
963/*****************************************************************************/ 1185/*****************************************************************************/
1106 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure () 1329 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1110 1332
1111 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
1112 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
1113 1335
1114#if EV_USE_PORT 1336#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 1338#endif
1140 if (ev_is_active (&pipeev)) 1362 if (ev_is_active (&pipeev))
1141 { 1363 {
1142 ev_ref (EV_A); /* signal watcher */ 1364 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &pipeev); 1365 ev_io_stop (EV_A_ &pipeev);
1144 1366
1145 close (evpipe [0]); evpipe [0] = 0; 1367#if EV_USE_EVENTFD
1146 close (evpipe [1]); evpipe [1] = 0; 1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1147 } 1377 }
1148 1378
1149#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
1151 close (fs_fd); 1381 close (fs_fd);
1196#endif 1426#endif
1197 1427
1198 backend = 0; 1428 backend = 0;
1199} 1429}
1200 1430
1431#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1202 1434
1203void inline_size 1435void inline_size
1204loop_fork (EV_P) 1436loop_fork (EV_P)
1205{ 1437{
1206#if EV_USE_PORT 1438#if EV_USE_PORT
1217#endif 1449#endif
1218 1450
1219 if (ev_is_active (&pipeev)) 1451 if (ev_is_active (&pipeev))
1220 { 1452 {
1221 /* this "locks" the handlers against writing to the pipe */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1222 gotsig = gotasync = 1; 1457 gotasync = 1;
1458#endif
1223 1459
1224 ev_ref (EV_A); 1460 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1226 close (evpipe [0]); 1470 close (evpipe [0]);
1227 close (evpipe [1]); 1471 close (evpipe [1]);
1472 }
1228 1473
1229 evpipe_init (EV_A); 1474 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 1475 /* now iterate over everything, in case we missed something */
1231 pipecb (EV_A_ &pipeev, EV_READ); 1476 pipecb (EV_A_ &pipeev, EV_READ);
1232 } 1477 }
1260void 1505void
1261ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1262{ 1507{
1263 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1264} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1265 1543
1266#endif 1544#endif
1267 1545
1268#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1269struct ev_loop * 1547struct ev_loop *
1336void inline_speed 1614void inline_speed
1337call_pending (EV_P) 1615call_pending (EV_P)
1338{ 1616{
1339 int pri; 1617 int pri;
1340 1618
1619 EV_FREQUENT_CHECK;
1620
1341 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1342 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1343 { 1623 {
1344 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1345 1625
1349 1629
1350 p->w->pending = 0; 1630 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1352 } 1632 }
1353 } 1633 }
1354}
1355 1634
1356void inline_size 1635 EV_FREQUENT_CHECK;
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1369
1370 ((WT)w)->at += w->repeat;
1371 if (((WT)w)->at < mn_now)
1372 ((WT)w)->at = mn_now;
1373
1374 downheap (timers, timercnt, 0);
1375 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381} 1636}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 {
1389 ev_periodic *w = (ev_periodic *)periodics [0];
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435 1637
1436#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1437void inline_size 1639void inline_size
1438idle_reify (EV_P) 1640idle_reify (EV_P)
1439{ 1641{
1451 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1452 break; 1654 break;
1453 } 1655 }
1454 } 1656 }
1455 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1456} 1760}
1457#endif 1761#endif
1458 1762
1459void inline_speed 1763void inline_speed
1460time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1489 */ 1793 */
1490 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1491 { 1795 {
1492 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1493 1797
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 1799 return; /* all is well */
1496 1800
1497 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 1802 mn_now = get_clock ();
1499 now_floor = mn_now; 1803 now_floor = mn_now;
1515#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1517#endif 1821#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1520 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1521 } 1829 }
1522 1830
1523 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1524 } 1832 }
1525} 1833}
1539static int loop_done; 1847static int loop_done;
1540 1848
1541void 1849void
1542ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1543{ 1851{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1545 ? EVUNLOOP_ONE
1546 : EVUNLOOP_CANCEL;
1547 1853
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1549 1855
1550 do 1856 do
1551 { 1857 {
1597 1903
1598 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1599 1905
1600 if (timercnt) 1906 if (timercnt)
1601 { 1907 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1603 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1604 } 1910 }
1605 1911
1606#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 1913 if (periodiccnt)
1608 { 1914 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1610 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1611 } 1917 }
1612#endif 1918#endif
1613 1919
1614 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1647 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1650 1956
1651 call_pending (EV_A); 1957 call_pending (EV_A);
1652
1653 } 1958 }
1654 while (expect_true (activecnt && !loop_done)); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1655 1964
1656 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1658} 1967}
1659 1968
1748 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1749 return; 2058 return;
1750 2059
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1752 2061
2062 EV_FREQUENT_CHECK;
2063
1753 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1755 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1756 2067
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1758 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1759} 2072}
1760 2073
1761void noinline 2074void noinline
1762ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1763{ 2076{
1764 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1766 return; 2079 return;
1767 2080
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1769 2084
1770 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1772 2087
1773 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1774} 2091}
1775 2092
1776void noinline 2093void noinline
1777ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1778{ 2095{
1779 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1780 return; 2097 return;
1781 2098
1782 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1783 2100
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1788 timers [timercnt - 1] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1790 2111
2112 EV_FREQUENT_CHECK;
2113
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 2115}
1793 2116
1794void noinline 2117void noinline
1795ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1796{ 2119{
1797 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1799 return; 2122 return;
1800 2123
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2124 EV_FREQUENT_CHECK;
1802 2125
1803 { 2126 {
1804 int active = ((W)w)->active; 2127 int active = ev_active (w);
1805 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1806 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1807 { 2134 {
1808 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1810 } 2137 }
1811 } 2138 }
1812 2139
1813 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1814 2143
1815 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1816} 2145}
1817 2146
1818void noinline 2147void noinline
1819ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1820{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1821 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1822 { 2153 {
1823 if (w->repeat) 2154 if (w->repeat)
1824 { 2155 {
1825 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1827 } 2159 }
1828 else 2160 else
1829 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1830 } 2162 }
1831 else if (w->repeat) 2163 else if (w->repeat)
1832 { 2164 {
1833 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1835 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1836} 2170}
1837 2171
1838#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1839void noinline 2173void noinline
1840ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1841{ 2175{
1842 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1843 return; 2177 return;
1844 2178
1845 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 2181 else if (w->interval)
1848 { 2182 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 2186 }
1853 else 2187 else
1854 ((WT)w)->at = w->offset; 2188 ev_at (w) = w->offset;
1855 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1858 periodics [periodiccnt - 1] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1860 2198
2199 EV_FREQUENT_CHECK;
2200
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 2202}
1863 2203
1864void noinline 2204void noinline
1865ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1866{ 2206{
1867 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1869 return; 2209 return;
1870 2210
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2211 EV_FREQUENT_CHECK;
1872 2212
1873 { 2213 {
1874 int active = ((W)w)->active; 2214 int active = ev_active (w);
1875 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1876 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1877 { 2221 {
1878 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1880 } 2224 }
1881 } 2225 }
1882 2226
2227 EV_FREQUENT_CHECK;
2228
1883 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1884} 2230}
1885 2231
1886void noinline 2232void noinline
1887ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1906 return; 2252 return;
1907 2253
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1909 2255
1910 evpipe_init (EV_A); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
1911 2259
1912 { 2260 {
1913#ifndef _WIN32 2261#ifndef _WIN32
1914 sigset_t full, prev; 2262 sigset_t full, prev;
1915 sigfillset (&full); 2263 sigfillset (&full);
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 2276
1929 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1930 { 2278 {
1931#if _WIN32 2279#if _WIN32
1932 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1933#else 2281#else
1934 struct sigaction sa; 2282 struct sigaction sa;
1935 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1939#endif 2287#endif
1940 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
1941} 2291}
1942 2292
1943void noinline 2293void noinline
1944ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1945{ 2295{
1946 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1948 return; 2298 return;
1949 2299
2300 EV_FREQUENT_CHECK;
2301
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1952 2304
1953 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1954 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1955} 2309}
1956 2310
1957void 2311void
1958ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1959{ 2313{
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 2316#endif
1963 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1964 return; 2318 return;
1965 2319
2320 EV_FREQUENT_CHECK;
2321
1966 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1968} 2326}
1969 2327
1970void 2328void
1971ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1972{ 2330{
1973 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1975 return; 2333 return;
1976 2334
2335 EV_FREQUENT_CHECK;
2336
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1979} 2341}
1980 2342
1981#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1982 2344
1983# ifdef _WIN32 2345# ifdef _WIN32
2001 if (w->wd < 0) 2363 if (w->wd < 0)
2002 { 2364 {
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2004 2366
2005 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 2371 {
2008 char path [4096]; 2372 char path [4096];
2009 strcpy (path, w->path); 2373 strcpy (path, w->path);
2010 2374
2209 else 2573 else
2210#endif 2574#endif
2211 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2212 2576
2213 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2214} 2580}
2215 2581
2216void 2582void
2217ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2218{ 2584{
2219 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2221 return; 2587 return;
2222 2588
2589 EV_FREQUENT_CHECK;
2590
2223#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2225#endif 2593#endif
2226 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2227 2595
2228 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2229} 2599}
2230#endif 2600#endif
2231 2601
2232#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2233void 2603void
2235{ 2605{
2236 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2237 return; 2607 return;
2238 2608
2239 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2240 2612
2241 { 2613 {
2242 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2243 2615
2244 ++idleall; 2616 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2246 2618
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2248 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2249 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2250} 2624}
2251 2625
2252void 2626void
2253ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2254{ 2628{
2255 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2257 return; 2631 return;
2258 2632
2633 EV_FREQUENT_CHECK;
2634
2259 { 2635 {
2260 int active = ((W)w)->active; 2636 int active = ev_active (w);
2261 2637
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 2640
2265 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2266 --idleall; 2642 --idleall;
2267 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2268} 2646}
2269#endif 2647#endif
2270 2648
2271void 2649void
2272ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2273{ 2651{
2274 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2275 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2276 2656
2277 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2279 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2280} 2662}
2281 2663
2282void 2664void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2284{ 2666{
2285 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2287 return; 2669 return;
2288 2670
2671 EV_FREQUENT_CHECK;
2672
2289 { 2673 {
2290 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2291 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2293 } 2678 }
2294 2679
2295 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2296} 2683}
2297 2684
2298void 2685void
2299ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2300{ 2687{
2301 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2302 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2303 2692
2304 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2306 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2307} 2698}
2308 2699
2309void 2700void
2310ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2311{ 2702{
2312 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2314 return; 2705 return;
2315 2706
2707 EV_FREQUENT_CHECK;
2708
2316 { 2709 {
2317 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2318 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2320 } 2714 }
2321 2715
2322 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2323} 2719}
2324 2720
2325#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2326void noinline 2722void noinline
2327ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2374 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 2773 }
2378 2774
2775 EV_FREQUENT_CHECK;
2776
2379 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2381 2779
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2385 2783
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 2785
2388 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2389} 2789}
2390 2790
2391void 2791void
2392ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2393{ 2793{
2394 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2396 return; 2796 return;
2397 2797
2798 EV_FREQUENT_CHECK;
2799
2398 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2400 2802
2401 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2402} 2806}
2403#endif 2807#endif
2404 2808
2405#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2406void 2810void
2407ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2408{ 2812{
2409 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2410 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2411 2817
2412 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2414 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2415} 2823}
2416 2824
2417void 2825void
2418ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2419{ 2827{
2420 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2422 return; 2830 return;
2423 2831
2832 EV_FREQUENT_CHECK;
2833
2424 { 2834 {
2425 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2426 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2428 } 2839 }
2429 2840
2430 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2431} 2844}
2432#endif 2845#endif
2433 2846
2434#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
2435void 2848void
2437{ 2850{
2438 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2439 return; 2852 return;
2440 2853
2441 evpipe_init (EV_A); 2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2442 2857
2443 ev_start (EV_A_ (W)w, ++asynccnt); 2858 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2445 asyncs [asynccnt - 1] = w; 2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2446} 2863}
2447 2864
2448void 2865void
2449ev_async_stop (EV_P_ ev_async *w) 2866ev_async_stop (EV_P_ ev_async *w)
2450{ 2867{
2451 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2453 return; 2870 return;
2454 2871
2872 EV_FREQUENT_CHECK;
2873
2455 { 2874 {
2456 int active = ((W)w)->active; 2875 int active = ev_active (w);
2876
2457 asyncs [active - 1] = asyncs [--asynccnt]; 2877 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 2878 ev_active (asyncs [active - 1]) = active;
2459 } 2879 }
2460 2880
2461 ev_stop (EV_A_ (W)w); 2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2462} 2884}
2463 2885
2464void 2886void
2465ev_async_send (EV_P_ ev_async *w) 2887ev_async_send (EV_P_ ev_async *w)
2466{ 2888{
2467 w->sent = 1; 2889 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 2890 evpipe_write (EV_A_ &gotasync);
2469} 2891}
2470#endif 2892#endif
2471 2893
2472/*****************************************************************************/ 2894/*****************************************************************************/
2473 2895

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines