ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.293 by root, Mon Jun 29 18:46:52 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
288 401
289typedef ev_watcher *W; 402typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
292 405
293#if EV_USE_MONOTONIC 406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 417#endif
298 418
299#ifdef _WIN32 419#ifdef _WIN32
300# include "ev_win32.c" 420# include "ev_win32.c"
309{ 429{
310 syserr_cb = cb; 430 syserr_cb = cb;
311} 431}
312 432
313static void noinline 433static void noinline
314syserr (const char *msg) 434ev_syserr (const char *msg)
315{ 435{
316 if (!msg) 436 if (!msg)
317 msg = "(libev) system error"; 437 msg = "(libev) system error";
318 438
319 if (syserr_cb) 439 if (syserr_cb)
323 perror (msg); 443 perror (msg);
324 abort (); 444 abort ();
325 } 445 }
326} 446}
327 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
328static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 464
330void 465void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 467{
333 alloc = cb; 468 alloc = cb;
334} 469}
335 470
336inline_speed void * 471inline_speed void *
337ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
338{ 473{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
340 475
341 if (!ptr && size) 476 if (!ptr && size)
342 { 477 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 479 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
352 487
353/*****************************************************************************/ 488/*****************************************************************************/
354 489
490/* file descriptor info structure */
355typedef struct 491typedef struct
356{ 492{
357 WL head; 493 WL head;
358 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
360#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 502 SOCKET handle;
362#endif 503#endif
363} ANFD; 504} ANFD;
364 505
506/* stores the pending event set for a given watcher */
365typedef struct 507typedef struct
366{ 508{
367 W w; 509 W w;
368 int events; 510 int events; /* the pending event set for the given watcher */
369} ANPENDING; 511} ANPENDING;
370 512
371#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
372typedef struct 515typedef struct
373{ 516{
374 WL head; 517 WL head;
375} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
376#endif 539#endif
377 540
378#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
379 542
380 struct ev_loop 543 struct ev_loop
401 564
402#endif 565#endif
403 566
404/*****************************************************************************/ 567/*****************************************************************************/
405 568
569#ifndef EV_HAVE_EV_TIME
406ev_tstamp 570ev_tstamp
407ev_time (void) 571ev_time (void)
408{ 572{
409#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
410 struct timespec ts; 576 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 579 }
580#endif
581
414 struct timeval tv; 582 struct timeval tv;
415 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 585}
586#endif
419 587
420ev_tstamp inline_size 588inline_size ev_tstamp
421get_clock (void) 589get_clock (void)
422{ 590{
423#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
425 { 593 {
451 ts.tv_sec = (time_t)delay; 619 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 621
454 nanosleep (&ts, 0); 622 nanosleep (&ts, 0);
455#elif defined(_WIN32) 623#elif defined(_WIN32)
456 Sleep (delay * 1e3); 624 Sleep ((unsigned long)(delay * 1e3));
457#else 625#else
458 struct timeval tv; 626 struct timeval tv;
459 627
460 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
463 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
464#endif 635#endif
465 } 636 }
466} 637}
467 638
468/*****************************************************************************/ 639/*****************************************************************************/
469 640
470int inline_size 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
471array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
472{ 647{
473 int ncur = cur + 1; 648 int ncur = cur + 1;
474 649
475 do 650 do
476 ncur <<= 1; 651 ncur <<= 1;
477 while (cnt > ncur); 652 while (cnt > ncur);
478 653
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 656 {
482 ncur *= elem; 657 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 660 ncur /= elem;
486 } 661 }
487 662
488 return ncur; 663 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
493{ 668{
494 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
496} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 675
498#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
500 { \ 678 { \
501 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 692 }
515#endif 693#endif
516 694
517#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 697
520/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
521 705
522void noinline 706void noinline
523ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
524{ 708{
525 W w_ = (W)w; 709 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
536 } 720 }
537} 721}
538 722
539void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 740{
542 int i; 741 int i;
543 742
544 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
546} 745}
547 746
548/*****************************************************************************/ 747/*****************************************************************************/
549 748
550void inline_size 749inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
565{ 751{
566 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
567 ev_io *w; 753 ev_io *w;
568 754
580{ 766{
581 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
583} 769}
584 770
585void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
586fd_reify (EV_P) 774fd_reify (EV_P)
587{ 775{
588 int i; 776 int i;
589 777
590 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
600 788
601#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
602 if (events) 790 if (events)
603 { 791 {
604 unsigned long argp; 792 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 795 #else
608 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
609 #endif 797 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 799 }
612#endif 800#endif
613 801
614 { 802 {
615 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
617 805
618 anfd->reify = 0; 806 anfd->reify = 0;
619 anfd->events = events; 807 anfd->events = events;
620 808
621 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
623 } 811 }
624 } 812 }
625 813
626 fdchangecnt = 0; 814 fdchangecnt = 0;
627} 815}
628 816
629void inline_size 817/* something about the given fd changed */
818inline_size void
630fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
631{ 820{
632 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
634 823
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
640 } 829 }
641} 830}
642 831
643void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
644fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
645{ 835{
646 ev_io *w; 836 ev_io *w;
647 837
648 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 842 }
653} 843}
654 844
655int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
656fd_valid (int fd) 847fd_valid (int fd)
657{ 848{
658#ifdef _WIN32 849#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
660#else 851#else
668{ 859{
669 int fd; 860 int fd;
670 861
671 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 863 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
675} 866}
676 867
677/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 869static void noinline
696 887
697 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 889 if (anfds [fd].events)
699 { 890 {
700 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 894 }
703} 895}
704 896
705/*****************************************************************************/ 897/*****************************************************************************/
706 898
707void inline_speed 899/*
708upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
711 904
712 while (k) 905/*
713 { 906 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911#if EV_USE_4HEAP
715 912
716 if (heap [p]->at <= w->at) 913#define DHEAP 4
914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
917
918/* away from the root */
919inline_speed void
920downheap (ANHE *heap, int N, int k)
921{
922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
924
925 for (;;)
926 {
927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930
931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
933 {
934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
717 break; 947 break;
718 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
719 heap [k] = heap [p]; 1011 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1012 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1013 k = p;
722 } 1014 }
723 1015
724 heap [k] = w; 1016 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (he)) = k;
726} 1018}
727 1019
728void inline_speed 1020/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1021inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
758{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1025 upheap (heap, k);
1026 else
760 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
761} 1040}
762 1041
763/*****************************************************************************/ 1042/*****************************************************************************/
764 1043
1044/* associate signal watchers to a signal signal */
765typedef struct 1045typedef struct
766{ 1046{
767 WL head; 1047 WL head;
768 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
769} ANSIG; 1049} ANSIG;
771static ANSIG *signals; 1051static ANSIG *signals;
772static int signalmax; 1052static int signalmax;
773 1053
774static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
775 1055
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1056/*****************************************************************************/
789 1057
790void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
791fd_intern (int fd) 1061fd_intern (int fd)
792{ 1062{
793#ifdef _WIN32 1063#ifdef _WIN32
794 int arg = 1; 1064 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1066#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1069#endif
800} 1070}
801 1071
802static void noinline 1072static void noinline
803evpipe_init (EV_P) 1073evpipe_init (EV_P)
804{ 1074{
805 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
806 { 1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
807 while (pipe (evpipe)) 1087 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
809 1089
810 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
814 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1097 }
824 int old_errno = errno; 1098}
825 1099
826 if (sig) gotsig = 1; 1100inline_size void
827 if (async) gotasync = 1; 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
828 1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
829 write (evpipe [1], &old_errno, 1); 1117 write (evpipe [1], &old_errno, 1);
1118
830 errno = old_errno; 1119 errno = old_errno;
831 } 1120 }
832} 1121}
833 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
834static void 1125static void
835pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
836{ 1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
837 { 1130 {
838 int dummy; 1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
839 read (evpipe [0], &dummy, 1); 1138 read (evpipe [0], &dummy, 1);
840 } 1139 }
841 1140
842 if (gotsig) 1141 if (gotsig && ev_is_default_loop (EV_A))
843 { 1142 {
844 int signum; 1143 int signum;
845 gotsig = 0; 1144 gotsig = 0;
846 1145
847 for (signum = signalmax; signum--; ) 1146 for (signum = signalmax; signum--; )
866} 1165}
867 1166
868/*****************************************************************************/ 1167/*****************************************************************************/
869 1168
870static void 1169static void
871sighandler (int signum) 1170ev_sighandler (int signum)
872{ 1171{
873#if EV_MULTIPLICITY 1172#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 1173 struct ev_loop *loop = &default_loop_struct;
875#endif 1174#endif
876 1175
877#if _WIN32 1176#if _WIN32
878 signal (signum, sighandler); 1177 signal (signum, ev_sighandler);
879#endif 1178#endif
880 1179
881 signals [signum - 1].gotsig = 1; 1180 signals [signum - 1].gotsig = 1;
882 evpipe_write (EV_A_ 1, 0); 1181 evpipe_write (EV_A_ &gotsig);
883} 1182}
884 1183
885void noinline 1184void noinline
886ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
887{ 1186{
888 WL w; 1187 WL w;
889 1188
890#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
891 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
892#endif 1191#endif
893 1192
894 --signum; 1193 --signum;
895 1194
896 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
912 1211
913#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
915#endif 1214#endif
916 1215
917void inline_speed 1216/* handle a single child status event */
1217inline_speed void
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
919{ 1219{
920 ev_child *w; 1220 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 1222
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 1224 {
925 if ((w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 1226 && (!traced || (w->flags & 1)))
927 { 1227 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 1229 w->rpid = pid;
930 w->rstatus = status; 1230 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 1232 }
933 } 1233 }
935 1235
936#ifndef WCONTINUED 1236#ifndef WCONTINUED
937# define WCONTINUED 0 1237# define WCONTINUED 0
938#endif 1238#endif
939 1239
1240/* called on sigchld etc., calls waitpid */
940static void 1241static void
941childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
942{ 1243{
943 int pid, status; 1244 int pid, status;
944 1245
947 if (!WCONTINUED 1248 if (!WCONTINUED
948 || errno != EINVAL 1249 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 1251 return;
951 1252
952 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 1256
956 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 1260}
960 1261
961#endif 1262#endif
962 1263
963/*****************************************************************************/ 1264/*****************************************************************************/
1025 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1026 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1027 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1028#endif 1329#endif
1029#ifdef __APPLE__ 1330#ifdef __APPLE__
1030 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1031 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1032#endif 1334#endif
1033 1335
1034 return flags; 1336 return flags;
1035} 1337}
1036 1338
1068ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1069{ 1371{
1070 timeout_blocktime = interval; 1372 timeout_blocktime = interval;
1071} 1373}
1072 1374
1375/* initialise a loop structure, must be zero-initialised */
1073static void noinline 1376static void noinline
1074loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
1075{ 1378{
1076 if (!backend) 1379 if (!backend)
1077 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
1078#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
1079 { 1393 {
1080 struct timespec ts; 1394 struct timespec ts;
1395
1081 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1082 have_monotonic = 1; 1397 have_monotonic = 1;
1083 } 1398 }
1084#endif 1399#endif
1085 1400
1086 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
1087 mn_now = get_clock (); 1402 mn_now = get_clock ();
1088 now_floor = mn_now; 1403 now_floor = mn_now;
1106 if (!(flags & EVFLAG_NOENV) 1421 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure () 1422 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS")) 1423 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS")); 1424 flags = atoi (getenv ("LIBEV_FLAGS"));
1110 1425
1111 if (!(flags & 0x0000ffffUL)) 1426 if (!(flags & 0x0000ffffU))
1112 flags |= ev_recommended_backends (); 1427 flags |= ev_recommended_backends ();
1113 1428
1114#if EV_USE_PORT 1429#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 1431#endif
1125#endif 1440#endif
1126#if EV_USE_SELECT 1441#if EV_USE_SELECT
1127 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1128#endif 1443#endif
1129 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
1130 ev_init (&pipeev, pipecb); 1447 ev_init (&pipe_w, pipecb);
1131 ev_set_priority (&pipeev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
1132 } 1449 }
1133} 1450}
1134 1451
1452/* free up a loop structure */
1135static void noinline 1453static void noinline
1136loop_destroy (EV_P) 1454loop_destroy (EV_P)
1137{ 1455{
1138 int i; 1456 int i;
1139 1457
1140 if (ev_is_active (&pipeev)) 1458 if (ev_is_active (&pipe_w))
1141 { 1459 {
1142 ev_ref (EV_A); /* signal watcher */ 1460 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &pipeev); 1461 ev_io_stop (EV_A_ &pipe_w);
1144 1462
1145 close (evpipe [0]); evpipe [0] = 0; 1463#if EV_USE_EVENTFD
1146 close (evpipe [1]); evpipe [1] = 0; 1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1147 } 1473 }
1148 1474
1149#if EV_USE_INOTIFY 1475#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 1476 if (fs_fd >= 0)
1151 close (fs_fd); 1477 close (fs_fd);
1179 } 1505 }
1180 1506
1181 ev_free (anfds); anfdmax = 0; 1507 ev_free (anfds); anfdmax = 0;
1182 1508
1183 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1184 array_free (fdchange, EMPTY); 1511 array_free (fdchange, EMPTY);
1185 array_free (timer, EMPTY); 1512 array_free (timer, EMPTY);
1186#if EV_PERIODIC_ENABLE 1513#if EV_PERIODIC_ENABLE
1187 array_free (periodic, EMPTY); 1514 array_free (periodic, EMPTY);
1188#endif 1515#endif
1196#endif 1523#endif
1197 1524
1198 backend = 0; 1525 backend = 0;
1199} 1526}
1200 1527
1528#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 1529inline_size void infy_fork (EV_P);
1530#endif
1202 1531
1203void inline_size 1532inline_size void
1204loop_fork (EV_P) 1533loop_fork (EV_P)
1205{ 1534{
1206#if EV_USE_PORT 1535#if EV_USE_PORT
1207 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1208#endif 1537#endif
1214#endif 1543#endif
1215#if EV_USE_INOTIFY 1544#if EV_USE_INOTIFY
1216 infy_fork (EV_A); 1545 infy_fork (EV_A);
1217#endif 1546#endif
1218 1547
1219 if (ev_is_active (&pipeev)) 1548 if (ev_is_active (&pipe_w))
1220 { 1549 {
1221 /* this "locks" the handlers against writing to the pipe */ 1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1222 gotsig = gotasync = 1; 1554 gotasync = 1;
1555#endif
1223 1556
1224 ev_ref (EV_A); 1557 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1226 close (evpipe [0]); 1567 close (evpipe [0]);
1227 close (evpipe [1]); 1568 close (evpipe [1]);
1569 }
1228 1570
1229 evpipe_init (EV_A); 1571 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 1572 /* now iterate over everything, in case we missed something */
1231 pipecb (EV_A_ &pipeev, EV_READ); 1573 pipecb (EV_A_ &pipe_w, EV_READ);
1232 } 1574 }
1233 1575
1234 postfork = 0; 1576 postfork = 0;
1235} 1577}
1236 1578
1237#if EV_MULTIPLICITY 1579#if EV_MULTIPLICITY
1580
1238struct ev_loop * 1581struct ev_loop *
1239ev_loop_new (unsigned int flags) 1582ev_loop_new (unsigned int flags)
1240{ 1583{
1241 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1242 1585
1261ev_loop_fork (EV_P) 1604ev_loop_fork (EV_P)
1262{ 1605{
1263 postfork = 1; /* must be in line with ev_default_fork */ 1606 postfork = 1; /* must be in line with ev_default_fork */
1264} 1607}
1265 1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670#if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673#endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
1684
1685#if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688#endif
1689
1690#if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1266#endif 1704# endif
1705#endif
1706}
1707
1708#endif /* multiplicity */
1267 1709
1268#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1269struct ev_loop * 1711struct ev_loop *
1270ev_default_loop_init (unsigned int flags) 1712ev_default_loop_init (unsigned int flags)
1271#else 1713#else
1304{ 1746{
1305#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
1306 struct ev_loop *loop = ev_default_loop_ptr; 1748 struct ev_loop *loop = ev_default_loop_ptr;
1307#endif 1749#endif
1308 1750
1751 ev_default_loop_ptr = 0;
1752
1309#ifndef _WIN32 1753#ifndef _WIN32
1310 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
1311 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
1312#endif 1756#endif
1313 1757
1319{ 1763{
1320#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
1321 struct ev_loop *loop = ev_default_loop_ptr; 1765 struct ev_loop *loop = ev_default_loop_ptr;
1322#endif 1766#endif
1323 1767
1324 if (backend)
1325 postfork = 1; /* must be in line with ev_loop_fork */ 1768 postfork = 1; /* must be in line with ev_loop_fork */
1326} 1769}
1327 1770
1328/*****************************************************************************/ 1771/*****************************************************************************/
1329 1772
1330void 1773void
1331ev_invoke (EV_P_ void *w, int revents) 1774ev_invoke (EV_P_ void *w, int revents)
1332{ 1775{
1333 EV_CB_INVOKE ((W)w, revents); 1776 EV_CB_INVOKE ((W)w, revents);
1334} 1777}
1335 1778
1336void inline_speed 1779inline_speed void
1337call_pending (EV_P) 1780call_pending (EV_P)
1338{ 1781{
1339 int pri; 1782 int pri;
1340 1783
1341 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1342 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1343 { 1786 {
1344 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1345 1788
1346 if (expect_true (p->w))
1347 {
1348 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1349 1791
1350 p->w->pending = 0; 1792 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1352 } 1794 EV_FREQUENT_CHECK;
1353 } 1795 }
1354} 1796}
1355 1797
1356void inline_size
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1369
1370 ((WT)w)->at += w->repeat;
1371 if (((WT)w)->at < mn_now)
1372 ((WT)w)->at = mn_now;
1373
1374 downheap (timers, timercnt, 0);
1375 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 {
1389 ev_periodic *w = (ev_periodic *)periodics [0];
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435
1436#if EV_IDLE_ENABLE 1798#if EV_IDLE_ENABLE
1437void inline_size 1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
1438idle_reify (EV_P) 1802idle_reify (EV_P)
1439{ 1803{
1440 if (expect_false (idleall)) 1804 if (expect_false (idleall))
1441 { 1805 {
1442 int pri; 1806 int pri;
1454 } 1818 }
1455 } 1819 }
1456} 1820}
1457#endif 1821#endif
1458 1822
1459void inline_speed 1823/* make timers pending */
1824inline_size void
1825timers_reify (EV_P)
1826{
1827 EV_FREQUENT_CHECK;
1828
1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1830 {
1831 do
1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1845
1846 ANHE_at_cache (timers [HEAP0]);
1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1854 }
1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1856
1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1858 }
1859}
1860
1861#if EV_PERIODIC_ENABLE
1862/* make periodics pending */
1863inline_size void
1864periodics_reify (EV_P)
1865{
1866 EV_FREQUENT_CHECK;
1867
1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1869 {
1870 int feed_count = 0;
1871
1872 do
1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1912 }
1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914
1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 }
1917}
1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921static void noinline
1922periodics_reschedule (EV_P)
1923{
1924 int i;
1925
1926 /* adjust periodics after time jump */
1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 {
1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930
1931 if (w->reschedule_cb)
1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955}
1956
1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1460time_update (EV_P_ ev_tstamp max_block) 1960time_update (EV_P_ ev_tstamp max_block)
1461{ 1961{
1462 int i;
1463
1464#if EV_USE_MONOTONIC 1962#if EV_USE_MONOTONIC
1465 if (expect_true (have_monotonic)) 1963 if (expect_true (have_monotonic))
1466 { 1964 {
1965 int i;
1467 ev_tstamp odiff = rtmn_diff; 1966 ev_tstamp odiff = rtmn_diff;
1468 1967
1469 mn_now = get_clock (); 1968 mn_now = get_clock ();
1470 1969
1471 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1489 */ 1988 */
1490 for (i = 4; --i; ) 1989 for (i = 4; --i; )
1491 { 1990 {
1492 rtmn_diff = ev_rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
1493 1992
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 1994 return; /* all is well */
1496 1995
1497 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 1997 mn_now = get_clock ();
1499 now_floor = mn_now; 1998 now_floor = mn_now;
1500 } 1999 }
1501 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502# if EV_PERIODIC_ENABLE 2003# if EV_PERIODIC_ENABLE
1503 periodics_reschedule (EV_A); 2004 periodics_reschedule (EV_A);
1504# endif 2005# endif
1505 /* no timer adjustment, as the monotonic clock doesn't jump */
1506 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507 } 2006 }
1508 else 2007 else
1509#endif 2008#endif
1510 { 2009 {
1511 ev_rt_now = ev_time (); 2010 ev_rt_now = ev_time ();
1512 2011
1513 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1514 { 2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1515#if EV_PERIODIC_ENABLE 2016#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1517#endif 2018#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i)
1520 ((WT)timers [i])->at += ev_rt_now - mn_now;
1521 } 2019 }
1522 2020
1523 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1524 } 2022 }
1525} 2023}
1526 2024
1527void
1528ev_ref (EV_P)
1529{
1530 ++activecnt;
1531}
1532
1533void
1534ev_unref (EV_P)
1535{
1536 --activecnt;
1537}
1538
1539static int loop_done; 2025static int loop_done;
1540 2026
1541void 2027void
1542ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1543{ 2029{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2030 loop_done = EVUNLOOP_CANCEL;
1545 ? EVUNLOOP_ONE
1546 : EVUNLOOP_CANCEL;
1547 2031
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1549 2033
1550 do 2034 do
1551 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
1552#ifndef _WIN32 2040#ifndef _WIN32
1553 if (expect_false (curpid)) /* penalise the forking check even more */ 2041 if (expect_false (curpid)) /* penalise the forking check even more */
1554 if (expect_false (getpid () != curpid)) 2042 if (expect_false (getpid () != curpid))
1555 { 2043 {
1556 curpid = getpid (); 2044 curpid = getpid ();
1573 { 2061 {
1574 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1575 call_pending (EV_A); 2063 call_pending (EV_A);
1576 } 2064 }
1577 2065
1578 if (expect_false (!activecnt))
1579 break;
1580
1581 /* we might have forked, so reify kernel state if necessary */ 2066 /* we might have forked, so reify kernel state if necessary */
1582 if (expect_false (postfork)) 2067 if (expect_false (postfork))
1583 loop_fork (EV_A); 2068 loop_fork (EV_A);
1584 2069
1585 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1590 ev_tstamp waittime = 0.; 2075 ev_tstamp waittime = 0.;
1591 ev_tstamp sleeptime = 0.; 2076 ev_tstamp sleeptime = 0.;
1592 2077
1593 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1594 { 2079 {
2080 /* remember old timestamp for io_blocktime calculation */
2081 ev_tstamp prev_mn_now = mn_now;
2082
1595 /* update time to cancel out callback processing overhead */ 2083 /* update time to cancel out callback processing overhead */
1596 time_update (EV_A_ 1e100); 2084 time_update (EV_A_ 1e100);
1597 2085
1598 waittime = MAX_BLOCKTIME; 2086 waittime = MAX_BLOCKTIME;
1599 2087
1600 if (timercnt) 2088 if (timercnt)
1601 { 2089 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2090 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1603 if (waittime > to) waittime = to; 2091 if (waittime > to) waittime = to;
1604 } 2092 }
1605 2093
1606#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 2095 if (periodiccnt)
1608 { 2096 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2097 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1610 if (waittime > to) waittime = to; 2098 if (waittime > to) waittime = to;
1611 } 2099 }
1612#endif 2100#endif
1613 2101
2102 /* don't let timeouts decrease the waittime below timeout_blocktime */
1614 if (expect_false (waittime < timeout_blocktime)) 2103 if (expect_false (waittime < timeout_blocktime))
1615 waittime = timeout_blocktime; 2104 waittime = timeout_blocktime;
1616 2105
1617 sleeptime = waittime - backend_fudge; 2106 /* extra check because io_blocktime is commonly 0 */
1618
1619 if (expect_true (sleeptime > io_blocktime)) 2107 if (expect_false (io_blocktime))
1620 sleeptime = io_blocktime;
1621
1622 if (sleeptime)
1623 { 2108 {
2109 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2110
2111 if (sleeptime > waittime - backend_fudge)
2112 sleeptime = waittime - backend_fudge;
2113
2114 if (expect_true (sleeptime > 0.))
2115 {
1624 ev_sleep (sleeptime); 2116 ev_sleep (sleeptime);
1625 waittime -= sleeptime; 2117 waittime -= sleeptime;
2118 }
1626 } 2119 }
1627 } 2120 }
1628 2121
1629 ++loop_count; 2122 ++loop_count;
1630 backend_poll (EV_A_ waittime); 2123 backend_poll (EV_A_ waittime);
1647 /* queue check watchers, to be executed first */ 2140 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 2141 if (expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1650 2143
1651 call_pending (EV_A); 2144 call_pending (EV_A);
1652
1653 } 2145 }
1654 while (expect_true (activecnt && !loop_done)); 2146 while (expect_true (
2147 activecnt
2148 && !loop_done
2149 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2150 ));
1655 2151
1656 if (loop_done == EVUNLOOP_ONE) 2152 if (loop_done == EVUNLOOP_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 2153 loop_done = EVUNLOOP_CANCEL;
1658} 2154}
1659 2155
1661ev_unloop (EV_P_ int how) 2157ev_unloop (EV_P_ int how)
1662{ 2158{
1663 loop_done = how; 2159 loop_done = how;
1664} 2160}
1665 2161
2162void
2163ev_ref (EV_P)
2164{
2165 ++activecnt;
2166}
2167
2168void
2169ev_unref (EV_P)
2170{
2171 --activecnt;
2172}
2173
2174void
2175ev_now_update (EV_P)
2176{
2177 time_update (EV_A_ 1e100);
2178}
2179
2180void
2181ev_suspend (EV_P)
2182{
2183 ev_now_update (EV_A);
2184}
2185
2186void
2187ev_resume (EV_P)
2188{
2189 ev_tstamp mn_prev = mn_now;
2190
2191 ev_now_update (EV_A);
2192 timers_reschedule (EV_A_ mn_now - mn_prev);
2193#if EV_PERIODIC_ENABLE
2194 /* TODO: really do this? */
2195 periodics_reschedule (EV_A);
2196#endif
2197}
2198
1666/*****************************************************************************/ 2199/*****************************************************************************/
2200/* singly-linked list management, used when the expected list length is short */
1667 2201
1668void inline_size 2202inline_size void
1669wlist_add (WL *head, WL elem) 2203wlist_add (WL *head, WL elem)
1670{ 2204{
1671 elem->next = *head; 2205 elem->next = *head;
1672 *head = elem; 2206 *head = elem;
1673} 2207}
1674 2208
1675void inline_size 2209inline_size void
1676wlist_del (WL *head, WL elem) 2210wlist_del (WL *head, WL elem)
1677{ 2211{
1678 while (*head) 2212 while (*head)
1679 { 2213 {
1680 if (*head == elem) 2214 if (*head == elem)
1685 2219
1686 head = &(*head)->next; 2220 head = &(*head)->next;
1687 } 2221 }
1688} 2222}
1689 2223
1690void inline_speed 2224/* internal, faster, version of ev_clear_pending */
2225inline_speed void
1691clear_pending (EV_P_ W w) 2226clear_pending (EV_P_ W w)
1692{ 2227{
1693 if (w->pending) 2228 if (w->pending)
1694 { 2229 {
1695 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2230 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1696 w->pending = 0; 2231 w->pending = 0;
1697 } 2232 }
1698} 2233}
1699 2234
1700int 2235int
1704 int pending = w_->pending; 2239 int pending = w_->pending;
1705 2240
1706 if (expect_true (pending)) 2241 if (expect_true (pending))
1707 { 2242 {
1708 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2243 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2244 p->w = (W)&pending_w;
1709 w_->pending = 0; 2245 w_->pending = 0;
1710 p->w = 0;
1711 return p->events; 2246 return p->events;
1712 } 2247 }
1713 else 2248 else
1714 return 0; 2249 return 0;
1715} 2250}
1716 2251
1717void inline_size 2252inline_size void
1718pri_adjust (EV_P_ W w) 2253pri_adjust (EV_P_ W w)
1719{ 2254{
1720 int pri = w->priority; 2255 int pri = w->priority;
1721 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2256 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1722 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2257 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1723 w->priority = pri; 2258 w->priority = pri;
1724} 2259}
1725 2260
1726void inline_speed 2261inline_speed void
1727ev_start (EV_P_ W w, int active) 2262ev_start (EV_P_ W w, int active)
1728{ 2263{
1729 pri_adjust (EV_A_ w); 2264 pri_adjust (EV_A_ w);
1730 w->active = active; 2265 w->active = active;
1731 ev_ref (EV_A); 2266 ev_ref (EV_A);
1732} 2267}
1733 2268
1734void inline_size 2269inline_size void
1735ev_stop (EV_P_ W w) 2270ev_stop (EV_P_ W w)
1736{ 2271{
1737 ev_unref (EV_A); 2272 ev_unref (EV_A);
1738 w->active = 0; 2273 w->active = 0;
1739} 2274}
1746 int fd = w->fd; 2281 int fd = w->fd;
1747 2282
1748 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
1749 return; 2284 return;
1750 2285
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 2286 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2287 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2288
2289 EV_FREQUENT_CHECK;
1752 2290
1753 ev_start (EV_A_ (W)w, 1); 2291 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2292 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1755 wlist_add (&anfds[fd].head, (WL)w); 2293 wlist_add (&anfds[fd].head, (WL)w);
1756 2294
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2295 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1758 w->events &= ~EV_IOFDSET; 2296 w->events &= ~EV__IOFDSET;
2297
2298 EV_FREQUENT_CHECK;
1759} 2299}
1760 2300
1761void noinline 2301void noinline
1762ev_io_stop (EV_P_ ev_io *w) 2302ev_io_stop (EV_P_ ev_io *w)
1763{ 2303{
1764 clear_pending (EV_A_ (W)w); 2304 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2305 if (expect_false (!ev_is_active (w)))
1766 return; 2306 return;
1767 2307
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2308 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2309
2310 EV_FREQUENT_CHECK;
1769 2311
1770 wlist_del (&anfds[w->fd].head, (WL)w); 2312 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1772 2314
1773 fd_change (EV_A_ w->fd, 1); 2315 fd_change (EV_A_ w->fd, 1);
2316
2317 EV_FREQUENT_CHECK;
1774} 2318}
1775 2319
1776void noinline 2320void noinline
1777ev_timer_start (EV_P_ ev_timer *w) 2321ev_timer_start (EV_P_ ev_timer *w)
1778{ 2322{
1779 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1780 return; 2324 return;
1781 2325
1782 ((WT)w)->at += mn_now; 2326 ev_at (w) += mn_now;
1783 2327
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2328 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 2329
2330 EV_FREQUENT_CHECK;
2331
2332 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 2333 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2334 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1788 timers [timercnt - 1] = (WT)w; 2335 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 2336 ANHE_at_cache (timers [ev_active (w)]);
2337 upheap (timers, ev_active (w));
1790 2338
2339 EV_FREQUENT_CHECK;
2340
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2341 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 2342}
1793 2343
1794void noinline 2344void noinline
1795ev_timer_stop (EV_P_ ev_timer *w) 2345ev_timer_stop (EV_P_ ev_timer *w)
1796{ 2346{
1797 clear_pending (EV_A_ (W)w); 2347 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 2348 if (expect_false (!ev_is_active (w)))
1799 return; 2349 return;
1800 2350
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2351 EV_FREQUENT_CHECK;
1802 2352
1803 { 2353 {
1804 int active = ((W)w)->active; 2354 int active = ev_active (w);
1805 2355
2356 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2357
2358 --timercnt;
2359
1806 if (expect_true (--active < --timercnt)) 2360 if (expect_true (active < timercnt + HEAP0))
1807 { 2361 {
1808 timers [active] = timers [timercnt]; 2362 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 2363 adjustheap (timers, timercnt, active);
1810 } 2364 }
1811 } 2365 }
1812 2366
1813 ((WT)w)->at -= mn_now; 2367 EV_FREQUENT_CHECK;
2368
2369 ev_at (w) -= mn_now;
1814 2370
1815 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1816} 2372}
1817 2373
1818void noinline 2374void noinline
1819ev_timer_again (EV_P_ ev_timer *w) 2375ev_timer_again (EV_P_ ev_timer *w)
1820{ 2376{
2377 EV_FREQUENT_CHECK;
2378
1821 if (ev_is_active (w)) 2379 if (ev_is_active (w))
1822 { 2380 {
1823 if (w->repeat) 2381 if (w->repeat)
1824 { 2382 {
1825 ((WT)w)->at = mn_now + w->repeat; 2383 ev_at (w) = mn_now + w->repeat;
2384 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 2385 adjustheap (timers, timercnt, ev_active (w));
1827 } 2386 }
1828 else 2387 else
1829 ev_timer_stop (EV_A_ w); 2388 ev_timer_stop (EV_A_ w);
1830 } 2389 }
1831 else if (w->repeat) 2390 else if (w->repeat)
1832 { 2391 {
1833 w->at = w->repeat; 2392 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 2393 ev_timer_start (EV_A_ w);
1835 } 2394 }
2395
2396 EV_FREQUENT_CHECK;
1836} 2397}
1837 2398
1838#if EV_PERIODIC_ENABLE 2399#if EV_PERIODIC_ENABLE
1839void noinline 2400void noinline
1840ev_periodic_start (EV_P_ ev_periodic *w) 2401ev_periodic_start (EV_P_ ev_periodic *w)
1841{ 2402{
1842 if (expect_false (ev_is_active (w))) 2403 if (expect_false (ev_is_active (w)))
1843 return; 2404 return;
1844 2405
1845 if (w->reschedule_cb) 2406 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2407 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 2408 else if (w->interval)
1848 { 2409 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2410 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 2411 /* this formula differs from the one in periodic_reify because we do not always round up */
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2412 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 2413 }
1853 else 2414 else
1854 ((WT)w)->at = w->offset; 2415 ev_at (w) = w->offset;
1855 2416
2417 EV_FREQUENT_CHECK;
2418
2419 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 2420 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2421 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1858 periodics [periodiccnt - 1] = (WT)w; 2422 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 2423 ANHE_at_cache (periodics [ev_active (w)]);
2424 upheap (periodics, ev_active (w));
1860 2425
2426 EV_FREQUENT_CHECK;
2427
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2428 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 2429}
1863 2430
1864void noinline 2431void noinline
1865ev_periodic_stop (EV_P_ ev_periodic *w) 2432ev_periodic_stop (EV_P_ ev_periodic *w)
1866{ 2433{
1867 clear_pending (EV_A_ (W)w); 2434 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2435 if (expect_false (!ev_is_active (w)))
1869 return; 2436 return;
1870 2437
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2438 EV_FREQUENT_CHECK;
1872 2439
1873 { 2440 {
1874 int active = ((W)w)->active; 2441 int active = ev_active (w);
1875 2442
2443 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2444
2445 --periodiccnt;
2446
1876 if (expect_true (--active < --periodiccnt)) 2447 if (expect_true (active < periodiccnt + HEAP0))
1877 { 2448 {
1878 periodics [active] = periodics [periodiccnt]; 2449 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 2450 adjustheap (periodics, periodiccnt, active);
1880 } 2451 }
1881 } 2452 }
1882 2453
2454 EV_FREQUENT_CHECK;
2455
1883 ev_stop (EV_A_ (W)w); 2456 ev_stop (EV_A_ (W)w);
1884} 2457}
1885 2458
1886void noinline 2459void noinline
1887ev_periodic_again (EV_P_ ev_periodic *w) 2460ev_periodic_again (EV_P_ ev_periodic *w)
1898 2471
1899void noinline 2472void noinline
1900ev_signal_start (EV_P_ ev_signal *w) 2473ev_signal_start (EV_P_ ev_signal *w)
1901{ 2474{
1902#if EV_MULTIPLICITY 2475#if EV_MULTIPLICITY
1903 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2476 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1904#endif 2477#endif
1905 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1906 return; 2479 return;
1907 2480
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2481 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1909 2482
1910 evpipe_init (EV_A); 2483 evpipe_init (EV_A);
2484
2485 EV_FREQUENT_CHECK;
1911 2486
1912 { 2487 {
1913#ifndef _WIN32 2488#ifndef _WIN32
1914 sigset_t full, prev; 2489 sigset_t full, prev;
1915 sigfillset (&full); 2490 sigfillset (&full);
1916 sigprocmask (SIG_SETMASK, &full, &prev); 2491 sigprocmask (SIG_SETMASK, &full, &prev);
1917#endif 2492#endif
1918 2493
1919 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2494 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1920 2495
1921#ifndef _WIN32 2496#ifndef _WIN32
1922 sigprocmask (SIG_SETMASK, &prev, 0); 2497 sigprocmask (SIG_SETMASK, &prev, 0);
1923#endif 2498#endif
1924 } 2499 }
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 2502 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 2503
1929 if (!((WL)w)->next) 2504 if (!((WL)w)->next)
1930 { 2505 {
1931#if _WIN32 2506#if _WIN32
1932 signal (w->signum, sighandler); 2507 signal (w->signum, ev_sighandler);
1933#else 2508#else
1934 struct sigaction sa; 2509 struct sigaction sa;
1935 sa.sa_handler = sighandler; 2510 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 2511 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2512 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 2513 sigaction (w->signum, &sa, 0);
1939#endif 2514#endif
1940 } 2515 }
2516
2517 EV_FREQUENT_CHECK;
1941} 2518}
1942 2519
1943void noinline 2520void noinline
1944ev_signal_stop (EV_P_ ev_signal *w) 2521ev_signal_stop (EV_P_ ev_signal *w)
1945{ 2522{
1946 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1948 return; 2525 return;
1949 2526
2527 EV_FREQUENT_CHECK;
2528
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 2529 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 2530 ev_stop (EV_A_ (W)w);
1952 2531
1953 if (!signals [w->signum - 1].head) 2532 if (!signals [w->signum - 1].head)
1954 signal (w->signum, SIG_DFL); 2533 signal (w->signum, SIG_DFL);
2534
2535 EV_FREQUENT_CHECK;
1955} 2536}
1956 2537
1957void 2538void
1958ev_child_start (EV_P_ ev_child *w) 2539ev_child_start (EV_P_ ev_child *w)
1959{ 2540{
1960#if EV_MULTIPLICITY 2541#if EV_MULTIPLICITY
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2542 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 2543#endif
1963 if (expect_false (ev_is_active (w))) 2544 if (expect_false (ev_is_active (w)))
1964 return; 2545 return;
1965 2546
2547 EV_FREQUENT_CHECK;
2548
1966 ev_start (EV_A_ (W)w, 1); 2549 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2550 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2551
2552 EV_FREQUENT_CHECK;
1968} 2553}
1969 2554
1970void 2555void
1971ev_child_stop (EV_P_ ev_child *w) 2556ev_child_stop (EV_P_ ev_child *w)
1972{ 2557{
1973 clear_pending (EV_A_ (W)w); 2558 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 2559 if (expect_false (!ev_is_active (w)))
1975 return; 2560 return;
1976 2561
2562 EV_FREQUENT_CHECK;
2563
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2564 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
2566
2567 EV_FREQUENT_CHECK;
1979} 2568}
1980 2569
1981#if EV_STAT_ENABLE 2570#if EV_STAT_ENABLE
1982 2571
1983# ifdef _WIN32 2572# ifdef _WIN32
1984# undef lstat 2573# undef lstat
1985# define lstat(a,b) _stati64 (a,b) 2574# define lstat(a,b) _stati64 (a,b)
1986# endif 2575# endif
1987 2576
1988#define DEF_STAT_INTERVAL 5.0074891 2577#define DEF_STAT_INTERVAL 5.0074891
2578#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1989#define MIN_STAT_INTERVAL 0.1074891 2579#define MIN_STAT_INTERVAL 0.1074891
1990 2580
1991static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2581static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1992 2582
1993#if EV_USE_INOTIFY 2583#if EV_USE_INOTIFY
1994# define EV_INOTIFY_BUFSIZE 8192 2584# define EV_INOTIFY_BUFSIZE 8192
1998{ 2588{
1999 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2589 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2000 2590
2001 if (w->wd < 0) 2591 if (w->wd < 0)
2002 { 2592 {
2593 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2594 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2004 2595
2005 /* monitor some parent directory for speedup hints */ 2596 /* monitor some parent directory for speedup hints */
2597 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2598 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2599 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 2600 {
2008 char path [4096]; 2601 char path [4096];
2009 strcpy (path, w->path); 2602 strcpy (path, w->path);
2010 2603
2013 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2606 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2014 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2607 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2015 2608
2016 char *pend = strrchr (path, '/'); 2609 char *pend = strrchr (path, '/');
2017 2610
2018 if (!pend) 2611 if (!pend || pend == path)
2019 break; /* whoops, no '/', complain to your admin */ 2612 break;
2020 2613
2021 *pend = 0; 2614 *pend = 0;
2022 w->wd = inotify_add_watch (fs_fd, path, mask); 2615 w->wd = inotify_add_watch (fs_fd, path, mask);
2023 } 2616 }
2024 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2617 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2025 } 2618 }
2026 } 2619 }
2027 else
2028 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2029 2620
2030 if (w->wd >= 0) 2621 if (w->wd >= 0)
2622 {
2031 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2623 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2624
2625 /* now local changes will be tracked by inotify, but remote changes won't */
2626 /* unless the filesystem it known to be local, we therefore still poll */
2627 /* also do poll on <2.6.25, but with normal frequency */
2628 struct statfs sfs;
2629
2630 if (fs_2625 && !statfs (w->path, &sfs))
2631 if (sfs.f_type == 0x1373 /* devfs */
2632 || sfs.f_type == 0xEF53 /* ext2/3 */
2633 || sfs.f_type == 0x3153464a /* jfs */
2634 || sfs.f_type == 0x52654973 /* reiser3 */
2635 || sfs.f_type == 0x01021994 /* tempfs */
2636 || sfs.f_type == 0x58465342 /* xfs */)
2637 return;
2638
2639 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2640 ev_timer_again (EV_A_ &w->timer);
2641 }
2032} 2642}
2033 2643
2034static void noinline 2644static void noinline
2035infy_del (EV_P_ ev_stat *w) 2645infy_del (EV_P_ ev_stat *w)
2036{ 2646{
2050 2660
2051static void noinline 2661static void noinline
2052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2662infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2053{ 2663{
2054 if (slot < 0) 2664 if (slot < 0)
2055 /* overflow, need to check for all hahs slots */ 2665 /* overflow, need to check for all hash slots */
2056 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2666 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2057 infy_wd (EV_A_ slot, wd, ev); 2667 infy_wd (EV_A_ slot, wd, ev);
2058 else 2668 else
2059 { 2669 {
2060 WL w_; 2670 WL w_;
2066 2676
2067 if (w->wd == wd || wd == -1) 2677 if (w->wd == wd || wd == -1)
2068 { 2678 {
2069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2679 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2070 { 2680 {
2681 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2071 w->wd = -1; 2682 w->wd = -1;
2072 infy_add (EV_A_ w); /* re-add, no matter what */ 2683 infy_add (EV_A_ w); /* re-add, no matter what */
2073 } 2684 }
2074 2685
2075 stat_timer_cb (EV_A_ &w->timer, 0); 2686 stat_timer_cb (EV_A_ &w->timer, 0);
2088 2699
2089 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2700 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2090 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2091} 2702}
2092 2703
2093void inline_size 2704inline_size void
2705check_2625 (EV_P)
2706{
2707 /* kernels < 2.6.25 are borked
2708 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2709 */
2710 struct utsname buf;
2711 int major, minor, micro;
2712
2713 if (uname (&buf))
2714 return;
2715
2716 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2717 return;
2718
2719 if (major < 2
2720 || (major == 2 && minor < 6)
2721 || (major == 2 && minor == 6 && micro < 25))
2722 return;
2723
2724 fs_2625 = 1;
2725}
2726
2727inline_size void
2094infy_init (EV_P) 2728infy_init (EV_P)
2095{ 2729{
2096 if (fs_fd != -2) 2730 if (fs_fd != -2)
2097 return; 2731 return;
2732
2733 fs_fd = -1;
2734
2735 check_2625 (EV_A);
2098 2736
2099 fs_fd = inotify_init (); 2737 fs_fd = inotify_init ();
2100 2738
2101 if (fs_fd >= 0) 2739 if (fs_fd >= 0)
2102 { 2740 {
2104 ev_set_priority (&fs_w, EV_MAXPRI); 2742 ev_set_priority (&fs_w, EV_MAXPRI);
2105 ev_io_start (EV_A_ &fs_w); 2743 ev_io_start (EV_A_ &fs_w);
2106 } 2744 }
2107} 2745}
2108 2746
2109void inline_size 2747inline_size void
2110infy_fork (EV_P) 2748infy_fork (EV_P)
2111{ 2749{
2112 int slot; 2750 int slot;
2113 2751
2114 if (fs_fd < 0) 2752 if (fs_fd < 0)
2130 w->wd = -1; 2768 w->wd = -1;
2131 2769
2132 if (fs_fd >= 0) 2770 if (fs_fd >= 0)
2133 infy_add (EV_A_ w); /* re-add, no matter what */ 2771 infy_add (EV_A_ w); /* re-add, no matter what */
2134 else 2772 else
2135 ev_timer_start (EV_A_ &w->timer); 2773 ev_timer_again (EV_A_ &w->timer);
2136 } 2774 }
2137
2138 } 2775 }
2139} 2776}
2140 2777
2778#endif
2779
2780#ifdef _WIN32
2781# define EV_LSTAT(p,b) _stati64 (p, b)
2782#else
2783# define EV_LSTAT(p,b) lstat (p, b)
2141#endif 2784#endif
2142 2785
2143void 2786void
2144ev_stat_stat (EV_P_ ev_stat *w) 2787ev_stat_stat (EV_P_ ev_stat *w)
2145{ 2788{
2172 || w->prev.st_atime != w->attr.st_atime 2815 || w->prev.st_atime != w->attr.st_atime
2173 || w->prev.st_mtime != w->attr.st_mtime 2816 || w->prev.st_mtime != w->attr.st_mtime
2174 || w->prev.st_ctime != w->attr.st_ctime 2817 || w->prev.st_ctime != w->attr.st_ctime
2175 ) { 2818 ) {
2176 #if EV_USE_INOTIFY 2819 #if EV_USE_INOTIFY
2820 if (fs_fd >= 0)
2821 {
2177 infy_del (EV_A_ w); 2822 infy_del (EV_A_ w);
2178 infy_add (EV_A_ w); 2823 infy_add (EV_A_ w);
2179 ev_stat_stat (EV_A_ w); /* avoid race... */ 2824 ev_stat_stat (EV_A_ w); /* avoid race... */
2825 }
2180 #endif 2826 #endif
2181 2827
2182 ev_feed_event (EV_A_ w, EV_STAT); 2828 ev_feed_event (EV_A_ w, EV_STAT);
2183 } 2829 }
2184} 2830}
2187ev_stat_start (EV_P_ ev_stat *w) 2833ev_stat_start (EV_P_ ev_stat *w)
2188{ 2834{
2189 if (expect_false (ev_is_active (w))) 2835 if (expect_false (ev_is_active (w)))
2190 return; 2836 return;
2191 2837
2192 /* since we use memcmp, we need to clear any padding data etc. */
2193 memset (&w->prev, 0, sizeof (ev_statdata));
2194 memset (&w->attr, 0, sizeof (ev_statdata));
2195
2196 ev_stat_stat (EV_A_ w); 2838 ev_stat_stat (EV_A_ w);
2197 2839
2840 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2198 if (w->interval < MIN_STAT_INTERVAL) 2841 w->interval = MIN_STAT_INTERVAL;
2199 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2200 2842
2201 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2843 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2202 ev_set_priority (&w->timer, ev_priority (w)); 2844 ev_set_priority (&w->timer, ev_priority (w));
2203 2845
2204#if EV_USE_INOTIFY 2846#if EV_USE_INOTIFY
2205 infy_init (EV_A); 2847 infy_init (EV_A);
2206 2848
2207 if (fs_fd >= 0) 2849 if (fs_fd >= 0)
2208 infy_add (EV_A_ w); 2850 infy_add (EV_A_ w);
2209 else 2851 else
2210#endif 2852#endif
2211 ev_timer_start (EV_A_ &w->timer); 2853 ev_timer_again (EV_A_ &w->timer);
2212 2854
2213 ev_start (EV_A_ (W)w, 1); 2855 ev_start (EV_A_ (W)w, 1);
2856
2857 EV_FREQUENT_CHECK;
2214} 2858}
2215 2859
2216void 2860void
2217ev_stat_stop (EV_P_ ev_stat *w) 2861ev_stat_stop (EV_P_ ev_stat *w)
2218{ 2862{
2219 clear_pending (EV_A_ (W)w); 2863 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2864 if (expect_false (!ev_is_active (w)))
2221 return; 2865 return;
2222 2866
2867 EV_FREQUENT_CHECK;
2868
2223#if EV_USE_INOTIFY 2869#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 2870 infy_del (EV_A_ w);
2225#endif 2871#endif
2226 ev_timer_stop (EV_A_ &w->timer); 2872 ev_timer_stop (EV_A_ &w->timer);
2227 2873
2228 ev_stop (EV_A_ (W)w); 2874 ev_stop (EV_A_ (W)w);
2875
2876 EV_FREQUENT_CHECK;
2229} 2877}
2230#endif 2878#endif
2231 2879
2232#if EV_IDLE_ENABLE 2880#if EV_IDLE_ENABLE
2233void 2881void
2235{ 2883{
2236 if (expect_false (ev_is_active (w))) 2884 if (expect_false (ev_is_active (w)))
2237 return; 2885 return;
2238 2886
2239 pri_adjust (EV_A_ (W)w); 2887 pri_adjust (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2240 2890
2241 { 2891 {
2242 int active = ++idlecnt [ABSPRI (w)]; 2892 int active = ++idlecnt [ABSPRI (w)];
2243 2893
2244 ++idleall; 2894 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 2895 ev_start (EV_A_ (W)w, active);
2246 2896
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2897 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2248 idles [ABSPRI (w)][active - 1] = w; 2898 idles [ABSPRI (w)][active - 1] = w;
2249 } 2899 }
2900
2901 EV_FREQUENT_CHECK;
2250} 2902}
2251 2903
2252void 2904void
2253ev_idle_stop (EV_P_ ev_idle *w) 2905ev_idle_stop (EV_P_ ev_idle *w)
2254{ 2906{
2255 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2257 return; 2909 return;
2258 2910
2911 EV_FREQUENT_CHECK;
2912
2259 { 2913 {
2260 int active = ((W)w)->active; 2914 int active = ev_active (w);
2261 2915
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2916 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2917 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 2918
2265 ev_stop (EV_A_ (W)w); 2919 ev_stop (EV_A_ (W)w);
2266 --idleall; 2920 --idleall;
2267 } 2921 }
2922
2923 EV_FREQUENT_CHECK;
2268} 2924}
2269#endif 2925#endif
2270 2926
2271void 2927void
2272ev_prepare_start (EV_P_ ev_prepare *w) 2928ev_prepare_start (EV_P_ ev_prepare *w)
2273{ 2929{
2274 if (expect_false (ev_is_active (w))) 2930 if (expect_false (ev_is_active (w)))
2275 return; 2931 return;
2932
2933 EV_FREQUENT_CHECK;
2276 2934
2277 ev_start (EV_A_ (W)w, ++preparecnt); 2935 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2936 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2279 prepares [preparecnt - 1] = w; 2937 prepares [preparecnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2280} 2940}
2281 2941
2282void 2942void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 2943ev_prepare_stop (EV_P_ ev_prepare *w)
2284{ 2944{
2285 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2287 return; 2947 return;
2288 2948
2949 EV_FREQUENT_CHECK;
2950
2289 { 2951 {
2290 int active = ((W)w)->active; 2952 int active = ev_active (w);
2953
2291 prepares [active - 1] = prepares [--preparecnt]; 2954 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 2955 ev_active (prepares [active - 1]) = active;
2293 } 2956 }
2294 2957
2295 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2296} 2961}
2297 2962
2298void 2963void
2299ev_check_start (EV_P_ ev_check *w) 2964ev_check_start (EV_P_ ev_check *w)
2300{ 2965{
2301 if (expect_false (ev_is_active (w))) 2966 if (expect_false (ev_is_active (w)))
2302 return; 2967 return;
2968
2969 EV_FREQUENT_CHECK;
2303 2970
2304 ev_start (EV_A_ (W)w, ++checkcnt); 2971 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2972 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2306 checks [checkcnt - 1] = w; 2973 checks [checkcnt - 1] = w;
2974
2975 EV_FREQUENT_CHECK;
2307} 2976}
2308 2977
2309void 2978void
2310ev_check_stop (EV_P_ ev_check *w) 2979ev_check_stop (EV_P_ ev_check *w)
2311{ 2980{
2312 clear_pending (EV_A_ (W)w); 2981 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 2982 if (expect_false (!ev_is_active (w)))
2314 return; 2983 return;
2315 2984
2985 EV_FREQUENT_CHECK;
2986
2316 { 2987 {
2317 int active = ((W)w)->active; 2988 int active = ev_active (w);
2989
2318 checks [active - 1] = checks [--checkcnt]; 2990 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 2991 ev_active (checks [active - 1]) = active;
2320 } 2992 }
2321 2993
2322 ev_stop (EV_A_ (W)w); 2994 ev_stop (EV_A_ (W)w);
2995
2996 EV_FREQUENT_CHECK;
2323} 2997}
2324 2998
2325#if EV_EMBED_ENABLE 2999#if EV_EMBED_ENABLE
2326void noinline 3000void noinline
2327ev_embed_sweep (EV_P_ ev_embed *w) 3001ev_embed_sweep (EV_P_ ev_embed *w)
2354 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2355 } 3029 }
2356 } 3030 }
2357} 3031}
2358 3032
3033static void
3034embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3035{
3036 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3037
3038 ev_embed_stop (EV_A_ w);
3039
3040 {
3041 struct ev_loop *loop = w->other;
3042
3043 ev_loop_fork (EV_A);
3044 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3045 }
3046
3047 ev_embed_start (EV_A_ w);
3048}
3049
2359#if 0 3050#if 0
2360static void 3051static void
2361embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3052embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2362{ 3053{
2363 ev_idle_stop (EV_A_ idle); 3054 ev_idle_stop (EV_A_ idle);
2370 if (expect_false (ev_is_active (w))) 3061 if (expect_false (ev_is_active (w)))
2371 return; 3062 return;
2372 3063
2373 { 3064 {
2374 struct ev_loop *loop = w->other; 3065 struct ev_loop *loop = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3066 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3067 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 3068 }
3069
3070 EV_FREQUENT_CHECK;
2378 3071
2379 ev_set_priority (&w->io, ev_priority (w)); 3072 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 3073 ev_io_start (EV_A_ &w->io);
2381 3074
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 3075 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 3076 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 3077 ev_prepare_start (EV_A_ &w->prepare);
2385 3078
3079 ev_fork_init (&w->fork, embed_fork_cb);
3080 ev_fork_start (EV_A_ &w->fork);
3081
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3082 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 3083
2388 ev_start (EV_A_ (W)w, 1); 3084 ev_start (EV_A_ (W)w, 1);
3085
3086 EV_FREQUENT_CHECK;
2389} 3087}
2390 3088
2391void 3089void
2392ev_embed_stop (EV_P_ ev_embed *w) 3090ev_embed_stop (EV_P_ ev_embed *w)
2393{ 3091{
2394 clear_pending (EV_A_ (W)w); 3092 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 3093 if (expect_false (!ev_is_active (w)))
2396 return; 3094 return;
2397 3095
3096 EV_FREQUENT_CHECK;
3097
2398 ev_io_stop (EV_A_ &w->io); 3098 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 3099 ev_prepare_stop (EV_A_ &w->prepare);
3100 ev_fork_stop (EV_A_ &w->fork);
2400 3101
2401 ev_stop (EV_A_ (W)w); 3102 EV_FREQUENT_CHECK;
2402} 3103}
2403#endif 3104#endif
2404 3105
2405#if EV_FORK_ENABLE 3106#if EV_FORK_ENABLE
2406void 3107void
2407ev_fork_start (EV_P_ ev_fork *w) 3108ev_fork_start (EV_P_ ev_fork *w)
2408{ 3109{
2409 if (expect_false (ev_is_active (w))) 3110 if (expect_false (ev_is_active (w)))
2410 return; 3111 return;
3112
3113 EV_FREQUENT_CHECK;
2411 3114
2412 ev_start (EV_A_ (W)w, ++forkcnt); 3115 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3116 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2414 forks [forkcnt - 1] = w; 3117 forks [forkcnt - 1] = w;
3118
3119 EV_FREQUENT_CHECK;
2415} 3120}
2416 3121
2417void 3122void
2418ev_fork_stop (EV_P_ ev_fork *w) 3123ev_fork_stop (EV_P_ ev_fork *w)
2419{ 3124{
2420 clear_pending (EV_A_ (W)w); 3125 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 3126 if (expect_false (!ev_is_active (w)))
2422 return; 3127 return;
2423 3128
3129 EV_FREQUENT_CHECK;
3130
2424 { 3131 {
2425 int active = ((W)w)->active; 3132 int active = ev_active (w);
3133
2426 forks [active - 1] = forks [--forkcnt]; 3134 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 3135 ev_active (forks [active - 1]) = active;
2428 } 3136 }
2429 3137
2430 ev_stop (EV_A_ (W)w); 3138 ev_stop (EV_A_ (W)w);
3139
3140 EV_FREQUENT_CHECK;
2431} 3141}
2432#endif 3142#endif
2433 3143
2434#if EV_ASYNC_ENABLE 3144#if EV_ASYNC_ENABLE
2435void 3145void
2437{ 3147{
2438 if (expect_false (ev_is_active (w))) 3148 if (expect_false (ev_is_active (w)))
2439 return; 3149 return;
2440 3150
2441 evpipe_init (EV_A); 3151 evpipe_init (EV_A);
3152
3153 EV_FREQUENT_CHECK;
2442 3154
2443 ev_start (EV_A_ (W)w, ++asynccnt); 3155 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3156 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2445 asyncs [asynccnt - 1] = w; 3157 asyncs [asynccnt - 1] = w;
3158
3159 EV_FREQUENT_CHECK;
2446} 3160}
2447 3161
2448void 3162void
2449ev_async_stop (EV_P_ ev_async *w) 3163ev_async_stop (EV_P_ ev_async *w)
2450{ 3164{
2451 clear_pending (EV_A_ (W)w); 3165 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 3166 if (expect_false (!ev_is_active (w)))
2453 return; 3167 return;
2454 3168
3169 EV_FREQUENT_CHECK;
3170
2455 { 3171 {
2456 int active = ((W)w)->active; 3172 int active = ev_active (w);
3173
2457 asyncs [active - 1] = asyncs [--asynccnt]; 3174 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 3175 ev_active (asyncs [active - 1]) = active;
2459 } 3176 }
2460 3177
2461 ev_stop (EV_A_ (W)w); 3178 ev_stop (EV_A_ (W)w);
3179
3180 EV_FREQUENT_CHECK;
2462} 3181}
2463 3182
2464void 3183void
2465ev_async_send (EV_P_ ev_async *w) 3184ev_async_send (EV_P_ ev_async *w)
2466{ 3185{
2467 w->sent = 1; 3186 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 3187 evpipe_write (EV_A_ &gotasync);
2469} 3188}
2470#endif 3189#endif
2471 3190
2472/*****************************************************************************/ 3191/*****************************************************************************/
2473 3192
2483once_cb (EV_P_ struct ev_once *once, int revents) 3202once_cb (EV_P_ struct ev_once *once, int revents)
2484{ 3203{
2485 void (*cb)(int revents, void *arg) = once->cb; 3204 void (*cb)(int revents, void *arg) = once->cb;
2486 void *arg = once->arg; 3205 void *arg = once->arg;
2487 3206
2488 ev_io_stop (EV_A_ &once->io); 3207 ev_io_stop (EV_A_ &once->io);
2489 ev_timer_stop (EV_A_ &once->to); 3208 ev_timer_stop (EV_A_ &once->to);
2490 ev_free (once); 3209 ev_free (once);
2491 3210
2492 cb (revents, arg); 3211 cb (revents, arg);
2493} 3212}
2494 3213
2495static void 3214static void
2496once_cb_io (EV_P_ ev_io *w, int revents) 3215once_cb_io (EV_P_ ev_io *w, int revents)
2497{ 3216{
2498 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2499} 3220}
2500 3221
2501static void 3222static void
2502once_cb_to (EV_P_ ev_timer *w, int revents) 3223once_cb_to (EV_P_ ev_timer *w, int revents)
2503{ 3224{
2504 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2505} 3228}
2506 3229
2507void 3230void
2508ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3231ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2509{ 3232{
2531 ev_timer_set (&once->to, timeout, 0.); 3254 ev_timer_set (&once->to, timeout, 0.);
2532 ev_timer_start (EV_A_ &once->to); 3255 ev_timer_start (EV_A_ &once->to);
2533 } 3256 }
2534} 3257}
2535 3258
3259/*****************************************************************************/
3260
3261#if EV_WALK_ENABLE
3262void
3263ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3264{
3265 int i, j;
3266 ev_watcher_list *wl, *wn;
3267
3268 if (types & (EV_IO | EV_EMBED))
3269 for (i = 0; i < anfdmax; ++i)
3270 for (wl = anfds [i].head; wl; )
3271 {
3272 wn = wl->next;
3273
3274#if EV_EMBED_ENABLE
3275 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3276 {
3277 if (types & EV_EMBED)
3278 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3279 }
3280 else
3281#endif
3282#if EV_USE_INOTIFY
3283 if (ev_cb ((ev_io *)wl) == infy_cb)
3284 ;
3285 else
3286#endif
3287 if ((ev_io *)wl != &pipe_w)
3288 if (types & EV_IO)
3289 cb (EV_A_ EV_IO, wl);
3290
3291 wl = wn;
3292 }
3293
3294 if (types & (EV_TIMER | EV_STAT))
3295 for (i = timercnt + HEAP0; i-- > HEAP0; )
3296#if EV_STAT_ENABLE
3297 /*TODO: timer is not always active*/
3298 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3299 {
3300 if (types & EV_STAT)
3301 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3302 }
3303 else
3304#endif
3305 if (types & EV_TIMER)
3306 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3307
3308#if EV_PERIODIC_ENABLE
3309 if (types & EV_PERIODIC)
3310 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3311 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3312#endif
3313
3314#if EV_IDLE_ENABLE
3315 if (types & EV_IDLE)
3316 for (j = NUMPRI; i--; )
3317 for (i = idlecnt [j]; i--; )
3318 cb (EV_A_ EV_IDLE, idles [j][i]);
3319#endif
3320
3321#if EV_FORK_ENABLE
3322 if (types & EV_FORK)
3323 for (i = forkcnt; i--; )
3324 if (ev_cb (forks [i]) != embed_fork_cb)
3325 cb (EV_A_ EV_FORK, forks [i]);
3326#endif
3327
3328#if EV_ASYNC_ENABLE
3329 if (types & EV_ASYNC)
3330 for (i = asynccnt; i--; )
3331 cb (EV_A_ EV_ASYNC, asyncs [i]);
3332#endif
3333
3334 if (types & EV_PREPARE)
3335 for (i = preparecnt; i--; )
3336#if EV_EMBED_ENABLE
3337 if (ev_cb (prepares [i]) != embed_prepare_cb)
3338#endif
3339 cb (EV_A_ EV_PREPARE, prepares [i]);
3340
3341 if (types & EV_CHECK)
3342 for (i = checkcnt; i--; )
3343 cb (EV_A_ EV_CHECK, checks [i]);
3344
3345 if (types & EV_SIGNAL)
3346 for (i = 0; i < signalmax; ++i)
3347 for (wl = signals [i].head; wl; )
3348 {
3349 wn = wl->next;
3350 cb (EV_A_ EV_SIGNAL, wl);
3351 wl = wn;
3352 }
3353
3354 if (types & EV_CHILD)
3355 for (i = EV_PID_HASHSIZE; i--; )
3356 for (wl = childs [i]; wl; )
3357 {
3358 wn = wl->next;
3359 cb (EV_A_ EV_CHILD, wl);
3360 wl = wn;
3361 }
3362/* EV_STAT 0x00001000 /* stat data changed */
3363/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3364}
3365#endif
3366
2536#if EV_MULTIPLICITY 3367#if EV_MULTIPLICITY
2537 #include "ev_wrap.h" 3368 #include "ev_wrap.h"
2538#endif 3369#endif
2539 3370
2540#ifdef __cplusplus 3371#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines