ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
127#include <fcntl.h> 158#include <fcntl.h>
145#ifndef _WIN32 176#ifndef _WIN32
146# include <sys/time.h> 177# include <sys/time.h>
147# include <sys/wait.h> 178# include <sys/wait.h>
148# include <unistd.h> 179# include <unistd.h>
149#else 180#else
181# include <io.h>
150# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 183# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
154# endif 186# endif
155#endif 187#endif
156 188
157/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
158 225
159#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
160# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
161#endif 232#endif
162 233
163#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 236#endif
166 237
167#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
168# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
169#endif 244#endif
170 245
171#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
173#endif 248#endif
179# define EV_USE_POLL 1 254# define EV_USE_POLL 1
180# endif 255# endif
181#endif 256#endif
182 257
183#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
184# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
185#endif 264#endif
186 265
187#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
189#endif 268#endif
191#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 271# define EV_USE_PORT 0
193#endif 272#endif
194 273
195#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
196# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
197#endif 280#endif
198 281
199#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 283# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
210# else 293# else
211# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
212# endif 295# endif
213#endif 296#endif
214 297
215/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 347
217#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
220#endif 351#endif
234# include <sys/select.h> 365# include <sys/select.h>
235# endif 366# endif
236#endif 367#endif
237 368
238#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
239# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
240#endif 378#endif
241 379
242#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 381# include <winsock.h>
244#endif 382#endif
245 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
246/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
247 442
248/* 443/*
249 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
255 */ 450 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 452
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 455
262#if __GNUC__ >= 4 456#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
265#else 459#else
266# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
267# define noinline 461# define noinline
268# if __STDC_VERSION__ < 199901L 462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 463# define inline
270# endif 464# endif
271#endif 465#endif
272 466
273#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 472# define inline_speed static noinline
279#else 473#else
280# define inline_speed static inline 474# define inline_speed static inline
281#endif 475#endif
282 476
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
285 484
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
288 487
289typedef ev_watcher *W; 488typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
292 491
293#if EV_USE_MONOTONIC 492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 513#endif
298 514
299#ifdef _WIN32 515#ifdef _WIN32
300# include "ev_win32.c" 516# include "ev_win32.c"
301#endif 517#endif
309{ 525{
310 syserr_cb = cb; 526 syserr_cb = cb;
311} 527}
312 528
313static void noinline 529static void noinline
314syserr (const char *msg) 530ev_syserr (const char *msg)
315{ 531{
316 if (!msg) 532 if (!msg)
317 msg = "(libev) system error"; 533 msg = "(libev) system error";
318 534
319 if (syserr_cb) 535 if (syserr_cb)
323 perror (msg); 539 perror (msg);
324 abort (); 540 abort ();
325 } 541 }
326} 542}
327 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
328static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 560
330void 561void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 563{
333 alloc = cb; 564 alloc = cb;
334} 565}
335 566
336inline_speed void * 567inline_speed void *
337ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
338{ 569{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
340 571
341 if (!ptr && size) 572 if (!ptr && size)
342 { 573 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 575 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
352 583
353/*****************************************************************************/ 584/*****************************************************************************/
354 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
355typedef struct 590typedef struct
356{ 591{
357 WL head; 592 WL head;
358 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
360#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 601 SOCKET handle;
362#endif 602#endif
363} ANFD; 603} ANFD;
364 604
605/* stores the pending event set for a given watcher */
365typedef struct 606typedef struct
366{ 607{
367 W w; 608 W w;
368 int events; 609 int events; /* the pending event set for the given watcher */
369} ANPENDING; 610} ANPENDING;
370 611
371#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
372typedef struct 614typedef struct
373{ 615{
374 WL head; 616 WL head;
375} ANFS; 617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
376#endif 638#endif
377 639
378#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
379 641
380 struct ev_loop 642 struct ev_loop
399 661
400 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
401 663
402#endif 664#endif
403 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
404/*****************************************************************************/ 678/*****************************************************************************/
405 679
680#ifndef EV_HAVE_EV_TIME
406ev_tstamp 681ev_tstamp
407ev_time (void) 682ev_time (void)
408{ 683{
409#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
410 struct timespec ts; 687 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 690 }
691#endif
692
414 struct timeval tv; 693 struct timeval tv;
415 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 696}
697#endif
419 698
420ev_tstamp inline_size 699inline_size ev_tstamp
421get_clock (void) 700get_clock (void)
422{ 701{
423#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
425 { 704 {
451 ts.tv_sec = (time_t)delay; 730 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 732
454 nanosleep (&ts, 0); 733 nanosleep (&ts, 0);
455#elif defined(_WIN32) 734#elif defined(_WIN32)
456 Sleep (delay * 1e3); 735 Sleep ((unsigned long)(delay * 1e3));
457#else 736#else
458 struct timeval tv; 737 struct timeval tv;
459 738
460 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
463 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
464#endif 746#endif
465 } 747 }
466} 748}
467 749
468/*****************************************************************************/ 750/*****************************************************************************/
469 751
470int inline_size 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
471array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
472{ 758{
473 int ncur = cur + 1; 759 int ncur = cur + 1;
474 760
475 do 761 do
476 ncur <<= 1; 762 ncur <<= 1;
477 while (cnt > ncur); 763 while (cnt > ncur);
478 764
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 767 {
482 ncur *= elem; 768 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 770 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 771 ncur /= elem;
486 } 772 }
487 773
488 return ncur; 774 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
493{ 779{
494 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
496} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 786
498#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
500 { \ 789 { \
501 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 803 }
515#endif 804#endif
516 805
517#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 808
520/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
521 816
522void noinline 817void noinline
523ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
524{ 819{
525 W w_ = (W)w; 820 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
536 } 831 }
537} 832}
538 833
539void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 851{
542 int i; 852 int i;
543 853
544 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
546} 856}
547 857
548/*****************************************************************************/ 858/*****************************************************************************/
549 859
550void inline_size 860inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
565{ 862{
566 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
567 ev_io *w; 864 ev_io *w;
568 865
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 870 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
575 } 872 }
576} 873}
577 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
578void 886void
579ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 888{
581 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
583} 891}
584 892
585void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
586fd_reify (EV_P) 896fd_reify (EV_P)
587{ 897{
588 int i; 898 int i;
589 899
590 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 909 events |= (unsigned char)w->events;
600 910
601#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
602 if (events) 912 if (events)
603 { 913 {
604 unsigned long argp; 914 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 917 }
612#endif 918#endif
613 919
614 { 920 {
615 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
617 923
618 anfd->reify = 0; 924 anfd->reify = 0;
619 anfd->events = events; 925 anfd->events = events;
620 926
621 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
623 } 929 }
624 } 930 }
625 931
626 fdchangecnt = 0; 932 fdchangecnt = 0;
627} 933}
628 934
629void inline_size 935/* something about the given fd changed */
936inline_size void
630fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
631{ 938{
632 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
634 941
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
640 } 947 }
641} 948}
642 949
643void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
644fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
645{ 953{
646 ev_io *w; 954 ev_io *w;
647 955
648 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 960 }
653} 961}
654 962
655int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
656fd_valid (int fd) 965fd_valid (int fd)
657{ 966{
658#ifdef _WIN32 967#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
660#else 969#else
668{ 977{
669 int fd; 978 int fd;
670 979
671 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 981 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
675} 984}
676 985
677/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 987static void noinline
682 991
683 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 993 if (anfds [fd].events)
685 { 994 {
686 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
687 return; 996 break;
688 } 997 }
689} 998}
690 999
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1001static void noinline
696 1005
697 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1007 if (anfds [fd].events)
699 { 1008 {
700 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1012 }
703} 1013}
704 1014
705/*****************************************************************************/ 1015/*****************************************************************************/
706 1016
707void inline_speed 1017/*
708upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
711 1022
712 while (k) 1023/*
713 { 1024 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029#if EV_USE_4HEAP
715 1030
716 if (heap [p]->at <= w->at) 1031#define DHEAP 4
1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036/* away from the root */
1037inline_speed void
1038downheap (ANHE *heap, int N, int k)
1039{
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
717 break; 1065 break;
718 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113}
1114#endif
1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
719 heap [k] = heap [p]; 1129 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1130 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1131 k = p;
722 } 1132 }
723 1133
724 heap [k] = w; 1134 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1135 ev_active (ANHE_w (he)) = k;
726} 1136}
727 1137
728void inline_speed 1138/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1139inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
758{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1143 upheap (heap, k);
1144 else
760 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
761} 1158}
762 1159
763/*****************************************************************************/ 1160/*****************************************************************************/
764 1161
1162/* associate signal watchers to a signal signal */
765typedef struct 1163typedef struct
766{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
767 WL head; 1169 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG; 1170} ANSIG;
770 1171
771static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787 1173
788/*****************************************************************************/ 1174/*****************************************************************************/
789 1175
790void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
791fd_intern (int fd) 1179fd_intern (int fd)
792{ 1180{
793#ifdef _WIN32 1181#ifdef _WIN32
794 int arg = 1; 1182 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1184#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1187#endif
800} 1188}
801 1189
802static void noinline 1190static void noinline
803evpipe_init (EV_P) 1191evpipe_init (EV_P)
804{ 1192{
805 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
806 { 1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
807 while (pipe (evpipe)) 1209 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
809 1211
810 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
1216
814 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1219 }
824 int old_errno = errno; 1220}
825 1221
826 if (sig) gotsig = 1; 1222inline_size void
827 if (async) gotasync = 1; 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
828 1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
829 write (evpipe [1], &old_errno, 1); 1239 write (evpipe [1], &old_errno, 1);
1240
830 errno = old_errno; 1241 errno = old_errno;
831 } 1242 }
832} 1243}
833 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
834static void 1247static void
835pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
836{ 1249{
1250 int i;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
837 { 1254 {
838 int dummy; 1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
839 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
840 } 1263 }
841 1264
842 if (gotsig) 1265 if (sig_pending)
843 { 1266 {
844 int signum; 1267 sig_pending = 0;
845 gotsig = 0;
846 1268
847 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
848 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
849 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
850 } 1272 }
851 1273
852#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
853 if (gotasync) 1275 if (async_pending)
854 { 1276 {
855 int i; 1277 async_pending = 0;
856 gotasync = 0;
857 1278
858 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
859 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
860 { 1281 {
861 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
866} 1287}
867 1288
868/*****************************************************************************/ 1289/*****************************************************************************/
869 1290
870static void 1291static void
871sighandler (int signum) 1292ev_sighandler (int signum)
872{ 1293{
873#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
875#endif 1296#endif
876 1297
877#if _WIN32 1298#if _WIN32
878 signal (signum, sighandler); 1299 signal (signum, ev_sighandler);
879#endif 1300#endif
880 1301
881 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
882 evpipe_write (EV_A_ 1, 0); 1303 evpipe_write (EV_A_ &sig_pending);
883} 1304}
884 1305
885void noinline 1306void noinline
886ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
887{ 1308{
888 WL w; 1309 WL w;
889 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
890#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
891 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
892#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
893 1319
894 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
895
896 if (signum < 0 || signum >= signalmax)
897 return; 1321 return;
1322#endif
898 1323
899 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
900 1325
901 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
902 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
903} 1328}
904 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
905/*****************************************************************************/ 1350/*****************************************************************************/
906 1351
907static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
908 1353
909#ifndef _WIN32 1354#ifndef _WIN32
912 1357
913#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
915#endif 1360#endif
916 1361
917void inline_speed 1362/* handle a single child status event */
1363inline_speed void
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
919{ 1365{
920 ev_child *w; 1366 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 1368
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 1370 {
925 if ((w->pid == pid || !w->pid) 1371 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 1372 && (!traced || (w->flags & 1)))
927 { 1373 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 1375 w->rpid = pid;
930 w->rstatus = status; 1376 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 1378 }
933 } 1379 }
935 1381
936#ifndef WCONTINUED 1382#ifndef WCONTINUED
937# define WCONTINUED 0 1383# define WCONTINUED 0
938#endif 1384#endif
939 1385
1386/* called on sigchld etc., calls waitpid */
940static void 1387static void
941childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
942{ 1389{
943 int pid, status; 1390 int pid, status;
944 1391
947 if (!WCONTINUED 1394 if (!WCONTINUED
948 || errno != EINVAL 1395 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 1397 return;
951 1398
952 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 1400 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 1402
956 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 1404 if (EV_PID_HASHSIZE > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 1406}
960 1407
961#endif 1408#endif
962 1409
963/*****************************************************************************/ 1410/*****************************************************************************/
1025 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1026 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1027 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1028#endif 1475#endif
1029#ifdef __APPLE__ 1476#ifdef __APPLE__
1030 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1031 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1032#endif 1480#endif
1033 1481
1034 return flags; 1482 return flags;
1035} 1483}
1036 1484
1050ev_backend (EV_P) 1498ev_backend (EV_P)
1051{ 1499{
1052 return backend; 1500 return backend;
1053} 1501}
1054 1502
1503#if EV_MINIMAL < 2
1055unsigned int 1504unsigned int
1056ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1057{ 1506{
1058 return loop_count; 1507 return loop_count;
1059} 1508}
1060 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1061void 1516void
1062ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1063{ 1518{
1064 io_blocktime = interval; 1519 io_blocktime = interval;
1065} 1520}
1068ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1069{ 1524{
1070 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1071} 1526}
1072 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1073static void noinline 1553static void noinline
1074loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1075{ 1555{
1076 if (!backend) 1556 if (!backend)
1077 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1078#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1079 { 1570 {
1080 struct timespec ts; 1571 struct timespec ts;
1572
1081 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1082 have_monotonic = 1; 1574 have_monotonic = 1;
1083 } 1575 }
1084#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1085 1588
1086 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1087 mn_now = get_clock (); 1590 mn_now = get_clock ();
1088 now_floor = mn_now; 1591 now_floor = mn_now;
1089 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1090 1596
1091 io_blocktime = 0.; 1597 io_blocktime = 0.;
1092 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1093 backend = 0; 1599 backend = 0;
1094 backend_fd = -1; 1600 backend_fd = -1;
1095 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1096#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1097 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1098#endif 1607#endif
1099 1608#if EV_USE_SIGNALFD
1100 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1101#ifndef _WIN32
1102 if (flags & EVFLAG_FORKCHECK)
1103 curpid = getpid ();
1104#endif 1610#endif
1105 1611
1106 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS"));
1110
1111 if (!(flags & 0x0000ffffUL)) 1612 if (!(flags & 0x0000ffffU))
1112 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1113 1614
1114#if EV_USE_PORT 1615#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 1617#endif
1125#endif 1626#endif
1126#if EV_USE_SELECT 1627#if EV_USE_SELECT
1127 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1128#endif 1629#endif
1129 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1130 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1131 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1132 } 1635 }
1133} 1636}
1134 1637
1638/* free up a loop structure */
1135static void noinline 1639static void noinline
1136loop_destroy (EV_P) 1640loop_destroy (EV_P)
1137{ 1641{
1138 int i; 1642 int i;
1139 1643
1140 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1141 { 1645 {
1142 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1143 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1144 1648
1145 close (evpipe [0]); evpipe [0] = 0; 1649#if EV_USE_EVENTFD
1146 close (evpipe [1]); evpipe [1] = 0; 1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1147 } 1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1148 1670
1149#if EV_USE_INOTIFY 1671#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 1672 if (fs_fd >= 0)
1151 close (fs_fd); 1673 close (fs_fd);
1152#endif 1674#endif
1176#if EV_IDLE_ENABLE 1698#if EV_IDLE_ENABLE
1177 array_free (idle, [i]); 1699 array_free (idle, [i]);
1178#endif 1700#endif
1179 } 1701 }
1180 1702
1181 ev_free (anfds); anfdmax = 0; 1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1182 1704
1183 /* have to use the microsoft-never-gets-it-right macro */ 1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1184 array_free (fdchange, EMPTY); 1707 array_free (fdchange, EMPTY);
1185 array_free (timer, EMPTY); 1708 array_free (timer, EMPTY);
1186#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1187 array_free (periodic, EMPTY); 1710 array_free (periodic, EMPTY);
1188#endif 1711#endif
1196#endif 1719#endif
1197 1720
1198 backend = 0; 1721 backend = 0;
1199} 1722}
1200 1723
1724#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 1725inline_size void infy_fork (EV_P);
1726#endif
1202 1727
1203void inline_size 1728inline_size void
1204loop_fork (EV_P) 1729loop_fork (EV_P)
1205{ 1730{
1206#if EV_USE_PORT 1731#if EV_USE_PORT
1207 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1208#endif 1733#endif
1214#endif 1739#endif
1215#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1216 infy_fork (EV_A); 1741 infy_fork (EV_A);
1217#endif 1742#endif
1218 1743
1219 if (ev_is_active (&pipeev)) 1744 if (ev_is_active (&pipe_w))
1220 { 1745 {
1221 /* this "locks" the handlers against writing to the pipe */ 1746 /* this "locks" the handlers against writing to the pipe */
1222 gotsig = gotasync = 1; 1747 /* while we modify the fd vars */
1748 sig_pending = 1;
1749#if EV_ASYNC_ENABLE
1750 async_pending = 1;
1751#endif
1223 1752
1224 ev_ref (EV_A); 1753 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 1754 ev_io_stop (EV_A_ &pipe_w);
1226 close (evpipe [0]); 1755
1227 close (evpipe [1]); 1756#if EV_USE_EVENTFD
1757 if (evfd >= 0)
1758 close (evfd);
1759#endif
1760
1761 if (evpipe [0] >= 0)
1762 {
1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1765 }
1228 1766
1229 evpipe_init (EV_A); 1767 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 1768 /* now iterate over everything, in case we missed something */
1231 pipecb (EV_A_ &pipeev, EV_READ); 1769 pipecb (EV_A_ &pipe_w, EV_READ);
1232 } 1770 }
1233 1771
1234 postfork = 0; 1772 postfork = 0;
1235} 1773}
1236 1774
1237#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1776
1238struct ev_loop * 1777struct ev_loop *
1239ev_loop_new (unsigned int flags) 1778ev_loop_new (unsigned int flags)
1240{ 1779{
1241 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1242 1781
1243 memset (loop, 0, sizeof (struct ev_loop)); 1782 memset (EV_A, 0, sizeof (struct ev_loop));
1244
1245 loop_init (EV_A_ flags); 1783 loop_init (EV_A_ flags);
1246 1784
1247 if (ev_backend (EV_A)) 1785 if (ev_backend (EV_A))
1248 return loop; 1786 return EV_A;
1249 1787
1250 return 0; 1788 return 0;
1251} 1789}
1252 1790
1253void 1791void
1260void 1798void
1261ev_loop_fork (EV_P) 1799ev_loop_fork (EV_P)
1262{ 1800{
1263 postfork = 1; /* must be in line with ev_default_fork */ 1801 postfork = 1; /* must be in line with ev_default_fork */
1264} 1802}
1803#endif /* multiplicity */
1265 1804
1805#if EV_VERIFY
1806static void noinline
1807verify_watcher (EV_P_ W w)
1808{
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813}
1814
1815static void noinline
1816verify_heap (EV_P_ ANHE *heap, int N)
1817{
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828}
1829
1830static void noinline
1831array_verify (EV_P_ W *ws, int cnt)
1832{
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838}
1839#endif
1840
1841#if EV_MINIMAL < 2
1842void
1843ev_loop_verify (EV_P)
1844{
1845#if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
1858 {
1859 verify_watcher (EV_A_ (W)w);
1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1862 }
1863
1864 assert (timermax >= timercnt);
1865 verify_heap (EV_A_ timers, timercnt);
1866
1867#if EV_PERIODIC_ENABLE
1868 assert (periodicmax >= periodiccnt);
1869 verify_heap (EV_A_ periodics, periodiccnt);
1870#endif
1871
1872 for (i = NUMPRI; i--; )
1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875#if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879#endif
1880 }
1881
1882#if EV_FORK_ENABLE
1883 assert (forkmax >= forkcnt);
1884 array_verify (EV_A_ (W *)forks, forkcnt);
1885#endif
1886
1887#if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890#endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898# if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1901# endif
1902#endif
1903}
1266#endif 1904#endif
1267 1905
1268#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1269struct ev_loop * 1907struct ev_loop *
1270ev_default_loop_init (unsigned int flags) 1908ev_default_loop_init (unsigned int flags)
1274#endif 1912#endif
1275{ 1913{
1276 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
1277 { 1915 {
1278#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1279 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1280#else 1918#else
1281 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
1282#endif 1920#endif
1283 1921
1284 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
1301 1939
1302void 1940void
1303ev_default_destroy (void) 1941ev_default_destroy (void)
1304{ 1942{
1305#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
1306 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
1307#endif 1945#endif
1946
1947 ev_default_loop_ptr = 0;
1308 1948
1309#ifndef _WIN32 1949#ifndef _WIN32
1310 ev_ref (EV_A); /* child watcher */ 1950 ev_ref (EV_A); /* child watcher */
1311 ev_signal_stop (EV_A_ &childev); 1951 ev_signal_stop (EV_A_ &childev);
1312#endif 1952#endif
1316 1956
1317void 1957void
1318ev_default_fork (void) 1958ev_default_fork (void)
1319{ 1959{
1320#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1321 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
1322#endif 1962#endif
1323 1963
1324 if (backend)
1325 postfork = 1; /* must be in line with ev_loop_fork */ 1964 postfork = 1; /* must be in line with ev_loop_fork */
1326} 1965}
1327 1966
1328/*****************************************************************************/ 1967/*****************************************************************************/
1329 1968
1330void 1969void
1331ev_invoke (EV_P_ void *w, int revents) 1970ev_invoke (EV_P_ void *w, int revents)
1332{ 1971{
1333 EV_CB_INVOKE ((W)w, revents); 1972 EV_CB_INVOKE ((W)w, revents);
1334} 1973}
1335 1974
1336void inline_speed 1975unsigned int
1337call_pending (EV_P) 1976ev_pending_count (EV_P)
1977{
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985}
1986
1987void noinline
1988ev_invoke_pending (EV_P)
1338{ 1989{
1339 int pri; 1990 int pri;
1340 1991
1341 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1342 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1343 { 1994 {
1344 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1345 1996
1346 if (expect_true (p->w))
1347 {
1348 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1349 1999
1350 p->w->pending = 0; 2000 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1352 } 2002 EV_FREQUENT_CHECK;
1353 } 2003 }
1354} 2004}
1355 2005
1356void inline_size
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1369
1370 ((WT)w)->at += w->repeat;
1371 if (((WT)w)->at < mn_now)
1372 ((WT)w)->at = mn_now;
1373
1374 downheap (timers, timercnt, 0);
1375 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 {
1389 ev_periodic *w = (ev_periodic *)periodics [0];
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435
1436#if EV_IDLE_ENABLE 2006#if EV_IDLE_ENABLE
1437void inline_size 2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
1438idle_reify (EV_P) 2010idle_reify (EV_P)
1439{ 2011{
1440 if (expect_false (idleall)) 2012 if (expect_false (idleall))
1441 { 2013 {
1442 int pri; 2014 int pri;
1454 } 2026 }
1455 } 2027 }
1456} 2028}
1457#endif 2029#endif
1458 2030
1459void inline_speed 2031/* make timers pending */
2032inline_size void
2033timers_reify (EV_P)
2034{
2035 EV_FREQUENT_CHECK;
2036
2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2038 {
2039 do
2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
2048 ev_at (w) += w->repeat;
2049 if (ev_at (w) < mn_now)
2050 ev_at (w) = mn_now;
2051
2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2053
2054 ANHE_at_cache (timers [HEAP0]);
2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
2062 }
2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2064
2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
2066 }
2067}
2068
2069#if EV_PERIODIC_ENABLE
2070/* make periodics pending */
2071inline_size void
2072periodics_reify (EV_P)
2073{
2074 EV_FREQUENT_CHECK;
2075
2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2077 {
2078 int feed_count = 0;
2079
2080 do
2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090
2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2092
2093 ANHE_at_cache (periodics [HEAP0]);
2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
2120 }
2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2122
2123 feed_reverse_done (EV_A_ EV_PERIODIC);
2124 }
2125}
2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2129static void noinline
2130periodics_reschedule (EV_P)
2131{
2132 int i;
2133
2134 /* adjust periodics after time jump */
2135 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2136 {
2137 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2138
2139 if (w->reschedule_cb)
2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2141 else if (w->interval)
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143
2144 ANHE_at_cache (periodics [i]);
2145 }
2146
2147 reheap (periodics, periodiccnt);
2148}
2149#endif
2150
2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
2163}
2164
2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
1460time_update (EV_P_ ev_tstamp max_block) 2168time_update (EV_P_ ev_tstamp max_block)
1461{ 2169{
1462 int i;
1463
1464#if EV_USE_MONOTONIC 2170#if EV_USE_MONOTONIC
1465 if (expect_true (have_monotonic)) 2171 if (expect_true (have_monotonic))
1466 { 2172 {
2173 int i;
1467 ev_tstamp odiff = rtmn_diff; 2174 ev_tstamp odiff = rtmn_diff;
1468 2175
1469 mn_now = get_clock (); 2176 mn_now = get_clock ();
1470 2177
1471 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1489 */ 2196 */
1490 for (i = 4; --i; ) 2197 for (i = 4; --i; )
1491 { 2198 {
1492 rtmn_diff = ev_rt_now - mn_now; 2199 rtmn_diff = ev_rt_now - mn_now;
1493 2200
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2201 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 2202 return; /* all is well */
1496 2203
1497 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 2205 mn_now = get_clock ();
1499 now_floor = mn_now; 2206 now_floor = mn_now;
1500 } 2207 }
1501 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502# if EV_PERIODIC_ENABLE 2211# if EV_PERIODIC_ENABLE
1503 periodics_reschedule (EV_A); 2212 periodics_reschedule (EV_A);
1504# endif 2213# endif
1505 /* no timer adjustment, as the monotonic clock doesn't jump */
1506 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507 } 2214 }
1508 else 2215 else
1509#endif 2216#endif
1510 { 2217 {
1511 ev_rt_now = ev_time (); 2218 ev_rt_now = ev_time ();
1512 2219
1513 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1514 { 2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1515#if EV_PERIODIC_ENABLE 2224#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1517#endif 2226#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i)
1520 ((WT)timers [i])->at += ev_rt_now - mn_now;
1521 } 2227 }
1522 2228
1523 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1524 } 2230 }
1525} 2231}
1526 2232
1527void 2233void
1528ev_ref (EV_P)
1529{
1530 ++activecnt;
1531}
1532
1533void
1534ev_unref (EV_P)
1535{
1536 --activecnt;
1537}
1538
1539static int loop_done;
1540
1541void
1542ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1543{ 2235{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2236#if EV_MINIMAL < 2
1545 ? EVUNLOOP_ONE 2237 ++loop_depth;
1546 : EVUNLOOP_CANCEL; 2238#endif
1547 2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
2242 loop_done = EVUNLOOP_CANCEL;
2243
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1549 2245
1550 do 2246 do
1551 { 2247 {
2248#if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250#endif
2251
1552#ifndef _WIN32 2252#ifndef _WIN32
1553 if (expect_false (curpid)) /* penalise the forking check even more */ 2253 if (expect_false (curpid)) /* penalise the forking check even more */
1554 if (expect_false (getpid () != curpid)) 2254 if (expect_false (getpid () != curpid))
1555 { 2255 {
1556 curpid = getpid (); 2256 curpid = getpid ();
1562 /* we might have forked, so queue fork handlers */ 2262 /* we might have forked, so queue fork handlers */
1563 if (expect_false (postfork)) 2263 if (expect_false (postfork))
1564 if (forkcnt) 2264 if (forkcnt)
1565 { 2265 {
1566 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1567 call_pending (EV_A); 2267 EV_INVOKE_PENDING;
1568 } 2268 }
1569#endif 2269#endif
1570 2270
1571 /* queue prepare watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1572 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1573 { 2273 {
1574 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1575 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
1576 } 2276 }
1577 2277
1578 if (expect_false (!activecnt)) 2278 if (expect_false (loop_done))
1579 break; 2279 break;
1580 2280
1581 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
1582 if (expect_false (postfork)) 2282 if (expect_false (postfork))
1583 loop_fork (EV_A); 2283 loop_fork (EV_A);
1590 ev_tstamp waittime = 0.; 2290 ev_tstamp waittime = 0.;
1591 ev_tstamp sleeptime = 0.; 2291 ev_tstamp sleeptime = 0.;
1592 2292
1593 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1594 { 2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
1595 /* update time to cancel out callback processing overhead */ 2298 /* update time to cancel out callback processing overhead */
1596 time_update (EV_A_ 1e100); 2299 time_update (EV_A_ 1e100);
1597 2300
1598 waittime = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
1599 2302
1600 if (timercnt) 2303 if (timercnt)
1601 { 2304 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2305 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1603 if (waittime > to) waittime = to; 2306 if (waittime > to) waittime = to;
1604 } 2307 }
1605 2308
1606#if EV_PERIODIC_ENABLE 2309#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 2310 if (periodiccnt)
1608 { 2311 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1610 if (waittime > to) waittime = to; 2313 if (waittime > to) waittime = to;
1611 } 2314 }
1612#endif 2315#endif
1613 2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
1614 if (expect_false (waittime < timeout_blocktime)) 2318 if (expect_false (waittime < timeout_blocktime))
1615 waittime = timeout_blocktime; 2319 waittime = timeout_blocktime;
1616 2320
1617 sleeptime = waittime - backend_fudge; 2321 /* extra check because io_blocktime is commonly 0 */
1618
1619 if (expect_true (sleeptime > io_blocktime)) 2322 if (expect_false (io_blocktime))
1620 sleeptime = io_blocktime;
1621
1622 if (sleeptime)
1623 { 2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
1624 ev_sleep (sleeptime); 2331 ev_sleep (sleeptime);
1625 waittime -= sleeptime; 2332 waittime -= sleeptime;
2333 }
1626 } 2334 }
1627 } 2335 }
1628 2336
2337#if EV_MINIMAL < 2
1629 ++loop_count; 2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1630 backend_poll (EV_A_ waittime); 2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1631 2343
1632 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
1633 time_update (EV_A_ waittime + sleeptime); 2345 time_update (EV_A_ waittime + sleeptime);
1634 } 2346 }
1635 2347
1646 2358
1647 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 2360 if (expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1650 2362
1651 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1652
1653 } 2364 }
1654 while (expect_true (activecnt && !loop_done)); 2365 while (expect_true (
2366 activecnt
2367 && !loop_done
2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2369 ));
1655 2370
1656 if (loop_done == EVUNLOOP_ONE) 2371 if (loop_done == EVUNLOOP_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
1658} 2377}
1659 2378
1660void 2379void
1661ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
1662{ 2381{
1663 loop_done = how; 2382 loop_done = how;
1664} 2383}
1665 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
1666/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
1667 2424
1668void inline_size 2425inline_size void
1669wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
1670{ 2427{
1671 elem->next = *head; 2428 elem->next = *head;
1672 *head = elem; 2429 *head = elem;
1673} 2430}
1674 2431
1675void inline_size 2432inline_size void
1676wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
1677{ 2434{
1678 while (*head) 2435 while (*head)
1679 { 2436 {
1680 if (*head == elem) 2437 if (expect_true (*head == elem))
1681 { 2438 {
1682 *head = elem->next; 2439 *head = elem->next;
1683 return; 2440 break;
1684 } 2441 }
1685 2442
1686 head = &(*head)->next; 2443 head = &(*head)->next;
1687 } 2444 }
1688} 2445}
1689 2446
1690void inline_speed 2447/* internal, faster, version of ev_clear_pending */
2448inline_speed void
1691clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
1692{ 2450{
1693 if (w->pending) 2451 if (w->pending)
1694 { 2452 {
1695 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1696 w->pending = 0; 2454 w->pending = 0;
1697 } 2455 }
1698} 2456}
1699 2457
1700int 2458int
1704 int pending = w_->pending; 2462 int pending = w_->pending;
1705 2463
1706 if (expect_true (pending)) 2464 if (expect_true (pending))
1707 { 2465 {
1708 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
1709 w_->pending = 0; 2468 w_->pending = 0;
1710 p->w = 0;
1711 return p->events; 2469 return p->events;
1712 } 2470 }
1713 else 2471 else
1714 return 0; 2472 return 0;
1715} 2473}
1716 2474
1717void inline_size 2475inline_size void
1718pri_adjust (EV_P_ W w) 2476pri_adjust (EV_P_ W w)
1719{ 2477{
1720 int pri = w->priority; 2478 int pri = ev_priority (w);
1721 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1722 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1723 w->priority = pri; 2481 ev_set_priority (w, pri);
1724} 2482}
1725 2483
1726void inline_speed 2484inline_speed void
1727ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
1728{ 2486{
1729 pri_adjust (EV_A_ w); 2487 pri_adjust (EV_A_ w);
1730 w->active = active; 2488 w->active = active;
1731 ev_ref (EV_A); 2489 ev_ref (EV_A);
1732} 2490}
1733 2491
1734void inline_size 2492inline_size void
1735ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
1736{ 2494{
1737 ev_unref (EV_A); 2495 ev_unref (EV_A);
1738 w->active = 0; 2496 w->active = 0;
1739} 2497}
1746 int fd = w->fd; 2504 int fd = w->fd;
1747 2505
1748 if (expect_false (ev_is_active (w))) 2506 if (expect_false (ev_is_active (w)))
1749 return; 2507 return;
1750 2508
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
1752 2513
1753 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1755 wlist_add (&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
1756 2517
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1758 w->events &= ~EV_IOFDSET; 2519 w->events &= ~EV__IOFDSET;
2520
2521 EV_FREQUENT_CHECK;
1759} 2522}
1760 2523
1761void noinline 2524void noinline
1762ev_io_stop (EV_P_ ev_io *w) 2525ev_io_stop (EV_P_ ev_io *w)
1763{ 2526{
1764 clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
1766 return; 2529 return;
1767 2530
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2532
2533 EV_FREQUENT_CHECK;
1769 2534
1770 wlist_del (&anfds[w->fd].head, (WL)w); 2535 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2536 ev_stop (EV_A_ (W)w);
1772 2537
1773 fd_change (EV_A_ w->fd, 1); 2538 fd_change (EV_A_ w->fd, 1);
2539
2540 EV_FREQUENT_CHECK;
1774} 2541}
1775 2542
1776void noinline 2543void noinline
1777ev_timer_start (EV_P_ ev_timer *w) 2544ev_timer_start (EV_P_ ev_timer *w)
1778{ 2545{
1779 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1780 return; 2547 return;
1781 2548
1782 ((WT)w)->at += mn_now; 2549 ev_at (w) += mn_now;
1783 2550
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1788 timers [timercnt - 1] = (WT)w; 2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 2559 ANHE_at_cache (timers [ev_active (w)]);
2560 upheap (timers, ev_active (w));
1790 2561
2562 EV_FREQUENT_CHECK;
2563
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 2565}
1793 2566
1794void noinline 2567void noinline
1795ev_timer_stop (EV_P_ ev_timer *w) 2568ev_timer_stop (EV_P_ ev_timer *w)
1796{ 2569{
1797 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1799 return; 2572 return;
1800 2573
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2574 EV_FREQUENT_CHECK;
1802 2575
1803 { 2576 {
1804 int active = ((W)w)->active; 2577 int active = ev_active (w);
1805 2578
2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2580
2581 --timercnt;
2582
1806 if (expect_true (--active < --timercnt)) 2583 if (expect_true (active < timercnt + HEAP0))
1807 { 2584 {
1808 timers [active] = timers [timercnt]; 2585 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 2586 adjustheap (timers, timercnt, active);
1810 } 2587 }
1811 } 2588 }
1812 2589
1813 ((WT)w)->at -= mn_now; 2590 EV_FREQUENT_CHECK;
2591
2592 ev_at (w) -= mn_now;
1814 2593
1815 ev_stop (EV_A_ (W)w); 2594 ev_stop (EV_A_ (W)w);
1816} 2595}
1817 2596
1818void noinline 2597void noinline
1819ev_timer_again (EV_P_ ev_timer *w) 2598ev_timer_again (EV_P_ ev_timer *w)
1820{ 2599{
2600 EV_FREQUENT_CHECK;
2601
1821 if (ev_is_active (w)) 2602 if (ev_is_active (w))
1822 { 2603 {
1823 if (w->repeat) 2604 if (w->repeat)
1824 { 2605 {
1825 ((WT)w)->at = mn_now + w->repeat; 2606 ev_at (w) = mn_now + w->repeat;
2607 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 2608 adjustheap (timers, timercnt, ev_active (w));
1827 } 2609 }
1828 else 2610 else
1829 ev_timer_stop (EV_A_ w); 2611 ev_timer_stop (EV_A_ w);
1830 } 2612 }
1831 else if (w->repeat) 2613 else if (w->repeat)
1832 { 2614 {
1833 w->at = w->repeat; 2615 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 2616 ev_timer_start (EV_A_ w);
1835 } 2617 }
2618
2619 EV_FREQUENT_CHECK;
2620}
2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1836} 2626}
1837 2627
1838#if EV_PERIODIC_ENABLE 2628#if EV_PERIODIC_ENABLE
1839void noinline 2629void noinline
1840ev_periodic_start (EV_P_ ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
1841{ 2631{
1842 if (expect_false (ev_is_active (w))) 2632 if (expect_false (ev_is_active (w)))
1843 return; 2633 return;
1844 2634
1845 if (w->reschedule_cb) 2635 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 2637 else if (w->interval)
1848 { 2638 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 2640 /* this formula differs from the one in periodic_reify because we do not always round up */
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 2642 }
1853 else 2643 else
1854 ((WT)w)->at = w->offset; 2644 ev_at (w) = w->offset;
1855 2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1858 periodics [periodiccnt - 1] = (WT)w; 2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 2652 ANHE_at_cache (periodics [ev_active (w)]);
2653 upheap (periodics, ev_active (w));
1860 2654
2655 EV_FREQUENT_CHECK;
2656
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 2658}
1863 2659
1864void noinline 2660void noinline
1865ev_periodic_stop (EV_P_ ev_periodic *w) 2661ev_periodic_stop (EV_P_ ev_periodic *w)
1866{ 2662{
1867 clear_pending (EV_A_ (W)w); 2663 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2664 if (expect_false (!ev_is_active (w)))
1869 return; 2665 return;
1870 2666
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2667 EV_FREQUENT_CHECK;
1872 2668
1873 { 2669 {
1874 int active = ((W)w)->active; 2670 int active = ev_active (w);
1875 2671
2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2673
2674 --periodiccnt;
2675
1876 if (expect_true (--active < --periodiccnt)) 2676 if (expect_true (active < periodiccnt + HEAP0))
1877 { 2677 {
1878 periodics [active] = periodics [periodiccnt]; 2678 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 2679 adjustheap (periodics, periodiccnt, active);
1880 } 2680 }
1881 } 2681 }
1882 2682
2683 EV_FREQUENT_CHECK;
2684
1883 ev_stop (EV_A_ (W)w); 2685 ev_stop (EV_A_ (W)w);
1884} 2686}
1885 2687
1886void noinline 2688void noinline
1887ev_periodic_again (EV_P_ ev_periodic *w) 2689ev_periodic_again (EV_P_ ev_periodic *w)
1897#endif 2699#endif
1898 2700
1899void noinline 2701void noinline
1900ev_signal_start (EV_P_ ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
1901{ 2703{
1902#if EV_MULTIPLICITY
1903 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1904#endif
1905 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
1906 return; 2705 return;
1907 2706
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1909 2708
1910 evpipe_init (EV_A); 2709#if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1911 2712
2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
1912 { 2720 {
1913#ifndef _WIN32 2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1914 sigset_t full, prev; 2722 if (sigfd < 0 && errno == EINVAL)
1915 sigfillset (&full); 2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1916 sigprocmask (SIG_SETMASK, &full, &prev);
1917#endif
1918 2724
1919 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
1920 2728
1921#ifndef _WIN32 2729 sigemptyset (&sigfd_set);
1922 sigprocmask (SIG_SETMASK, &prev, 0); 2730
1923#endif 2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
1924 } 2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
1925 2747
1926 ev_start (EV_A_ (W)w, 1); 2748 ev_start (EV_A_ (W)w, 1);
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 2750
1929 if (!((WL)w)->next) 2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754# endif
1930 { 2755 {
1931#if _WIN32 2756# if _WIN32
1932 signal (w->signum, sighandler); 2757 signal (w->signum, ev_sighandler);
1933#else 2758# else
1934 struct sigaction sa; 2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
1935 sa.sa_handler = sighandler; 2763 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 2764 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1939#endif 2771#endif
1940 } 2772 }
2773
2774 EV_FREQUENT_CHECK;
1941} 2775}
1942 2776
1943void noinline 2777void noinline
1944ev_signal_stop (EV_P_ ev_signal *w) 2778ev_signal_stop (EV_P_ ev_signal *w)
1945{ 2779{
1946 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
1948 return; 2782 return;
1949 2783
2784 EV_FREQUENT_CHECK;
2785
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 2787 ev_stop (EV_A_ (W)w);
1952 2788
1953 if (!signals [w->signum - 1].head) 2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
1954 signal (w->signum, SIG_DFL); 2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
1955} 2809}
1956 2810
1957void 2811void
1958ev_child_start (EV_P_ ev_child *w) 2812ev_child_start (EV_P_ ev_child *w)
1959{ 2813{
1960#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 2816#endif
1963 if (expect_false (ev_is_active (w))) 2817 if (expect_false (ev_is_active (w)))
1964 return; 2818 return;
1965 2819
2820 EV_FREQUENT_CHECK;
2821
1966 ev_start (EV_A_ (W)w, 1); 2822 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2824
2825 EV_FREQUENT_CHECK;
1968} 2826}
1969 2827
1970void 2828void
1971ev_child_stop (EV_P_ ev_child *w) 2829ev_child_stop (EV_P_ ev_child *w)
1972{ 2830{
1973 clear_pending (EV_A_ (W)w); 2831 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 2832 if (expect_false (!ev_is_active (w)))
1975 return; 2833 return;
1976 2834
2835 EV_FREQUENT_CHECK;
2836
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
1979} 2841}
1980 2842
1981#if EV_STAT_ENABLE 2843#if EV_STAT_ENABLE
1982 2844
1983# ifdef _WIN32 2845# ifdef _WIN32
1984# undef lstat 2846# undef lstat
1985# define lstat(a,b) _stati64 (a,b) 2847# define lstat(a,b) _stati64 (a,b)
1986# endif 2848# endif
1987 2849
1988#define DEF_STAT_INTERVAL 5.0074891 2850#define DEF_STAT_INTERVAL 5.0074891
2851#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1989#define MIN_STAT_INTERVAL 0.1074891 2852#define MIN_STAT_INTERVAL 0.1074891
1990 2853
1991static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2854static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1992 2855
1993#if EV_USE_INOTIFY 2856#if EV_USE_INOTIFY
1994# define EV_INOTIFY_BUFSIZE 8192 2857# define EV_INOTIFY_BUFSIZE 8192
1998{ 2861{
1999 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2000 2863
2001 if (w->wd < 0) 2864 if (w->wd < 0)
2002 { 2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2004 2868
2005 /* monitor some parent directory for speedup hints */ 2869 /* monitor some parent directory for speedup hints */
2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2871 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 2873 {
2008 char path [4096]; 2874 char path [4096];
2009 strcpy (path, w->path); 2875 strcpy (path, w->path);
2010 2876
2013 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2014 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2015 2881
2016 char *pend = strrchr (path, '/'); 2882 char *pend = strrchr (path, '/');
2017 2883
2018 if (!pend) 2884 if (!pend || pend == path)
2019 break; /* whoops, no '/', complain to your admin */ 2885 break;
2020 2886
2021 *pend = 0; 2887 *pend = 0;
2022 w->wd = inotify_add_watch (fs_fd, path, mask); 2888 w->wd = inotify_add_watch (fs_fd, path, mask);
2023 } 2889 }
2024 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2025 } 2891 }
2026 } 2892 }
2027 else
2028 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2029 2893
2030 if (w->wd >= 0) 2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
2031 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
2032} 2916}
2033 2917
2034static void noinline 2918static void noinline
2035infy_del (EV_P_ ev_stat *w) 2919infy_del (EV_P_ ev_stat *w)
2036{ 2920{
2050 2934
2051static void noinline 2935static void noinline
2052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2936infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2053{ 2937{
2054 if (slot < 0) 2938 if (slot < 0)
2055 /* overflow, need to check for all hahs slots */ 2939 /* overflow, need to check for all hash slots */
2056 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2057 infy_wd (EV_A_ slot, wd, ev); 2941 infy_wd (EV_A_ slot, wd, ev);
2058 else 2942 else
2059 { 2943 {
2060 WL w_; 2944 WL w_;
2066 2950
2067 if (w->wd == wd || wd == -1) 2951 if (w->wd == wd || wd == -1)
2068 { 2952 {
2069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2070 { 2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2071 w->wd = -1; 2956 w->wd = -1;
2072 infy_add (EV_A_ w); /* re-add, no matter what */ 2957 infy_add (EV_A_ w); /* re-add, no matter what */
2073 } 2958 }
2074 2959
2075 stat_timer_cb (EV_A_ &w->timer, 0); 2960 stat_timer_cb (EV_A_ &w->timer, 0);
2088 2973
2089 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2090 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2091} 2976}
2092 2977
2093void inline_size 2978inline_size void
2979check_2625 (EV_P)
2980{
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999}
3000
3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
2094infy_init (EV_P) 3013infy_init (EV_P)
2095{ 3014{
2096 if (fs_fd != -2) 3015 if (fs_fd != -2)
2097 return; 3016 return;
2098 3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
2099 fs_fd = inotify_init (); 3022 fs_fd = infy_newfd ();
2100 3023
2101 if (fs_fd >= 0) 3024 if (fs_fd >= 0)
2102 { 3025 {
3026 fd_intern (fs_fd);
2103 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2104 ev_set_priority (&fs_w, EV_MAXPRI); 3028 ev_set_priority (&fs_w, EV_MAXPRI);
2105 ev_io_start (EV_A_ &fs_w); 3029 ev_io_start (EV_A_ &fs_w);
2106 } 3030 }
2107} 3031}
2108 3032
2109void inline_size 3033inline_size void
2110infy_fork (EV_P) 3034infy_fork (EV_P)
2111{ 3035{
2112 int slot; 3036 int slot;
2113 3037
2114 if (fs_fd < 0) 3038 if (fs_fd < 0)
2115 return; 3039 return;
2116 3040
3041 ev_io_stop (EV_A_ &fs_w);
2117 close (fs_fd); 3042 close (fs_fd);
2118 fs_fd = inotify_init (); 3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
2119 3051
2120 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2121 { 3053 {
2122 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
2123 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
2130 w->wd = -1; 3062 w->wd = -1;
2131 3063
2132 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
2133 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
2134 else 3066 else
2135 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
2136 } 3068 }
2137
2138 } 3069 }
2139} 3070}
2140 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
2141#endif 3078#endif
2142 3079
2143void 3080void
2144ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
2145{ 3082{
2172 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
2173 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
2174 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2175 ) { 3112 ) {
2176 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2177 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2178 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2179 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2180 #endif 3120 #endif
2181 3121
2182 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2183 } 3123 }
2184} 3124}
2187ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2188{ 3128{
2189 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2190 return; 3130 return;
2191 3131
2192 /* since we use memcmp, we need to clear any padding data etc. */
2193 memset (&w->prev, 0, sizeof (ev_statdata));
2194 memset (&w->attr, 0, sizeof (ev_statdata));
2195
2196 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2197 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2198 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2199 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2200 3136
2201 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2202 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2203 3139
2204#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2205 infy_init (EV_A); 3141 infy_init (EV_A);
2206 3142
2207 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2208 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2209 else 3145 else
2210#endif 3146#endif
2211 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2212 3148
2213 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2214} 3152}
2215 3153
2216void 3154void
2217ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2218{ 3156{
2219 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2221 return; 3159 return;
2222 3160
3161 EV_FREQUENT_CHECK;
3162
2223#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2225#endif 3165#endif
2226 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2227 3167
2228 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2229} 3171}
2230#endif 3172#endif
2231 3173
2232#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2233void 3175void
2235{ 3177{
2236 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2237 return; 3179 return;
2238 3180
2239 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2240 3184
2241 { 3185 {
2242 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2243 3187
2244 ++idleall; 3188 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2246 3190
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2248 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2249 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2250} 3196}
2251 3197
2252void 3198void
2253ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2254{ 3200{
2255 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2257 return; 3203 return;
2258 3204
3205 EV_FREQUENT_CHECK;
3206
2259 { 3207 {
2260 int active = ((W)w)->active; 3208 int active = ev_active (w);
2261 3209
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 3212
2265 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2266 --idleall; 3214 --idleall;
2267 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2268} 3218}
2269#endif 3219#endif
2270 3220
2271void 3221void
2272ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2273{ 3223{
2274 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2275 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2276 3228
2277 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2279 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2280} 3234}
2281 3235
2282void 3236void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2284{ 3238{
2285 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2287 return; 3241 return;
2288 3242
3243 EV_FREQUENT_CHECK;
3244
2289 { 3245 {
2290 int active = ((W)w)->active; 3246 int active = ev_active (w);
3247
2291 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 3249 ev_active (prepares [active - 1]) = active;
2293 } 3250 }
2294 3251
2295 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2296} 3255}
2297 3256
2298void 3257void
2299ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2300{ 3259{
2301 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2302 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2303 3264
2304 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2306 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2307} 3270}
2308 3271
2309void 3272void
2310ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2311{ 3274{
2312 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2314 return; 3277 return;
2315 3278
3279 EV_FREQUENT_CHECK;
3280
2316 { 3281 {
2317 int active = ((W)w)->active; 3282 int active = ev_active (w);
3283
2318 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 3285 ev_active (checks [active - 1]) = active;
2320 } 3286 }
2321 3287
2322 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2323} 3291}
2324 3292
2325#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2326void noinline 3294void noinline
2327ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2345{ 3313{
2346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2347 3315
2348 { 3316 {
2349 struct ev_loop *loop = w->other; 3317 EV_P = w->other;
2350 3318
2351 while (fdchangecnt) 3319 while (fdchangecnt)
2352 { 3320 {
2353 fd_reify (EV_A); 3321 fd_reify (EV_A);
2354 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2355 } 3323 }
2356 } 3324 }
2357} 3325}
2358 3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
2359#if 0 3344#if 0
2360static void 3345static void
2361embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2362{ 3347{
2363 ev_idle_stop (EV_A_ idle); 3348 ev_idle_stop (EV_A_ idle);
2369{ 3354{
2370 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2371 return; 3356 return;
2372 3357
2373 { 3358 {
2374 struct ev_loop *loop = w->other; 3359 EV_P = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2378 3365
2379 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2381 3368
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 3370 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 3371 ev_prepare_start (EV_A_ &w->prepare);
2385 3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 3377
2388 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2389} 3381}
2390 3382
2391void 3383void
2392ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2393{ 3385{
2394 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2396 return; 3388 return;
2397 3389
3390 EV_FREQUENT_CHECK;
3391
2398 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2400 3395
2401 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2402} 3397}
2403#endif 3398#endif
2404 3399
2405#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2406void 3401void
2407ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2408{ 3403{
2409 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2410 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2411 3408
2412 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2414 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2415} 3414}
2416 3415
2417void 3416void
2418ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2419{ 3418{
2420 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2422 return; 3421 return;
2423 3422
3423 EV_FREQUENT_CHECK;
3424
2424 { 3425 {
2425 int active = ((W)w)->active; 3426 int active = ev_active (w);
3427
2426 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 3429 ev_active (forks [active - 1]) = active;
2428 } 3430 }
2429 3431
2430 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
2431} 3435}
2432#endif 3436#endif
2433 3437
2434#if EV_ASYNC_ENABLE 3438#if EV_ASYNC_ENABLE
2435void 3439void
2437{ 3441{
2438 if (expect_false (ev_is_active (w))) 3442 if (expect_false (ev_is_active (w)))
2439 return; 3443 return;
2440 3444
2441 evpipe_init (EV_A); 3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
2442 3448
2443 ev_start (EV_A_ (W)w, ++asynccnt); 3449 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2445 asyncs [asynccnt - 1] = w; 3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2446} 3454}
2447 3455
2448void 3456void
2449ev_async_stop (EV_P_ ev_async *w) 3457ev_async_stop (EV_P_ ev_async *w)
2450{ 3458{
2451 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2453 return; 3461 return;
2454 3462
3463 EV_FREQUENT_CHECK;
3464
2455 { 3465 {
2456 int active = ((W)w)->active; 3466 int active = ev_active (w);
3467
2457 asyncs [active - 1] = asyncs [--asynccnt]; 3468 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 3469 ev_active (asyncs [active - 1]) = active;
2459 } 3470 }
2460 3471
2461 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
2462} 3475}
2463 3476
2464void 3477void
2465ev_async_send (EV_P_ ev_async *w) 3478ev_async_send (EV_P_ ev_async *w)
2466{ 3479{
2467 w->sent = 1; 3480 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 3481 evpipe_write (EV_A_ &async_pending);
2469} 3482}
2470#endif 3483#endif
2471 3484
2472/*****************************************************************************/ 3485/*****************************************************************************/
2473 3486
2483once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2484{ 3497{
2485 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2486 void *arg = once->arg; 3499 void *arg = once->arg;
2487 3500
2488 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2489 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2490 ev_free (once); 3503 ev_free (once);
2491 3504
2492 cb (revents, arg); 3505 cb (revents, arg);
2493} 3506}
2494 3507
2495static void 3508static void
2496once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2497{ 3510{
2498 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2499} 3514}
2500 3515
2501static void 3516static void
2502once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2503{ 3518{
2504 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2505} 3522}
2506 3523
2507void 3524void
2508ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2509{ 3526{
2531 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2532 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2533 } 3550 }
2534} 3551}
2535 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
2536#if EV_MULTIPLICITY 3661#if EV_MULTIPLICITY
2537 #include "ev_wrap.h" 3662 #include "ev_wrap.h"
2538#endif 3663#endif
2539 3664
2540#ifdef __cplusplus 3665#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines