ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
127#include <fcntl.h> 158#include <fcntl.h>
145#ifndef _WIN32 176#ifndef _WIN32
146# include <sys/time.h> 177# include <sys/time.h>
147# include <sys/wait.h> 178# include <sys/wait.h>
148# include <unistd.h> 179# include <unistd.h>
149#else 180#else
181# include <io.h>
150# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 183# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
154# endif 186# endif
155#endif 187#endif
156 188
157/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
158 198
159#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
160# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
161#endif 205#endif
162 206
163#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 209#endif
166 210
167#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
168# define EV_USE_NANOSLEEP 0 215# define EV_USE_NANOSLEEP 0
216# endif
169#endif 217#endif
170 218
171#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
173#endif 221#endif
179# define EV_USE_POLL 1 227# define EV_USE_POLL 1
180# endif 228# endif
181#endif 229#endif
182 230
183#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
184# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
185#endif 237#endif
186 238
187#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
189#endif 241#endif
191#ifndef EV_USE_PORT 243#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 244# define EV_USE_PORT 0
193#endif 245#endif
194 246
195#ifndef EV_USE_INOTIFY 247#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249# define EV_USE_INOTIFY 1
250# else
196# define EV_USE_INOTIFY 0 251# define EV_USE_INOTIFY 0
252# endif
197#endif 253#endif
198 254
199#ifndef EV_PID_HASHSIZE 255#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 256# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 257# define EV_PID_HASHSIZE 1
210# else 266# else
211# define EV_INOTIFY_HASHSIZE 16 267# define EV_INOTIFY_HASHSIZE 16
212# endif 268# endif
213#endif 269#endif
214 270
215/**/ 271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 320
217#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
220#endif 324#endif
234# include <sys/select.h> 338# include <sys/select.h>
235# endif 339# endif
236#endif 340#endif
237 341
238#if EV_USE_INOTIFY 342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
239# include <sys/inotify.h> 345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
240#endif 351#endif
241 352
242#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 354# include <winsock.h>
244#endif 355#endif
245 356
357#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
246/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
247 386
248/* 387/*
249 * This is used to avoid floating point rounding problems. 388 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 389 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 390 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 403# define noinline __attribute__ ((noinline))
265#else 404#else
266# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
267# define noinline 406# define noinline
268# if __STDC_VERSION__ < 199901L 407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 408# define inline
270# endif 409# endif
271#endif 410#endif
272 411
273#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 417# define inline_speed static noinline
279#else 418#else
280# define inline_speed static inline 419# define inline_speed static inline
281#endif 420#endif
282 421
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
285 429
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
288 432
289typedef ev_watcher *W; 433typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
292 436
293#if EV_USE_MONOTONIC 437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 448#endif
298 449
299#ifdef _WIN32 450#ifdef _WIN32
300# include "ev_win32.c" 451# include "ev_win32.c"
309{ 460{
310 syserr_cb = cb; 461 syserr_cb = cb;
311} 462}
312 463
313static void noinline 464static void noinline
314syserr (const char *msg) 465ev_syserr (const char *msg)
315{ 466{
316 if (!msg) 467 if (!msg)
317 msg = "(libev) system error"; 468 msg = "(libev) system error";
318 469
319 if (syserr_cb) 470 if (syserr_cb)
323 perror (msg); 474 perror (msg);
324 abort (); 475 abort ();
325 } 476 }
326} 477}
327 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
328static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 495
330void 496void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 498{
333 alloc = cb; 499 alloc = cb;
334} 500}
335 501
336inline_speed void * 502inline_speed void *
337ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
338{ 504{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
340 506
341 if (!ptr && size) 507 if (!ptr && size)
342 { 508 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 510 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
352 518
353/*****************************************************************************/ 519/*****************************************************************************/
354 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
355typedef struct 525typedef struct
356{ 526{
357 WL head; 527 WL head;
358 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
360#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 536 SOCKET handle;
362#endif 537#endif
363} ANFD; 538} ANFD;
364 539
540/* stores the pending event set for a given watcher */
365typedef struct 541typedef struct
366{ 542{
367 W w; 543 W w;
368 int events; 544 int events; /* the pending event set for the given watcher */
369} ANPENDING; 545} ANPENDING;
370 546
371#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
372typedef struct 549typedef struct
373{ 550{
374 WL head; 551 WL head;
375} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
376#endif 573#endif
377 574
378#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
379 576
380 struct ev_loop 577 struct ev_loop
399 596
400 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
401 598
402#endif 599#endif
403 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
404/*****************************************************************************/ 613/*****************************************************************************/
405 614
615#ifndef EV_HAVE_EV_TIME
406ev_tstamp 616ev_tstamp
407ev_time (void) 617ev_time (void)
408{ 618{
409#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
410 struct timespec ts; 622 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 625 }
626#endif
627
414 struct timeval tv; 628 struct timeval tv;
415 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 631}
632#endif
419 633
420ev_tstamp inline_size 634inline_size ev_tstamp
421get_clock (void) 635get_clock (void)
422{ 636{
423#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
425 { 639 {
451 ts.tv_sec = (time_t)delay; 665 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 667
454 nanosleep (&ts, 0); 668 nanosleep (&ts, 0);
455#elif defined(_WIN32) 669#elif defined(_WIN32)
456 Sleep (delay * 1e3); 670 Sleep ((unsigned long)(delay * 1e3));
457#else 671#else
458 struct timeval tv; 672 struct timeval tv;
459 673
460 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
463 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
464#endif 681#endif
465 } 682 }
466} 683}
467 684
468/*****************************************************************************/ 685/*****************************************************************************/
469 686
470int inline_size 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
471array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
472{ 693{
473 int ncur = cur + 1; 694 int ncur = cur + 1;
474 695
475 do 696 do
476 ncur <<= 1; 697 ncur <<= 1;
477 while (cnt > ncur); 698 while (cnt > ncur);
478 699
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 702 {
482 ncur *= elem; 703 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 705 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 706 ncur /= elem;
486 } 707 }
487 708
488 return ncur; 709 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
493{ 714{
494 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
496} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 721
498#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
500 { \ 724 { \
501 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 738 }
515#endif 739#endif
516 740
517#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 743
520/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
521 751
522void noinline 752void noinline
523ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
524{ 754{
525 W w_ = (W)w; 755 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
536 } 766 }
537} 767}
538 768
539void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 786{
542 int i; 787 int i;
543 788
544 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
546} 791}
547 792
548/*****************************************************************************/ 793/*****************************************************************************/
549 794
550void inline_size 795inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
565{ 797{
566 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
567 ev_io *w; 799 ev_io *w;
568 800
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 805 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
575 } 807 }
576} 808}
577 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
578void 821void
579ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 823{
581 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
583} 826}
584 827
585void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
586fd_reify (EV_P) 831fd_reify (EV_P)
587{ 832{
588 int i; 833 int i;
589 834
590 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 844 events |= (unsigned char)w->events;
600 845
601#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
602 if (events) 847 if (events)
603 { 848 {
604 unsigned long argp; 849 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 850 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 852 #else
608 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
609 #endif 854 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 856 }
612#endif 857#endif
613 858
614 { 859 {
615 unsigned char o_events = anfd->events; 860 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
617 862
618 anfd->reify = 0; 863 anfd->reify = 0;
619 anfd->events = events; 864 anfd->events = events;
620 865
621 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
623 } 868 }
624 } 869 }
625 870
626 fdchangecnt = 0; 871 fdchangecnt = 0;
627} 872}
628 873
629void inline_size 874/* something about the given fd changed */
875inline_size void
630fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
631{ 877{
632 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
634 880
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
640 } 886 }
641} 887}
642 888
643void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
644fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
645{ 892{
646 ev_io *w; 893 ev_io *w;
647 894
648 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 899 }
653} 900}
654 901
655int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
656fd_valid (int fd) 904fd_valid (int fd)
657{ 905{
658#ifdef _WIN32 906#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
660#else 908#else
668{ 916{
669 int fd; 917 int fd;
670 918
671 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 920 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
675} 923}
676 924
677/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 926static void noinline
696 944
697 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 946 if (anfds [fd].events)
699 { 947 {
700 anfds [fd].events = 0; 948 anfds [fd].events = 0;
949 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 951 }
703} 952}
704 953
705/*****************************************************************************/ 954/*****************************************************************************/
706 955
707void inline_speed 956/*
708upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
711 961
712 while (k) 962/*
713 { 963 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
965 * which is more cache-efficient.
966 * the difference is about 5% with 50000+ watchers.
967 */
968#if EV_USE_4HEAP
715 969
716 if (heap [p]->at <= w->at) 970#define DHEAP 4
971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
974
975/* away from the root */
976inline_speed void
977downheap (ANHE *heap, int N, int k)
978{
979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
981
982 for (;;)
983 {
984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987
988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
990 {
991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
717 break; 1004 break;
718 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
1044 heap [k] = heap [c];
1045 ev_active (ANHE_w (heap [k])) = k;
1046
1047 k = c;
1048 }
1049
1050 heap [k] = he;
1051 ev_active (ANHE_w (he)) = k;
1052}
1053#endif
1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
719 heap [k] = heap [p]; 1068 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1069 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1070 k = p;
722 } 1071 }
723 1072
724 heap [k] = w; 1073 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1074 ev_active (ANHE_w (he)) = k;
726} 1075}
727 1076
728void inline_speed 1077/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1078inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
758{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1082 upheap (heap, k);
1083 else
760 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
761} 1097}
762 1098
763/*****************************************************************************/ 1099/*****************************************************************************/
764 1100
1101/* associate signal watchers to a signal signal */
765typedef struct 1102typedef struct
766{ 1103{
767 WL head; 1104 WL head;
768 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
769} ANSIG; 1106} ANSIG;
771static ANSIG *signals; 1108static ANSIG *signals;
772static int signalmax; 1109static int signalmax;
773 1110
774static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
775 1112
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1113/*****************************************************************************/
789 1114
790void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
791fd_intern (int fd) 1118fd_intern (int fd)
792{ 1119{
793#ifdef _WIN32 1120#ifdef _WIN32
794 int arg = 1; 1121 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1123#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1126#endif
800} 1127}
801 1128
802static void noinline 1129static void noinline
803evpipe_init (EV_P) 1130evpipe_init (EV_P)
804{ 1131{
805 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
806 { 1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
807 while (pipe (evpipe)) 1148 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
809 1150
810 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
1155
814 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1158 }
824 int old_errno = errno; 1159}
825 1160
826 if (sig) gotsig = 1; 1161inline_size void
827 if (async) gotasync = 1; 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
828 1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
829 write (evpipe [1], &old_errno, 1); 1178 write (evpipe [1], &old_errno, 1);
1179
830 errno = old_errno; 1180 errno = old_errno;
831 } 1181 }
832} 1182}
833 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
834static void 1186static void
835pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
836{ 1188{
1189#if EV_USE_EVENTFD
1190 if (evfd >= 0)
837 { 1191 {
838 int dummy; 1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
1194 }
1195 else
1196#endif
1197 {
1198 char dummy;
839 read (evpipe [0], &dummy, 1); 1199 read (evpipe [0], &dummy, 1);
840 } 1200 }
841 1201
842 if (gotsig) 1202 if (gotsig && ev_is_default_loop (EV_A))
843 { 1203 {
844 int signum; 1204 int signum;
845 gotsig = 0; 1205 gotsig = 0;
846 1206
847 for (signum = signalmax; signum--; ) 1207 for (signum = signalmax; signum--; )
866} 1226}
867 1227
868/*****************************************************************************/ 1228/*****************************************************************************/
869 1229
870static void 1230static void
871sighandler (int signum) 1231ev_sighandler (int signum)
872{ 1232{
873#if EV_MULTIPLICITY 1233#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 1234 struct ev_loop *loop = &default_loop_struct;
875#endif 1235#endif
876 1236
877#if _WIN32 1237#if _WIN32
878 signal (signum, sighandler); 1238 signal (signum, ev_sighandler);
879#endif 1239#endif
880 1240
881 signals [signum - 1].gotsig = 1; 1241 signals [signum - 1].gotsig = 1;
882 evpipe_write (EV_A_ 1, 0); 1242 evpipe_write (EV_A_ &gotsig);
883} 1243}
884 1244
885void noinline 1245void noinline
886ev_feed_signal_event (EV_P_ int signum) 1246ev_feed_signal_event (EV_P_ int signum)
887{ 1247{
888 WL w; 1248 WL w;
889 1249
890#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
891 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
892#endif 1252#endif
893 1253
894 --signum; 1254 --signum;
895 1255
896 if (signum < 0 || signum >= signalmax) 1256 if (signum < 0 || signum >= signalmax)
900 1260
901 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
902 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
903} 1263}
904 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
905/*****************************************************************************/ 1285/*****************************************************************************/
906 1286
907static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
908 1288
909#ifndef _WIN32 1289#ifndef _WIN32
912 1292
913#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
915#endif 1295#endif
916 1296
917void inline_speed 1297/* handle a single child status event */
1298inline_speed void
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
919{ 1300{
920 ev_child *w; 1301 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 1303
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 1305 {
925 if ((w->pid == pid || !w->pid) 1306 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 1307 && (!traced || (w->flags & 1)))
927 { 1308 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 1310 w->rpid = pid;
930 w->rstatus = status; 1311 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 1313 }
933 } 1314 }
935 1316
936#ifndef WCONTINUED 1317#ifndef WCONTINUED
937# define WCONTINUED 0 1318# define WCONTINUED 0
938#endif 1319#endif
939 1320
1321/* called on sigchld etc., calls waitpid */
940static void 1322static void
941childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
942{ 1324{
943 int pid, status; 1325 int pid, status;
944 1326
947 if (!WCONTINUED 1329 if (!WCONTINUED
948 || errno != EINVAL 1330 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 1332 return;
951 1333
952 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 1335 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 1337
956 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 1339 if (EV_PID_HASHSIZE > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 1341}
960 1342
961#endif 1343#endif
962 1344
963/*****************************************************************************/ 1345/*****************************************************************************/
1025 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
1026 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1027 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
1028#endif 1410#endif
1029#ifdef __APPLE__ 1411#ifdef __APPLE__
1030 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
1031 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1032#endif 1415#endif
1033 1416
1034 return flags; 1417 return flags;
1035} 1418}
1036 1419
1050ev_backend (EV_P) 1433ev_backend (EV_P)
1051{ 1434{
1052 return backend; 1435 return backend;
1053} 1436}
1054 1437
1438#if EV_MINIMAL < 2
1055unsigned int 1439unsigned int
1056ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1057{ 1441{
1058 return loop_count; 1442 return loop_count;
1059} 1443}
1060 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1061void 1451void
1062ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1063{ 1453{
1064 io_blocktime = interval; 1454 io_blocktime = interval;
1065} 1455}
1068ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1069{ 1459{
1070 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1071} 1461}
1072 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1073static void noinline 1488static void noinline
1074loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1075{ 1490{
1076 if (!backend) 1491 if (!backend)
1077 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1078#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1079 { 1505 {
1080 struct timespec ts; 1506 struct timespec ts;
1507
1081 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1082 have_monotonic = 1; 1509 have_monotonic = 1;
1083 } 1510 }
1084#endif 1511#endif
1085 1512
1086 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1087 mn_now = get_clock (); 1514 mn_now = get_clock ();
1088 now_floor = mn_now; 1515 now_floor = mn_now;
1089 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1090 1520
1091 io_blocktime = 0.; 1521 io_blocktime = 0.;
1092 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1093 backend = 0; 1523 backend = 0;
1094 backend_fd = -1; 1524 backend_fd = -1;
1095 gotasync = 0; 1525 gotasync = 0;
1096#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1097 fs_fd = -2; 1527 fs_fd = -2;
1098#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1099 1532
1100 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1101#ifndef _WIN32 1534#ifndef _WIN32
1102 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1103 curpid = getpid (); 1536 curpid = getpid ();
1106 if (!(flags & EVFLAG_NOENV) 1539 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure () 1540 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS")) 1541 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
1110 1543
1111 if (!(flags & 0x0000ffffUL)) 1544 if (!(flags & 0x0000ffffU))
1112 flags |= ev_recommended_backends (); 1545 flags |= ev_recommended_backends ();
1113 1546
1114#if EV_USE_PORT 1547#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 1549#endif
1125#endif 1558#endif
1126#if EV_USE_SELECT 1559#if EV_USE_SELECT
1127 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1128#endif 1561#endif
1129 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1130 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1131 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1132 } 1567 }
1133} 1568}
1134 1569
1570/* free up a loop structure */
1135static void noinline 1571static void noinline
1136loop_destroy (EV_P) 1572loop_destroy (EV_P)
1137{ 1573{
1138 int i; 1574 int i;
1139 1575
1140 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1141 { 1577 {
1142 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1143 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1144 1580
1145 close (evpipe [0]); evpipe [0] = 0; 1581#if EV_USE_EVENTFD
1146 close (evpipe [1]); evpipe [1] = 0; 1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1147 } 1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1148 1602
1149#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1151 close (fs_fd); 1605 close (fs_fd);
1152#endif 1606#endif
1179 } 1633 }
1180 1634
1181 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1182 1636
1183 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1184 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1185 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1186#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1187 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1188#endif 1643#endif
1196#endif 1651#endif
1197 1652
1198 backend = 0; 1653 backend = 0;
1199} 1654}
1200 1655
1656#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1658#endif
1202 1659
1203void inline_size 1660inline_size void
1204loop_fork (EV_P) 1661loop_fork (EV_P)
1205{ 1662{
1206#if EV_USE_PORT 1663#if EV_USE_PORT
1207 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1208#endif 1665#endif
1214#endif 1671#endif
1215#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1216 infy_fork (EV_A); 1673 infy_fork (EV_A);
1217#endif 1674#endif
1218 1675
1219 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1220 { 1677 {
1221 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1222 gotsig = gotasync = 1; 1682 gotasync = 1;
1683#endif
1223 1684
1224 ev_ref (EV_A); 1685 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
1226 close (evpipe [0]); 1695 close (evpipe [0]);
1227 close (evpipe [1]); 1696 close (evpipe [1]);
1697 }
1228 1698
1229 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1231 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1232 } 1702 }
1233 1703
1234 postfork = 0; 1704 postfork = 0;
1235} 1705}
1236 1706
1237#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1238struct ev_loop * 1709struct ev_loop *
1239ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1240{ 1711{
1241 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1242 1713
1243 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1244
1245 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1246 1716
1247 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1248 return loop; 1718 return loop;
1249 1719
1260void 1730void
1261ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1262{ 1732{
1263 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1264} 1734}
1735#endif /* multiplicity */
1265 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1266#endif 1836#endif
1267 1837
1268#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1269struct ev_loop * 1839struct ev_loop *
1270ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1304{ 1874{
1305#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1306 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1307#endif 1877#endif
1308 1878
1879 ev_default_loop_ptr = 0;
1880
1309#ifndef _WIN32 1881#ifndef _WIN32
1310 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1311 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1312#endif 1884#endif
1313 1885
1319{ 1891{
1320#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1321 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1322#endif 1894#endif
1323 1895
1324 if (backend)
1325 postfork = 1; /* must be in line with ev_loop_fork */ 1896 postfork = 1; /* must be in line with ev_loop_fork */
1326} 1897}
1327 1898
1328/*****************************************************************************/ 1899/*****************************************************************************/
1329 1900
1330void 1901void
1331ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1332{ 1903{
1333 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1334} 1905}
1335 1906
1336void inline_speed 1907unsigned int
1337call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1338{ 1921{
1339 int pri; 1922 int pri;
1340 1923
1341 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1342 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1343 { 1926 {
1344 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1345 1928
1346 if (expect_true (p->w))
1347 {
1348 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1349 1931
1350 p->w->pending = 0; 1932 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1352 } 1934 EV_FREQUENT_CHECK;
1353 } 1935 }
1354} 1936}
1355 1937
1356void inline_size
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1369
1370 ((WT)w)->at += w->repeat;
1371 if (((WT)w)->at < mn_now)
1372 ((WT)w)->at = mn_now;
1373
1374 downheap (timers, timercnt, 0);
1375 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 {
1389 ev_periodic *w = (ev_periodic *)periodics [0];
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435
1436#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1437void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1438idle_reify (EV_P) 1942idle_reify (EV_P)
1439{ 1943{
1440 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1441 { 1945 {
1442 int pri; 1946 int pri;
1454 } 1958 }
1455 } 1959 }
1456} 1960}
1457#endif 1961#endif
1458 1962
1459void inline_speed 1963/* make timers pending */
1964inline_size void
1965timers_reify (EV_P)
1966{
1967 EV_FREQUENT_CHECK;
1968
1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 {
1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 }
1999}
2000
2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 {
2010 int feed_count = 0;
2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1460time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1461{ 2101{
1462 int i;
1463
1464#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1465 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1466 { 2104 {
2105 int i;
1467 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1468 2107
1469 mn_now = get_clock (); 2108 mn_now = get_clock ();
1470 2109
1471 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1489 */ 2128 */
1490 for (i = 4; --i; ) 2129 for (i = 4; --i; )
1491 { 2130 {
1492 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1493 2132
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 2134 return; /* all is well */
1496 2135
1497 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 2137 mn_now = get_clock ();
1499 now_floor = mn_now; 2138 now_floor = mn_now;
1500 } 2139 }
1501 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1503 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1504# endif 2145# endif
1505 /* no timer adjustment, as the monotonic clock doesn't jump */
1506 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507 } 2146 }
1508 else 2147 else
1509#endif 2148#endif
1510 { 2149 {
1511 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1512 2151
1513 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1514 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1515#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1517#endif 2158#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i)
1520 ((WT)timers [i])->at += ev_rt_now - mn_now;
1521 } 2159 }
1522 2160
1523 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1524 } 2162 }
1525} 2163}
1526 2164
1527void 2165void
1528ev_ref (EV_P)
1529{
1530 ++activecnt;
1531}
1532
1533void
1534ev_unref (EV_P)
1535{
1536 --activecnt;
1537}
1538
1539static int loop_done;
1540
1541void
1542ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1543{ 2167{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2168#if EV_MINIMAL < 2
1545 ? EVUNLOOP_ONE 2169 ++loop_depth;
1546 : EVUNLOOP_CANCEL; 2170#endif
1547 2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1549 2177
1550 do 2178 do
1551 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1552#ifndef _WIN32 2184#ifndef _WIN32
1553 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1554 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1555 { 2187 {
1556 curpid = getpid (); 2188 curpid = getpid ();
1562 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1563 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1564 if (forkcnt) 2196 if (forkcnt)
1565 { 2197 {
1566 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1567 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1568 } 2200 }
1569#endif 2201#endif
1570 2202
1571 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1572 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1573 { 2205 {
1574 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1575 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1576 } 2208 }
1577 2209
1578 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1579 break; 2211 break;
1580 2212
1581 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1582 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1583 loop_fork (EV_A); 2215 loop_fork (EV_A);
1590 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1591 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1592 2224
1593 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1594 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1595 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1596 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
1597 2232
1598 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1599 2234
1600 if (timercnt) 2235 if (timercnt)
1601 { 2236 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1603 if (waittime > to) waittime = to; 2238 if (waittime > to) waittime = to;
1604 } 2239 }
1605 2240
1606#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 2242 if (periodiccnt)
1608 { 2243 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1610 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
1611 } 2246 }
1612#endif 2247#endif
1613 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
1614 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
1615 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
1616 2252
1617 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
1618
1619 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
1620 sleeptime = io_blocktime;
1621
1622 if (sleeptime)
1623 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
1624 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
1625 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
1626 } 2266 }
1627 } 2267 }
1628 2268
2269#if EV_MINIMAL < 2
1629 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1630 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1631 2275
1632 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1633 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
1634 } 2278 }
1635 2279
1646 2290
1647 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1650 2294
1651 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1652
1653 } 2296 }
1654 while (expect_true (activecnt && !loop_done)); 2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1655 2302
1656 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1658} 2309}
1659 2310
1660void 2311void
1661ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1662{ 2313{
1663 loop_done = how; 2314 loop_done = how;
1664} 2315}
1665 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1666/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1667 2356
1668void inline_size 2357inline_size void
1669wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1670{ 2359{
1671 elem->next = *head; 2360 elem->next = *head;
1672 *head = elem; 2361 *head = elem;
1673} 2362}
1674 2363
1675void inline_size 2364inline_size void
1676wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1677{ 2366{
1678 while (*head) 2367 while (*head)
1679 { 2368 {
1680 if (*head == elem) 2369 if (*head == elem)
1685 2374
1686 head = &(*head)->next; 2375 head = &(*head)->next;
1687 } 2376 }
1688} 2377}
1689 2378
1690void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1691clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1692{ 2382{
1693 if (w->pending) 2383 if (w->pending)
1694 { 2384 {
1695 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1696 w->pending = 0; 2386 w->pending = 0;
1697 } 2387 }
1698} 2388}
1699 2389
1700int 2390int
1704 int pending = w_->pending; 2394 int pending = w_->pending;
1705 2395
1706 if (expect_true (pending)) 2396 if (expect_true (pending))
1707 { 2397 {
1708 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
1709 w_->pending = 0; 2400 w_->pending = 0;
1710 p->w = 0;
1711 return p->events; 2401 return p->events;
1712 } 2402 }
1713 else 2403 else
1714 return 0; 2404 return 0;
1715} 2405}
1716 2406
1717void inline_size 2407inline_size void
1718pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1719{ 2409{
1720 int pri = w->priority; 2410 int pri = ev_priority (w);
1721 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1722 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1723 w->priority = pri; 2413 ev_set_priority (w, pri);
1724} 2414}
1725 2415
1726void inline_speed 2416inline_speed void
1727ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1728{ 2418{
1729 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1730 w->active = active; 2420 w->active = active;
1731 ev_ref (EV_A); 2421 ev_ref (EV_A);
1732} 2422}
1733 2423
1734void inline_size 2424inline_size void
1735ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1736{ 2426{
1737 ev_unref (EV_A); 2427 ev_unref (EV_A);
1738 w->active = 0; 2428 w->active = 0;
1739} 2429}
1746 int fd = w->fd; 2436 int fd = w->fd;
1747 2437
1748 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1749 return; 2439 return;
1750 2440
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1752 2445
1753 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1755 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1756 2449
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1758 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
1759} 2454}
1760 2455
1761void noinline 2456void noinline
1762ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1763{ 2458{
1764 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1766 return; 2461 return;
1767 2462
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
1769 2466
1770 wlist_del (&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1772 2469
1773 fd_change (EV_A_ w->fd, 1); 2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
1774} 2473}
1775 2474
1776void noinline 2475void noinline
1777ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1778{ 2477{
1779 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1780 return; 2479 return;
1781 2480
1782 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1783 2482
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1788 timers [timercnt - 1] = (WT)w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1790 2493
2494 EV_FREQUENT_CHECK;
2495
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 2497}
1793 2498
1794void noinline 2499void noinline
1795ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1796{ 2501{
1797 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1799 return; 2504 return;
1800 2505
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2506 EV_FREQUENT_CHECK;
1802 2507
1803 { 2508 {
1804 int active = ((W)w)->active; 2509 int active = ev_active (w);
1805 2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
1806 if (expect_true (--active < --timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1807 { 2516 {
1808 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1810 } 2519 }
1811 } 2520 }
1812 2521
1813 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1814 2525
1815 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1816} 2527}
1817 2528
1818void noinline 2529void noinline
1819ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1820{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1821 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1822 { 2535 {
1823 if (w->repeat) 2536 if (w->repeat)
1824 { 2537 {
1825 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1827 } 2541 }
1828 else 2542 else
1829 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1830 } 2544 }
1831 else if (w->repeat) 2545 else if (w->repeat)
1832 { 2546 {
1833 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1835 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1836} 2558}
1837 2559
1838#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1839void noinline 2561void noinline
1840ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1841{ 2563{
1842 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1843 return; 2565 return;
1844 2566
1845 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 2569 else if (w->interval)
1848 { 2570 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 2574 }
1853 else 2575 else
1854 ((WT)w)->at = w->offset; 2576 ev_at (w) = w->offset;
1855 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1858 periodics [periodiccnt - 1] = (WT)w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1860 2586
2587 EV_FREQUENT_CHECK;
2588
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 2590}
1863 2591
1864void noinline 2592void noinline
1865ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1866{ 2594{
1867 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1869 return; 2597 return;
1870 2598
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1872 2600
1873 { 2601 {
1874 int active = ((W)w)->active; 2602 int active = ev_active (w);
1875 2603
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605
2606 --periodiccnt;
2607
1876 if (expect_true (--active < --periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1877 { 2609 {
1878 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1880 } 2612 }
1881 } 2613 }
1882 2614
2615 EV_FREQUENT_CHECK;
2616
1883 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1884} 2618}
1885 2619
1886void noinline 2620void noinline
1887ev_periodic_again (EV_P_ ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1898 2632
1899void noinline 2633void noinline
1900ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1901{ 2635{
1902#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1903 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1904#endif 2638#endif
1905 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
1906 return; 2640 return;
1907 2641
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1909 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
1910 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
1911 2677
1912 { 2678 {
1913#ifndef _WIN32 2679#ifndef _WIN32
1914 sigset_t full, prev; 2680 sigset_t full, prev;
1915 sigfillset (&full); 2681 sigfillset (&full);
1916 sigprocmask (SIG_SETMASK, &full, &prev); 2682 sigprocmask (SIG_SETMASK, &full, &prev);
1917#endif 2683#endif
1918 2684
1919 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1920 2686
1921#ifndef _WIN32 2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
1922 sigprocmask (SIG_SETMASK, &prev, 0); 2692 sigprocmask (SIG_SETMASK, &prev, 0);
1923#endif 2693#endif
1924 } 2694 }
1925 2695
1926 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 2697 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 2698
1929 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
1930 { 2700 {
1931#if _WIN32 2701#if _WIN32
1932 signal (w->signum, sighandler); 2702 signal (w->signum, ev_sighandler);
1933#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
1934 struct sigaction sa; 2708 struct sigaction sa = { };
1935 sa.sa_handler = sighandler; 2709 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
1939#endif 2714#endif
1940 } 2715 }
2716
2717 EV_FREQUENT_CHECK;
1941} 2718}
1942 2719
1943void noinline 2720void noinline
1944ev_signal_stop (EV_P_ ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
1945{ 2722{
1946 clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1948 return; 2725 return;
1949 2726
2727 EV_FREQUENT_CHECK;
2728
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
1952 2731
1953 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
1954 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
2745
2746 EV_FREQUENT_CHECK;
1955} 2747}
1956 2748
1957void 2749void
1958ev_child_start (EV_P_ ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
1959{ 2751{
1960#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 2754#endif
1963 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
1964 return; 2756 return;
1965 2757
2758 EV_FREQUENT_CHECK;
2759
1966 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2762
2763 EV_FREQUENT_CHECK;
1968} 2764}
1969 2765
1970void 2766void
1971ev_child_stop (EV_P_ ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
1972{ 2768{
1973 clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
1975 return; 2771 return;
1976 2772
2773 EV_FREQUENT_CHECK;
2774
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
1979} 2779}
1980 2780
1981#if EV_STAT_ENABLE 2781#if EV_STAT_ENABLE
1982 2782
1983# ifdef _WIN32 2783# ifdef _WIN32
1984# undef lstat 2784# undef lstat
1985# define lstat(a,b) _stati64 (a,b) 2785# define lstat(a,b) _stati64 (a,b)
1986# endif 2786# endif
1987 2787
1988#define DEF_STAT_INTERVAL 5.0074891 2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1989#define MIN_STAT_INTERVAL 0.1074891 2790#define MIN_STAT_INTERVAL 0.1074891
1990 2791
1991static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1992 2793
1993#if EV_USE_INOTIFY 2794#if EV_USE_INOTIFY
1994# define EV_INOTIFY_BUFSIZE 8192 2795# define EV_INOTIFY_BUFSIZE 8192
1998{ 2799{
1999 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2000 2801
2001 if (w->wd < 0) 2802 if (w->wd < 0)
2002 { 2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2004 2806
2005 /* monitor some parent directory for speedup hints */ 2807 /* monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 2811 {
2008 char path [4096]; 2812 char path [4096];
2009 strcpy (path, w->path); 2813 strcpy (path, w->path);
2010 2814
2013 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2014 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2015 2819
2016 char *pend = strrchr (path, '/'); 2820 char *pend = strrchr (path, '/');
2017 2821
2018 if (!pend) 2822 if (!pend || pend == path)
2019 break; /* whoops, no '/', complain to your admin */ 2823 break;
2020 2824
2021 *pend = 0; 2825 *pend = 0;
2022 w->wd = inotify_add_watch (fs_fd, path, mask); 2826 w->wd = inotify_add_watch (fs_fd, path, mask);
2023 } 2827 }
2024 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2025 } 2829 }
2026 } 2830 }
2027 else
2028 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2029 2831
2030 if (w->wd >= 0) 2832 if (w->wd >= 0)
2833 {
2031 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
2032} 2853}
2033 2854
2034static void noinline 2855static void noinline
2035infy_del (EV_P_ ev_stat *w) 2856infy_del (EV_P_ ev_stat *w)
2036{ 2857{
2050 2871
2051static void noinline 2872static void noinline
2052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2053{ 2874{
2054 if (slot < 0) 2875 if (slot < 0)
2055 /* overflow, need to check for all hahs slots */ 2876 /* overflow, need to check for all hash slots */
2056 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2057 infy_wd (EV_A_ slot, wd, ev); 2878 infy_wd (EV_A_ slot, wd, ev);
2058 else 2879 else
2059 { 2880 {
2060 WL w_; 2881 WL w_;
2066 2887
2067 if (w->wd == wd || wd == -1) 2888 if (w->wd == wd || wd == -1)
2068 { 2889 {
2069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2070 { 2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2071 w->wd = -1; 2893 w->wd = -1;
2072 infy_add (EV_A_ w); /* re-add, no matter what */ 2894 infy_add (EV_A_ w); /* re-add, no matter what */
2073 } 2895 }
2074 2896
2075 stat_timer_cb (EV_A_ &w->timer, 0); 2897 stat_timer_cb (EV_A_ &w->timer, 0);
2088 2910
2089 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2090 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2091} 2913}
2092 2914
2093void inline_size 2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2094infy_init (EV_P) 2939infy_init (EV_P)
2095{ 2940{
2096 if (fs_fd != -2) 2941 if (fs_fd != -2)
2097 return; 2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2098 2947
2099 fs_fd = inotify_init (); 2948 fs_fd = inotify_init ();
2100 2949
2101 if (fs_fd >= 0) 2950 if (fs_fd >= 0)
2102 { 2951 {
2104 ev_set_priority (&fs_w, EV_MAXPRI); 2953 ev_set_priority (&fs_w, EV_MAXPRI);
2105 ev_io_start (EV_A_ &fs_w); 2954 ev_io_start (EV_A_ &fs_w);
2106 } 2955 }
2107} 2956}
2108 2957
2109void inline_size 2958inline_size void
2110infy_fork (EV_P) 2959infy_fork (EV_P)
2111{ 2960{
2112 int slot; 2961 int slot;
2113 2962
2114 if (fs_fd < 0) 2963 if (fs_fd < 0)
2130 w->wd = -1; 2979 w->wd = -1;
2131 2980
2132 if (fs_fd >= 0) 2981 if (fs_fd >= 0)
2133 infy_add (EV_A_ w); /* re-add, no matter what */ 2982 infy_add (EV_A_ w); /* re-add, no matter what */
2134 else 2983 else
2135 ev_timer_start (EV_A_ &w->timer); 2984 ev_timer_again (EV_A_ &w->timer);
2136 } 2985 }
2137
2138 } 2986 }
2139} 2987}
2140 2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2141#endif 2995#endif
2142 2996
2143void 2997void
2144ev_stat_stat (EV_P_ ev_stat *w) 2998ev_stat_stat (EV_P_ ev_stat *w)
2145{ 2999{
2172 || w->prev.st_atime != w->attr.st_atime 3026 || w->prev.st_atime != w->attr.st_atime
2173 || w->prev.st_mtime != w->attr.st_mtime 3027 || w->prev.st_mtime != w->attr.st_mtime
2174 || w->prev.st_ctime != w->attr.st_ctime 3028 || w->prev.st_ctime != w->attr.st_ctime
2175 ) { 3029 ) {
2176 #if EV_USE_INOTIFY 3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
2177 infy_del (EV_A_ w); 3033 infy_del (EV_A_ w);
2178 infy_add (EV_A_ w); 3034 infy_add (EV_A_ w);
2179 ev_stat_stat (EV_A_ w); /* avoid race... */ 3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
2180 #endif 3037 #endif
2181 3038
2182 ev_feed_event (EV_A_ w, EV_STAT); 3039 ev_feed_event (EV_A_ w, EV_STAT);
2183 } 3040 }
2184} 3041}
2187ev_stat_start (EV_P_ ev_stat *w) 3044ev_stat_start (EV_P_ ev_stat *w)
2188{ 3045{
2189 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
2190 return; 3047 return;
2191 3048
2192 /* since we use memcmp, we need to clear any padding data etc. */
2193 memset (&w->prev, 0, sizeof (ev_statdata));
2194 memset (&w->attr, 0, sizeof (ev_statdata));
2195
2196 ev_stat_stat (EV_A_ w); 3049 ev_stat_stat (EV_A_ w);
2197 3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2198 if (w->interval < MIN_STAT_INTERVAL) 3052 w->interval = MIN_STAT_INTERVAL;
2199 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2200 3053
2201 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2202 ev_set_priority (&w->timer, ev_priority (w)); 3055 ev_set_priority (&w->timer, ev_priority (w));
2203 3056
2204#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
2205 infy_init (EV_A); 3058 infy_init (EV_A);
2206 3059
2207 if (fs_fd >= 0) 3060 if (fs_fd >= 0)
2208 infy_add (EV_A_ w); 3061 infy_add (EV_A_ w);
2209 else 3062 else
2210#endif 3063#endif
2211 ev_timer_start (EV_A_ &w->timer); 3064 ev_timer_again (EV_A_ &w->timer);
2212 3065
2213 ev_start (EV_A_ (W)w, 1); 3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
2214} 3069}
2215 3070
2216void 3071void
2217ev_stat_stop (EV_P_ ev_stat *w) 3072ev_stat_stop (EV_P_ ev_stat *w)
2218{ 3073{
2219 clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
2221 return; 3076 return;
2222 3077
3078 EV_FREQUENT_CHECK;
3079
2223#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 3081 infy_del (EV_A_ w);
2225#endif 3082#endif
2226 ev_timer_stop (EV_A_ &w->timer); 3083 ev_timer_stop (EV_A_ &w->timer);
2227 3084
2228 ev_stop (EV_A_ (W)w); 3085 ev_stop (EV_A_ (W)w);
3086
3087 EV_FREQUENT_CHECK;
2229} 3088}
2230#endif 3089#endif
2231 3090
2232#if EV_IDLE_ENABLE 3091#if EV_IDLE_ENABLE
2233void 3092void
2235{ 3094{
2236 if (expect_false (ev_is_active (w))) 3095 if (expect_false (ev_is_active (w)))
2237 return; 3096 return;
2238 3097
2239 pri_adjust (EV_A_ (W)w); 3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
2240 3101
2241 { 3102 {
2242 int active = ++idlecnt [ABSPRI (w)]; 3103 int active = ++idlecnt [ABSPRI (w)];
2243 3104
2244 ++idleall; 3105 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 3106 ev_start (EV_A_ (W)w, active);
2246 3107
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2248 idles [ABSPRI (w)][active - 1] = w; 3109 idles [ABSPRI (w)][active - 1] = w;
2249 } 3110 }
3111
3112 EV_FREQUENT_CHECK;
2250} 3113}
2251 3114
2252void 3115void
2253ev_idle_stop (EV_P_ ev_idle *w) 3116ev_idle_stop (EV_P_ ev_idle *w)
2254{ 3117{
2255 clear_pending (EV_A_ (W)w); 3118 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 3119 if (expect_false (!ev_is_active (w)))
2257 return; 3120 return;
2258 3121
3122 EV_FREQUENT_CHECK;
3123
2259 { 3124 {
2260 int active = ((W)w)->active; 3125 int active = ev_active (w);
2261 3126
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 3129
2265 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
2266 --idleall; 3131 --idleall;
2267 } 3132 }
3133
3134 EV_FREQUENT_CHECK;
2268} 3135}
2269#endif 3136#endif
2270 3137
2271void 3138void
2272ev_prepare_start (EV_P_ ev_prepare *w) 3139ev_prepare_start (EV_P_ ev_prepare *w)
2273{ 3140{
2274 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
2275 return; 3142 return;
3143
3144 EV_FREQUENT_CHECK;
2276 3145
2277 ev_start (EV_A_ (W)w, ++preparecnt); 3146 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2279 prepares [preparecnt - 1] = w; 3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
2280} 3151}
2281 3152
2282void 3153void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 3154ev_prepare_stop (EV_P_ ev_prepare *w)
2284{ 3155{
2285 clear_pending (EV_A_ (W)w); 3156 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 3157 if (expect_false (!ev_is_active (w)))
2287 return; 3158 return;
2288 3159
3160 EV_FREQUENT_CHECK;
3161
2289 { 3162 {
2290 int active = ((W)w)->active; 3163 int active = ev_active (w);
3164
2291 prepares [active - 1] = prepares [--preparecnt]; 3165 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 3166 ev_active (prepares [active - 1]) = active;
2293 } 3167 }
2294 3168
2295 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
2296} 3172}
2297 3173
2298void 3174void
2299ev_check_start (EV_P_ ev_check *w) 3175ev_check_start (EV_P_ ev_check *w)
2300{ 3176{
2301 if (expect_false (ev_is_active (w))) 3177 if (expect_false (ev_is_active (w)))
2302 return; 3178 return;
3179
3180 EV_FREQUENT_CHECK;
2303 3181
2304 ev_start (EV_A_ (W)w, ++checkcnt); 3182 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2306 checks [checkcnt - 1] = w; 3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
2307} 3187}
2308 3188
2309void 3189void
2310ev_check_stop (EV_P_ ev_check *w) 3190ev_check_stop (EV_P_ ev_check *w)
2311{ 3191{
2312 clear_pending (EV_A_ (W)w); 3192 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 3193 if (expect_false (!ev_is_active (w)))
2314 return; 3194 return;
2315 3195
3196 EV_FREQUENT_CHECK;
3197
2316 { 3198 {
2317 int active = ((W)w)->active; 3199 int active = ev_active (w);
3200
2318 checks [active - 1] = checks [--checkcnt]; 3201 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 3202 ev_active (checks [active - 1]) = active;
2320 } 3203 }
2321 3204
2322 ev_stop (EV_A_ (W)w); 3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
2323} 3208}
2324 3209
2325#if EV_EMBED_ENABLE 3210#if EV_EMBED_ENABLE
2326void noinline 3211void noinline
2327ev_embed_sweep (EV_P_ ev_embed *w) 3212ev_embed_sweep (EV_P_ ev_embed *w)
2354 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2355 } 3240 }
2356 } 3241 }
2357} 3242}
2358 3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
2359#if 0 3261#if 0
2360static void 3262static void
2361embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2362{ 3264{
2363 ev_idle_stop (EV_A_ idle); 3265 ev_idle_stop (EV_A_ idle);
2370 if (expect_false (ev_is_active (w))) 3272 if (expect_false (ev_is_active (w)))
2371 return; 3273 return;
2372 3274
2373 { 3275 {
2374 struct ev_loop *loop = w->other; 3276 struct ev_loop *loop = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 3279 }
3280
3281 EV_FREQUENT_CHECK;
2378 3282
2379 ev_set_priority (&w->io, ev_priority (w)); 3283 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 3284 ev_io_start (EV_A_ &w->io);
2381 3285
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 3287 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 3288 ev_prepare_start (EV_A_ &w->prepare);
2385 3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 3294
2388 ev_start (EV_A_ (W)w, 1); 3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
2389} 3298}
2390 3299
2391void 3300void
2392ev_embed_stop (EV_P_ ev_embed *w) 3301ev_embed_stop (EV_P_ ev_embed *w)
2393{ 3302{
2394 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2396 return; 3305 return;
2397 3306
3307 EV_FREQUENT_CHECK;
3308
2398 ev_io_stop (EV_A_ &w->io); 3309 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
2400 3312
2401 ev_stop (EV_A_ (W)w); 3313 EV_FREQUENT_CHECK;
2402} 3314}
2403#endif 3315#endif
2404 3316
2405#if EV_FORK_ENABLE 3317#if EV_FORK_ENABLE
2406void 3318void
2407ev_fork_start (EV_P_ ev_fork *w) 3319ev_fork_start (EV_P_ ev_fork *w)
2408{ 3320{
2409 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
2410 return; 3322 return;
3323
3324 EV_FREQUENT_CHECK;
2411 3325
2412 ev_start (EV_A_ (W)w, ++forkcnt); 3326 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2414 forks [forkcnt - 1] = w; 3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
2415} 3331}
2416 3332
2417void 3333void
2418ev_fork_stop (EV_P_ ev_fork *w) 3334ev_fork_stop (EV_P_ ev_fork *w)
2419{ 3335{
2420 clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2422 return; 3338 return;
2423 3339
3340 EV_FREQUENT_CHECK;
3341
2424 { 3342 {
2425 int active = ((W)w)->active; 3343 int active = ev_active (w);
3344
2426 forks [active - 1] = forks [--forkcnt]; 3345 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 3346 ev_active (forks [active - 1]) = active;
2428 } 3347 }
2429 3348
2430 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
2431} 3352}
2432#endif 3353#endif
2433 3354
2434#if EV_ASYNC_ENABLE 3355#if EV_ASYNC_ENABLE
2435void 3356void
2437{ 3358{
2438 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
2439 return; 3360 return;
2440 3361
2441 evpipe_init (EV_A); 3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
2442 3365
2443 ev_start (EV_A_ (W)w, ++asynccnt); 3366 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2445 asyncs [asynccnt - 1] = w; 3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
2446} 3371}
2447 3372
2448void 3373void
2449ev_async_stop (EV_P_ ev_async *w) 3374ev_async_stop (EV_P_ ev_async *w)
2450{ 3375{
2451 clear_pending (EV_A_ (W)w); 3376 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 3377 if (expect_false (!ev_is_active (w)))
2453 return; 3378 return;
2454 3379
3380 EV_FREQUENT_CHECK;
3381
2455 { 3382 {
2456 int active = ((W)w)->active; 3383 int active = ev_active (w);
3384
2457 asyncs [active - 1] = asyncs [--asynccnt]; 3385 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 3386 ev_active (asyncs [active - 1]) = active;
2459 } 3387 }
2460 3388
2461 ev_stop (EV_A_ (W)w); 3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
2462} 3392}
2463 3393
2464void 3394void
2465ev_async_send (EV_P_ ev_async *w) 3395ev_async_send (EV_P_ ev_async *w)
2466{ 3396{
2467 w->sent = 1; 3397 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 3398 evpipe_write (EV_A_ &gotasync);
2469} 3399}
2470#endif 3400#endif
2471 3401
2472/*****************************************************************************/ 3402/*****************************************************************************/
2473 3403
2483once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
2484{ 3414{
2485 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
2486 void *arg = once->arg; 3416 void *arg = once->arg;
2487 3417
2488 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
2489 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
2490 ev_free (once); 3420 ev_free (once);
2491 3421
2492 cb (revents, arg); 3422 cb (revents, arg);
2493} 3423}
2494 3424
2495static void 3425static void
2496once_cb_io (EV_P_ ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
2497{ 3427{
2498 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2499} 3431}
2500 3432
2501static void 3433static void
2502once_cb_to (EV_P_ ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
2503{ 3435{
2504 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2505} 3439}
2506 3440
2507void 3441void
2508ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2509{ 3443{
2531 ev_timer_set (&once->to, timeout, 0.); 3465 ev_timer_set (&once->to, timeout, 0.);
2532 ev_timer_start (EV_A_ &once->to); 3466 ev_timer_start (EV_A_ &once->to);
2533 } 3467 }
2534} 3468}
2535 3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
3482 {
3483 wn = wl->next;
3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
3503 }
3504
3505 if (types & (EV_TIMER | EV_STAT))
3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3510 {
3511 if (types & EV_STAT)
3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3513 }
3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
2536#if EV_MULTIPLICITY 3578#if EV_MULTIPLICITY
2537 #include "ev_wrap.h" 3579 #include "ev_wrap.h"
2538#endif 3580#endif
2539 3581
2540#ifdef __cplusplus 3582#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines